
1

Bit-Level Optimized Constant Multiplication using
Boolean Satisfiability

Nicolai Fiege , Martin Kumm , Member, IEEE, Peter Zipf , Member, IEEE

Abstract—Multiplierless constant multiplication using bit-
shifts, additions and subtractions has been an active research
topic in the last decades. The multiplication with multiple
constants, known as the multiple constant multiplication (MCM)
problem, is of special interest because of its practical rele-
vance, notably for digital filter implementation. In this work
we propose to use the speed of modern Boolean satisfiability
(SAT) solvers to find fast and optimal solutions. The solutions
are optimal either with respect to the adder count or the bit
level cost. In contrast to previous approaches, we also consider
negative fundamentals that are sometimes cheaper to realize than
their positive counterparts leading to more compact hardware
implementations. Our experiments show that our approach is
able to find optimal single constant multiplication (SCM) and
MCM circuits for practically relevant test instances in reasonable
time. We also prove the necessity for the post-add right shift
operation for SCM. Using our SAT formulation to enumerate
all possible implementations for some of our test instances we
show the importance of considering bit-level costs and negative
fundamentals when solving MCM problems.

I. INTRODUCTION

MULTIPLICATION by a constant (i.e., the scaling op-
eration) is a common operation in nearly all numeric

algorithms and can be efficiently realized using only shift-
and-add/subtract operations. However, finding a realization
with a minimal number of additions (subtractions are counted
as additions) was shown to be an NP-complete optimization
problem [1], [2], even for the elementary case of a single
constant, called single constant multiplication (SCM). The
generalization to multiple constant multiplication (MCM) is of
special practical relevance because of its application to digital
filters and discrete transforms.

Finding a circuit with the least amount of adders for MCM
has long been an active research topic because it promises
to reduce resource requirements in the final hardware imple-
mentation [3]–[7]. Nevertheless, the choice of operations (i.e.,
bit shifts and addition vs. subtraction) heavily influences the
used resources, even for instances with the same adder count.
Therefore, a similar yet even harder optimization goal is to
directly minimize bit-level cost metrics such as the number
of full adders or the number of basic logic elements on a
Field-Programmable Gate Array (FPGA) [8]–[12]. Previous
work assumes that ripple carry adders (RCA) are used to im-
plement additions [10]–[14]. Moreover, RCAs are the default
adder topology for FPGA implementations, which is why our

N. Fiege and P. Zipf are with the University of Kassel, Germany.
M. Kumm is with the Fulda University of Applied Sciences, Germany.
Pre-print submitted to IEEE. This is the author’s version of the work. It is

posted here for your personal use. Not for redistribution.

focus lies on RCA word size reduction within this work. As
our approach targets bit-width reductions, results can be in
principle transferred to other adder types, although concrete
savings might slightly vary due to structural differences.

Multiplication by a constant is a well-known optimization
problem in computer science. SCM being NP-complete [1],
[2] means that optimally solving SCM or MCM instances
takes exponential time in the worst case. Nevertheless, several
optimal SCM and MCM algorithms have been published that
are able to handle practically relevant problem sizes [4]–[7],
[10]–[12], [15]–[18].

Apart from counting adders as a high-level optimization
goal, the implementation complexity of each of the adders
strongly depends on the word size, bit shifts and whether it
is an addition or subtraction. For example, adding a number
y to a shifted number x (i. e., z = 2sx+ y) the s lowest bits
of z are identical to the s lowest bits of y and do not need
any full adders. Considering these bit-level cost in the MCM
problem was first proposed by Johansson et al. [8], [9] and
later used by Aksoy et al. [10]. Their models consider the
bit shifts of all the cases that can occur in an adder graph
leading to an accurate number of full adders, half adders
and even inverters [10]. A bit-level model can also be used
to reduce the critical path delay as demonstrated by Lou et
al. [13], [14]. Gustafsson et al. showed how to avoid sign
extensions in MCM implementations [19]. All these previous
works are heuristic optimizations. Two recent works addressed
the optimal design of MCM considering bit-level cost at a full-
adder level [11], [12] using ILP.

Optimizing circuits in a closed mathematical framework
such as ILP has the advantage that solutions are proven to
be optimal1, and, depending on the framework, can easily be
extended towards other optimization criteria or constraints.
While ILP can suffer from numerical problems, especially
for constant multiplication models with large coefficient word
sizes [4] (cf. Section VIII for examples), SAT turned out to
be a powerful framework to tackle various decision and opti-
mization problems in electronic design automation that does
not suffer from numerical issues since the problem is expressed
as a Boolean formula. SAT solvers emerged to powerful tools
in the recent years and have been successfully applied to,
e.g., standard cell routing [20], layout synthesis for CMOS
logic cells [21], logic synthesis [22], FPGA routing [23]–[25],
verification [26], [27], and even SCM [7].

The only work that used SAT so far to tackle the constant
multiplication problem using shift-and-add was proposed by

1under the assumptions of the problem formulation

2

1

3

21

1

3
–

(a) Non-optimal bit-level costs

1

5

21

2

4

(b) Optimal bit-level costs

Fig. 1: Adder graphs to compute y = 21 · x

Lagoon and Metodi [7]. They proposed to formulate the SCM
problem in SystemVerilog and convert it using an automated
procedure to a set of clauses that can afterwards be processed
using a standard SAT solver [7]. While results are promising
and outperform the state-of-the-art at that time, their approach
suffers from several limitations:

• No post-add shift operation is allowed, which does not
allow an optimal solution w.r.t. adder count in the general
case.

• The clause generation is done by a proprietary tool, which
does not give insight into the underlying SAT problem.

• MCM is not supported.
• Only optimality w.r.t. adder count is guaranteed.
Addressing the above mentioned shortcomings, our contri-

butions are the following:
• We propose an algorithm based on Boolean Satisfiability

(SAT) to solve the SCM (Section IV) and MCM (Sec-
tion V) problems optimally regarding the adder count.

• We extend it to also support multiplication by negative
numbers (Section VI) in preparation for bit-level cost
optimizations.

• We extend it towards optimizing bit-level costs (Sec-
tion VII).

• We experimentally validate that our algorithm can be ap-
plied to practically relevant problem sizes (Section VIII).

Our software is available as an open source project under https:
//doi.org/10.48662/daks-21.

II. MOTIVATING EXAMPLE

Consider the constant multiplication by C = 21. Fig. 1
shows two possible solutions requiring the optimal number of
adders, namely two. The circuit descriptions are given as a so-
called adder graph. Each node in an adder graph represents
an adder or subtractor, leading to a multiplication of the input
by the node’s constant and edge weights represent left shift
operations. Hence, node “1” corresponds to the input of the
circuit. For example, in Fig. 1a, node “3” corresponds to the
computation of 3x by using 3x = (x ≪ 1) + x while the
node “21” computes 21x = (3x≪ 3)− 3x. Fig. 1b shows an
alternative graph using the same adder count. Table I gives a
summary of our notation for constants and variables used in
the following.

TABLE I: Describing the SCM/MCM problem: Constants
(first part); node input/output decision variables (second part);
node internal decision variables for minimum adder count
(third part); and helper variables for bit optimization (fourth
part)

Constant/variable Explanation

C(m) ∈ N target constants (MCM)
M ∈ N number of target constants (M = 1 for SCM)
N ∈ N number of adders
NLB ∈ N lower bound for the number of adders
S = max

m

⌈
log2 C

(m)
⌉

max. allowed shift

W = S + 1 internal word size within the SAT formulation
Win ∈ N input word size
σ = ⌈log2 W ⌉ shift word size
B̂ ∈ N upper limit for bit-level costs
WB ∈ N bit-level cost word size

c(i) ∈ N output of node i

t(i,m) ∈ {0, 1} indicates whether c(i) = C(m) (only for
MCM)

