
49

BLOOP: Boolean Satisifiability-based Optimized Loop
Pipelining

NICOLAI FIEGE, University of Kassel, Germany

PETER ZIPF, University of Kassel, Germany

Modulo scheduling is the premier technique for throughput maximization of loops in high-level synthesis

by interleaving consecutive loop iterations. The number of clock cycles between data insertions is called

initiation interval (II). For throughput maximization, this value should be as low as possible; therefore its

minimization is the main optimization goal.

Despite its long historical existence, modulo scheduling always remained a relevant research topic over the

last years with many exact and heuristic algorithms available in literature.

Nevertheless, we are able to leverage the scalability of modern Boolean Satisfiability (SAT) solvers to

outperform state-of-the-art ILP-based algorithms for latency-optimal modulo scheduling for both integer and

rational IIs. Our algorithm is able to compute valid modulo schedules for the whole CHStone and MachSuite

benchmark suites, with 99% of the solutions being proven to be throughput-optimal for a timeout of only

10 min per candidate II. For various time limits, not a single tested scheduler from the state-of-the-art is able

to compute more verified optimal solutions or even a single schedule with a higher throughput than our

proposed approach. Using an HLS toolflow we show that our algorithm can be effectively used to generate

Pareto-optimal FPGA implementations regarding throughput and resource usage.

CCS Concepts: •Hardware→High-level and register-transfer level synthesis; Operations scheduling.

Additional Key Words and Phrases: Modulo scheduling, Loop pipelining, Boolean Satisfiability

ACM Reference Format:
Nicolai Fiege and Peter Zipf. 2023. BLOOP: Boolean Satisifiability-based Optimized Loop Pipelining. ACM
Trans. Reconfig. Technol. Syst. 16, 3, Article 49 (July 2023), 33 pages. https://doi.org/10.1145/3599972

1 INTRODUCTION
Field-programmable gate arrays (FPGA) received increased interest in many computationally

demanding fields over the last decades, such as image and video processing [31, 56], machine

learning [33, 37, 53, 55], control engineering [25, 44] or cryptography [35]. This requires productive

means of obtaining high-quality circuits that meet all throughput specifications while at the same

time being resource and energy efficient. One way of obtaining such circuits is high-level synthesis

(HLS), the process of generating digital hardware implementations at register transfer level (RTL)

from behavioral descriptions such as C/C++ code [17, 24].

Loop computations take up a significant portion of runtime during program execution [5]. Modulo

scheduling
1
—interleaving consecutive loop iterations to exploit instruction-level parallelism—is the

premier technique for loop acceleration [46], and is therefore used in many HLS frameworks [10, 36].

Despite its long historical existence and many exact and heuristic modulo scheduling algorithms

being published over the last decades [2, 4, 5, 14, 15, 18–20, 34, 41, 45, 48, 57], it still remains one of

the most computationally expensive steps in contemporary HLS. The optimization goal is usually

1
also referred to as “loop pipelining”

Authors’ addresses: Nicolai Fiege, nfiege@uni-kassel.de, University of Kassel, Kassel, Germany; Peter Zipf, zipf@uni-

kassel.de, University of Kassel, Kassel, Germany.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version

of Record was published in ACM Transactions on Reconfigurable Technology and Systems, https://doi.org/10.1145/3599972.

ACM Trans. Reconfig. Technol. Syst., Vol. 16, No. 3, Article 49. Publication date: July 2023.

HTTPS://ORCID.ORG/0000-0002-4357-2119
HTTPS://ORCID.ORG/0000-0003-4725-4246
https://doi.org/10.1145/3599972
https://orcid.org/0000-0002-4357-2119
https://orcid.org/0000-0003-4725-4246
https://doi.org/10.1145/3599972

49:2 Nicolai Fiege and Peter Zipf

to minimize the time between consecutive data sample insertions, called the initiation interval (II),

under tight resource constraints.

In scheduling, we differentiate between the following cases: (1) static scheduling [46], where

the execution times of all operations are computed during circuit compilation; (2) dynamic sched-
uling [43], which aims at circumventing conservative data dependencies for static scheduling

by determining execution times at runtime, potentially causing an area-overhead for increased

performance [30]; (3) a combination thereof [7] aiming at statically scheduling the parts of the

input description, where dynamic scheduling cannot bring a performance gain.

In this paper we propose BLOOP
2
, an optimal static modulo scheduling algorithm based on

Boolean satisfiability (SAT). Our proposed algorithm quickly determines an initial schedule for

the optimal II using a problem reduction technique [14] within the framework of iterative modulo

scheduling [45] and afterwards performs an iterative search for the optimal schedule length

leveraging the scalability of modern SAT solvers. This process combines the main advantage of

heuristics (quickly determining a feasible solution) with the main advantage of exact algorithms

(determining the optimal solution given enough computation time).

Our contributions are the following:

(1) We present a SAT-based optimal modulo scheduling algorithm under resource constraints (Sec-

tion 2).

(2) We generalize our algorithm to also support rational IIs (Section 3).

(3) We evaluate our algorithm on several benchmark suites (Section 5) consisting of a diverse

selection of modulo scheduling problems and show superiority over the existing state-of-the-

art regarding the number of (optimally proven) solutions and algorithm runtime (Sections 5.1–

5.2).

(4) We show that FPGA implementations generated with schedules obtained from our proposed

scheduler lead to better tradeoffs in the design space regarding resource usage and throughput

achieved compared to solutions obtained by state-of-the-art approaches (Section 5.3).

This ensures that our algorithm can prove useful for the evaluation of new heuristics and for the

generation of highly optimized digital circuits.

1.1 The modulo scheduling problem
Before giving a motivational example for the importance of optimal modulo scheduling, we formally

define the modulo scheduling problem (MSP). Table 1 shows an overview of all inputs to the MSP.

One input is the data flow graph (DFG) 𝐺 = {𝑂, 𝐸, 𝐷,Δ} which consists of vertices representing

the operations 𝑜𝑖 ∈ 𝑂 ; weighted, directed edges representing data dependencies (𝑜𝑖 → 𝑜 𝑗) ∈ 𝐸;
edge weights representing algorithmic distances 𝑑𝑖, 𝑗 ∈ 𝐷 ; and minimum time differences between

consecutive operations due to data dependencies 𝛿𝑖, 𝑗 ∈ Δ. In the default case, such a time difference

is the source operation’s latency 𝐿𝑖 in clock cycles. In order to prohibit excessive chaining of

operations with zero latency (e.g., bit-wise or logical operations), dedicated chaining edges are

added to the DFG before scheduling [41]. Those additional edges have 𝛿𝑖, 𝑗 = 1 to force two

operations into two different clock cycles whenever the critical path would exceed the maximum

clock period. Therefore,

𝛿𝑖, 𝑗 =


0, if 𝑜𝑖 and 𝑜 𝑗 are chainable and 𝐿𝑖 = 0,

1, if 𝑜𝑖 and 𝑜 𝑗 are not chainable and 𝐿𝑖 = 0,

𝐿𝑖 , else.

(1)

2
Boolean satisfiability-based optimized loop pipelining

Preprint.

BLOOP: Boolean Satisifiability-based Optimized Loop Pipelining 49:3

Table 1. Parameters of the MSP

Parameter Definition Explanation

𝑜𝑖 ∈ 𝑂 ∀𝑖 : 0 ≤ 𝑖 < |𝑂 | operation

𝐿𝑖 ∈ N0 ∀𝑖 : 0 ≤ 𝑖 < |𝑂 | latency of operation 𝑖 in clock cycles

(𝑜𝑖 → 𝑜 𝑗) ∈ 𝐸 𝐸 ⊆ 𝑂 ×𝑂 edge

𝑑𝑖, 𝑗 ∈ 𝐷 𝐷 ⊂ N0 distance on the edge (𝑜𝑖 → 𝑜 𝑗)
𝛿𝑖, 𝑗 ∈ Δ Δ ⊂ N0 minimum number of clock cycles between the execution of 𝑜𝑖

and 𝑜 𝑗
𝜔 ∈ Ω {add,mult, . . .} operator type

𝜔 ∈ Ω̌ Ω̌ ⊆ Ω resource-limited operator type

FUs(𝜔) ∈ N ∀𝜔 : 𝜔 ∈ Ω̌ number of allocated functional units of resource-limited type

𝜔

𝑜𝑖 ∈ 𝑂̌𝜔 𝑂̌𝜔 ⊆ 𝑂 operation of resource-limited type 𝜔

II ∈ N II
⊥ ≤ II ≤ II

⊤
initiation interval

The second input to the MSP are the operator limits due to resource constraints. Each operation

can be executed by one unique operator type 𝜔 . Usually, operators3 are resource-limited if they

are either sparsely available (e.g., memory read/write accesses) or consume significant resources

(e.g., floating point operations). Other operations are usually modeled without an operator limit

if they can be implemented in hardware in a very resource-efficient way (e.g., bit-wise or logical

operations).

The output of the MSP is (i) an II and (ii) a set of non-negative integer start times 𝑡𝑖 that, together

with the II, satisfy all data dependencies and operator constraints, i.e.,

𝑡 𝑗 + 𝑑𝑖, 𝑗 · II ≥ 𝑡𝑖 + 𝛿𝑖, 𝑗 ∀𝑖, 𝑗 : (𝑜𝑖 → 𝑜 𝑗) ∈ 𝐸 (2)

and

|{𝑖 : 𝑜𝑖 ∈ 𝑂̌𝜔 , 𝑡𝑖 mod II =𝑚}| ≤ FUs(𝜔) ∀𝜔,𝑚 : 𝜔 ∈ Ω̌, 0 ≤ 𝑚 < II, (3)

where 𝑂̌𝜔 contains all operations that can be executed by the resource-limited operator 𝜔 .

The minimum achievable II is limited by two factors: (i) recurrences in the DFG, and (ii) operator

constraints [46]. We assume that all operators can accept new input data in each clock cycle (i.e.,

they are fully pipelined with 𝐿𝑖 pipeline stages). Therefore, 𝑛 operators can execute at most 𝑛 · II
operations within II clock cycles, which results in

II ≥ |𝑂̌𝜔 |
FUs(𝜔) ∀𝜔 : 𝜔 ∈ Ω̌. (4)

Here, we denote the number of operations that can be executed by an operator of type 𝜔 as |𝑂̌𝜔 |.
We follow previous work [5, 19, 41, 45, 48] and define the resource-limited minimum II as

II
⊥
res

= max

𝜔∈Ω̌

(
|𝑂̌𝜔 |

FUs(𝜔)

)
. (5)

Recurrences limit the minimum achievable II via (2). The recurrence-limited minimum II, II
⊥
rec
, is

therefore solely limited by the set of all cycles,𝐶 , in G. We follow Tarjan’s definition of a cycle [52],

3
also referred to as “functional units” (FU)

Preprint. ACM Trans. Reconfig. Technol. Syst., Vol. 16, No. 3, Article 49. Publication date: July 2023.

49:4 Nicolai Fiege and Peter Zipf

𝑐𝑥 ∈ 𝐶 , and denote it as

𝑐𝑥 = {(𝑜𝑎 → 𝑜𝑏), (𝑜𝑏 → 𝑜𝑐), (𝑜𝑐 → . . . → 𝑜𝑎)}. (6)

This means that a cycle is a sequence of edges, for which (i) the source vertex of an edge is the

sink vertex of the previous edge; (ii) the source vertex of the first edge is the sink vertex of the last

edge; (iii) all vertices in 𝑐𝑥 appear exactly once as a source and once as a sink vertex; and (iv) the

first source vertex is the last sink vertex. The subscript 𝑥 just serves as a unique numbering of all

cycles and does not depend on the edges included in 𝑐𝑥 . The cyclic dependencies of all resulting

dependency constraints lead to the condition

II ≥

∑
𝑖, 𝑗 :(𝑜𝑖→𝑜 𝑗) ∈𝑐𝑥

𝛿𝑖, 𝑗∑
𝑖, 𝑗 :(𝑜𝑖→𝑜 𝑗) ∈𝑐𝑥

𝑑𝑖, 𝑗
∀𝑥 : 𝑐𝑥 ∈ 𝐶. (7)

II
⊥
rec

directly follows [5] as

II
⊥
rec

= max

𝑐𝑥 ∈𝐶

©­­«
∑

𝑖, 𝑗 :(𝑜𝑖→𝑜 𝑗) ∈𝑐𝑥
𝛿𝑖, 𝑗∑

𝑖, 𝑗 :(𝑜𝑖→𝑜 𝑗) ∈𝑐𝑥
𝑑𝑖, 𝑗

ª®®¬ . (8)

For graphs without cycles (i.e., 𝐶 = ∅), II⊥
rec

is usually defined as II
⊥
rec

= 1. We follow previous

work [45] and define the minimum II, II
⊥
, as

II
⊥ = max{II⊥

rec
, II⊥

res
}. (9)

Note that the optimum II is merely lower-bounded by II
⊥
, because the interaction of resource and

precedence constraints can lead to infeasible IIs that are larger than or equal to II
⊥
.

1.2 Motivational Example
Fig. 1 shows an example to motivate the need for loop pipelining in HLS. Fig. 1(a) is a loop written

in C++. We assume that all array elements with indices 𝑖 = 0 . . . 3 are initialized to 1. The loop

iterates 996 times and in each iteration it reads data from three input arrays, 𝑥0 . . . 𝑥2, computes

three multiplications and stores the results in the arrays 𝑦0 . . . 𝑦2.

In this example we assume that inputs (i.e., 𝑥0, 𝑥1, 𝑥2) are available to the circuit via a parallel

streaming interface and all outputs (i.e., 𝑦0, 𝑦1, 𝑦2) are made available to the surrounding circuit via

another parallel streaming interface. This allows us to omit modeling (possibly limited) load/store

operations, which—due to their latency—might even change II
⊥
rec
. Our experimental evaluation

in Section 5 considers both memory models. Fig. 1(b) shows the corresponding DFG. Note the

edge 𝑜2 → 𝑜0 with a distance of 𝑑2,0 = 4. It represents the data dependency from 𝑦0 on 𝑦2 from

four iterations before. Edge weights of intra-loop dependencies (𝑑𝑖, 𝑗 = 0) are not explicitly shown

in the DFG to improve clarity. Multiplications on an FPGA can be efficiently implemented using

embedded DSPs. We assume that they are pipelined with two pipeline stages leading to a latency

of two clock cycles per operation.

The graph contains exactly one cycle, 𝑐0 = {(𝑜0 → 𝑜1), (𝑜1 → 𝑜2), (𝑜2 → 𝑜0)}, which results in

II
⊥
rec

= 2+2+2
0+0+4 = 3

2
. For modulo scheduling with integer IIs, the minimum integer II, II

⊥
N, is defined as

II
⊥
N =

⌈
II
⊥⌉
. Without additional resource constraints, II

⊥
N = 2. For rational IIs, the II does not need to

be an integral number [48]. Therefore, II
⊥
Q = II

⊥
and in this example II

⊥
Q = 3

2
.

Table 2(a) shows a non-modulo schedule for the given scheduling problem. It uses one FU and

has a schedule length of six. Therefore, a new data sample can be introduced every six clock

cycles—denoted by the small triangles in time steps 0, 6 and 12.

Preprint.

BLOOP: Boolean Satisifiability-based Optimized Loop Pipelining 49:5

f o r (i n t i = 4 ; i < 1000 ; i ++) {

y_0 [i] = x_0 [i] ∗ y_2 [i − 4] ; / / o_0

y_1 [i] = x_1 [i] ∗ y_0 [i] ; / / o_1

y_2 [i] = x_2 [i] ∗ y_1 [i] ; / / o_2

}

(a) Example for-loop

𝑜0 𝑜1 𝑜2

4

(b) Example DFG

Fig. 1. Motivational example

Table 2. Comparison of different schedules for the DFG shown in Figure 1(b). The notation 𝑠 : 𝑜𝑖 stands for
“operation represented by vertex 𝑜𝑖 of sample with index 𝑠”.