α(i) ∈ N select input of left input MUX of node i

β(i) ∈ N select input of right input MUX of node i

γ(i) ∈ N pre-add shift input value of node i

δ(i) ∈ {0, 1} negate input MUX select bit of node i

ε(i) ∈ {0, 1} add/sub select bit of node i

ζ(i) ∈ N post-add shift input value of node i

l(i) ∈ N left input MUX output of node i

r(i) ∈ N right input MUX output of node i

s(i) ∈ N pre-add shift output of node i

x(i) ∈ N left negate select MUX output of node i

u(i) ∈ N right negate select MUX output of node i

y(i) ∈ N negate output of node i

z(i) ∈ N adder output of node i

a(i) = |z(i)| absolute value of the adder output
v(i) =

⌈
log2(b

(i))
⌉

word size of node i’s adder output
m(i) ∈ {0, 1} whether the bit for computing node i’s MSB

can be omitted
g(i) ∈ N the number of bits omitted on the LSB side

due to the shift operation

Both circuits shown in Fig. 1 need to implement two adders
but they still differ in bit-level costs. The reason for this is
depicted in Table II. The addition to construct 3x needs to
perform 6 bit operations for an input word size Win = 6 and
assuming a signed input using a two’s complement representa-
tion. We represent all integer variables (e.g., x(i) in Table II) as
binary numbers and add the subscript w whenever we refer to
bit w of those variables (e.g., x(i)

w). Unless stated otherwise, the
formulas/clauses provided from this point forward apply to all
bits w of these integer variables. With bit operation we refer to
the processing of single bits of the same weight either without
a carry (half adder) or with carry (full adder) that may include
inversion in case of a subtraction. The result has a word size
of 8 bits but the computation for the LSB does not require any
hardware because 2x always has a trailing zero independent of
the actual input value x due to the shift operation. Furthermore,
the computation for the MSB can also be omitted because
the result always has the same sign as the input, as shown
in Table IIa. When computing 21x = (3x ≪ 3) − 3x, we
cannot leave out the bit-level computations for the lowest
3 bits, because it is necessary to perform the inversion and

3

TABLE II: Bit-level summations for 21x and a word size of 6
bits; triangles denote positions where a bit operation is needed

(a) 3x = (x ≪ 1) + x

2x x
(1)
5 x

(1)
5 x

(1)
4 x

(1)
3 x

(1)
2 x

(1)
1 x

(1)
0 0

x x
(1)
5 x

(1)
5 x

(1)
5 x

(1)
4 x

(1)
3 x

(1)
2 x

(1)
1 x

(1)
0

3x x
(3)
7 x

(3)
6 x

(3)
5 x

(3)
4 x

(3)
3 x

(3)
2 x

(3)
1 x

(3)
0

▽ ▽ ▽ ▽ ▽ ▽

(b) 21x = (3x ≪ 3)− 3x

24x x
(3)
7 x

(3)
6 x

(3)
5 x

(3)
4 x

(3)
3 x

(3)
2 x

(3)
1 x

(3)
0 0 0 0

3x x
(3)
7 x

(3)
7 x

(3)
7 x

(3)
7 x

(3)
6 x

(3)
5 x

(3)
4 x

(3)
3 x

(3)
2 x

(3)
1 x

(3)
0

cin 1

21x x
(21)
10 x

(21)
9 x

(21)
8 x

(21)
7 x

(21)
6 x

(21)
5 x

(21)
4 x

(21)
3 x

(21)
2 x

(21)
1 x

(21)
0

▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽

(c) 5x = (x ≪ 2) + x

4x x
(1)
5 x

(1)
5 x

(1)
4 x

(1)
3 x

(1)
2 x

(1)
1 x

(1)
0 0 0

x x
(1)
5 x

(1)
5 x

(1)
5 x

(1)
5 x

(1)
4 x

(1)
3 x

(1)
2 x

(1)
1 x

(1)
0

5x x
(5)
8 x

(5)
7 x

(5)
6 x

(5)
5 x

(5)
4 x

(5)
3 x

(5)
2 x

(5)
1 x

(5)
0

▽ ▽ ▽ ▽ ▽ ▽

(d) 21x = (x ≪ 4) + 5x

16x x
(1)
5 x

(1)
5 x

(1)
4 x

(1)
3 x

(1)
2 x

(1)
1 x

(1)
0 0 0 0 0

5x x
(5)
8 x

(5)
8 x

(5)
8 x

(5)
7 x

(5)
6 x

(5)
5 x

(5)
4 x

(5)
3 x

(5)
2 x

(5)
1 x

(5)
0

21x x
(21)
10 x

(21)
9 x

(21)
8 x

(21)
7 x

(21)
6 x

(21)
5 x

(21)
4 x

(21)
3 x

(21)
2 x

(21)
1 x

(21)
0

▽ ▽ ▽ ▽ ▽ ▽

handle the carry input needed for subtraction. Therefore, 10
bits must be computed in hardware in this case, which results
in 16 bit operations for the whole circuit.

The optimal implementation (cf. Fig. 1b) needs to perform
6 bit operations to realize 5x = (x ≪ 2) + x (Table IIc) and
also only 6 bits to compute 21x = (x≪ 4) + 5x (Table IId),
resulting in only 12 bit operations in total. Therefore, we are
able to cut 4 bit operations from the non-optimal circuit by
choosing a different adder graph with the same adder count.

III. PROPOSED ALGORITHM

We propose to use the search procedure outlined in Algo-
rithm 1 to find an adder graph with optimal bit-level costs.
The algorithm consist of two parts: (1) first, we compute
a solution for the optimal adder count (i.e., the repeat-until
loop in Line 4) and (2) afterwards we iteratively decrease the
upper bound for bit-level costs until the SAT solver reports
unsatisfiability for the first time (i.e., the repeat-until loop in
Line 8). Finally the algorithm returns an adder graph with
optimal bit-level costs for the minimum number of adders.
As an additional benefit, we can use incremental solving
in the second loop—if supported by the SAT solver. We
use the trivial lower bound NLB = M , the number of
unique coefficients, since the SAT solver can quickly prove
unsatisfiability in cases where a realization with M adders
is infeasible. Note that other lower bounds (e.g., the one by
Gustafsson [28]) can be used alternatively.

Algorithm 1 Computing an adder graph with optimal bit-level
costs for the minimum adder count

Require: C(0), . . . , C(M−1) ▷ Coefficients
Ensure: An adder graph A with optimal bit-level costs

1: A← {} ▷ Initialize empty adder graph
2: N ← NLB(C

(0), . . . , C(M−1)) ▷ Lower bound
3: sat← False
4: repeat ▷ Find optimal adder costs
5: A, sat← solve(C(0), . . . , C(M−1), N)
6: if ¬sat then
7: N ← N + 1 ▷ N adders are insufficient
8: end if
9: until sat

10: repeat ▷ Find optimal bit costs
11: B̂ ← compute_bit_costs(A)
12: Â, sat← solve(C(0), . . . , C(M−1), N, B̂ − 1)
13: if sat then
14: A← Â ▷ Found better solution
15: end if
16: until ¬sat
17: return A

To simplify our algorithm, we only focus on bit operations
exceeding the chosen input word size Win. Hence, the actual
number of bits is

#Bits = N∗ ·Win +B∗ (1)

where N∗ and B∗ represent the optimal number of adders and
the optimal number of (additional) bit operations reported by
the solver.

In the example from Section II, our solver would report
that it found a solution for zero additional bit operations. The
computation of 5x requires 6 bit operations (0 bits more than
the input word size) and the computation of 21x also requires
6 bit operations (also 0 bits more than the input word size).

In the following we describe how to solve the SCM problem
using SAT (Section IV); extend it to MCM (Section V); extend
it to signed fundamentals (Section VI); and finally extend it
to bit-level costs (Section VII).

IV. SAT FORMULATION FOR SCM

A SAT solver determines whether a Boolean expression
can evaluate to true. If this is the case, the solver also
gives a satisfying assignment of its variables. Otherwise, the
solver performs an exhaustive search to show that such an
assignment cannot exist. Usually, modern SAT solvers require
the expression to be in conjunctive normal form (CNF). Such
an expression consists of a conjunction of clauses; each clause
is a disjunction of literals; and each literal is either a Boolean
variable or its negation.

To decide whether there exists an SCM circuit for a given
constant, maximum adder count and maximum bit-level cost,
we have to convert that decision problem into a circuit with
a given adder count N and bit-level cost B̂, translate it to a
single Boolean formula in conjunctive normal form (CNF) and
test the CNF for satisfiability. To do so, every sub-circuit leads

4

TABLE III: Truth table for a
MUX

d0 d1 s y

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

�
�

�
��

�
�
���

�
�
�
�

�
�

y(d0, d1, s):

0
0

0
1

0
2

1
3

1
4

0
5

1
6

1
7

d0

d1

s

Fig. 2: K-map for a MUX

to clauses that have to be added to the Boolean expression.
In the following, we provide a detailed example on how to
model a multiplexer (MUX) as a first component within SAT.