(a) non-modulo

FU1

0 : 𝑜0

0 : 𝑜1

0 : 𝑜2

1 : 𝑜0

1 : 𝑜1

1 : 𝑜2

2 : 𝑜0

2 : 𝑜1

⊲

⊲

⊲

↓ t
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(b) II = 3

FU1

0 : 𝑜0

0 : 𝑜1

1 : 𝑜0

0 : 𝑜2

1 : 𝑜1

2 : 𝑜0

1 : 𝑜2

2 : 𝑜1

3 : 𝑜0

2 : 𝑜2

3 : 𝑜1

4 : 𝑜0

3 : 𝑜2

4 : 𝑜1

⊲

⊲

⊲

⊲

⊲

(c) II = 2

FU1 FU2

0 : 𝑜0

0 : 𝑜1 1 : 𝑜0

2 : 𝑜0 1 : 𝑜1

0 : 𝑜2

2 : 𝑜1 3 : 𝑜0

1 : 𝑜2

4 : 𝑜0 3 : 𝑜1

2 : 𝑜2

4 : 𝑜1 5 : 𝑜0

3 : 𝑜2

6 : 𝑜0 5 : 𝑜1

4 : 𝑜2

6 : 𝑜1 7 : 𝑜0

⊲

⊲

⊲

⊲

⊲

⊲

⊲

⊲

(d) II = 3/2

FU1 FU2

0 : 𝑜0

0 : 𝑜1 1 : 𝑜0

2 : 𝑜0

0 : 𝑜2 1 : 𝑜1

2 : 𝑜1 3 : 𝑜0

4 : 𝑜0 1 : 𝑜2

2 : 𝑜2 3 : 𝑜1

4 : 𝑜1 5 : 𝑜0

6 : 𝑜0 3 : 𝑜2

4 : 𝑜2 5 : 𝑜1

6 : 𝑜1 7 : 𝑜0

8 : 𝑜0 5 : 𝑜2

6 : 𝑜2 7 : 𝑜1

8 : 𝑜1 9 : 𝑜0

⊲

⊲

⊲

⊲

⊲

⊲

⊲

⊲

⊲

⊲

By allowing modulo scheduling, the throughput can be increased by a factor of two without

allocating more FUs, as seen in Table 2(b). The FU is fully utilized which means that throughput

cannot be increased anymore, without allocating more resources.

With two FUs, an integer II = 2 is possible (see Table 2(c)). Even when the pipeline is full

(beginning at 𝑡 = 4), the two FUs are only utilized 75% of the time. Allowing the II to vary allows for

a further increase in throughput as seen in Table 2(d). Here, the II alternates between one and two

clock cycles, resulting in an average II of 3

2
. Starting at 𝑡 = 4, the pipeline is full and both FUs are

fully utilized. Now, an increase in available FUs cannot lead to an increase in throughput anymore,

because the recurrence limits the minimum II to II
⊥ = 3

2
.

Two conclusions can be drawn from this example:

(1) Modulo scheduling is a particularly effective method for throughput enhancement.

(2) Allowing the II to be a rational number can lead to even higher throughput for some resource

allocations than constraining II ∈ N.

Preprint. ACM Trans. Reconfig. Technol. Syst., Vol. 16, No. 3, Article 49. Publication date: July 2023.

49:6 Nicolai Fiege and Peter Zipf

2 THE ALGORITHM
Proving satisfiability (or unsatisfiability) of a Boolean function is an NP-complete problem [12]. For

efficient contemporary SAT solving algorithms, the function of interest has to be in the conjunctive

normal form (CNF). This means that it consists of a conjunction of clauses; each clause is a

disjunction of literals; and each literal is a Boolean variable or its negation.

Before describing the SAT formulation, we define the notation used in the following: 𝑥 ∨𝑦 is the

disjunction of 𝑥 and 𝑦, 𝑥 ∧ 𝑦 is the conjunction of 𝑥 and 𝑦, and ¬𝑥 is the negation of 𝑥 . Using this

notation, the CNF of, e.g., an XOR relation between 𝑥 and 𝑦 is given as

𝑓 (𝑥,𝑦) = (𝑥 ∨ 𝑦) ∧ (¬𝑥 ∨ ¬𝑦). (10)

2.1 SAT formulation
We start by introducing a SAT formulation for the following question:

Given. A graph 𝐺 = {𝑂, 𝐸, 𝐷,Δ}, an initiation interval II, a maximum schedule length ˆL, a set of
operators Ω.

Question. Does a set of time steps {𝑡𝑖 : 𝑜𝑖 ∈ 𝑂} exist such that precedence constraint (2) is fulfilled
for each edge (𝑜𝑖 → 𝑜 𝑗) ∈ 𝐸 and resource constraint (3) is fulfilled for each resource-limited operator
𝜔 ∈ Ω̌ ⊆ Ω?

For each operation 𝑜𝑖 ∈ 𝑂 we firstly compute the earliest and latest start times, 𝑡⊥𝑖 and 𝑡⊤𝑖 ,
respectively. We obtain these values using an ASAP and an ALAP schedule without operator

constraints. While the ASAP scheduler automatically determines the minimum possible schedule

length, we constrain the ALAP schedule to L̂.

2.1.1 Boolean variables. Knowledge about earliest and latest possible execution times allows us to

allocate one variable

𝑡𝑖,𝜏 ∀𝑖, 𝜏 : 𝑜𝑖 ∈ 𝑂, 𝑡⊥𝑖 ≤ 𝜏 ≤ 𝑡⊤𝑖 (11)

per operation 𝑜𝑖 and possible time slot 𝜏 in which this operation can be scheduled.

To ensure that we are not oversubscribing any resource-constrained operator in any congruence

class modulo II, we also allocate one variable

𝑏𝑖,𝛽 ∀𝑖, 𝛽 : 𝑜𝑖 ∈ 𝑂̌𝜔 , 0 ≤ 𝛽 < FUs(𝜔), 𝜔 ∈ Ω̌ (12)

per resource-constrained operation 𝑜𝑖 and possible operator that this vertex can be assigned to.

Additionally, we declare

𝑇𝑖, 𝑗 ∀𝑖, 𝑗 : 𝑜𝑖 ∈ 𝑂̌𝜔 , 𝑜 𝑗 ∈ 𝑂̌𝜔 , 𝑖 > 𝑗, 𝜔 ∈ Ω̌ (13)

and

𝐵𝑖, 𝑗 ∀𝑖, 𝑗 : 𝑜𝑖 ∈ 𝑂̌𝜔 , 𝑜 𝑗 ∈ 𝑂̌𝜔 , 𝑖 > 𝑗, 𝜔 ∈ Ω̌ (14)

for all pairs of operations of all resource-constrained operators. 𝑇𝑖, 𝑗 denotes whether 𝑜𝑖 and 𝑜 𝑗 are

scheduled in different congruence classes and 𝐵𝑖, 𝑗 states whether 𝑜𝑖 and 𝑜 𝑗 are bound to different

operators. Even though the introduction of these variables is not strictly necessary to model the

MSP under a schedule length constraint for a given II, DFG and operator allocation, we propose to

include them to greatly reduce the necessary number of clauses.

Preprint.

BLOOP: Boolean Satisifiability-based Optimized Loop Pipelining 49:7

2.1.2 Time and resource assignment constraints. We ensure that each operation is assigned to at

least one time step by adding the clauses

𝑡⊤∨
𝜏=𝑡⊥

𝑖

𝑡𝑖,𝜏 ∀𝑖 : 𝑜𝑖 ∈ 𝑂 (15)

for all operations. Note that we are not forcing the assignment to exactly one time step, as this

would need more clauses to model. Furthermore, the assignment to at least one time step suffices,

since the SAT solver will make sure that all dependency and resource constraints are obeyed for

each assigned time step. In the spirit of schedule length minimization we always choose the smallest

one.

Similarly, we ensure the assignment of each operation to at least one operator with clauses

FUs(𝜔)−1∨
𝛽=0

𝑏𝑖,𝛽 ∀𝑖, 𝜔 : 𝑜𝑖 ∈ 𝑂̌𝜔 , 𝜔 ∈ Ω̌. (16)

2.1.3 Dependency constraints. For a valid modulo schedule, each data dependency, imposed by (2),

must hold for each edge (𝑜𝑖 → 𝑜 𝑗) ∈ 𝐸. Therefore, we pre-compute all execution times for all pairs

of operations connected via an edge and add the clause

¬𝑡𝑖,𝜏𝑖 ∨ ¬𝑡 𝑗,𝜏 𝑗 ∀ 𝑖, 𝑗, 𝜏𝑖 , 𝜏 𝑗 :

(𝑜𝑖 → 𝑜 𝑗) ∈ 𝐸, 𝑡⊥𝑖 ≤ 𝜏𝑖 ≤ 𝑡⊤𝑖 , 𝑡
⊥
𝑗 ≤ 𝜏 𝑗 ≤ 𝑡⊤𝑗 , 𝜏 𝑗 + 𝑑𝑖, 𝑗 · II < 𝜏𝑖 + 𝛿𝑖, 𝑗 (17)

whenever (2) is violated.

2.1.4 Resource constraints. Aside from data dependencies, we must also ensure that each operator

executes at most one operation per clock cycle. For this, we assume that each operator is fully

pipelined (i.e., it has a blocking time of one clock cycle) and can thus accept new input data in each

clock cycle.

Since an operator can only execute at maximum one operation per clock cycle, we must ensure

that all operations of an operator type are either scheduled in different congruence classes or are

executed by different operators. This can, for example, be ensured by adding the clause

¬𝑡𝑖,𝜏𝑖 ∨ ¬𝑡 𝑗,𝜏 𝑗 ∨ ¬𝑏𝑖,𝛽 ∨ ¬𝑏 𝑗,𝛽 ∀ 𝑖, 𝑗, 𝜏𝑖 , 𝜏 𝑗 , 𝛽 :

0 ≤ 𝛽 < FUs(𝜔), 𝑜𝑖 ∈ 𝑂̌𝜔 , 𝑜 𝑗 ∈ 𝑂̌𝜔 , 𝜔 ∈ Ω̌, 𝑖 < 𝑗, 𝑡⊥𝑖 ≤ 𝜏𝑖 ≤ 𝑡⊤𝑖 , 𝑡
⊥
𝑗 ≤ 𝜏 𝑗 ≤ 𝑡⊤𝑗 , 𝜏𝑖 mod II = 𝜏 𝑗 mod II

(18)

for each resource-constrained operator, each pair of operations that can be executed by that operator

type and each congruence class. The number of these clauses rapidly grow for a large number of

allocated operators. Thus, we propose to instead use the clause

𝑇𝑖, 𝑗 ∨ 𝐵𝑖, 𝑗 ∀𝑖, 𝑗 : 𝑜𝑖 ∈ 𝑂̌𝜔 , 𝑜 𝑗 ∈ 𝑂̌𝜔 , 𝑖 > 𝑗, 𝜔 ∈ Ω̌ (19)

with 𝑇𝑖, 𝑗 implying that 𝑜𝑖 and 𝑜 𝑗 are scheduled in different congruence classes and 𝐵𝑖, 𝑗 implying

that 𝑜𝑖 and 𝑜 𝑗 are bound to different operators. This means that we have to make sure that 𝑇𝑖, 𝑗 and

𝐵𝑖, 𝑗 are correctly set to zero if two operations are scheduled in the same congruence classes or are

bound to the same operator. We ensure this by adding the clauses

¬𝑇𝑖, 𝑗 ∨ ¬𝑡𝑖,𝜏𝑖 ∨ ¬𝑡 𝑗,𝜏 𝑗 ∀𝑖, 𝑗, 𝜏𝑖 , 𝜏 𝑗 :

𝑜𝑖 ∈ 𝑂̌𝜔 , 𝑜 𝑗 ∈ 𝑂̌𝜔 , 𝑖 > 𝑗, 𝜔 ∈ Ω̌, 𝑡⊥𝑖 ≤ 𝜏𝑖 ≤ 𝑡⊤𝑖 , 𝑡
⊥
𝑗 ≤ 𝜏 𝑗 ≤ 𝑡⊤𝑗 , 𝜏𝑖 mod II = 𝜏 𝑗 mod II (20)

Preprint. ACM Trans. Reconfig. Technol. Syst., Vol. 16, No. 3, Article 49. Publication date: July 2023.

49:8 Nicolai Fiege and Peter Zipf

and

¬𝐵𝑖, 𝑗 ∨ ¬𝑏𝑖,𝛽 ∨ ¬𝑏 𝑗,𝛽 ∀𝑖, 𝑗, 𝛽 : 𝑜𝑖 ∈ 𝑂̌𝜔 , 𝑜 𝑗 ∈ 𝑂̌𝜔 , 𝑖 > 𝑗, 𝜔 ∈ Ω̌, 0 ≤ 𝛽 < FUs(𝜔). (21)

In case an operator of type 𝜔 with blocking time 𝜆𝜔 > 1 starts an operation in time step 𝑡 , it

cannot start a new operation until time step 𝑡 + 𝜆𝜔 . Although we do not consider and evaluate

this case in this paper, one could easily encode this property in our SAT formulation by adding

Clause (20) to the solver whenever (𝜏𝑖 + 𝜆𝑖) mod II = (𝜏 𝑗 + 𝜆 𝑗) mod II ∀𝜆𝑖 , 𝜆 𝑗 ∈ [0, 𝜆𝜔 − 1].

2.2 Schedule length minimization
We use Algorithm 1 for schedule length minimization given an II, a graph 𝐺 , a set of allocated

operators Ω and a timeout. We start by constructing an empty schedule and setting a success
variable to false, indicating that we have not found a valid solution, yet. Then, in Line 3, we enter a

loop which breaks by a return statement when we either proved that the II is infeasible, found the

optimum, or encountered a timeout.

The first task in each loop iteration is to compute the next candidate schedule length. This can

be done by, e.g., a binary search between a lower and an upper bound.

The function computeNextScheduleLength returns an invalid number in case the whole solution

space for L̂ was searched in previous loop iterations. We use this information to stop the search in

Line 5. A lower bound for L̂ (L
⊥
) can be trivially constructed by performing a resource-unconstrained

ASAP schedule. Obviously, this schedule length is not always feasible under resource constraints. In

these cases, we rely on the SAT solver to quickly prove infeasibility. There are several possibilities

to construct an upper bound on L̂ (L
⊤
). Examples are (i) using a heuristic modulo scheduler like

[5, 14, 34] or (ii) computing a mathematical upper bound like the one proposed in [41]. We choose

option (i) but want to emphasize that the chosen heuristic modulo scheduler plays an important

role regarding algorithm runtime and quality of results. First of all, not all heuristic schedulers

guarantee optimality regarding the II. Secondly, we will show in Section 5.2 that heuristic modulo

schedulers are not even guaranteed to be faster than our proposed algorithm. In Section 2.4 we

will show how to use the problem reduction technique proposed in [14] to preserve optimality

regarding the II while still quickly generating a feasible modulo schedule (if it exists) to upper

bound L̂.

Dai &Zhang [14] proposed to use the length of a heuristic non-modulo schedule to derive L
⊤
.

Even though this approach can work in practice, it is trivial to construct an example for which the

schedule length of a non-modulo schedule is shorter than the optimal schedule length for a modulo

schedule (e.g., in our motivating example from Section 1.2, the non-modulo schedule is shorter

than the optimal modulo schedule for II = 2). We therefore choose to not follow their approach to

preserve exactness of our proposed algorithm.

Finally, in Lines 8–11, we use the SAT-based scheduler described in Section 2.1 to either compute

a valid schedule for the II, DFG, operator allocation, maximum schedule length or to prove that it

does not exist for these input parameters.

2.2.1 Computing the next candidate schedule length. The most simple way to find the optimum

schedule length is to start with L̂ = L
⊥
and increment it any time the SAT solver reports infeasibility

for that L̂. The first feasible L̂ is then guaranteed to be the optimal schedule length, as all lower

values were previously proven to be infeasible. A scheduling problem is proven to be infeasible for

the given II if the SAT solver reports unsatisfiability for L̂ = L
⊤
. This approach has the downside

that the number of SAT problems to solve grows with O(L⊤ − L⊥).
Amore sophisticated approachwould be a binary search. In this case, the number of SAT problems

grows with O(log
2
(L⊤ − L

⊥)). For conservative L⊤, the disadvantage of this approach is that L̂

Preprint.