Table III and Fig. 2 show the truth table and the Karnaugh
map for a 2:1 MUX with data inputs d0, d1, select line s and
output y. The MUX is fully characterized via the following
four expressions (highlighted blue in Fig. 2):

(¬s ∧ ¬d0)→ ¬y (2)
(s ∧ ¬d1)→ ¬y (3)
(¬s ∧ d0)→ y (4)
(s ∧ d1)→ y (5)

Rearranging using the identity a→ b = ¬a∨b, where→ is
the logical implication operator, yields cnf = (s ∨ d0 ∨ ¬y) ∧
(¬s∨ d1 ∨¬y)∧ (s∨¬d0 ∨ y)∧ (¬s∨¬d1 ∨ y). Passing this
CNF to the SAT solver would result in the solver reporting
satisfiability, with a satisfying assignment being, e.g., d0, d1,
¬s, y. Note that this is only one out of several satisfying
assignments.

We use this approach to derive clauses for arbitrary logical
operations.

A. Adder node circuit

Figure 3 shows the circuit that represents the ith adder node
that computes coefficient c(i). Its input MUX is connected to
the outputs of all previous nodes and values for α(i) and β(i)

are determined by the SAT solver to select appropriate inputs.
The left input, selected via α(i), always gets shifted with its
shift length determined by γ(i).

Bit ε(i) controls whether an addition or a subtraction is
performed and the two MUXs, controlled by δ(i), determine if
s(i) or r(i) gets subtracted. The value for δ(i) is therefore only
relevant in case ε(i) = 1. The two’s complement conversion
to model a subtraction is performed by the bitwise XOR gate,
controlled by ε(i), and by setting the carry input of the adder
equal to ε(i). Lastly, a right shift by ζ(i) bits is performed,
which is necessary to achieve the minimum number of adders
for some constants (Section VIII).

The circuit that describes the overall optimization problem
is built by using the adder circuit N times, i.e., creating the
corresponding clauses for i = 1 . . . N . The details of the
clauses are described next.

γ(i)

δ(i)

ε(i)

α(i)

...c(0) c(i−1)

β(i)i− 1 0 i− 1 0.

l(i) r(i)

s(i)

x(i) w(i)

y(i)

01 10

= 1

cin

A B

c(i)

z(i)

ζ(i)

.

σ

σ

1

1

⌈log2(i)⌉ ⌈log2(i)⌉

W W

W

W

W

W

W

W

W

W

Fig. 3: Circuit description for one adder node

B. Clauses for basic operations

In the following, we define all clauses to represent the
operations from Fig. 3. They directly follow from the truth
tables of the respective operations and are minimized using
Boolean algebra whenever applicable.

The 2:1 MUX with select input s, data inputs d0, d1 and
output y is described by the following clauses:

¬d0 ∨ s ∨ y (6)
d0 ∨ s ∨ ¬y (7)
¬d1 ∨ ¬s ∨ y (8)
d1 ∨ ¬s ∨ ¬y (9)
¬d0 ∨ ¬d1 ∨ y (10)
d0 ∨ d1 ∨ ¬y (11)

These are identical to the ones derived from (2)–(5) including
two redundant clauses, which we add for improved perfor-
mance during unit propagation [29]. We add (6)–(11) for all
MUXs that appear in each adder node (Fig. 3). For example,
when building clauses for the MUX with output x(i), we
substitute x

(i)
w = y, δ(i) = s, s(i)w = d1, r(i)w = d0.

5

An XOR with inputs a and b and output y is modeled via:

a ∨ b ∨ ¬y (12)
a ∨ ¬b ∨ y (13)
¬a ∨ b ∨ y (14)

¬a ∨ ¬b ∨ ¬y (15)

The adder is realized as a ripple carry adder using full
adders. A full adder with inputs a, b and cin and output s
(a 3-input XOR) is formulated as:

a ∨ b ∨ cin ∨ ¬s (16)
a ∨ b ∨ ¬cin ∨ s (17)
a ∨ ¬b ∨ cin ∨ s (18)
¬a ∨ b ∨ cin ∨ s (19)

¬a ∨ ¬b ∨ ¬cin ∨ s (20)
¬a ∨ ¬b ∨ cin ∨ ¬s (21)
¬a ∨ b ∨ ¬cin ∨ ¬s (22)
a ∨ ¬b ∨ ¬cin ∨ ¬s (23)

and the carry computation in the full adder with inputs a, b
and cin and output cout is modeled using the following clauses:

¬a ∨ ¬b ∨ cout (24)
a ∨ b ∨ ¬cout (25)

¬a ∨ ¬cin ∨ cout (26)
a ∨ cin ∨ ¬cout (27)
¬b ∨ ¬cin ∨ cout (28)
b ∨ cin ∨ ¬cout (29)

1) The input MUX: Each input MUX for node i has i
data inputs. Therefore, node 1 does not need any input MUX
because the left and the right inputs for node 1 are always
node 0. Furthermore, an n:1 MUX is built out of a tree of 2:1
MUXs.

2) The left shifter: Fig. 4 shows our model for the left
shifter. It is based on 2:1 MUXs, where stage w performs a
left shift by 2w bits if γw = 1.

The SAT solver is not allowed to produce overflows within
the shifter. Hence, we must make sure that only zeros are
shifted out on the MSB side. This means that we must account
for four different types of MUXs:

1) a regular MUX
2) a MUX where d0 = 1 and s = 1 is forbidden (to avoid

shifting out ones on the MSB side)
3) a MUX with d1 = 0 (to shift in zeros on the LSB side)
4) a MUX with d1 = 0 where d0 = 1 and s = 1

is forbidden (to shift in zeros on the LSB side and
simultaneously avoid shifting out ones on the MSB side)

We implement a Type-1 MUX using (6)–(11). For a Type-2
MUX, we add the clause ¬(d0∧s) to (6)–(11). Using a K-map
minimization, we change (6) to

¬d0 ∨ y (30)

and (10) to

¬d0 ∨ ¬s. (31)

The remaining two MUX variants directly follow from setting
d1 = 0.

3) The adder: The adder is constructed as a ripple carry
adder via (16)–(23) for the sum bits and via (24)–(29) for
the carry bits. We create additional variables to represent the
internal carry values and avoid overflows during addition by
adding clauses

¬cout ∨ ε(i) ∀i ∈ [1, N] (32)

cout ∨ ¬ε(i) ∀i ∈ [1, N] (33)

This ensures that subtractions always produce a carry output
and additions never produce a carry output, which prohibits
overflows since both numbers are guaranteed to be non-
negative.

4) The right shifter: The right shifter works the same way
as the left shifter, with the exception that the shift direction is
reversed (i.e., zeros are shifted in at the MSB side and it is
not allowed to shift out ones at the LSB side).

5) Input and output nodes: We force the input node (with
index i = 0) to value 1 by setting c

(0)
0 = 1 and c

(0)
w = 0 for

w ̸= 0 and we ensure that the output node (with index i = N)
computes the requested constant by adding clause

c̃(i)w with c̃(i)w =

{
¬c(i)w if Cw = 0

c
(i)
w if Cw = 1

(34)

for each bit w ∈ [0, W − 1].
6) Accelerating unsat proofs: The solver is required to

prove unsatisfiability for all values for N that are too small to
express the target constant. As it was proven by Dempster and
Macleod [16], it suffices to only consider odd fundamentals
to guarantee minimum adder count. We therefore propose to
add clause

c
(i)
0 ∀i ∈ [1, N] (35)

to the formulation. This sets each LSB to true, which forces
all fundamentals to odd values. Even through this clause is not
required for correctly modeling the SCM problem, we found
that it helps speeding up the solving process for unsatisfiable
instances. As an additional benefit, it also simplifies the
extension to bit-level costs (Section VII).

V. EXTENSION TO MCM
The extension to MCM is straightforward. Instead of ensur-

ing that the SCM constant of interest gets computed by the
last node, we must make sure that each MCM constant gets
computed by at least one node. To do so, we use variables
t(i,m) and make sure that the solver is only able to set
t(i,m) = 1 whenever c(i) = C(m) by forcing the relationship

t(i,m) → (c(i) = C(m)) ∀i ∈ [1, N],m ∈ [1, M] (36)

using clauses

¬t(i,m) ∨ c̃(i,m)
w ∀i ∈ [1, N],m ∈ [1, M] (37)

with c̃
(i)
w defined as

c̃(i,m)
w =

{
¬c(i)w if C(m)

w = 0

c
(i)
w if C(m)

w = 1
(38)

6

1

1

1 1 1 1

1 1 1 1

1 1 1 1 10 0 0 0 0

0 0 0 0 0

0 0 0 0 0

γ
(i)
0

γ
(i)
1

γ
(i)
2

l
(i)
4 l

(i)
3 l

(i)
2 l

(i)
1 l

(i)
0

s
(i)
4 s

(i)
3 s

(i)
2 s

(i)
1 s

(i)
0

0

Fig. 4: Left shifter circuit for W = 5, built from 2:1 MUXs; white: Type-1, red: Type-2, green: Type-3, blue: Type-4

Finally, we make sure that each MCM constant gets computed
by at least one node via clause

N∨
i=1

t(i,m) ∀m ∈ [1, M]. (39)

VI. EXTENSION TO SIGNED FUNDAMENTALS

As shown by Gustafsson et al. [19], negative fundamentals
are sometimes cheaper to realize than their positive coun-
terparts, because the operation x − (y ≪ s) consumes less
resources than (x ≪ s) − y. Note that this has no impact
on the optimal number of adders but the extension to signed
fundamentals prepares for the bit-level cost model described
in Section VII.