BLOOP: Boolean Satisifiability-based Optimized Loop Pipelining 49:9

Algorithm 1 Latency-optimal modüulo scheduling

Require: II, 𝐺 , Ω, timeout

Ensure: A valid schedule S satisfying all resource and precedence constraints

1: S← ∅ ⊲ empty schedule

2: success← 𝑓 𝑎𝑙𝑠𝑒

3: while 𝑡𝑟𝑢𝑒 do ⊲ break by return

4: L̂← computeNextScheduleLength(success)
5: if L̂ is invalid or time() > timeout then
6: return S ⊲ II infeasible/found optimum/timeout

7: end if
8:

ˆS, success← schedule(II,𝐺,Ω, L̂, timeout) ⊲ using the SAT formulation in Section 2.1

9: if success then
10: S← ˆS
11: end if
12: end while

already becomes very large on the second try (i.e.,
L
⊥+L⊤

2
)—in practice it is usually much higher

than the optimal schedule length if the candidate II is feasible. Since the number of variables in the

SAT formulation grows quadratically
4
and the number of clauses to model resource and precedence

constraints even grows quartically
5
, a binary search does not scale well to larger problem sizes for

conservative estimations of L
⊤
. In Section 4.2 we give a more detailed explanation how our SAT

formulation scales w.r.t. the problem size (i.e., the input parameters given in Table 1).

Therefore, we propose to combine the two approaches in a search for which the number of SAT

problems to solve scales with O(
√
L
⊤ − L⊥). We start by doing a linear search, and increment L̂ by

𝑘 ·
⌈√

L
⊤ − L⊥

⌉
each time L̂ is proven infeasible. Once we found a valid solution, we might have

bypassed the optimum schedule length. Therefore, we start iteratively decreasing L̂ by one until we

prove an L̂ infeasible, again. Then, the last feasible L̂ is the optimum for the given II. By empirical

studies we found that choosing 𝑘 = 0.5 leads to a low number of necessary iterations for practical

scheduling problems.

2.3 Initiation interval minimization
We follow previous work [5, 19, 41, 45] and use iterative modulo scheduling via Algorithm 2 to

compute a schedule for the optimum II. This algorithm works by first computing lower (II
⊥
) and

upper (II
⊤
) bounds for the II and then iteratively tries to solve the scheduling problem for a given

(constant) II. Lower bounds on the II are due to operator constraints and recurrences in the DFG

as described in Section 1.2. An upper bound can be computed by using a non-modulo scheduler.

We use the ASAP scheduler with heuristic resource constraints from the HatScheT library [49].

To limit the computation time per scheduling problem, the user can provide a time budget per

candidate II and a maximum number of allowed scheduling attempts, maxRuns.

2.4 Fast initial schedule computation
There are two critical downsides of the previously outlined approach to solve the MSP:

4
The number of all variables grows quadratically w.r.t. the problem size.

5
The number of clauses (20) and (21) grow with the fourth power w.r.t. the problem size.

Preprint. ACM Trans. Reconfig. Technol. Syst., Vol. 16, No. 3, Article 49. Publication date: July 2023.

49:10 Nicolai Fiege and Peter Zipf

Algorithm 2 Iterative modulo scheduling

Require: 𝐺 , Ω, timeout, maxRuns ⊲ default: maxRuns = ∞
Ensure: A valid schedule S
1: II

⊥ ← computeMinII()
2: II

⊤ ← computeMaxII()
3: for 𝑖 ← 0 . . .maxRuns − 1 do
4: II← II

⊥ + 𝑖
5: if II = II

⊤ then
6: return ∅ ⊲ failed to find schedule

7: end if
8: S← schedule(II,𝐺,Ω, timeout) ⊲ Alg. 1

9: if S ≠ ∅ then ⊲ a schedule for the II exists

10: return S ⊲ found schedule

11: end if
12: end for
13: return ∅ ⊲ failed to find schedule (timeout or no modulo schedule exists)

(1) The upper bound for L̂ proposed in [41] usually overestimates the actual schedule length by

an order of magnitude which means that many large SAT problems must be solved before

classifying an II as infeasible.
(2) As II

⊥
rec

and II
⊥
res

are merely lower bounds on the achievable II, it is possible that multiple IIs

must be proven as infeasible before the first feasible II is encountered. Using Algorithm 1,

this would require solving numerous SAT programs before the scheduler reaches a feasible II.

To overcome these two shortcomings, we adopt Dai & Zhang’s approach [14] of partitioning the

graph into Strongly Connected Components (SCC) [52] to simplify the scheduling problem. The

goal is to create one SAT problem that must be solved to either prove infeasibility for the given II

or to quickly generate an initial schedule that results in a better (i.e., lower) upper bound on the

schedule length than the one proposed by Oppermann et al. [41]. Additionally, the resulting SAT

problem should, in general, be easier to solve than the overall scheduling problem.

Partitioning the graph into SCCs yields a set of subgraphs for which each subgraph is an SCC.

An SCC is defined to contain paths between each pair of vertices that only include edges inside the

SCC [52]. Therefore, each vertex inside an SCC is, by definition, part of at least one cycle.

We use Algorithm 3 to compute an initial schedule. We start by partitioning the graph into SCCs

using Tarjan’s algorithm [52]. Each SCC can be classified into trivial, basic or complex. Trivial SCCs
only contain one vertex that is either part of no recurrence or only consists of a self-loop. Basic

SCCs are non-trivial SCCs without any resource limits and complex SCCs are non-trivial SCCs that

contain at least one resource-limited vertex. Therefore, when deciding whether an II is feasible, it

suffices to only consider the complex SCCs.

After partitioning the graph, we initialize an empty graph and sets to store the earliest and latest

start times for all vertices of complex SCCs. Since we omit inter-SCC connections for the decision

whether an II is feasible, the for-loop in Line 5 can consider each SCC individually regarding its

maximum schedule length and the earliest and latest start times of its vertices.

A possibility to decide the maximum schedule length for an SCC would be using the upper

bound by Oppermann et al. [41]. Due to its overestimation of the actual schedule length, we would

severely overcomplicate the SAT problem. To the best knowledge of the authors, the upper bound

by Oppermann et al. is the best upper bound on the schedule length currently available in literature.

Preprint.

BLOOP: Boolean Satisifiability-based Optimized Loop Pipelining 49:11

Algorithm 3 SCC-based modulo scheduling

Require: 𝐺 , Ω, II, timeout

Ensure: A valid schedule S
1: 𝑆𝐶𝐶𝑠 ← partition(𝐺) ⊲ compute SCCs

2: 𝐺𝑆 ← {} ⊲ init. empty graph

3: 𝑇⊥ ← {} ⊲ init empty set of earliest start times

4: 𝑇⊤ ← {} ⊲ init empty set of latest start times

5: for each 𝑠𝑐𝑐 in 𝑆𝐶𝐶𝑠 do
6: if 𝑠𝑐𝑐 is complex then
7: 𝐿⊤𝑠𝑐𝑐 ← maxScheduleLength(𝑠𝑐𝑐,Ω, II)
8: 𝑇⊥𝑠𝑐𝑐 ← earliestTimes(𝑠𝑐𝑐,Ω, II, 𝐿⊤𝑠𝑐𝑐)
9: 𝑇⊤𝑠𝑐𝑐 ← latestTimes(𝑠𝑐𝑐,Ω, II, 𝐿⊤𝑠𝑐𝑐)
10: 𝐺𝑆 ← 𝐺𝑆 ∪ 𝑠𝑐𝑐 ⊲ insert SCC into graph

11: 𝑇⊥ ← 𝑇⊥ ∪𝑇⊥𝑠𝑐𝑐 ⊲ insert earliest start times

12: 𝑇⊤ ← 𝑇⊤ ∪𝑇⊤𝑠𝑐𝑐 ⊲ insert latest start times

13: end if
14: end for
15: S𝑠𝑐𝑐 ← schedule(II,𝐺𝑆 ,Ω, timeout,𝑇⊥,𝑇⊤)
16: if S𝑠𝑐𝑐 = ∅ then
17: return ∅ ⊲ timeout or II is infeasible

18: end if
19: for each 𝑠𝑐𝑐 in 𝑆𝐶𝐶𝑠 do
20: if 𝑠𝑐𝑐 is basic then
21: S𝐵 ← scheduleSDC(II, 𝑠𝑐𝑐, timeout) ⊲ schedule basic SCC

22: S𝑠𝑐𝑐 ← S𝑠𝑐𝑐 ∪ S𝐵
23: end if
24: end for
25: S← assembleSchedule(S𝑠𝑐𝑐 , 𝑆𝐶𝐶𝑠,𝐺,Ω, II) ⊲ compute final schedule from relative

schedules

26: return S

Therefore, we propose to use the ILP formulation shown in Fig. 2 to compute the maximum schedule

length of a given SCC. As the ILP does not consider any operator constraints and we consider

each SCC separately, the ILP’s runtime is negligible compared to the time to solve the overall

scheduling problem. Constraint A is the standard dependency constraint given in (2). To maximize

the schedule length, we create two additional variables: 𝑡− and 𝑡+. If we ensure that 𝑡− is equal to
the earliest start time and 𝑡+ is equal to the latest end time of any operation, we can compute the

maximum schedule length by maximizing the difference between these two values.

For 𝑥𝑖 = 1, Constraint B simplifies to 𝑡− − 𝑡𝑖 ≥ 0. This would ensure 𝑡− is at least as large as 𝑡𝑖 . If
𝑥𝑖 = 0, the constraint is always satisfied for a sufficiently large value of 𝐶 .

The same logic applies to Constraint C. For 𝑦𝑖 = 1, it simplifies to 𝑡+ − 𝑡𝑖 ≤ 𝐿𝑖 , which ensures

that 𝑡+ is at most as large as the end time of 𝑜𝑖 . Similarly, 𝑦𝑖 = 0 disables the constraint. B and C
are called big-M constraints

6
. Note that we must choose the value for the big-M constant 𝐶 such

that B and C are correctly disabled for all values that 𝑡𝑖 can take.

6
Usually, the constant in a big-M constraint is called𝑀—hence the name “big-M”. In this paper we use𝐶 instead because

we already use𝑀 to express the cycle length of a rational-II modulo schedule.

Preprint. ACM Trans. Reconfig. Technol. Syst., Vol. 16, No. 3, Article 49. Publication date: July 2023.

49:12 Nicolai Fiege and Peter Zipf

max(𝑡+ − 𝑡−)
subject to

A: 𝑡 𝑗 − 𝑡𝑖 ≥ 𝛿𝑖, 𝑗 − 𝑑𝑖, 𝑗 · II ∀𝑖, 𝑗 : (𝑜𝑖 → 𝑜 𝑗) ∈ 𝐸𝑆𝐶𝐶
B: 𝑡− − 𝑡𝑖 −𝐶 · 𝑥𝑖 ≥ −𝐶 ∀𝑖 : 𝑜𝑖 ∈ 𝑂𝑆𝐶𝐶

C: 𝑡+ − 𝑡𝑖 +𝐶 · 𝑦𝑖 ≤ 𝐿𝑖 +𝐶 ∀𝑖 : 𝑜𝑖 ∈ 𝑂𝑆𝐶𝐶

D:
∑︁

𝑖:𝑜𝑖 ∈𝑂𝑆𝐶𝐶

𝑥𝑖 ≥ 1

E:
∑︁

𝑖:𝑜𝑖 ∈𝑂𝑆𝐶𝐶

𝑦𝑖 ≥ 1

𝑡𝑖 , 𝑡
−, 𝑡+ ∈ N0 𝑥𝑖 , 𝑦𝑖 ∈ {0, 1}

Fig. 2. ILP formulation for maximum schedule length computation of an SCC

By adding Constraints D and E, we ensure that at least one B constraint and at least one C
constraint is active. It should be noted that this ILP formulation is only bounded if the graph is an

SCC, which is given in our case.

Additionally, we can reduce the complexity of the ILP if we only add Constraints B and D for

operations that have no incoming edges with a distance of zero, and we only add Constraints C
and E for operations without outgoing edges that have a distance of zero.

After successfully computing the schedule length of an SCC, we can use this information to

determine earliest and latest start times of all SCC vertices. Trivially, we could set the earliest start

time of 𝑜𝑖 to zero and the latest start time to 𝐿⊤
𝑆𝐶𝐶
− 𝐿𝑖 but this would require more SAT variables

than necessary in the scheduling attempt in Line 15 of Algorithm 3.

Another possibility would be using resource-unconstrained ASAP and ALAP schedules. They also

under-/overestimate earliest/latest start times because edges with 𝑑𝑖, 𝑗 > 0 are ignored. Therefore,

we use the ILP formulation in Fig. 3. We use Objective 𝜉1 to determine earliest and 𝜉2 to determine

𝜉1 : min

∑︁
𝑖:𝑜𝑖 ∈𝑂𝑆𝐶𝐶

𝑡𝑖

𝜉2 : max

∑︁
𝑖:𝑜𝑖 ∈𝑂𝑆𝐶𝐶

𝑡𝑖

subject to

A: 𝑡 𝑗 − 𝑡𝑖 ≥ 𝛿𝑖, 𝑗 − 𝑑𝑖, 𝑗 · II ∀𝑖, 𝑗 : (𝑜𝑖 → 𝑜 𝑗) ∈ 𝐸𝑆𝐶𝐶
B: 0 ≤ 𝑡𝑖 ≤ 𝐿⊤𝑆𝐶𝐶 − 𝐿𝑖 ∀𝑖 : 𝑜𝑖 ∈ 𝑂𝑆𝐶𝐶

Fig. 3. ILP formulation for earliest and latest start time computations of an SCC

latest start times. Again, Constraint A ensures that all dependencies are honored and Constraint B
is used to obey the previously calculated schedule length.

In Line 15 of Algorithm 3 we compute a schedule for the graph that contains all complex SCCs

(i.e., 𝐺𝑆) using the SAT formulation described in Section 2.1 with 𝑡⊥𝑖 and 𝑡⊤𝑖 defined via the results

Preprint.

BLOOP: Boolean Satisifiability-based Optimized Loop Pipelining 49:13

from Lines 8 and 9. If we fail to compute a schedule (either due to a timeout or because the II is

infeasible), we can directly stop the scheduling process for the given II. In case we successfully

compute a schedule, we can use these start times as a relative schedule that we later (in Line 25)

use to construct a final schedule for the overall scheduling problem.

We use the for-loop in Line 19 to compute relative schedules for all basic SCCs. Since they do

not comprise any resource limitations, we can schedule them individually with any SDC solver

and the objective of schedule length minimization.

For completeness we assume that the relative schedule times of all trivial SCCs are zero. Then

we use all the previously determined relative schedules to construct a final schedule as described

by Dai & Zhang (Algorithm 1 in [14]). We iterate through the topologically sorted list of SCCs and

for each SCC we determine the minimum offset that we have to add to all relative schedule times

of that SCC such that all dependencies are honored. For trivial and basic SCCs, we can choose any

number for that offset because we do not need to account for the congruence classes determined

by the relative schedule. For offsets of complex SCCs we must choose a multiple of the candidate II

to avoid changing the congruence class of any resource-limited operation.

Finally, it should be noted that this algorithm, in general, cannot guarantee schedule length

optimality. This is no problem because we can always refine the schedule length using Algorithm 1

once we know that the II is feasible and using the obtained schedule length as an upper bound for

L̂ if the time budget is not exhausted after completing Algorithm 3.

2.5 Algorithm summary
Fig. 4 shows an overview of our proposed algorithm BLOOP. It consists of two parts: the first part

tries to identify the optimal II and the second part identifies the optimal schedule length. We start

the search for the optimal II with II
⊥
defined via (9). We check whether the candidate II is feasible

via the SCC scheduling algorithm described in Section 2.4 (Algorithm 3). Every time an II is proven

to be infeasible under the given dependency and resource constraints, we increase the II by one

until we encounter a feasible II. Since all IIs between II
⊥
and that II are proven to be infeasible, it

must be optimal. At this point, our scheduler has determined a valid schedule for the optimal II.

Due to the SCC graph reduction, the schedule length is not necessarily optimal, which is why we

now proceed with the original graph as an input to all subsequent scheduling attempts. We then

start with the schedule length search algorithm outlined in Section 2.2.1 (Algorithm 1) using the

schedule length of the result from Algorithm 3 as an upper bound. This procedure guarantees that,

at the end, we are left with a schedule for the optimal II and the optimal schedule length.

start:

II = II
⊥

SCC schedule

(Algorithm 3)
Feasible?

Refine SL

(Algorithm 1)

last solution

was optimal

w.r.t. II and SL

yes:

found optimal II

L
⊤ ← 𝐿𝑆𝐶𝐶 − 1

no: II← II + 1

Fig. 4. Flowchart for BLOOP

Preprint. ACM Trans. Reconfig. Technol. Syst., Vol. 16, No. 3, Article 49. Publication date: July 2023.

49:14 Nicolai Fiege and Peter Zipf

3 EXTENSION TO RATIONAL IIS
Rational IIs are a technique for throughput maximization [48]. Here, the II is expressed as a rational

number instead of an integer one: II = M

S
. The schedule always repeats itself after M clock cycles

and S data samples are processed during this time. Like for integer IIs, the throughput of a rational-II

schedule is defined as the reciprocal of the II, namely
S

M
.

Recall that an integer-II scheduling algorithm tries to compute a schedule for one data sample

in such a way that repeating it every II time steps fulfills all precedence relations and resource

constraints [46]. A rational-II scheduling algorithm, on the other hand, computes a schedule for

the first S data samples such that repeating it every M time steps fulfills all precedence relations

and resource constraints [48]. Therefore, solving scheduling problems for rational IIs is even more

complex than solving them for integer IIs.

For the following notation, we always add the superscript (𝑠) to indicate a dependency on the

data sample 𝑠 . This should not be confused with exponentiation. For example, 𝑡
(𝑠)
𝑖

denotes the start

time of 𝑜𝑖 in data sample 𝑠 . Due to periodicity of the schedule, it suffices to only consider the first S

data samples.

Previous work used uniformity of the schedule to reduce complexity of the resulting optimization

problem for a better scalability of rational-II scheduling to large problem sizes [22]. In a uniform

schedule, start times of all operations in the 𝑛𝑡ℎ data sample are offset by the same constant

compared to their respective operations in the 0
𝑡ℎ

sample (e.g., for an integer II, this constant is

𝑛 · II). Mathematically, this relation is expressed as

𝑡
(𝑠)
0
− 𝑡 (0)

0
= . . . = 𝑡

(𝑠)
|𝑂 |−1

− 𝑡 (0)|𝑂 |−1
∀𝑠 : 0 ≤ 𝑠 < S. (22)

Using (22), we follow previous work [48] and define the insertion time of a sample, 𝐼 (𝑠) , as

𝐼 (𝑠) = 𝑡
(𝑠)
𝑖
− 𝑡 (0)

𝑖
∀𝑠 : 0 ≤ 𝑠 < S. (23)

This allows us to define the periodically changing initiation interval as

II
(𝑠) =

{
𝐼 (𝑠+1) − 𝐼 (𝑠) if 𝑠 < S − 1

M − 𝐼 (𝑠) if 𝑠 = S − 1.
(24)

In the dependency constraint for integer IIs (2) we use the term 𝑑𝑖, 𝑗 · II to represent a precedence

relation between two operations separated by 𝑑𝑖, 𝑗 data samples. A simple product suffices because

the II is constant over time. For uniform schedules with rational IIs, this is not the case. The II

depends on the sample index as defined via (24). For two operations, 𝑜𝑖 and 𝑜 𝑗 , separated via an

edge with a distance of 𝑑𝑖, 𝑗 we use

Δ(𝑠) (𝑑𝑖, 𝑗) =
𝑑𝑖,𝑗∑︁
𝑛=1

II
((𝑠−𝑛) mod S)

(25)

to replace the term 𝑑𝑖, 𝑗 · II and get

𝑡𝑖 + 𝛿𝑖, 𝑗 − Δ(𝑠) (𝑑𝑖, 𝑗) ≤ 𝑡 𝑗 . (26)

Note that Δ(𝑠) (𝑑𝑖, 𝑗) also depends on 𝑠 . Rearranging yields

𝑡𝑖 − 𝑡 𝑗 ≤ Δ(𝑠) (𝑑𝑖, 𝑗) − 𝛿𝑖, 𝑗 . (27)

This produces S separate dependency constraints which only differ in their right-hand sides, namely

the term Δ(𝑠) (𝑑𝑖, 𝑗). As described by Sittel et al. [48], it suffices to only account for the most severe

constraint (i.e., the one with the minimum value of Δ𝑠),

𝑡𝑖 + 𝛿𝑖, 𝑗 − Δmin (𝑑𝑖, 𝑗) ≤ 𝑡 𝑗 , (28)

Preprint.

BLOOP: Boolean Satisifiability-based Optimized Loop Pipelining 49:15

with

Δmin (𝑑𝑖, 𝑗) = min

0≤𝑠<S
(Δ(𝑠) (𝑑𝑖, 𝑗)) . (29)

3.1 Extending the SAT formulation to rational IIs
By assuming uniformity and using the pre-calculated insertion times, it suffices to only model the

schedule time of the first sample insertion of all operations. This means that 𝑡𝑖,𝜏 is true if and only

if 𝑜𝑖 in data sample 0 is scheduled into time slot 𝜏 . All remaining schedule times trivially follow

from (23).

From the assignment of S separate time slots to each operation follows that each operation must

appear S times in the set in (3). Therefore, we must allocate one binding variable

𝑏
(𝑠)
𝑖,𝛽

∀𝑖, 𝛽, 𝑠 : 𝑜𝑖 ∈ 𝑂̌𝜔 , 0 ≤ 𝛽 < FUs(𝜔), 𝜔 ∈ Ω̌, 0 ≤ 𝑠 < S (30)

per resource-constrained operation 𝑜𝑖 , possible operator that this vertex can be assigned to and

each data sample considered in the rational-II schedule.

Similar to the integer-II formulation (cf. Section 2.1), we declare

𝑇
(𝑠𝑖 ,𝑠 𝑗)
𝑖, 𝑗

∀𝑖, 𝑗, 𝑠𝑖 , 𝑠 𝑗 : 𝑜𝑖 ∈ 𝑂̌𝜔 , 𝑜 𝑗 ∈ 𝑂̌𝜔 , 𝑖 > 𝑗, 𝜔 ∈ Ω̌, 0 ≤ 𝑠𝑖 < S, 0 ≤ 𝑠 𝑗 , < S (31)

and

𝐵
(𝑠𝑖 ,𝑠 𝑗)
𝑖, 𝑗

∀𝑖, 𝑗, 𝑠𝑖 , 𝑠 𝑗 : 𝑜𝑖 ∈ 𝑂̌𝜔 , 𝑜 𝑗 ∈ 𝑂̌𝜔 , 𝑖 > 𝑗, 𝜔 ∈ Ω̌, 0 ≤ 𝑠𝑖 < S, 0 ≤ 𝑠 𝑗 , < S (32)

for all pairs of operations of all resource-constrained operators. Now, 𝑇
(𝑠𝑖 ,𝑠 𝑗)
𝑖, 𝑗

denotes whether

𝑜𝑖 in sample 𝑠𝑖 and 𝑜 𝑗 in sample 𝑠 𝑗 are scheduled in different congruence classes modulo M.

Correspondingly, 𝐵
(𝑠𝑖 ,𝑠 𝑗)
𝑖, 𝑗

states whether 𝑜𝑖 in sample 𝑠𝑖 and 𝑜 𝑗 in sample 𝑠 𝑗 are bound to different

operators.

Again (cf. (15)), we ensure that each operation is assigned to at least one time step by adding the

clauses

𝑡⊤∨
𝜏=𝑡⊥

𝑖

𝑡𝑖,𝜏 ∀𝑖 : 𝑜𝑖 ∈ 𝑂 (33)

for all operations. No change to the original SAT formulation regarding the time step assignment is

necessary to support rational IIs. For the assignment of each operation in each data sample to at

least one operator, we add the clauses

FUs(𝜔)−1∨
𝛽=0

𝑏
(𝑠)
𝑖,𝛽

∀𝑖, 𝑠 : 𝑜𝑖 ∈ 𝑂̌𝜔 , 𝜔 ∈ Ω̌, 0 ≤ 𝑠 < S. (34)

Since the dependency constraint for uniform modulo scheduling with rational IIs is different

from the one for integer IIs, we must add the clause

¬𝑡𝑖,𝜏𝑖 ∨ ¬𝑡 𝑗,𝜏 𝑗 ∀ 𝑖, 𝑗, 𝜏𝑖 , 𝜏 𝑗 : (𝑜𝑖 → 𝑜 𝑗) ∈ 𝐸, 𝑡⊥𝑖 ≤ 𝜏𝑖 ≤ 𝑡⊤𝑖 , 𝑡
⊥
𝑗 ≤ 𝜏 𝑗 , 𝜏 𝑗 + Δmin (𝑑𝑖, 𝑗) < 𝜏𝑖 + 𝛿𝑖, 𝑗 (35)

for each pair of execution times that violates (28).

Resource conflicts arise if two operations are scheduled in equal congruence classes and are

bound to the same operator instance. We prohibit this by adding the clause

𝑇
(𝑠𝑖 ,𝑠 𝑗)
𝑖, 𝑗

∨ 𝐵 (𝑠𝑖 ,𝑠 𝑗)
𝑖, 𝑗

∀𝑖, 𝑗 : 𝑜𝑖 ∈ 𝑂̌𝜔 , 𝑜 𝑗 ∈ 𝑂̌𝜔 , 𝑖 > 𝑗, 𝜔 ∈ Ω̌, 0 ≤ 𝑠𝑖 < S, 0 ≤ 𝑠 𝑗 < S. (36)

Again, note the similarity to the corresponding clause for integer IIs (i.e., (19)). The only difference

is that we must prohibit resource conflicts for all combinations of data samples, here, denoted as 𝑠𝑖
and 𝑠 𝑗 .

Preprint. ACM Trans. Reconfig. Technol. Syst., Vol. 16, No. 3, Article 49. Publication date: July 2023.

49:16 Nicolai Fiege and Peter Zipf

Finally, we must guarantee that 𝑇
(𝑠𝑖 ,𝑠 𝑗)
𝑖, 𝑗

and 𝐵
(𝑠𝑖 ,𝑠 𝑗)
𝑖, 𝑗

are correctly set to zero when two operations

are scheduled into the same congruence class modulo M or are bound to the same operator. We do

so by adding the clauses

¬𝑇 (𝑠𝑖 ,𝑠 𝑗)
𝑖, 𝑗

∨ ¬𝑡𝑖,𝜏𝑖 ∨ ¬𝑡 𝑗,𝜏 𝑗 ∀𝑖, 𝑗, 𝜏𝑖 , 𝜏 𝑗 , 𝑠𝑖 , 𝑠 𝑗 :

𝑜𝑖 ∈ 𝑂̌𝜔 , 𝑜 𝑗 ∈ 𝑂̌𝜔 , 𝑖 > 𝑗, 𝜔 ∈ Ω̌, 𝑡⊥𝑖 ≤ 𝜏𝑖 ≤ 𝑡⊤𝑖 , 𝑡
⊥
𝑗 ≤ 𝜏 𝑗 ≤ 𝑡⊤𝑗 ,

0 ≤ 𝑠𝑖 < S, 0 ≤ 𝑠 𝑗 < S, (𝜏𝑖 + 𝐼 (𝑠𝑖)) mod M = (𝜏 𝑗 + 𝐼 (𝑠 𝑗)) mod M (37)

and

¬𝐵 (𝑠𝑖 ,𝑠 𝑗)
𝑖, 𝑗

∨ ¬𝑏 (𝑠𝑖)
𝑖,𝛽
∨ ¬𝑏 (𝑠 𝑗)

𝑗,𝛽
∀𝜔, 𝑖, 𝑗, 𝛽, 𝑠𝑖 , 𝑠 𝑗 :

𝜔 ∈ Ω̌, 𝑜𝑖 ∈ 𝑂̌𝜔 , 𝑜 𝑗 ∈ 𝑂̌𝜔 , 𝑖 > 𝑗, 0 ≤ 𝛽 < FUs(𝜔), 0 ≤ 𝑠𝑖 < S, 0 ≤ 𝑠 𝑗 < S. (38)

The clause (38) follows from its integer-II counterpart (21) by adding the dependencies on the data

samples. For (37) we must make sure to correctly determine whether two operations are scheduled

into the same congruence class. Solving (23) for the schedule time of 𝑜𝑖 in data sample 𝑠 yields

𝑡
(𝑠)
𝑖

= 𝑡
(0)
𝑖
+ 𝐼 (𝑠) ∀𝑠 : 0 ≤ 𝑠 < S. (39)

Therefore, we can compute the congruence class as

(𝑡 (0)
𝑖
+ 𝐼 (𝑠)) mod M (40)

and use this relation in (37).

3.2 Extending SCC-based modulo scheduling to rational IIs
The procedure outlined in Section 2.4 for a fast initial schedule computation can be easily extended

to support rational IIs. In the ILP formulation for maximum schedule length computation (cf. Fig. 2)

and for earliest and latest start time computations of an SCC (cf. Fig. 3) we need to account for data

precedence for rational IIs as defined in (28) by changing A to (28) in Fig. 2 and 3.

Then, we can use the previously discussed SAT formulation for uniform scheduling with a rational

II (see Section 3.1) to compute a relative schedule for complex SCCs (Line 15 in Algorithm 3).

When computing a schedule for a basic SCC (Line 21 in Algorithm 3), we must account for

the rational II by unrolling the graph by a factor of S and scheduling the unrolled graph with

II = M. Note that this in general does not guarantee a uniform schedule anymore. Additionally, we

must schedule each operation S times – once for each data sample – when assembling the final

schedule (Line 25 in Algorithm 3). When fixing final schedule times of trivial SCCs, we also drop

the constraint of uniformity in favor of a possibly shorter schedule length.

3.3 Nonuniform modulo scheduling for further schedule length optimization
Until now, the scheduling process for rational IIs was described as (i) using the SCC-based heuristic

to quickly determine an initial schedule for the minimum possible II, and (ii) refining the schedule

length under the assumption of unifomity for complexity reduction.

Once we found the optimum schedule length under the assumption of uniformity we can

afterwards drop the uniformity constraint for even further schedule length reduction at the cost of

a substantially higher complexity to model the scheduling problem. This is therefore only possible

for sufficiently small problem sizes.

Preprint.

BLOOP: Boolean Satisifiability-based Optimized Loop Pipelining 49:17

To compute a nonuniformmodulo schedule for II = M

S
, we use the fact that unrolling the graph by

a factor of S and afterwards scheduling the unrolled graph with II = M corresponds to a rational-II

modulo schedule with II = M

S
[32].

We illustrate graph unrolling by the example given in Fig. 5. It shows a DFGwith three operations:

𝑜0, 𝑜1 and 𝑜2, connected in a loop via two edges with distance zero and one edge with distance four

(see Fig. 5(a)). Unrolling that graph by a factor of S = 3 yields a new graph with 9 operations (see

Fig. 5(b)). Here, operations are named 𝑜
(𝑠)
𝑖

, meaning that they represent 𝑜𝑖 in data sample 𝑠 .

𝑜0 𝑜1 𝑜2

4

(a) Example DFG from Section 1.2

𝑜
(0)
0

𝑜
(0)
1

𝑜
(0)
2

𝑜
(1)
0

𝑜
(1)
1

𝑜
(1)
2

𝑜
(2)
0

𝑜
(2)
1

𝑜
(2)
2

2 1

1

(b) Unrolled DFG with S = 3

Fig. 5. Example graph (a) unrolled 3 times resulting in 9 vertices (b)

Whereas vertices and edges with distance zero are just duplicated S times, an unrolled edge’s

source sample index 𝑠 and its distance
ˆ𝑑𝑖, 𝑗 are calculated via

𝑠 = (𝑠 − 𝑑𝑖, 𝑗) mod S (41)

ˆ𝑑𝑖, 𝑗 = max

(
0,

⌈
𝑑𝑖, 𝑗 − 𝑠

S

⌉)
. (42)

In the following, we assume that the difference between the optimum schedule length for a

nonuniform schedule and the optimum schedule length for a uniform schedule is typically very

small. Suppose that the schedule length minimization procedure outlined in Section 2.2 using

the modified SAT formulation from Section 3.1 for uniform modulo scheduling with a rational II

yields an optimal schedule length 𝐿. We can then perform a reversed linear search for the optimal

schedule length on the unrolled graph starting at 𝐿 − 1 and decreasing that limit each time we

encounter a valid nonuniform modulo schedule. Then, the last valid schedule before encountering

a nonsatisfiable schedule length is the optimum one for the given II, and we can stop the search.

4 RELATEDWORK
Even though there are several approaches for optimally solving the MSP for given a candidate II

(e.g., based on a combination of SAT and SDC [14], based on enumeration [2], or based on constraint

programming [4]), ILP can be considered state-of-the-art with multiple formulations available in

literature [19, 39, 57].