Being bit-level-aware has the advantage that we can also
directly compute negative output fundamentals if their compu-
tation is cheaper than computing the positive counterpart and
let the solver choose which one of them to realize. In MCM
problems, where both the positive and the negative coefficient
are requested, it is natural to let the solver decide which one
to compute. In cases where a positive coefficient is requested
but the sign of an output fundamental does not matter2, we
can also let the solver decide the sign.

To support signed fundamentals, we must represent all
numbers as two’s complement numbers, which requires in-
creasing the SAT solver’s internal word size by 1 (i.e., W =
max
n
⌈log2 Cn⌉ + 2). Furthermore, we must change the rules

for overflow protection in the adder and the rules regarding
the MSB within the shifters as described in the following.

A. Signed overflow protection in the adder

Overflows in two’s complement computations depend on
the sign bits of both inputs, on the output sign bit and also on
the operation performed (addition or subtraction). Overflows
occur in the following four cases:

2This might be the case if the MCM circuit is embedded in a larger system,
such as a digital filter, where computing a coefficient with the “wrong” sign
can be accounted for without additional hardware costs by changing, e.g., a
subsequent adder to a subtractor.

1) z = x+ y with x > 0, y > 0, z < 0,
2) z = x+ y with x < 0, y < 0, z > 0,
3) z = x− y with x > 0, y < 0, z < 0, and
4) z = x− y with x < 0, y > 0, z > 0.

We prohibit these cases using clauses

ε(i) ∨ x
(i)
W−1 ∨ u

(i)
W−1 ∨ ¬a

(i)
W−1, (40)

ε(i) ∨ ¬x(i)
W−1 ∨ ¬u

(i)
W−1 ∨ z

(i)
W−1, (41)

¬ε(i) ∨ x
(i)
W−1 ∨ ¬u

(i)
W−1 ∨ ¬z

(i)
W−1, and (42)

¬ε(i) ∨ ¬x(i)
W−1 ∨ u

(i)
W−1 ∨ z

(i)
W−1 (43)

for all i ∈ [1, N]

B. Signed MSB rules in the shifters

In the left shifter, we are allowed to shift out zeros on the
MSB side for positive inputs and ones for negative inputs.
This affects Type-2 and Type-4 MUXs. Additionally, we must
make sure that the sign bit before and after shifting remains
the same via clauses

¬l(i)W−1 ∨ s
(i)
W−1 and l

(i)
W−1 ∨ ¬s

(i)
W−1 (44)

for all i ∈ [1, N]
To account for signed fundamentals in the left shifter, Type-

2 MUXs change to Type-1 MUXs and Type-4 MUXs change
to Type-3 MUXs and we add clauses

¬s ∨ ¬sign(d0) ∨ d1,w (45)
¬s ∨ sign(d0) ∨ ¬d1,w (46)

for MUXs at position w < W − 1 with s being the select
input, sign(d0) being the sign bit of the data input for s = 0
and d1,w being bit w of the data input for s = 1. We also add
clauses

¬s ∨ ¬sign(d0) ∨ d0,w (47)
¬s ∨ sign(d0) ∨ ¬d0,w (48)

for MUXs at position w = W − 1. These additional clauses
ensure that only bits equal to the sign bit are shifted out.

7

Handling the right shifter is simpler as overflows cannot
occur. We only need to shift in the sign bit instead of zeros
on the MSB side, changing Type-3 MUXs to Type-1 and Type-
4 MUXs to Type-2. For all former Type-3 and Type-4 MUXs,
the sign bit is connected to d1.

VII. EXTENSION TO BIT-LEVEL COSTS

Minimizing the number of adders is a reasonable high-level
objective for the general SCM/MCM problem but the choice
of non-output fundamentals and the choice of operations (+,
− and shift) influences the bit-widths of the adders, as seen
in Section II. Hence, we extend our SAT formulation to
also support an upper limit on the number of available bit
operations. This way, we can first generate a solution for the
minimum amount of adders and afterwards refine that solution
by optimizing the bit-widths of the adders.

Our SAT formulation relies on the following assumptions:
1) As mentioned in the Introduction, adders are imple-

mented as ripple carry adders.
2) Inputs to the SCM/MCM circuit are represented as

signed integers in two’s complement.
3) The input word size is larger than the maximum shift

(otherwise we would not need any adders for large shifts
because the input operands do not overlap).

4) An n bit adder and an n bit subtractor have equal costs
(i.e., the negations for subtractions can be implemented
without additional costs).

5) c(i) is odd.
6) Input operands for additions/subtractions always over-

lap.
These assumptions result in the following conclusions:

1) The adder word size of a node is Win +
⌈
log2(|z(i)|)

⌉
where Win is the input word size.

2) For additions, the number of bit operations is Win +⌈
log2(|z(i)|)

⌉
− γ(i).

3) For x − (y ≪ s), we can exploit that the shifted result
gets negated, turning the trailing zeros into ones, and the
carry input for the two’s complement conversion turns
the ones into zeros again and we account for the carry
input at bit position s.

4) For (x≪ s)−y, we cannot save bits on the LSB side be-
cause they are needed to perform the inversion of y. The
number of bits is therefore equal to Win+

⌈
log2(|x(i)|)

⌉
.

5) If a node has inputs with the same sign, the sign bit can
be copied from one of those inputs, potentially saving
one bit per adder.

Under these assumptions, our bit-level cost model equally
weighs full adders, half adders and inverters. This means that
we can accurately model the number of LUTs on an FPGA,
since all circuit elements (half adder, full adder, inverter)
consume exactly one LUT.

For ASICs, proposed algorithm can be seen as a heuristic:
ASIC area depends on bit-width and, beyond that, on effort
per bit position. Our solution does not account for bit position
costs as we model every bit operation as a full adder. In
concrete cases, individual bit operations might be reduced to a
half adder if one of the inputs is missing, or even to an XOR if

only the sum is required (in both cases with optional inversions
in case of a subtraction). Therefore, our model will fail to
identify solutions with more bit operations but less chip area.
However, when compared to previous solutions that neglect
adder bit widths, our method consistently reduces the number
of bit operations significantly (as shown later bin Fig. 10).
On average, this reduction should far outweigh any potential
increase in cost for some individual bits.

Already noted by Garcia et al. [11], an adder can be
completely omitted if its input operands do not overlap (i.e.,
Assumption 6 is violated). This can occur only if the pre-
addition shift length exceeds the second adder input’s word
size. Like Garcia et al. we do not consider this case in our
work, since it hardly ever occurs in practice. The proposed
algorithm overestimates bit-level costs if Assumption 6 does
not hold.

Depending on the operation performed, three cases can
affect the number of saved bits on the LSB side:

1) (x≪ s) + y or x+ (y ≪ s);
2) x− (y ≪ s);
3) (x≪ s)− y.

For case 1 & 2 we calculate the number of bits for node i,
B(i), via

B(i) = Win +
⌈
log2(|z(i)|)

⌉
− γ(i) −m(i). (49)

For case 3 the number of bits is

B(i) = Win +
⌈
log2(|z(i)|)

⌉
−m(i). (50)

Here, m(i) is a variable that denotes whether the MSB can
be copied from one of the node’s inputs. When restricting the
solver to use only positive coefficients, m(i) is always 1. Since
Win is a constant and the same for all adder nodes, we do not
consider Win within our SAT formulation.

The synthesis tool might sometimes find opportunities to
reduce bit-level costs even further, which our algorithm cannot
account for (e.g., in cases where l(i) = r(i)). Note that this
may only reduce the hardware requirements of the resulting
circuit.

A. Word size increase due to the computed constant

To calculate
⌈
log2(|z(i)|)

⌉
, we compute an intermediate

result a(i) = |z(i)| by modeling the circuit shown in Fig. 5.
The MUXs select −z(i) if z(i) < 0 (i.e., when its sign bit is
set to 1) and z(i) if z(i) ≥ 0 (i.e., when its sign bit is set to
0).

We model Algorithm 2 within SAT to calculate
⌈
log2(a

(i))
⌉
.

It works by first initializing two variables: an integer v that
will hold the result, and a binary carry variable c that denotes
whether a leading zero was already found in a previous
iteration. Starting at the MSB, the for-loop iterates through
the bit vector that represents the adder result and adds one to
v whenever the current or a previous bit is set to 1. After the
last iteration (for w = 0), v holds the word size of a(i).

8

HA HA 1HA . . .

z
(i)
1 z

(i)
0

a
(i)
W−1 a

(i)
1 a

(i)
0

01 01 01

z
(i)
W−1

. . .

Fig. 5: Circuit to compute a(i) = |z(i)|

Algorithm 2 Computing
⌈
log2(a

(i))
⌉

Require: a(i)

Ensure: v(i) =
⌈
log2(a

(i))
⌉

1: v ← 0 ▷ Integer variable that will hold the result
2: c← 0 ▷ Binary carry variable
3: for w ←W − 1 . . . 0 do
4: t1 ← c ∨ a

(i)
w ▷ t1 is 1 bit

5: t2 ← v & c ▷ Bitwise ∧ relation; t2 is an integer
6: v ← t1 + t2
7: c← t1
8: end for
9: v(i) ← v

10: return v(i)

B. Cutting LSBs

To distinguish between (49) and (50), we introduce new
variables g(i) that denote the number of LUTs saved on the
LSB side. Therefore, g(i) = 0 for (x≪ s)−y and g(i) = γ(i)

in all other cases.
We enforce this constraint for each bit w in g(i) by adding

clauses

γ(i)
w ∨ ¬g(i)w (51)

¬δ(i) ∨ ¬ε(i) ∨ ¬g(i)w (52)

δ(i) ∨ ¬γ(i)
w ∨ g(i)w (53)

ε(i) ∨ ¬γ(i)
w ∨ g(i)w (54)

for all i ∈ [1, N]. Clause (51) ensures that the solver never
cuts more LSBs than the shift size. We use (52) to handle the
case (x≪ s)− y where we cannot save bits on the LSB side.
The remaining two cases are modeled by (53) and (54), where
the solver is allowed to cut bits on the LSB side.

C. Copying the MSB

The MSB for a given node does not have to be explicitly
computed if at least one of its inputs has the same sign. This
might reduce the number of full adders by one per adder. We
therefore add variables m

(i)
w to represent whether the sign bit

of a node’s output can be copied from one of its inputs and
add clauses

u
(i)
W−1 ∨ z

(i)
W−1 ∨m(i)

w , (55)

¬u(i)
W−1 ∨ x

(i)
W−1 ∨m(i)

w , (56)

¬x(i)
W−1 ∨ ¬z

(i)
W−1 ∨m(i)

w , (57)

¬x(i)
W−1 ∨ ¬u

(i)
W−1 ∨ z

(i)
W−1 ∨ ¬m

(i)
w , and (58)

x
(i)
W−1 ∨ u

(i)
W−1 ∨ ¬z

(i)
W−1 ∨ ¬m

(i)
w (59)

for all i ∈ [1, N]. This ensures that the SAT solver is only
allowed to copy the sign bit for a node that computes a
negative number if at least one of its inputs is also negative
and the sign bit for positive fundamentals can only be copied
if at least one input is positive. If the SAT solver is restricted
to use only positive fundamentals, m(i) should be set to true
via clause

m(i) ∀i ∈ [1, N] (60)

There are no sign bits in case of an unsigned input.
Nevertheless, we can omit the explicit computation of the
MSB in a given adder node, whenever the output word size of
that adder is exactly one bit larger than its largest input word
size. The derivation of the corresponding clauses for unsigned
inputs is straightforward and we omit it here since we focus
on signed inputs due to their practical relevance for digital
filter implementations.

D. Calculating final bit-level costs

Bit-level costs can, in general, be negative within the SAT
formulation because they describe the offset w.r.t. the input
word size (B∗ in (1)), which requires computing bit-level costs
using two’s complement numbers. We therefore reorder the
computation as

B = Σv − (Σg +Σm)

with

Σv =

N∑
i=1

v(i), Σg =

N∑
i=1

g(i), Σm =

N∑
i=1

m(i). (61)

This allows us to model the computation of Σv, Σg, and Σm

and also the sum Σg + Σm using ripple-carry adders and
unsigned arithmetic.

E. Comparing bit-level costs to maximum costs

Finally, the SAT solver must compare bit-level costs for the
current adder graph B to an upper limit B̂ to be able to decide
whether B̂ is satisfiable. This is done in Algorithm 3.

The for loop iterates through all bits of B and generates
clauses for two variables: okw and c. Similar to Algorithm 2,
we use c as a carry variable which is set to true as long as the
MSBs of B and B̂ are equal. The okw bit denotes whether
B ≤ B̂ is partially satisfied for all bits at positions greater
than or equal to w. B ≤ B̂ is only satisfied if and only if all
okw bits are true. We therefore add clauses

okw ∀w ∈ [0, WB − 1]. (62)

9

Algorithm 3 Checking whether B ≤ B̂

Require: B, B̂,WB

1: for w ← ⌈log2 WB⌉ − 1 . . . 0 do
2: if w = WB − 1 then
3: if B̂w = 1 then
4: okw ← Bw

5: c← Lw

6: else
7: okw ← true
8: c← ¬Bw

9: end if
10: else
11: if B̂w = 1 then
12: okw ← okw+1 ∨ c
13: c← c ∧Bw

14: else
15: okw ← (¬c ∧ okw+1) ∨ (c ∧ ¬Bw)
16: c← c ∧ ¬Bw

17: end if
18: end if
19: end for
20: return ok

All if-else conditions in Algorithm 3 can be evaluated
“offline” (i.e., while setting up the SAT fomulation) because
B̂ is a constant. The if condition in Line 3 handles the sign
bit separately and depending on the current bit B̂, we must
add clauses that model the respective Boolean expressions.

VIII. EXPERIMENTS

We conduct experiments on an AMD EPYC 7443P
CPU@3.77GHz using CaDiCaL [30] to solve SAT instances
and Gurobi [31] for ILP instances, both limited to one thread
each. In our initial experiments, we also used Z3 [32] and
Glucose [33] as SAT solvers but found that CaDiCaL always
had the lowest CPU time among all solvers. We therefore only
report results obtained via CaDiCaL. Results for the Branch
and Bound (BnB) algorithm [5] are obtained using a highly-
optimized C++ implementation by Leothaud [34] instead of
the original Matlab implementation used by Aksoy et al. [5].

For all experiments, we reproduce results for the ILP-based
approaches by Kumm [4] and Garcia and Volkova [12] and for
BnB by Aksoy et al. [5] on our machine. For the SAT-based
SCM algorithm by Lagoon and Metodi [7], however, we were
not able to reproduce results and instead report experimental
results given in the paper.

Our SCM benchmarks are based on (i) all 20-bit numbers
that can be realized with up to five adders and (ii) tests done
by Lagoon and Metodi to evaluate the practicability of their
SAT-based SCM algorithm. For MCM we focus on image
processing filter kernels that are also used to benchmark ILP-
based MCM algorithms [4], [11].

A. Objective: minimize the adder count

As our first experiment, we compare our algorithm to the
approach by Lagoon and Metodi [7] which aims at solving

TABLE IV: Proving that there does not exist an implemen-
tation with exactly N adders for constant C; oom: out of
memory (512 GB); err: numerical errors while solving

CPU time [s]

N C SAT [7] BnB [5] ILP [4] prop.

1 11 0 0 0 0
2 43 0 0 0 0
3 683 0 0 1 0
4 14, 709 15 1 218 2
5 699, 829 2 111 683 1154 375
5 171, 398, 451 1 120 oom err 220
6 171, 398, 453 520 751 oom err 227 530

0 2 · 105 4 · 105 6 · 105 8 · 105 1 · 106
0

100

200

300

max. C

#C
on

st
an

ts

Fig. 6: The number of constants which require the post-add
left shift to achieve the optimal number of adders

the SCM problem for the minimum number of adders. For
completeness, we also report CPU times for BnB [5] and for
ILP [4]. Lagoon and Metodi report CPU times for their algo-
rithm to determine that there cannot exist an implementation
for certain constants with a certain number of adders. Results
are summarized in Table IV. Our algorithm is able to reproduce
all results. Although CPU time for our algorithm is lower
for all target constants compared to Lagoon and Metodi’s
approach, they used another SAT solver and they do not report
information about the CPUs used. Unfortunately, ILP and BnB
do not return a solution for the two largest constants due to
either running out of memory after one week of computation
time or numerical errors in the ILP solver.