Eichenberger and Davidson [19] satisfy resource constraints by decomposing the time slots of

resource-constrained operations into their congruence class modulo II and an offset which is a

Preprint. ACM Trans. Reconfig. Technol. Syst., Vol. 16, No. 3, Article 49. Publication date: July 2023.

49:18 Nicolai Fiege and Peter Zipf

multiple of the candidate II using II-many binary variables per operation. They additionally re-write

their formulation to only use 0-1-structured constraints, which reduces algorithm runtime during

the ILP solver’s branch & bound procedure. In the following we call their formulation ED97.

The strategy in theMoovac ILP formulation byOppermann et al. [40] is to use overlap variables for

each pair of resource-constrained operations of the same operator type and simultaneously compute

a binding to force all potentially conflicting operations to be executed in different congruence

classes or by different operators.

The formulation by Šůcha and Hanzálek [57] relies on binary variables to count the number of

operations scheduled in equal congruence classes to determine the number of necessary operators

for the given schedule during the solving process. They use this concept to also support a variable

operator allocation if required by the user.

Although there do exist non-iterative optimal scheduling algorithms (e.g., a non-iterative version

of Moovac by Oppermann et al. [41]), iterative algorithms have established themselves as state-

of-the-art. A major disadvantage of non-iterative scheduling algorithms is the lack of fallback

strategies in case of a solver timeout. Then, the user is left without any solution, which is inevitable

for ILP-based algorithms and large problem sizes due to the NP-complexity of resource-constrained

scheduling [23].

SAT-based techniques have been successfully applied to scheduling problems in other research

domains such as employee timetabling [1], resource-constrained [29] or multi-mode project sched-

uling [51] or task scheduling for big data platforms [28]. Yamada et al. [54] formulated the (non-

modulo) scheduling problem as a 0-1 integer programming problem and used a branch-and-bound

method to support cardinality constraints. Unfortunately, other SAT-based scheduling techniques

cannot simply be used to solve the MSP, because they must adhere to different constraints. For

example in the employee timetabling problem [1], the schedule must account for employees that

may have days off (which is not true for operators in the MSP); or in multi-mode project schedul-

ing [51], the activities to be scheduled can be executed in different modes which lead to varying

resource demands and latencies for that given activity.

A recent study of modulo scheduling algorithms [39] showed that Moovac [41] and the algorithm

by Eichenberger and Davidson [19] are the state-of-the-art for latency-optimal iterative modulo

scheduling. A widely used heuristic algorithm is the Modulo-SDC algorithm by Canis et al. [5]. It

is, e.g., used in the HLS tool LegUp [6]. Therefore, in our following experiments regarding integer

IIs, we compare our proposed scheduler to the three aforementioned ones.

Recently, an ILP formulation for optimal uniform modulo scheduling with rational IIs was

published, which outperformed all previous exact algorithms in terms of number of solutions and

average quality of results [22]. Aside from that, we also compare our proposed approach to the

exact nonuniform and heuristic uniform scheduling algorithms proposed in [48] because they also

outperformed the state-of-the-art regarding the number of valid solutions.

All evaluated schedulers use an iterative search for the optimum II. For integer IIs, we define II
⊤

as the schedule length of a non-modulo scheduler that heuristically satisfies resource constraints. In

our case, we use the resource-constrained ASAP scheduler from the HatScheT library. For rational

IIs, we use the iteration algorithm proposed in [48] without a limitation on the number of data

samples S. It enumerates all irreducible fractions
M

S
between the minimum rational II, II

⊥
Q = M

⊥

S
⊥ , and

the minimum integer II and also limits M and S to M ≤ M
⊥
and S ≤ S

⊥
to minimize the complexity

of the resulting ILP/SAT program.

Satisfiability Modulo Theories (SMT) is an extension of SAT to more complex expressions (e.g.,

linear integer arithmetic). SMT is used, amongst others, in HLS for proving the absence of memory

dependence violations, for both static [8] and dynamic scheduling [9]. These approaches differ from

Preprint.

BLOOP: Boolean Satisifiability-based Optimized Loop Pipelining 49:19

ours in that they solely model memory dependencies in cases where the dependence distances are

unknown, while we assume that all dependencies are known prior to scheduling and we incorporate

resource constraints.

4.1 SAT in modulo scheduling
The most similar modulo scheduling approach to ours is the one by Dai & Zhang [14], in the

following called DZ19, which is an extension of previous work that targets non-pipelined loops [13].

DZ19 uses a combination of SAT and SDC solvers and a graph reduction technique based on SCCs

to exactly solve the MSP for the optimal II.

The main idea is to handle dependency constraints by an SDC solver with polynomial time

complexity and let a SAT solver take care of resource constraints. In each iteration (1) the SAT

solver makes a proposal for an operation ordering that would satisfy resource constraints, (2) these

orderings are added as additional constraints to the SDC, and (3) the SDC solver checks whether

these constraints lead to a valid modulo schedule. If this is not the case, (4) the SDC solver identifies

conflicts in the modulo ordering proposed by the SAT solver. Those conflicts are (5) then prohibited

by adding an additional clause to the SAT solver and these five steps repeat until either a valid

modulo schedule was found or the whole modulo ordering search space is exhausted, in which case

the II is determined to be infeasible and this procedure executes again for the next candidate II.

The first obvious difference to our approach is that Dai & Zhang only formulate the resource

constraints as a SAT problem instead of the whole MSP. The solver satisfies resource constraints by

simultaneously computing a binding similar to our approach. Whenever two operations are bound

to the same operator, Dai & Zhang prohibit resource conflicts by scheduling these operations in

different congruence classes modulo II based on a modulo ordering variable 𝑂𝑖→𝑗,𝑘 . Since only

the time difference modulo II must be different from zero, the relative schedule of each pair of

conflicting operations is subject to an offset, which is a multiple of the II:

𝑂𝑖→𝑗,𝑘 = true implies (𝑘 − 1) · II < 𝑡𝑖 − 𝑡 𝑗 < 𝑘 · II, (43)

for any 𝑘 ∈ N. The additional constraints resulting from the assignment of 𝑂𝑖→𝑗,𝑘 and (43) are

passed to the SDC solver, which then checks feasibility and reports a minimum set of 𝑂𝑖→𝑗,𝑘

variables that cannot lead to a valid modulo schedule.

This approach has the advantage that only a portion of the MSP has to be modeled in SAT, at

the cost of multiple solving attempts per candidate II. Another notable difference to our proposed

approach is that the schedule length is not an optimization criterion for the scheduler and only

results from the first modulo ordering proposed by the SAT solver that leads to a valid schedule,

even if there could be another ordering that would lead to a lower schedule length.

4.2 Complexity of state-of-the-art exact approaches
Table 3 summarizes the ILP/SAT formulation size scaling of exact state-of-the-art approaches and

the number of solving attempts per candidate II. The ILP-based approaches have the advantage that

the ILP solver must only be called once to compute the optimal modulo schedule for a candidate II

or to decide that the candidate II is infeasible. Both the ED97 and the Moovac formulation sizes

scale quadratically w.r.t. the problem size.
7
We can also see that the Moovac formulation is more

appropriate for scheduling problems with few limited operations, since the number of overlap

variables and constraints scales quadratically with the amount of resource-limited operations.

In the DZ19 scheduling algorithm, the number of times the SAT solver must be called depends

on the number of times the SDC solver rejects a modulo ordering proposal, which we denote as

7
The problem size is defined via the input parameters to the MSP, as shown in Table 1.

Preprint. ACM Trans. Reconfig. Technol. Syst., Vol. 16, No. 3, Article 49. Publication date: July 2023.

49:20 Nicolai Fiege and Peter Zipf

O(#resource conflicts). We also see that the number of variables grows quadratically for large

candidate IIs (scheduling problems with few parallelization opportunities) and cubically when the

II approaches one (completely parallel scheduling problems).

Our proposed approach, however, only requires a single solving attempt per candidate II until

the optimum II is found and then needs O(
√
L
⊤ − L⊥) SAT calls for SL optimization. The number of

variables grows quadratically, independent of the II and the number of constraints grows quartically

with our proposed clause reduction. If the clause reduction is not applied, we still need a quadratic

number of variables but the number of clauses grows with the fifth power.

Table 3. Variable/Constraint count for exact modulo scheduling algorithms; we give references to constraints
as equation numbers in the original papers; only the variables/constraints with the highest order scaling w.r.t.
the input parameters are given since they are assumed to be the bottleneck when scaling to large problem
sizes

Variable/constraint Amount Explanation

ED97 [19]: O(1) solving attempts per candidate II

Variable 𝑎𝑖 ∈ {0, 1} O(|𝑂 | · II) Modulo slot variables

Constraint (20) O(|𝐸 | · II) 0-1-structured dependency constraints

Moovac [40]: O(1) solving attempts per candidate II

Variables 𝜖𝑖, 𝑗 , 𝜇𝑖, 𝑗 ∈ {0, 1} O(|𝑂̌ |2) Time/binding overlap variables

Constraints (6)–(12) O(|𝑂̌ |2) Time/binding overlap constraints

DZ19 [14]: O(#Resource conflicts) solving attempts per candidate II

Variable 𝑂𝑖→𝑗,𝑘 ∈ {0, 1} O(|𝑂̌ |2 · L⊤/II) Modulo ordering variables

Constraint (7) O(|𝑂̌ |2 · L⊤/II) Modulo ordering clauses

BLOOP: O(1) solving attempts until the first feasible II is found; then: O(
√
L
⊤ − L⊥) for SL opt.

Variable 𝑡𝑖,𝜏 ∈ {0, 1} O(|𝑂 | · L⊤) Schedule time variables

Variables 𝑇𝑖, 𝑗 , 𝐵𝑖, 𝑗 ∈ {0, 1} O(|𝑂̌ |2) Time/binding difference variables (with pro-

posed clause (19))

Constraint (20) O(|𝑂̌ |2 · L⊤2) Time slot difference clauses (with proposed

clause (19))

Constraint (18) O(|𝑂̌ |2 · L⊤2 · 𝐹𝑈𝑠) Resource constraint clauses (without proposed
clause (19))

5 EXPERIMENTAL RESULTS
We implemented our scheduler in C++ within the open source HatScheT scheduling library [49]

and also use this library’s implementations of previous work [5, 19, 22, 40, 48], except for DZ19 [14]

where we use the original implementation.
8
We use Gurobi 8.1 [26], accessed via the ScaLP [50]

(I)LP library, to solve all ILP and SDC problems in HatScheT. For BLOOP’s SAT instances we

8
The DZ19 implementation rejects scheduling an MSP without complex SCCs, since such a scheduling problem can be

scheduled for the optimal II in polynomial time using an SDC solver for basic SCCs and scheduling trivial SCCs ASAP with

respect to the MRT. This process corresponds to BLOOP (cf. Fig. 4) without SL optimization. This means that the SL achieved

depends on the order in which resource-limited trivial SCCs are scheduled. We therefore report numbers for BLOOP with

deactivated SL minimization in place of DZ19 whenever DZ19 encounters a problem instance without complex SCC.

Preprint.

BLOOP: Boolean Satisifiability-based Optimized Loop Pipelining 49:21

use CaDiCaL [3]. None of our used ILP or SAT solvers utilizes a limit on the number of allowed

iterations. Exact approaches are only limited by a timeout, whereas for the Modulo SDC algorithm

we limit the number of iterations to 6 · |𝑂 | as suggested by Canis et al. [5].

As benchmark designs we use C-programs from CHStone [27] and MachSuite [47] available

within the HatScheT library. Since we focus on Modulo Scheduling within this paper, we only

evaluate the schedulers on the innermost loops contained in the benchmark programs. Furthermore,

we use the Origami benchmark suite [38] which consists of several Matlab/Simulink models from

digital signal processing.

Resource allocations for the CHStone and MachSuite benchmarks are summarized in Table 4.

Many operators are modeled as unlimited, and often even without pipeline stages. Therefore,

many additional chaining edges are added to prevent long combinatorial paths. Using the operator

Table 4. Operator limits for CHStone and MachSuite benchmarks

Operator type Limit Latency

mem read/write 2/1 2/1

32-bit +/−/∗/÷ ∞/∞/∞/4 0/0/2/32

64-bit +/−/∗/÷ ∞/∞/∞/4 0/0/5/65

relation > /= /< ∞/∞/∞ 0/0/0

bit/logic ∞/∞ 0/0

constraints from Table 4 for CHStone and MachSuite results in exactly one loop with a rational

minimum II. We therefore only evaluate CHStone and MachSuite on integer IIs. For the Origami

benchmark suite we instead allocate the minimum number of operators for all Pareto-optimal IIs

[42] using

FUs(𝜔) =
⌈
|𝑂̌𝜔 |
II

⌉
. (44)

Different scheduling problems for each program in CHStone andMachSuite result from the different

loops (i.e., different graphs while using the same resource model, column “#loops” in the following

tables). For the models in Origami they result from different resource allocations for the same

model (i.e., different resource models and the same graph, column “#allocs” in the following tables).

This leads to two very different experimental settings: CHStone and MachSuite are dominated

by chaining edges and unlimited operations—often even without pipelining—and Origami mainly

consists of limited, pipelined operations and therefore does not contain any chaining edges.

When analyzing results for the experiments we focus on the following five metrics:

(1) the number of successfully computed schedules (in the following tables denoted as solved),

(2) the number of schedules that are proven by the respective scheduler to satisfy the optimum

achievable II (denoted as II = II
∗
□),

9

(3) the number of schedules that satisfy the optimum achievable II (denoted as II = II
∗
); here, it

suffices that optimality is proven by any of the examined schedulers,

(4) the number of schedules that satisfy the smallest known II (denoted as II = IImin); in cases

where none of the examined schedulers is able to prove optimality for a benchmark instance,

it is unknown whether IImin is optimal,

9
An II is proven to be optimal if it is equal to II

⊥
or if all IIs between II

⊥
and the achieved II are proven to be infeasible.

Preprint. ACM Trans. Reconfig. Technol. Syst., Vol. 16, No. 3, Article 49. Publication date: July 2023.

49:22 Nicolai Fiege and Peter Zipf

(5) the schedule length quality which we define as the minimum known schedule length for

that scheduling problem divided by the schedule length achieved by the respective scheduler

(denoted as
𝐿min

𝐿
).
10

As an example, assume II
⊥ = 3 for a given problem instance. Now consider that scheduler A proves

that II = 4 is optimal by proving that no schedule exists for II = 3 due to resource and precedence

constraints (for scheduler A: II = II
∗
□ = II

∗ = IImin = 4). Now consider that scheduler B fails to prove

that II = 3 is infeasible but it is able to find a schedule for II = 4 (for scheduler B: II = II
∗ = IImin = 4).

Although scheduler B fails to prove optimality, it still finds a schedule for the optimal II.

We chose these metrics because of the following reasons: In Modulo Scheduling, the II minimiza-

tion is the most important objective and it has a much higher priority than minimizing the schedule

length. Therefore, for an exact algorithm, it is the highest priority to achieve the best II possible.

When using our proposed algorithm for the evaluation of heuristics it is not only necessary to

compute a schedule for the minimum possible II but also prove that this is the optimum II for the

given scheduling problem.

For large problem instances with rational IIs, the iteration algorithm proposed in [48] finds

several hundreds to thousands of candidate IIs. We therefore manually limit the maximum number

of candidate IIs to ten. Otherwise, runtime would be unreasonably long for the ILP-based schedulers

that frequently fail to find schedules for large scheduling problems.

For a fair comparison, we define each scheduler’s secondary optimization objective as the

minimization of the schedule length. In the formulation by Eichenberger and Davidson, we add

an additional virtual operation 𝑜𝑣 with 𝐿𝑣 = 0 to the scheduling problem, connect each node

without outgoing unweighted edges to it and minimize its start time as described in [11]. This

is already done in the Moovac-S formulation introduced in [41], and also in the schedulers for

rational IIs [22, 48], which are all implemented in HatScheT.

5.1 Comparison with Dai & Zhang’s approach
As our first experiment (cf. Table 5), we compare our proposed approach against the SAT+SDC-

based scheduling algorithm by Dai & Zhang [14]. DZ19 classifies the optimal II for some problem

instances as infeasible,
11
even though BLOOP is able to compute a valid schedule, which is verified

to be optimal w.r.t. II and SL. We therefore exclude these instances from our evaluation and only

focus on the remaining ones.