Secondly, we evaluate the importance of the post-add shift
operation for SCM. So far, the necessity for right shifts
in SCM have not been evaluated before. Fig. 6 shows the
number of constants, representable with max. five adders
and max. 20 bits, that need this shift to achieve optimal
adder costs. Although that number is small—only 0.065%—
any optimal SCM algorithm must incorporate that shift to
guarantee optimal adder costs in the general case. The smallest
target constant that needs this shift is C = 39, 757.

For the MCM experiments (Table V), we compared our
algorithm’s performance with a recent ILP-based approach [4],
using the same benchmark instances. Our algorithm consis-
tently outperforms the ILP-based approach in terms of runtime,
completing all test instances within five seconds. In contrast,
the ILP-based approach times out for one instance, resulting
in a significantly increased runtime of twelve hours, yielding
a non-optimal solution. Additionally, Aksoy et al.’s Branch
and Bound (BnB) approach [5] quickly solves all instances
for optimal adder costs in under one second but lacks support
for bit-level optimization. Furthermore, BnB solving times do
not scale well for large coefficients (Table IV).

10

TABLE V: MCM results with objective min. # add

add CPU time [s]

type size W M ILP [4] prop. ILP [4] prop.

gaussian 3× 3 8 3 4 4 0 0
gaussian 5× 5 12 3 5 5 18 1
laplacian 3× 3 8 3 3 3 0 0
unsharp 3× 3 8 3 4 4 0 0
unsharp 3× 3 12 3 5 5 2 0
lowpass 5× 5 8 5 6 6 2 0
lowpass 9× 9 10 12 12 12 191 0
lowpass 15× 15 12 25 31 25 43 867 4
highpass 5× 5 8 4 4 4 0 0
highpass 9× 9 10 5 5 5 0 0
highpass 15× 15 12 12 12 12 1 0

20 25 210 215 220
0

5

10

15

max. C (log scale)

av
g.

ab
s.

bi
t

sa
vi

ng
s

0

10

20

30

av
g.

re
l.

bi
t

sa
vi

ng
s

[%
]

absolute
relative

(a) Win = 8

20 25 210 215 220
0

5

10

15

max. C (log scale)

av
g.

ab
s.

bi
t

sa
vi

ng
s

0

5

10

15

av
g.

re
l.

bi
t

sa
vi

ng
s

[%
]

absolute
relative

(b) Win = 24

Fig. 7: SCM bit savings

B. Objective: minimize the number of bits (pre-synthesis)

Figure 7 shows bit savings when running our algorithm
for bit-level cost minimization on 2,125 randomly chosen
coefficients from the SCM benchmark set3 evaluated for an
input word size of Win = 8 and Win = 24. We see that
average cost savings approach 28% for Win = 8 and 15% for
Win = 24 compared to solutions generated with our approach
with optimal adder count only. This clearly shows the necessity
of bit-level optimizations for SCM circuits.

For bit-level optimized MCM benchmarks, we compare our
approach with bit-level optimizations to Garcia and Volkova’s
ILP formulation [12]. Their approach assumes unsigned in-
puts, but it can also be applied to signed inputs without
guaranteeing optimality in terms of bit-level costs. For a fair
comparison, we conduct two evaluations: one for signed inputs
and one for unsigned ones; results can be found in Table VI.

3For each bit widths up to 20 bits we chose up to 50 random coefficients
per optimal adder count.

Notably, our algorithm outperforms the ILP approach for
signed inputs in all but two test instances, where costs are
equal. This difference arises from their approach not account-
ing for signed fundamentals, enabling our approach to reduce
bit-level costs in nearly all test instances.

Our algorithm can handle unsigned inputs in two different
ways. The first one is to increase the word size by one, pad
the input with a leading zero on the MSB side and model a
circuit for signed arithmetic (denoted as prop(s) in Table VI).
The second way is to prohibit negative fundamentals and
model a circuit for unsigned arithmetic (denoted as prop(u)).
It can be seen that in several instances, increasing the word
size by one bit and using signed fundamentals results in even
lower bit-level costs than the corresponding circuit for optimal
unsigned arithmetic. In two instances, the ILP approach is able
to reduce hardware costs (pre-synthesis) by one and two bit
operations, respectively, compared to the proposed one. In all
other instances, hardware costs obtained by our approach are
either lower or equal. Differences between prop(u) are due to
the ILP model incorporating rules to avoid computing the MSB
for unsigned inputs, which is not supported by the proposed
SAT formulation since we focus on signed input data due to
the practical relevance.

C. Objective: minimize the LUT count (post-place & route)

Figure 8 shows the optimization potential due to incorpo-
rating bit-level costs by comparing synthesized MCM circuits
(for signed inputs and Win = 8) obtained via our proposed
approach, the ILP formulation [12], and the BnB algorithm [5].
Here, BnB serves as a baseline, because it only generates a
solution for the optimal adder costs without incorporating a
detailed bit-level cost model.

LUT savings compared to the baseline with only optimal
adder count (BnB) range from 1.9% (Flt. 4, unsharp 3×3 with
W = 12) up to 24.5% (Flt. 3, unsharp 3×3 with W = 8). For
some filters, Vivado is able to cut a few LUTs during logic
synthesis, which neither approach accounts for. This leads to
ILP beating our approach by 2 and 1 LUTs for Flt. 0 and
Flt. 6, respectively. Averaged over all filters, we calculate LUT
savings of 17.0% for our proposed approach and 9.7% for
ILP. Total LUT savings for all filters are 15.4% for ours and
7.9% for ILP.

D. Design space exploration (pre-synthesis)

The last set of experiments enumerates the whole design
space for some selected SCM/MCM problems to evaluate the
potential of using bit-level metrics and signed fundamentals in
the optimization. For that, we add a clause each time the SAT
solver finds a solution for a given adder count to prohibit that
solution and start solving again with this additional clause.
We repeat this process until the solver reports unsatisfiability,
which means that all solutions were found4.

Figure 9 shows histograms of all possible adder graphs that
lead to C = 14, 709 with optimal adder count and various

4for the optimal adder count N∗, max. shift S = maxm
⌈
log2 C

(m)
⌉

and
max. coefficient word size W = S + 1

11

TABLE VI: MCM results with objective min. # bits for Win = 8; prop.(u) is our approach limited to only positive fundamentals
and unsigned arithmetic; prop.(s) is our approach using signed fundamentals with signed arithmetic, using Win = 9

signed inputs unsigned inputs

bits CPU time [s] # bits CPU time [s]

Flt. type size W M ILP [12] prop. ILP [12] prop. ILP [12] prop.(u) prop.(s) ILP [12] prop.(u) prop.(s)

0 gaussian 3× 3 8 3 39 39 3 0 40 41 43 4 0 0
1 gaussian 5× 5 12 3 55 52 635 3 57 57 57 635 3 3
2 laplacian 3× 3 8 3 30 24 0 0 31 31 27 0 0 0
3 unsharp 3× 3 8 3 32 30 1 0 32 34 34 1 0 0
4 unsharp 3× 3 12 3 47 40 143 2 49 49 45 143 1 2
5 lowpass 5× 5 8 5 58 58 241 1 60 60 64 241 0 1
6 lowpass 9× 9 10 12 121 117 7200 7200 130 128 129 7200 7200 7200
7 lowpass 15× 15 12 25 – 245 7200 7200 – 263 270 7200 7200 7200
8 highpass 5× 5 8 4 38 29 1 0 39 41 33 1 0 0
9 highpass 9× 9 10 5 46 36 5 0 47 47 41 5 0 0

10 highpass 15× 15 12 12 104 87 7200 7200 105 111 99 7200 7200 7200

Flt. 0 Flt. 1 Flt. 2 Flt. 3 Flt. 4 Flt. 5 Flt. 6 Flt. 7 Flt. 8 Flt. 9 Flt. 10

0

20

40

60

80

100 3
9 5
2

2
3

3
0

4
0 5
7 1
1
9

2
4
4

3
1

3
5 8
73
7

5
3

2
9

3
0 4

6

5
6

1
2
1

N
aN

3
6 4
3

9
7

4
2

5
3

2
9

3
9

5
3

7
2

1
3
8

2
7
6

3
9

4
6

1
0
8

#L
U

T
s

[%
]

prop. ILP [12] BnB [5]