While DZ19 fails to find any modulo schedule for one problem in CHStone, BLOOP is able to

compute a valid schedule for all instances. Additionally, we see that BLOOP has a higher number

of (verified) optimal schedules than DZ19 and that there is not a single problem instance for which

a schedule by DZ19 leads to a higher throughput than BLOOP’s. DZ19’s unsolved problem is a

loop in aes with 1374 vertices, 205 of which are resource-limited, and 2752 edges. Even with a

timeout of one hour, DZ19 fails to find a modulo schedule for that problem instance. It is one of

the few hard instances, for which it is unknown whether BLOOP’s solution is optimal. DZ19’s

slightly worse performance might come from the fact that it must solve numerous SAT instances

until it successfully computes a schedule without resource conflicts or proves the absence of such.

Furthermore, as seen in Section 4.2, the number of variables in Dai & Zhang’s SAT formulation

scales slightly worse than ours, which might also contribute to a longer runtime.

Since Dai & Zhang’s scheduler does not guarantee latency-optimality, BLOOP regularly finds

schedules with a lower schedule length, which leads to a higher average latency quality for BLOOP.

10
The best possible value for

𝐿
min

𝐿
is therefore 1 if 𝐿 = 𝐿min, approaching 0 for larger achieved schedule lengths.

11
five problems from CHStone-jpeg, 34 from CHStone-motion and one from Origami-fir6dlms

Preprint.

BLOOP: Boolean Satisifiability-based Optimized Loop Pipelining 49:23

Table 5. Comparing BLOOP and DZ19 for a timeout of 600 s; times to schedule the whole benchmark suite
are given as 𝑡 = hours :minutes : seconds; We exclude scheduling problems from our evaluation for which
DZ19 classifies the optimal II as infeasible (see column “reject opt.”). in the column “#problems” we give the
number of evaluated problem instances and the original number (including the excluded ones) is displayed in
brackets

BLOOP DZ19 [14]

𝑡 = 22:23:38 𝑡 = 22:32:09

Benchmark #problems s
o
l
v
e
d

I
I
=
I
I
∗ □

I
I
=
I
I
∗

I
I
=
I
I
m

i
n

a
v
g
.

𝐿
m

i
n

𝐿

r
e
j
e
c
t
o
p
t
.

s
o
l
v
e
d

I
I
=
I
I
∗ □

I
I
=
I
I
∗

I
I
=
I
I
m

i
n

a
v
g
.

𝐿
m

i
n

𝐿

r
e
j
e
c
t
o
p
t
.

CHStone 224 (263) 224 220 220 224 1.00 0 223 219 219 220 0.93 39

MachSuite 91 (91) 91 90 90 91 1.00 0 91 90 90 91 0.93 0

Origami 161 (162) 161 161 161 161 0.97 0 161 161 161 161 0.89 1

summary 476 (516) 476 471 471 476 0.99 0 475 470 470 472 0.91 40

In the following experiments it will be seen that the remaining schedulers from the current state-

of-the-art either time out or find a solution for the optimal II in all problem instances. We therefore

exclude DZ19 from subsequent analyses.

5.2 Scheduling experiments
For our first evaluation against the remaining state-of-the-art we focus on the standard case of

integer IIs and set a timeout of 10 min for MachSuite and CHStone. We immediately note that

MachSuite seems to comprise easy benchmark problems, as all examined schedulers are able to

compute a valid schedule for each instance. Results only differ in the amount of (verified) optimal

solutions, the throughput achieved and the schedule length. CHStone, on the other hand, consists

of harder scheduling problems, which is reflected by the higher runtime for each scheduler and the

fact that the ILP-based schedulers (ED97 and Moovac) fail to compute valid modulo schedules for

some problem instances. We therefore decide to also run experiments with timeouts of 1 min for

MachSuite and 1 hour for CHStone.

Tables 6–7 show experimental results for MachSuite with 1min and 10min timeouts, respectively.

We see that, in both cases, our proposed scheduler computes the highest number of schedules with

verified optimal throughput (column II = II
∗
□) and only fails to prove optimality for one out of the

91 problems. ED97 and Moovac also fail to prove optimality for that problem within the given

time limits. As expected, the heuristic scheduler (SDC) has the lowest runtime among all tested

schedulers, but this comes at the cost of the lowest average solution quality regarding throughput

and schedule length.

Results for CHStone benchmarks are given in Tables 8–9. Also for this benchmark suite, our

proposed scheduler is able to compute a valid modulo schedule for all problem instances. With

the 10 min timeout, ED97 and Moovac fail to compute valid schedules for four and two scheduling

problems, respectively. Using the timeout of 1hour, ED97 computes a valid schedule for all problems

and Moovac only fails to find a valid solution for one instance. For both timeout settings, no

scheduler from the state-of-the-art is able to compute any schedule with higher throughput than

our proposed approach or computes more verified optimal solutions regarding throughput. This

holds true for both MachSuite and CHStone.

Tables 10–11 show results for the Origami benchmark suites for both integer and rational IIs. We

see again that our proposed scheduler is able to compute valid schedules for all scheduling problems.

Its solving rate and the number of optimal IIs is only matched by the SCC-based heuristic for

Preprint. ACM Trans. Reconfig. Technol. Syst., Vol. 16, No. 3, Article 49. Publication date: July 2023.

49:24 Nicolai Fiege and Peter Zipf

Table 6. Scheduler comparison for MachSuite using a timeout of 600s; times to schedule the whole benchmark
suite are given as 𝑡 = hours :minutes : seconds

BLOOP ED97 [19] Moovac [40] SDC [5]

𝑡 = 1:13:35 𝑡 = 0:54:35 𝑡 = 2:52:19 𝑡 = 0:14:38

program #loops s
o
l
v
e
d

I
I
=
I
I
∗ □

I
I
=
I
I
∗

I
I
=
I
I
m

i
n

a
v
g
.

𝐿
m

i
n

𝐿

s
o
l
v
e
d

I
I
=
I
I
∗ □

I
I
=
I
I
∗

I
I
=
I
I
m

i
n

a
v
g
.

𝐿
m

i
n

𝐿

s
o
l
v
e
d

I
I
=
I
I
∗ □

I
I
=
I
I
∗

I
I
=
I
I
m

i
n

a
v
g
.

𝐿
m

i
n

𝐿

s
o
l
v
e
d

I
I
=
I
I
∗ □

I
I
=
I
I
∗

I
I
=
I
I
m

i
n

a
v
g
.

𝐿
m

i
n

𝐿

aes2 16 16 15 15 16 1.00 16 15 15 16 1.00 16 14 15 15 1.00 16 8 9 10 0.99

bfs_queue 2 2 2 2 2 1.00 2 2 2 2 1.00 2 2 2 2 1.00 2 2 2 2 1.00

fft_strided 2 2 2 2 2 1.00 2 2 2 2 1.00 2 2 2 2 1.00 2 1 2 2 1.00

gemm_blocked 5 5 5 5 5 1.00 5 5 5 5 1.00 5 5 5 5 1.00 5 5 5 5 1.00

gemm_ncubed 3 3 3 3 3 1.00 3 3 3 3 1.00 3 3 3 3 1.00 3 3 3 3 1.00

kmp 4 4 4 4 4 1.00 4 4 4 4 1.00 4 4 4 4 1.00 4 4 4 4 1.00

md_grid 10 10 10 10 10 1.00 10 9 10 10 1.00 10 9 10 10 1.00 10 7 10 10 0.99

md_knn 2 2 2 2 2 1.00 2 2 2 2 1.00 2 2 2 2 1.00 2 2 2 2 1.00

sort_merge 8 8 8 8 8 1.00 8 8 8 8 1.00 8 8 8 8 1.00 8 8 8 8 1.00

sort_radix 15 15 15 15 15 1.00 15 15 15 15 1.00 15 15 15 15 1.00 15 15 15 15 1.00

spmv_crs 2 2 2 2 2 1.00 2 2 2 2 1.00 2 2 2 2 1.00 2 2 2 2 1.00

spmv_ellpack 2 2 2 2 2 1.00 2 2 2 2 1.00 2 2 2 2 1.00 2 2 2 2 1.00

stencil2d 4 4 4 4 4 1.00 4 4 4 4 1.00 4 4 4 4 1.00 4 4 4 4 1.00

stencil3d 9 9 9 9 9 1.00 9 9 9 9 1.00 9 9 9 9 1.00 9 8 9 9 0.99

viterbi 7 7 7 7 7 1.00 7 7 7 7 1.00 7 7 7 7 1.00 7 7 7 7 1.00

summary 91 91 90 90 91 1.00 91 89 90 91 1.00 91 88 90 90 1.00 91 78 84 85 1.00

Table 7. Scheduler comparison for MachSuite using a timeout of 60 s; times to schedule the whole benchmark
suite are given as 𝑡 = hours :minutes : seconds

BLOOP ED97 [19] Moovac [40] SDC [5]

𝑡 = 0:10:26 𝑡 = 0:13:51 𝑡 = 0:19:56 𝑡 = 0:07:29

program #loops s
o
l
v
e
d

I
I
=
I
I
∗ □

I
I
=
I
I
∗

I
I
=
I
I
m

i
n

a
v
g
.

𝐿
m

i
n

𝐿

s
o
l
v
e
d

I
I
=
I
I
∗ □

I
I
=
I
I
∗

I
I
=
I
I
m

i
n

a
v
g
.

𝐿
m

i
n

𝐿

s
o
l
v
e
d

I
I
=
I
I
∗ □

I
I
=
I
I
∗

I
I
=
I
I
m

i
n

a
v
g
.

𝐿
m

i
n

𝐿

s
o
l
v
e
d

I
I
=
I
I
∗ □

I
I
=
I
I
∗

I
I
=
I
I
m

i
n

a
v
g
.

𝐿
m

i
n

𝐿

aes2 16 16 15 15 16 1.00 16 15 15 16 1.00 16 14 15 15 1.00 16 8 9 10 0.99

bfs_queue 2 2 2 2 2 1.00 2 2 2 2 1.00 2 2 2 2 1.00 2 2 2 2 1.00

fft_strided 2 2 2 2 2 1.00 2 2 2 2 1.00 2 2 2 2 1.00 2 1 2 2 1.00

gemm_blocked 5 5 5 5 5 1.00 5 5 5 5 1.00 5 5 5 5 1.00 5 5 5 5 1.00

gemm_ncubed 3 3 3 3 3 1.00 3 3 3 3 1.00 3 3 3 3 1.00 3 3 3 3 1.00

kmp 4 4 4 4 4 1.00 4 4 4 4 1.00 4 4 4 4 1.00 4 4 4 4 1.00

md_grid 10 10 10 10 10 1.00 10 9 10 10 1.00 10 9 10 10 1.00 10 7 10 10 0.99

md_knn 2 2 2 2 2 1.00 2 2 2 2 1.00 2 2 2 2 1.00 2 2 2 2 1.00

sort_merge 8 8 8 8 8 1.00 8 8 8 8 1.00 8 8 8 8 1.00 8 8 8 8 1.00

sort_radix 15 15 15 15 15 1.00 15 15 15 15 1.00 15 15 15 15 1.00 15 15 15 15 1.00

spmv_crs 2 2 2 2 2 1.00 2 2 2 2 1.00 2 2 2 2 1.00 2 2 2 2 1.00

spmv_ellpack 2 2 2 2 2 1.00 2 2 2 2 1.00 2 2 2 2 1.00 2 2 2 2 1.00

stencil2d 4 4 4 4 4 1.00 4 4 4 4 1.00 4 4 4 4 1.00 4 4 4 4 1.00

stencil3d 9 9 9 9 9 1.00 9 9 9 9 1.00 9 9 9 9 1.00 9 8 9 9 0.99

viterbi 7 7 7 7 7 1.00 7 7 7 7 1.00 7 7 7 7 1.00 7 7 7 7 1.00

summary 91 91 90 90 91 1.00 91 89 90 91 1.00 91 88 90 90 1.00 91 78 84 85 1.00

rational IIs. This is to be expected because only one of the benchmarks has a recurrence. Therefore,

the heuristic only needs to solve an ILP formulation for that one model.

Moovac and ED97 regularly time out for large problem instances (i.e., mat_inv, r2_FFT and

r22_FFT) which leads to a high number of solving attempts before a valid schedule is found. Hence,

solving time is higher and the number of schedules with optimal throughput is lower than for

our proposed approach. Even though ED97 has a slightly better average schedule length quality

Preprint.

BLOOP: Boolean Satisifiability-based Optimized Loop Pipelining 49:25

Table 8. Scheduler comparison for CHStone using a timeout of 600 s; times to schedule the whole benchmark
suite are given as 𝑡 = hours :minutes : seconds

BLOOP ED97 [19] Moovac [40] SDC [5]

𝑡 = 5:54:05 𝑡 = 53:18:53 𝑡 = 27:33:04 𝑡 = 12:21:02

program #loops s
o
l
v
e
d

I
I
=
I
I
∗ □

I
I
=
I
I
∗

I
I
=
I
I
m

i
n

a
v
g
.

𝐿
m

i
n

𝐿

s
o
l
v
e
d

I
I
=
I
I
∗ □

I
I
=
I
I
∗

I
I
=
I
I
m

i
n

a
v
g
.

𝐿
m

i
n

𝐿

s
o
l
v
e
d

I
I
=
I
I
∗ □

I
I
=
I
I
∗

I
I
=
I
I
m

i
n

a
v
g
.

𝐿
m

i
n

𝐿

s
o
l
v
e
d

I
I
=
I
I
∗ □

I
I
=
I
I
∗

I
I
=
I
I
m

i
n

a
v
g
.

𝐿
m

i
n

𝐿

adpcm 30 30 29 29 30 1.00 30 29 29 30 1.00 30 29 29 29 1.00 30 28 28 29 0.99

aes 22 22 20 20 22 0.97 20 20 20 20 1.00 20 20 20 20 1.00 22 18 20 20 1.00

blowfish 1 1 1 1 1 0.99 0 0 0 0 – 1 0 0 0 1.00 1 0 1 1 0.90

dfdiv 2 2 2 2 2 1.00 2 2 2 2 1.00 2 2 2 2 1.00 2 2 2 2 1.00

dfsin 3 3 3 3 3 1.00 2 2 2 2 1.00 3 3 3 3 1.00 3 2 2 2 1.00

gsm 15 15 15 15 15 1.00 15 15 15 15 1.00 15 15 15 15 1.00 15 15 15 15 1.00

jpeg 113 113 113 113 113 1.00 113 113 113 113 1.00 113 113 113 113 1.00 113 111 113 113 0.98

mips 1 1 0 0 1 0.89 1 0 0 0 0.89 1 0 0 0 1.00 1 0 0 0 0.94

motion 51 51 51 51 51 1.00 51 51 51 51 1.00 51 51 51 51 1.00 51 34 51 51 1.00

sha 25 25 25 25 25 1.00 25 25 25 25 1.00 25 25 25 25 1.00 25 21 25 25 1.00

summary 263 263 259 259 263 1.00 259 257 257 258 1.00 261 258 258 258 1.00 263 231 257 258 0.99

Table 9. Scheduler comparison for CHStone using a timeout of 3600 s; times to schedule the whole benchmark
suite are given as 𝑡 = hours :minutes : seconds

BLOOP ED97 [19] Moovac [40] SDC [5]

𝑡 = 31:10:14 𝑡 = 52:25:03 𝑡 = 146:18:43 𝑡 = 13:18:13

program #loops s
o
l
v
e
d

I
I
=
I
I
∗ □

I
I
=
I
I
∗

I
I
=
I
I
m

i
n

a
v
g
.

𝐿
m

i
n

𝐿

s
o
l
v
e
d

I
I
=
I
I
∗ □

I
I
=
I
I
∗

I
I
=
I
I
m

i
n

a
v
g
.

𝐿
m

i
n

𝐿

s
o
l
v
e
d

I
I
=
I
I
∗ □

I
I
=
I
I
∗

I
I
=
I
I
m

i
n

a
v
g
.

𝐿
m

i
n

𝐿

s
o
l
v
e
d

I
I
=
I
I
∗ □

I
I
=
I
I
∗

I
I
=
I
I
m

i
n

a
v
g
.

𝐿
m

i
n

𝐿

adpcm 30 30 29 30 30 1.00 30 30 30 30 1.00 30 29 29 29 1.00 30 28 29 29 0.99

aes 22 22 20 20 22 0.97 22 20 20 21 1.00 21 20 20 20 0.98 22 18 20 20 0.98

blowfish 1 1 1 1 1 1.00 1 0 0 0 0.54 1 0 0 0 1.00 1 0 1 1 0.91

dfdiv 2 2 2 2 2 1.00 2 2 2 2 1.00 2 2 2 2 1.00 2 2 2 2 1.00

dfsin 3 3 3 3 3 1.00 3 3 3 3 1.00 3 3 3 3 1.00 3 2 2 2 1.00

gsm 15 15 15 15 15 1.00 15 15 15 15 1.00 15 15 15 15 1.00 15 15 15 15 1.00

jpeg 113 113 113 113 113 1.00 113 113 113 113 1.00 113 113 113 113 1.00 113 111 113 113 0.98

mips 1 1 0 0 1 0.89 1 0 0 0 0.89 1 0 0 0 1.00 1 0 0 0 0.94

motion 51 51 51 51 51 1.00 51 51 51 51 1.00 51 51 51 51 1.00 51 34 51 51 1.00

sha 25 25 25 25 25 1.00 25 25 25 25 1.00 25 25 25 25 1.00 25 21 25 25 1.00

summary 263 263 259 260 263 1.00 263 259 259 260 1.00 262 258 258 258 1.00 263 231 258 258 0.99

than our proposed scheduler, we argue that the greatly reduced runtime and the higher number of

(proven) optimal IIs speak for our proposed algorithm.

Because of tight resource constraints, the exact ILP-based algorithms for rational IIs (uniform

ILP and nonuniform ILP) regularly fail to find feasible solutions for mat_inv, r2_FFT and r22_FFT.

Even when solutions are found, throughput-optimality can often not be guaranteed. It is only given

when using our proposed approach or the heuristic one. The heuristic approach has a significantly

lower runtime than all exact ones (by a factor of more than 20×) and our proposed scheduler has

the lowest total runtime among the exact ones. Even though the uniform ILP-based scheduler has a

better average schedule length quality than our proposed one for fir_SAM, iir_sos16 and mat_inv,

our proposed scheduler has the best schedule length quality averaged over all models for rational

IIs.

Fig. 6 shows a summary of relative run times for all our experiments. Absolute run times (i.e.,

the times that represent 100 %) are given in Tables 7–11. Note that absolute times partially vary

Preprint. ACM Trans. Reconfig. Technol. Syst., Vol. 16, No. 3, Article 49. Publication date: July 2023.

49:26 Nicolai Fiege and Peter Zipf

Table 10. Scheduler comparison for Origami using a timeout of 600 s; times to schedule the whole benchmark
suite are given as 𝑡 = hours :minutes : seconds

BLOOP ED97 [19] Moovac [40] SDC [5]

𝑡 = 15:16:22 𝑡 = 182:45:02 𝑡 = 335:41:32 𝑡 = 4:59:13

model #allocs s
o
l
v
e
d

I
I
=
I
I
∗ □

I
I
=
I
I
∗

I
I
=
I
I
m

i
n

a
v
g
.

𝐿
m

i
n

𝐿

s
o
l
v
e
d

I
I
=
I
I
∗ □

I
I
=
I
I
∗

I
I
=
I
I
m

i
n

a
v
g
.

𝐿
m

i
n

𝐿

s
o
l
v
e
d

I
I
=
I
I
∗ □

I
I
=
I
I
∗

I
I
=
I
I
m

i
n

a
v
g
.

𝐿
m

i
n

𝐿

s
o
l
v
e
d

I
I
=
I
I
∗ □

I
I
=
I
I
∗

I
I
=
I
I
m

i
n

a
v
g
.

𝐿
m

i
n

𝐿

e_detect 6 6 6 6 6 1.00 6 6 6 6 1.00 6 6 6 6 1.00 6 6 6 6 0.95

fir6dlms 1 1 1 1 1 1.00 1 1 1 1 1.00 1 1 1 1 1.00 1 1 1 1 0.95

fir_gen 4 4 4 4 4 1.00 4 4 4 4 1.00 4 4 4 4 1.00 4 4 4 4 0.95

fir_GM 5 5 5 5 5 1.00 5 5 5 5 1.00 5 5 5 5 1.00 5 5 5 5 0.94

fir_hilb 3 3 3 3 3 1.00 3 3 3 3 1.00 3 3 3 3 1.00 3 3 3 3 1.00

fir_lms 1 1 1 1 1 1.00 1 1 1 1 1.00 1 1 1 1 1.00 1 0 1 1 1.00

fir_SAM 15 15 15 15 15 1.00 15 15 15 15 1.00 15 10 10 10 0.96 15 14 14 14 0.81

fir_SHI 7 7 7 7 7 1.00 7 7 7 7 1.00 7 7 7 7 1.00 7 7 7 7 0.89

fir_srg 3 3 3 3 3 1.00 3 3 3 3 1.00 3 3 3 3 1.00 3 3 3 3 1.00

iir4 1 1 1 1 1 1.00 1 1 1 1 1.00 1 1 1 1 1.00 1 1 1 1 1.00

iir_biqu 1 1 1 1 1 1.00 1 1 1 1 1.00 1 1 1 1 1.00 1 1 1 1 1.00

iir_bw 1 1 1 1 1 1.00 1 1 1 1 1.00 1 1 1 1 0.99 1 1 1 1 1.00

iir_sos2 1 1 1 1 1 1.00 1 1 1 1 1.00 1 1 1 1 1.00 1 0 0 0 0.97

iir_sos4 2 2 2 2 2 1.00 2 2 2 2 1.00 2 2 2 2 1.00 2 2 2 2 0.91

iir_sos8 3 3 3 3 3 1.00 3 3 3 3 1.00 3 3 3 3 1.00 3 3 3 3 0.88

iir_sos16 5 5 5 5 5 1.00 5 5 5 5 1.00 5 4 4 4 0.98 4 1 1 1 0.94

mat_inv 28 28 28 28 28 0.90 28 27 27 27 0.97 28 1 1 1 0.80 24 23 23 23 0.95

r2_FFT 32 32 32 32 32 0.91 27 15 15 15 0.93 30 1 1 1 0.34 31 31 31 31 0.91

r22_FFT 32 32 32 32 32 0.90 27 18 18 18 0.95 28 1 1 1 0.37 31 31 31 31 0.90

rgb_tr 3 3 3 3 3 1.00 3 3 3 3 1.00 3 3 3 3 1.00 3 3 3 3 1.00

splin_pf 5 5 5 5 5 1.00 5 5 5 5 1.00 5 5 5 5 1.00 5 5 5 5 1.00

ycbcr_tr 3 3 3 3 3 1.00 3 3 3 3 1.00 3 3 3 3 1.00 3 3 3 3 0.97

summary 162 162 162 162 162 0.95 152 130 130 130 0.97 156 67 67 67 0.72 155 148 149 149 0.92

Table 11. Scheduler comparison for Origami using a timeout of 600 s; times to schedule the whole benchmark
suite are given as 𝑡 = hours :minutes : seconds; some models are missing compared to Table 10 because they
do not have operator allocations that lead to a rational minimum II

BLOOP uniform ILP [22] nonuniform ILP [48] SCC+ILP [48]

𝑡 = 202:29:18 𝑡 = 218:40:20 𝑡 = 231:26:47 𝑡 = 9:57:08

model #allocs s
o
l
v
e
d

I
I
=
I
I
∗ □

I
I
=
I
I
∗

I
I
=
I
I
m

i
n

a
v
g
.

𝐿
m

i
n

𝐿

s
o
l
v
e
d

I
I
=
I
I
∗ □

I
I
=
I
I
∗

I
I
=
I
I
m

i
n

a
v
g
.

𝐿
m

i
n

𝐿

s
o
l
v
e
d

I
I
=
I
I
∗ □

I
I
=
I
I
∗

I
I
=
I
I
m

i
n

a
v
g
.

𝐿
m

i
n

𝐿

s
o
l
v
e
d

I
I
=
I
I
∗ □

I
I
=
I
I
∗

I
I
=
I
I
m

i
n

a
v
g
.

𝐿
m

i
n

𝐿

e_detect 7 7 7 7 7 0.94 7 7 7 7 0.93 7 7 7 7 1.00 7 7 7 7 0.84

fir_gen 4 4 4 4 4 1.00 4 4 4 4 0.93 4 4 4 4 1.00 4 4 4 4 0.70

fir_GM 3 3 3 3 3 1.00 3 3 3 3 0.97 3 3 3 3 1.00 3 3 3 3 0.83

fir_hilb 1 1 1 1 1 1.00 1 1 1 1 0.91 1 1 1 1 1.00 1 1 1 1 0.88

fir_SAM 79 79 79 79 79 0.59 79 79 79 79 0.97 79 75 75 75 0.56 79 79 79 79 0.54

fir_SHI 16 16 16 16 16 0.98 16 16 16 16 0.92 16 16 16 16 1.00 16 16 16 16 0.57

fir_srg 1 1 1 1 1 1.00 1 1 1 1 0.92 1 1 1 1 1.00 1 1 1 1 0.77

iir_sos16 1 1 1 1 1 0.22 1 1 1 1 0.93 1 1 1 1 1.00 1 1 1 1 0.18

mat_inv 230 230 230 230 230 0.67 230 204 204 204 0.72 156 58 58 58 0.69 230 230 230 230 0.40

r2_FFT 269 269 269 269 269 0.92 250 119 119 119 0.56 127 37 37 37 0.62 269 269 269 269 0.60

r22_FFT 269 269 269 269 269 0.92 249 128 128 128 0.55 131 37 37 37 0.59 269 269 269 269 0.59

rgb_tr 1 1 1 1 1 1.00 1 1 1 1 0.93 1 1 1 1 1.00 1 1 1 1 0.88

splin_pf 4 4 4 4 4 0.96 4 4 4 4 0.95 4 4 4 4 1.00 4 4 4 4 0.89

ycbcr_tr 1 1 1 1 1 1.00 1 1 1 1 0.96 1 1 1 1 1.00 1 1 1 1 0.92

summary 886 886 886 886 886 0.83 847 569 569 569 0.66 532 246 246 246 0.65 886 886 886 886 0.55

Preprint.

BLOOP: Boolean Satisifiability-based Optimized Loop Pipelining 49:27

B
L
O
O
P

E
D
9
7
[
1
9
]

M
o
o
v
a
c
[
4
0
]

S
D
C
[
5
]

B
L
O
O
P

E
D
9
7
[
1
9
]

M
o
o
v
a
c
[
4
0
]

S
D
C
[
5
]

B
L
O
O
P

E
D
9
7
[
1
9
]

M
o
o
v
a
c
[
4
0
]

S
D
C
[
5
]

B
L
O
O
P

u
n
i
f
o
r
m

I
L
P
[
2
2
]

n
o
n
u
n
i
f
.
I
L
P
[
4
8
]

S
C
C
+
I
L
P
[
4
8
]

0

25

50

75

100

CHStone MachSuite Origami (int-II) Origami (rat-II)

r
e
l
a
t
i
v
e
r
u
n
t
i
m
e
[
%
]

a
e
s

a
e
s

d
f
s
i
n

a
e
s a
e
s

5
:5
4
:0
5

5
3
:1
8
:5
3

2
7
:3
3
:0
4

1
2
:2
1
:0
2

a
e
s
2

a
e
s
2

a
e
s
2

m
d
_
g
r
i
d

1
:1
3
:3
5

0
:5
4
:3
5

2
:5
2
:1
9

0
:1
4
:3
8

m
a
t
_
i
n
v

r
2
_
F
F
T

r
2
2
_
F
F
T

r
2
_
F
F
T

r
2
2
_
F
F
T

r
2
_
F
F
T

r
2
2
_
F
F
T

r
2
_
F
F
T

r
2
2
_
F
F
T

1
5
:1
6
:2
2

1
8
2
:4
5
:0
2

3
3
5
:4
1
:3
2

4
:5
9
:1
3

m
a
t
_
i
n
v

r
2
2
_
F
F
T

r
2
_
F
F
T

r
2
2
_
F
F
T

m
a
t
_
i
n
v

r
2
_
F
F
T

r
2
2
_
F
F
T

r
2
_
F
F
T

r
2
2
_
F
F
T

2
0
2
:2
9
:1
8

2
1
8
:4
0
:2
0

2
3
1
:2
6
:4
7

9
:5
7
:0
8

Fig. 6. Relative run times for a timeout of 600 s; we give absolute run times (i.e., the times that represent
100 %) as “hours :minutes : seconds” according to Tables 6–11

considerably. For all benchmark suites we see that there is always a small selection of benchmark

problems that takes up a large portion of the whole run time (e.g., aes for CHStone). This situation is

most extreme for MachSuite, where BLOOP spends nearly all its time scheduling the aes2 program.

For Origami—both integer IIs and rational IIs—mat_inv and the two FFTs make up nearly 100 %

of the run time for all examined schedulers. This also explains the long run time for the exact

schedulers in the rational-II experiments. Since mat_inv, r2_FFT and r22_FFT together consist of

768 scheduling problems, even an approach that is able to schedule each problem at the first try

within the 10 min time budget (i.e., for II
⊥
) needs to solve 768 scheduling problems. This issue

should in a practical application rather be solved in the allocation step, and meaningful resource-
throughput tradeoffs should be chosen instead of enumerating all resource allocations that lead to

Pareto-optimal implementations.

In our last evaluation, we take a look at the problem sizes, that our examined schedulers can

handle with a timeout of 600 s. To do so, we display the largest solved problems and the largest

problems with a provably optimal solution in Table 12. A loop from dfsin in CHStone with 2651

operations is the largest MSP in our benchmark suite, which BLOOP and Moovac solved for the

verified optimal throughput. Although the SDC scheduler is able to compute a valid schedule

for this problem instance, the II is not proven to be optimal and the largest problem with that

property is a loop in jpeg with 942 operations for SDC. This is also the largest problem that the

ED97 scheduler is able to solve with verified optimal throughput. The largest solved problem by

ED97 is mips with 1076 operations.

The one problem in MachSuite for which none of the examined schedulers can produce a verified

optimal schedule is a loop in aes2 with 225 vertices and 683 edges. It is an order of magnitude smaller

than dfsin, which is provably optimally solved by both BLOOP and Moovac. For the minimum

Preprint. ACM Trans. Reconfig. Technol. Syst., Vol. 16, No. 3, Article 49. Publication date: July 2023.

49:28 Nicolai Fiege and Peter Zipf

known feasible II = 32 ED97 builds an ILP model with 7876 variables and 23081 constraints and is

able to optimally solve it w.r.t. SL, whereas Moovac fails to find a feasible schedule for II = 32, even

though its ILP model comprises half of the number of variables and constraints, 3876 and 11341,

respectively. With 5796 variables and 334547 clauses after the SCC reduction, BLOOP is able to

find a valid modulo schedule for II = 32 in under one second. From this behavior we can make two

observations:

(1) The “difficulty” of a scheduling problem is not only related to its size.

(2) An ILP/SAT model with a high number of variables and constraints/clauses is not necessarily

harder to solve than a smaller one.

Table 12. Largest (optimally) solved problems for a timeout of 600 s

Valid modulo schedule For II = II
∗
□

Scheduler Benchmark Instance |𝑂 | Benchmark Instance |𝑂 |
BLOOP CHStone dfsin 2651 CHStone dfsin 2651

ED97 [19] CHStone mips 1076 CHStone jpeg 942

Moovac [40] CHStone dfsin 2651 CHStone dfsin 2651

SDC [5] CHStone dfsin 2651 CHStone jpeg 942

5.3 FPGA implementations
We implemented selected benchmarks on an xcvu13p-fhga2104-2-e FPGA using Vivado 2020.2

to show the impact of the chosen scheduler on the hardware. We use Origami HLS [38] with

FloPoCo [16] backend for VHDL code generation. For binding we use an ILP-based algorithm for

simultaneous lifetime register and multiplexer minimization [21] with a timeout of ten minutes.

Although the binding algorithm is not always able to compute the optimum solution, we always

obtain a feasible binding.We set a target frequency of 250 MHz, which is met by all implementations;

independent of the scheduler choice and the resulting binding.

The number of resulting look-up tables and flip-flops are mainly determined by the HLS steps

following the scheduling (i.e., binding, architecture synthesis, platform synthesis, place& route).