Fig. 8: LUT costs after Place & Route for signed inputs and Win = 8 normed to results obtained via BnB [5]. Numbers above
bars give absolute LUT counts (note that ILP is unable to compute a solution for Flt. 7). Savings averaged over all instances
are 17.0% for our proposed approach and 9.7% for ILP. Absolute LUT savings for all filter instances are 15.4% for our
proposed approach and 7.9% for ILP.

word sizes. We see a remarkable optimization potential for
Win = 8. In the optimal case for positive fundamentals,
we can reach an implementation with only 40 bit operations
whereas the worst-case SCM circuit needs 96 bit operations,
even though both implementations have the same adder count
N = 5. Using signed fundamentals, the optimal solution now
needs 37 bits and the circuit with highest costs utilizes 101
bits. As seen in Fig. 9d, we still have a difference of approx.
60 bits between the optimal and worst cases for Win = 32.
Considering that a non-bit-aware SCM/MCM algorithm ar-
rives at any of these implementations, only minimizing the
adder count does not seem to be a reasonable optimization
goal in hardware design; especially for low word sizes.

Digital filters (FIR and IIR) are examples, where the sign
of the output fundamental in the MCM circuit is irrelevant
because it can be compensated by changing a subsequent
adder to a subtracter or vice versa. We therefore enumerate
all possible solutions for MCM with the following settings:

1) Positive output and non-output fundamentals
2) Signed non-output fundamentals; positive output funda-

mentals in the filter description are realized as positive
output fundamentals; negative filter coefficients can be
realized as positive or negative output fundamentals

40 60 80 100
0
1
2
3
4 ·10

4

#bits

#S
ol

ut
io

ns

(a) Win = 8 (postitive)

160 180 200 220
0
1
2
3
4 ·10

4

#bits

(b) Win = 32 (postitive)

40 60 80 100
0
1
2
3
4 ·10

4

#bits

#S
ol

ut
io

ns

(c) Win = 8 (signed)

160 180 200 220
0
1
2
3
4 ·10

4

#bits

(d) Win = 32 (signed)

Fig. 9: All solutions with min. #adders for C = 14, 709 and
different word sizes for positive (blue) and signed fundamen-
tals (red)

12

30 35 40 45 50 55
0

200
400
600

#bits

#S
ol

ut
io

ns

(a) Flt. 0

48 52 56 60 64 68 72
0
20
40
60
80

#bits

(b) Flt. 1

24 26 28 30 32 34
0

2

4

#bits

#S
ol

ut
io

ns

(c) Flt. 2

28 32 36 40 44 48 52
0

500
1,000
1,500

#bits

(d) Flt. 3

42 48 54 60 66 72
0

500
1,000
1,500

#bits

#S
ol

ut
io

ns

(e) Flt. 4

55 60 65 70 75 80
0
1
2
3
4 ·10

4

#bits

(f) Flt. 5

28 32 36 40 44 48
0

200

400

#bits

#S
ol

ut
io

ns

(g) Flt. 8

36 40 44 48 52 56
0

2

4
·104

#bits

(h) Flt. 9

Fig. 10: All solutions with min. #adders for MCM instances
and Win = 8 for positive (blue); signed fundamentals with
negative coefficients only allowed for non-output fundamentals
and negative requested output fundamentals (red); and signed
fundamentals with negative coefficients allowed for all funda-
mentals (grey)

3) All fundamentals are allowed to be negative (indepen-
dent of the signs in the filter specification).

Design space exploration results for MCM are depicted
in Fig. 10. A general observation is that the design space
grows and the optimum solution regarding the number of bit
operations is improved when allowing signed fundamentals.
For some filters it is noteworthy that allowing any signed fun-
damentals at all allows for a completely new set of solutions
with a lower number of bit operations (e.g., Flt. 2). Another
interesting observation is that allowing the SAT solver to
choose the sign of any output fundamental can decrease the op-
timum number of bit operations by a significant amount (e.g.,
approx. 25% for Flt. 0). These results clearly demonstrate
that the restriction to strictly positive fundamentals should be
lifted whenever possible to decrease hardware requirements of
digital filter implementations.

IX. CONCLUSION

In this paper we present a SAT based optimization algorithm
for the SCM and MCM problems. Given enough computation

time, our algorithm is able to compute a provably optimal
MCM circuit for the minimum number of adders and the
minimum number of bit-level costs (i.e., LUTs on an FPGA).

By comparing our work to a state-of-the-art algorithm for
optimal SCM [7], we show that our formulation is competitive
by proving optimality even for the “hardest” benchmarks
(i.e., the smallest number that cannot be represented anymore
with six adders: 171, 398, 453). We also show that the post-
adder right shifter is needed to guarantee minimal adder costs
for SCM, albeit being necessary for only 0.065% of all
coefficients with up to 20 bits and max. five adders. For that
same set of numbers, we are able to reduce bit-level costs by
28% on average for an input word size of eight bits compared
to solutions with optimal adder count.

By comparing our approach to a recent, state-of-the-art
ILP based approach for adder-optimal MCM [4], we show
that our algorithm scales better to large problem sizes by
having a significantly reduced runtime that also leads to
better solutions within a reasonable timeout. A specialized
branch and bound algorithm for MCM [5] is able to compute
solutions for the same MCM benchmark suite in slightly
less time than our approach, but it has the downside of not
supporting bit-level costs and of not scaling well to larger
coefficient word sizes. For the first time, the use of negative
fundamentals is exploited within an optimization method and
thoroughly evaluated, showing cases with significant bit-level
cost reductions. This allowed us to find MCM circuits with
less bit-level costs than another ILP-based approach for bit-
level cost optimization [12].

Future work could be about leveraging the speed of con-
temporary SAT solvers to further improve the state-of-the-
art of optimal constant multiplication. Our approach could be
extended towards (i) constant-matrix-multiplication (CMM) or
(ii) optimizing constant multiplication circuits using ternary
adders. Regarding bit-level costs, one could (iii) include the
input word size into the SAT formulation to allow the solver
to remove an adder entirely by choosing a shift larger than the
input word size, (iv) extend the SAT formulation to truncated
outputs, in cases where the full precision is not necessary,
or (v) derive a detailed cost model for ASICs, which must
differentiate costs for full adders, half adders and inverters.

REFERENCES

[1] P. Cappello and K. Steiglitz, “Some complexity issues in digital sig-
nal processing,” IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. 32, no. 5, pp. 1037–1041, Oct. 1984.

[2] M. R. Garey, Computers and intractability : a guide to the theory of
NP-completeness, 27th ed., ser. A series of books in the mathematical
sciences. New York, NY: Freeman, 2005.

[3] Y. Voronenko and M. Püschel, “Multiplierless multiple constant multi-
plication,” ACM Transactions on Algorithms, vol. 3, no. 2, pp. 11–es,
2007.

[4] M. Kumm, “Optimal Constant Multiplication Using Integer Linear
Programming,” IEEE Transactions on Circuits and Systems II: Express
Briefs, vol. 65, no. 5, pp. 567–571, May 2018.

[5] L. Aksoy, E. O. Güneş, and P. Flores, “Search algorithms for the
multiple constant multiplications problem: Exact and approximate,”
Microprocessors and Microsystems, vol. 34, no. 5, pp. 151–162, Aug.
2010.

[6] J. Thong and N. Nicolici, “A novel optimal single constant multiplication
algorithm,” in Design Automation Conference, Jun. 2010, pp. 613–616,
iSSN: 0738-100X.

13

[7] V. Lagoon and A. Metodi, “Deriving Optimal Multiplication-by-
Constant Circuits With A SAT-based Constraint Engine,” in The 19th
workshop on Constraint Modelling and Reformulation, 2020, pp. 1–6.

[8] K. Johansson, O. Gustafsson, and L. Wanhammar, “A detailed com-
plexity model for multiple constant multiplication and an algorithm
to minimize the complexity,” in Proceedings of the 2005 European
Conference on Circuit Theory and Design, 2005., vol. 3, 2005, pp.
III/465–III/468 vol. 3.

[9] ——, “Bit-Level Optimization of Shift-and-Add Based FIR Filters,” in
2007 14th IEEE International Conference on Electronics, Circuits and
Systems, 2007, pp. 713–716.

[10] L. Aksoy, E. Costa, P. Flores, and J. Monteiro, “Optimization of area in
digital FIR filters using gate-level metrics,” in 2007 44th ACM/IEEE
Design Automation Conference, ser. Proceedings of the 44th annual
conference on Design automation - DAC ’07. Design Automation
Conference (DAC), 00 2007, pp. 420–423.

[11] R. Garcia, A. Volkova, and M. Kumm, “Truncated Multiple Constant
Multiplication with Minimal Number of Full Adders,” in IEEE Interna-
tional Symposium on Circuits and Systems (ISCAS), 2022.

[12] R. Garcia and A. Volkova, “Toward the Multiple Constant Multiplication
at Minimal Hardware Cost,” IEEE Transactions on Circuits and Systems
I: Regular Papers, vol. 70, no. 5, pp. 1976–1988, May 2023.

[13] X. Lou, Y. J. Yu, and P. K. Meher, “High-Speed Multiplier Block Design
Based on Bit-Level Critical Path Optimization,” IEEE International
Symposium of Circuits and Systems (ISCAS), pp. 1308 – 1311, 00 2014.

[14] ——, “Fine-Grained Critical Path Analysis and Optimization for Area-
Time Efficient Realization of Multiple Constant Multiplications,” Cir-
cuits and Systems I: Regular Papers, IEEE Transactions on, vol. 62,
no. 3, pp. 863 – 872, 07 2015.

[15] M. Kumm, O. Gustafsson, M. Garrido, and P. Zipf, “Optimal Single
Constant Multiplication Using Ternary Adders,” IEEE Transactions on
Circuits and Systems II: Express Briefs, vol. 65, no. 7, pp. 928–932, Jul.
2018.

[16] A. G. Dempster and M. D. Macleod, “Constant integer multiplication
using minimum adders,” IEE Proceedings - Circuits, Devices and
Systems, vol. 141, no. 5, pp. 407–413, Oct. 1994, publisher: IET Digital
Library.

[17] O. Gustafsson, “Towards Optimal Multiple Constant Multiplication: A
Hypergraph Approach,” in 2008 42nd Asilomar Conference on Signals,
Systems and Computers, ser. Asilomar Conference on Signals, Systems
and Computers (ACSSC), 10 2008, pp. 1805 – 1809.

[18] O. Gustafsson, A. G. Dempster, M. D. Johansson, K .and Macleod, and
L. Wanhammar, “Simplified design of constant coefficient multipliers,”
Circuits, Systems, and Signal Processing, vol. 25, no. 2, pp. 225 – 251,
2006.

[19] O. Gustafsson, K. Johansson, and L. DeBrunner, “Techniques for
Avoiding Sign-Extension in Multiple Constant Multiplication,” in 2009
Conference Record of the Forty-Third Asilomar Conference on Signals,
Systems and Computers, ser. Asilomar Conference on Signals, Systems
and Computers (ACSSC). Asilomar Conference on Signals, Systems
and Computers (ACSSC), 00 2009, pp. 740 – 743.

[20] N. Ryzhenko and S. Burns, “Standard cell routing via boolean satisfiabil-
ity,” in Proceedings of the 49th Annual Design Automation Conference
on - DAC ’12. San Francisco, California: ACM Press, 2012, p. 603.

[21] T. Iizuka, M. Ikeda, and K. Asada, “High speed layout synthesis
for minimum-width CMOS logic cells via Boolean satisfiability,” in
Proceedings of the 2004 Asia and South Pacific Design Automation
Conference, ser. ASP-DAC ’04. Yokohama, Japan: IEEE Press, Jan.
2004, pp. 149–154.

[22] T. Welp, S. Krishnaswamy, and A. Kuehlmann, “Generalized SAT-
sweeping for post-mapping optimization,” in Proceedings of the 49th
Annual Design Automation Conference, ser. DAC ’12. New York, NY,
USA: Association for Computing Machinery, Jun. 2012, pp. 814–819.

[23] H. Fraisse, A. Joshi, D. Gaitonde, and A. Kaviani, “Boolean
Satisfiability-Based Routing and Its Application to Xilinx UltraScale
Clock Network,” in Proceedings of the 2016 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays. Monterey California
USA: ACM, Feb. 2016, pp. 74–79.

[24] G.-J. Nam, K. A. Sakallah, and R. A. Rutenbar, “Satisfiability-based
layout revisited: detailed routing of complex FPGAs via search-based
Boolean SAT,” in Proceedings of the 1999 ACM/SIGDA seventh inter-
national symposium on Field programmable gate arrays, ser. FPGA ’99.
New York, NY, USA: Association for Computing Machinery, Feb. 1999,
pp. 167–175.

[25] R. G. Wood and R. A. Rutenbar, “FPGA routing and routability esti-
mation via Boolean satisfiability,” in Proceedings of the 1997 ACM fifth
international symposium on Field-programmable gate arrays, ser. FPGA

’97. New York, NY, USA: Association for Computing Machinery, Feb.
1997, pp. 119–125.

[26] W. A. Hunt and E. Reeber, “A SAT-based procedure for verifying finite
state machines in ACL2,” in Proceedings of the sixth international
workshop on the ACL2 theorem prover and its applications, ser. ACL2
’06. New York, NY, USA: Association for Computing Machinery, Aug.
2006, pp. 127–135.

[27] E. Reeber and J. Sawada, “Combining ACL2 and an automated verifica-
tion tool to verify a multiplier,” in Proceedings of the sixth international
workshop on the ACL2 theorem prover and its applications, ser. ACL2
’06. New York, NY, USA: Association for Computing Machinery, Aug.
2006, pp. 63–70.

[28] O. Gustafsson, “Lower bounds for constant multiplication problems,”
IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 54,
no. 11, pp. 974 – 978, 11 2007.

[29] N. Eén and N. Sörensson, “Translating Pseudo-Boolean Constraints into
SAT,” Journal on Satisfiability, Boolean Modeling and Computation,
vol. 2, no. 1-4, pp. 1–26, Mar. 2006.

[30] A. Biere, K. Fazekas, M. Fleury, and M. Heisinger, “CaDiCaL, Kissat,
Paracooba, Plingeling and Treengeling entering the SAT Competition
2020,” in Proc. of SAT Competition 2020 – Solver and Benchmark
Descriptions, ser. Department of Computer Science Report Series B,
T. Balyo, N. Froleyks, M. Heule, M. Iser, M. Järvisalo, and M. Suda,
Eds., vol. B-2020-1. University of Helsinki, 2020, pp. 51–53.

[31] Gurobi, “Gurobi Optimizer,” 2022.
[32] L. de Moura and N. Bjørner, “Z3: An Efficient SMT Solver,” in Tools

and Algorithms for the Construction and Analysis of Systems, ser.
Lecture Notes in Computer Science, C. R. Ramakrishnan and J. Rehof,
Eds. Berlin, Heidelberg: Springer, 2008, pp. 337–340.

[33] S. Laurent, “Glucose SAT Solver,” 2023.
[34] D. Leothaud, “Hardware acceleration MCM,” https://gitlab.

inria.fr/dleothau/hardware-acceleration-mcm, 2022, commit:
7d5063816106ebdd8dda0d33500dcde3237e4c9e.

Nicolai Fiege received the B.Sc. and M.Sc. degrees
in Electrical Engineering from the University of
Kassel, Germany, in 2018 and 2021, respectively,
where he is currently working toward his Ph.D. in
Electrical Engineering.

His research interests include the design of opti-
mal digital circuits using mathematical methods and
frameworks.

Martin Kumm received the Dipl.-Ing. degree in
electrical engineering from the Technical University
of Darmstadt, Germany in 2007.

He was with GSI Darmstadt, working on digital
control systems for particle accelerators from 2003
to 2009. In 2015, he received his Ph.D. (Dr.-Ing.)
degree from the University of Kassel, Germany. He
is currently a Professor for Embedded Systems at the
Fulda University of Applied Sciences, Germany. His
research interest is application-specific arithmetic
and its optimization with particular emphasis on

reconfigurable systems.

Peter Zipf (M’05) received the Ph.D. (Dr.-Ing.)
degree from the University of Siegen, Germany, in
2002.

He was a Postdoctoral Researcher at the De-
partment of Electrical Engineering and Information
Technology, Darmstadt University of Technology,
Darmstadt, Germany, until 2009. He is currently the
chair of Digital Technology at the University of Kas-
sel, Germany. His current research interests include
reconfigurable computing, embedded systems and
CAD algorithms for circuit optimization.