Our examined schedulers can only control the tradeoff between DSP usage and resulting throughput,

which is determined by the II and the clock frequency achieved.

In Fig. 7 we show post place& route implementation results for selected benchmarks. The

different implementations result from scheduler and resource allocation variations. With 15 and 26

operations, respectively, the fir_gen and splin_pf benchmarks are comparably small models that can

be scheduled by each scheduler for the optimal II. Therefore, the Pareto frontier is independent of

the chosen scheduling algorithm. Larger models like iir_sos16 or fir_SAM (194 and 121 operations,

respectively) are not scheduled optimally by Moovac and SDC. The iir_sos16 model consists of

more limited operations and several recurrences that result in II
⊥
rec

= 14. The combination of

these features seems problematic for Moovac and the SDC-based algorithm. Moovac failed to

find a solution for the optimum throughput for one allocation; the SDC-based algorithm is able

to guarantee an optimal II for only one out of the five allocations and even failed to find any

solution for the implementation with two DSPs. The situation is even more extreme for mat_inv

(266 operations). Even though it does not comprise any recurrence, the amount of resource-limited

operations is so high that only our proposed scheduler is able to guarantee the optimum II for all

resource allocations.

Preprint.

BLOOP: Boolean Satisifiability-based Optimized Loop Pipelining 49:29

1 2 3 4 5

0

2

4

6

8

10

Initiation interval (log scale)

#
D
S
P
s
u
s
e
d

BLOOP

ED97 [19]

Moovac [40]

SDC [5]

(a) DSP usage for the fir_gen benchmark

1 2 3 4 5 8

0

2

4

6

8

10

12

14

16

Initiation interval (log scale)

#
D
S
P
s
u
s
e
d

BLOOP

ED97 [19]

Moovac [40]

SDC [5]

(b) DSP usage for the splin_pf benchmark

10 20 30 40 50 6070

0

2

4

6

8

10

Initiation interval (log scale)

#
D
S
P
s
u
s
e
d

BLOOP

ED97 [19]

Moovac [40]

SDC [5]

(c) DSP usage for the iir_sos16 benchmark

1 2 3 5 10 20 30 50 100

0

10

20

30

40

50

60

Initiation interval (log scale)

#
D
S
P
s
u
s
e
d

BLOOP

ED97 [19]

Moovac [40]

SDC [5]

(d) DSP usage for the fir_SAM benchmark

1 2 3 5 10 20 30 50 100 200

0

100

200

300

Initiation interval (log scale)

#
D
S
P
s
u
s
e
d

BLOOP

ED97 [19]

Moovac [40]

SDC [5]

(e) DSP usage for the mat_inv benchmark

Fig. 7. Throughput vs. DSP usage tradeoffs for selected benchmarks after place& route

6 CONCLUSION
In this paper we show that SAT-based optimal modulo scheduling with our proposed formulation

and the open-source SAT solver CaDiCaL [3] scales better for large problem sizes than ILP-based

approaches with the state-of-the-art commercial solver Gurobi [26].

Our proposed scheduler has the highest number of proven optimal solutions in both theMachSuite

and the CHStone benchmark suites. Due to the higher solving rate, it needs substantially fewer

Preprint. ACM Trans. Reconfig. Technol. Syst., Vol. 16, No. 3, Article 49. Publication date: July 2023.

49:30 Nicolai Fiege and Peter Zipf

iterations to find a feasible schedule, which also leads to the lowest total runtime among the

examined schedulers; including a state-of-the-art heuristic approach [5]. Additionally, none of the

other examined schedulers [14, 19, 40] is able to find any schedule with higher throughput than

our proposed approach.

We also showed that our proposed scheduler is the best available choice for design space

explorations demonstrated on a wide range of DSP applications. It is the only exact approach that

is able to compute provably throughput-optimal schedules for all models, resource allocations and

both integer and rational IIs.

Open problems for future work remain (i) integrating FPGA-specific operator costs (e.g., the

number of available DSPs or LUTs) into our problem formulation, (ii) finding better bounds for

L
⊥
and L

⊤
to further prune the search space, resulting in an even shorter runtime, and (iii) using

the scalability of modern SAT solvers to optimally solve more optimization problems in digital

hardware synthesis.

ACKNOWLEDGMENTS
We want to thank Steve Dai and Zhiru Zhang for providing us the source code of their SAT+SDC-

based modulo scheduling algorithm and the anonymous reviewers for their valuable feedback.

REFERENCES
[1] Fadi Aloul, Bashar Al-Rawi, Anas Al-Farra, and Basel Al-Roh. 2006. Solving Employee Timetabling Problems Using

Boolean Satisfiability. In 2006 Innovations in Information Technology. 1–5. https://doi.org/10.1109/INNOVATIONS.2006.

301886

[2] Erik R. Altman and Guang R. Gao. 1998. Optimal Modulo Scheduling Through Enumeration. International Journal of
Parallel Programming 26, 3 (June 1998), 313–344. https://doi.org/10.1023/A:1018742213548

[3] Armin Biere, Katalin Fazekas, Mathias Fleury, and Maximillian Heisinger. 2020. CaDiCaL, Kissat, Paracooba, Plingeling

and Treengeling Entering the SAT Competition 2020. In Proc. of SAT Competition 2020 – Solver and Benchmark
Descriptions (Department of Computer Science Report Series B, Vol. B-2020-1), Tomas Balyo, Nils Froleyks, Marijn Heule,

Markus Iser, Matti Järvisalo, and Martin Suda (Eds.). University of Helsinki, 51–53.

[4] Alessio Bonfietti, Michele Lombardi, Luca Benini, and Michela Milano. 2014. CROSS cyclic resource-constrained

scheduling solver. Artificial Intelligence 206 (Jan. 2014), 25–52. https://doi.org/10.1016/j.artint.2013.09.006

[5] Andrew Canis, Stephen D. Brown, and Jason H. Anderson. 2014. Modulo SDC scheduling with recurrence minimization

in high-level synthesis. In 2014 24th International Conference on Field Programmable Logic and Applications (FPL). 1–8.
https://doi.org/10.1109/FPL.2014.6927490 ISSN: 1946-1488.

[6] Andrew Canis, Jongsok Choi, Blair Fort, Ruolong Lian, Qijing Huang, Nazanin Calagar, Marcel Gort, Jia Jun Qin, Mark

Aldham, Tomasz Czajkowski, Stephen Brown, and Jason Anderson. 2013. From software to accelerators with LegUp

high-level synthesis. In 2013 International Conference on Compilers, Architecture and Synthesis for Embedded Systems
(CASES). 1–9. https://doi.org/10.1109/CASES.2013.6662524

[7] Jianyi Cheng, Lana Josipovic, George A. Constantinides, Paolo Ienne, and John Wickerson. 2020. Combining Dynamic

& Static Scheduling in High-level Synthesis. In Proceedings of the 2020 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays. ACM, Seaside CA USA, 288–298. https://doi.org/10.1145/3373087.3375297

[8] Jianyi Cheng, John Wickerson, and George A. Constantinides. 2021. Exploiting the Correlation between Dependence

Distance and Latency in Loop Pipelining for HLS. In 2021 31st International Conference on Field-Programmable Logic
and Applications (FPL). 341–346. https://doi.org/10.1109/FPL53798.2021.00066 ISSN: 1946-1488.

[9] Jianyi Cheng, John Wickerson, and George A. Constantinides. 2022. Dynamic C-Slow Pipelining for HLS. In 2022
IEEE 30th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM). 1–10. https:

//doi.org/10.1109/FCCM53951.2022.9786096 ISSN: 2576-2621.

[10] Jason Cong, Jason Lau, Gai Liu, Stephen Neuendorffer, Peichen Pan, Kees Vissers, and Zhiru Zhang. 2022. FPGA HLS

Today: Successes, Challenges, and Opportunities. ACM Transactions on Reconfigurable Technology and Systems (April
2022), 3530775. https://doi.org/10.1145/3530775

[11] Jason Cong and Zhiru Zhang. 2006. An Efficient and Versatile Scheduling Algorithm Based on SDC Formulation. In

43rd ACM/IEEE Design Automation Conference.
[12] Stephen A. Cook. 1971. The complexity of theorem-proving procedures. In Proceedings of the third annual ACM

symposium on Theory of computing (STOC ’71). Association for Computing Machinery, New York, NY, USA, 151–158.

Preprint.

https://doi.org/10.1109/INNOVATIONS.2006.301886
https://doi.org/10.1109/INNOVATIONS.2006.301886
https://doi.org/10.1023/A:1018742213548
https://doi.org/10.1016/j.artint.2013.09.006
https://doi.org/10.1109/FPL.2014.6927490
https://doi.org/10.1109/CASES.2013.6662524
https://doi.org/10.1145/3373087.3375297
https://doi.org/10.1109/FPL53798.2021.00066
https://doi.org/10.1109/FCCM53951.2022.9786096
https://doi.org/10.1109/FCCM53951.2022.9786096
https://doi.org/10.1145/3530775

BLOOP: Boolean Satisifiability-based Optimized Loop Pipelining 49:31

https://doi.org/10.1145/800157.805047

[13] Steve Dai, Gai Liu, and Zhiru Zhang. 2018. A Scalable Approach to Exact Resource-Constrained Scheduling Based

on a Joint SDC and SAT Formulation. In Proceedings of the 2018 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays (FPGA ’18). Association for Computing Machinery, New York, NY, USA, 137–146. https:

//doi.org/10.1145/3174243.3174268

[14] Steve Dai and Zhiru Zhang. 2019. Improving Scalability of Exact Modulo Scheduling with Specialized Conflict-

Driven Learning. In Proceedings of the 56th Annual Design Automation Conference 2019. ACM, Las Vegas NV USA, 1–6.

https://doi.org/10.1145/3316781.3317842

[15] Benoıt Dupont de Dinechin. 2007. Time-Indexed Formulations and a Large Neighborhood Search for the Resource-

Constrained Modulo Scheduling Problem. In proceedings of the 3rd Multidisciplinary International Conference on
Scheduling : Theory and Applications (MISTA 2007). Paris, France, 144–151.

[16] Florent de Dinechin and Bogdan Pasca. 2011. Designing Custom Arithmetic Data Paths with FloPoCo. IEEE Design &
Test of Computers (2011).

[17] Giovanni De Micheli. 2003. Synthesis and Optimization of Digital Circuits. Tata McGraw-Hill, New Dehli.

[18] Leandro de Souza Rosa, Christos-Savvas Bouganis, and Vanderlei Bonato. 2019. Scaling Up Modulo Scheduling for

High-Level Synthesis. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 38, 5 (May 2019),

912–925. https://doi.org/10.1109/TCAD.2018.2834440

[19] Alexandre E. Eichenberger and Edward S. Davidson. 1997. Efficient formulation for optimal modulo schedulers. ACM
SIGPLAN Notices 32, 5 (May 1997), 194–205. https://doi.org/10.1145/258916.258933

[20] Kevin Fan, Manjunath Kudlur, Hyunchul Park, and Scott Mahlke. 2005. Cost sensitive modulo scheduling in a loop

accelerator synthesis system. In 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’05). 12
pp.–232. https://doi.org/10.1109/MICRO.2005.17 ISSN: 2379-3155.

[21] Nicolai Fiege, Patrick Sittel, and Peter Zipf. 2022. Optimal Binding and Port Assignment for Loop Pipelining in High-

Level Synthesis. In 2022 32st International Conference on Field-Programmable Logic and Applications (FPL). Accepted
for publication.

[22] Nicolai Fiege, Patrick Sittel, and Peter Zipf. 2022. Speeding Up Optimal Modulo Scheduling with Rational Initiation

Intervals. In 2022 32st International Conference on Field-Programmable Logic and Applications (FPL). Accepted for

publication.

[23] Michael R. Garey and David S. Johnson. 1975. Complexity Results for Multiprocessor Scheduling under Resource

Constraints. SIAM J. Comput. 4, 4 (1975), 397–411. https://doi.org/10.1137/0204035

[24] Sabih H. Gerez. 2005. Algorithms for VLSI Design Automation. Wiley, Chichester.

[25] Hongyan Guo, Feng Liu, Fang Xu, Hong Chen, Dongpu Cao, and Yan Ji. 2019. Nonlinear Model Predictive Lateral

Stability Control of Active Chassis for Intelligent Vehicles and Its FPGA Implementation. IEEE Transactions on Systems,
Man, and Cybernetics: Systems 49, 1 (Jan. 2019), 2–13. https://doi.org/10.1109/TSMC.2017.2749337

[26] Gurobi. 2022. Gurobi Optimizer. https://www.gurobi.com/products/gurobi-optimizer/

[27] Yuko Hara, Hiroyuki Tomiyama, Shinya Honda, and Hiroaki Takada. 2009. Proposal and Quantitative Analysis of the

CHStone Benchmark Program Suite for Practical C-based High-level Synthesis. Journal of Information Processing 17

(2009), 242–254. https://doi.org/10.2197/ipsjjip.17.242

[28] Huang Hong, Latifur Khan, Ayoade Gbadebo, Zhou Shaohua, and Wei Yong. 2018. A Complex Task Scheduling Scheme

for Big Data Platforms Based on Boolean Satisfiability Problem. In 2018 IEEE International Conference on Information
Reuse and Integration (IRI). 170–177. https://doi.org/10.1109/IRI.2018.00033

[29] Andrei Horbach. 2010. A Boolean satisfiability approach to the resource-constrained project scheduling problem.

Annals of Operations Research 181, 1 (Dec. 2010), 89–107. https://doi.org/10.1007/s10479-010-0693-2

[30] Lana Josipović, Radhika Ghosal, and Paolo Ienne. 2018. Dynamically Scheduled High-level Synthesis. In Proceedings
of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA ’18). Association for

Computing Machinery, New York, NY, USA, 127–136. https://doi.org/10.1145/3174243.3174264

[31] Marcin Kowalczyk, Dominika Przewlocka, and Tomasz Kryjak. 2018. Real-Time Implementation of Contextual Image

Processing Operations for 4K Video Stream in Zynq UltraScale+ MPSoC. In 2018 Conference on Design and Architectures
for Signal and Image Processing (DASIP). 37–42. https://doi.org/10.1109/DASIP.2018.8597105

[32] Daniel M. Lavery and Wen-mei W. Hwu. 1995. Unrolling-based optimizations for modulo scheduling. In Proceedings of
the 28th Annual International Symposium on Microarchitecture. 327–337. https://doi.org/10.1109/MICRO.1995.476842

ISSN: 1072-4451.

[33] Haoyan Liu, Atiyehsadat Panahi, David Andrews, and Alexander Nelson. 2020. An FPGA-Based Upper-Limb Rehabili-

tation Device for Gesture Recognition and Motion Evaluation Using Multi-Task Recurrent Neural Networks. In 2020
International Conference on Field-Programmable Technology (ICFPT). 296–297. https://doi.org/10.1109/ICFPT51103.

2020.00054

Preprint. ACM Trans. Reconfig. Technol. Syst., Vol. 16, No. 3, Article 49. Publication date: July 2023.

https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/3174243.3174268
https://doi.org/10.1145/3174243.3174268
https://doi.org/10.1145/3316781.3317842
https://doi.org/10.1109/TCAD.2018.2834440
https://doi.org/10.1145/258916.258933
https://doi.org/10.1109/MICRO.2005.17
https://doi.org/10.1137/0204035
https://doi.org/10.1109/TSMC.2017.2749337
https://www.gurobi.com/products/gurobi-optimizer/
https://doi.org/10.2197/ipsjjip.17.242
https://doi.org/10.1109/IRI.2018.00033
https://doi.org/10.1007/s10479-010-0693-2
https://doi.org/10.1145/3174243.3174264
https://doi.org/10.1109/DASIP.2018.8597105
https://doi.org/10.1109/MICRO.1995.476842
https://doi.org/10.1109/ICFPT51103.2020.00054
https://doi.org/10.1109/ICFPT51103.2020.00054

49:32 Nicolai Fiege and Peter Zipf

[34] Josep Llosa, Eduard Ayguadé, Antonio Gonzalez, Mateo Valero, and Jason Eckhardt. 2001. Lifetime-sensitive modulo

scheduling in a production environment. IEEE Trans. Comput. 50, 3 (March 2001), 234–249. https://doi.org/10.1109/12.

910814

[35] Einstein Morales. 2022. On fast implementations of elliptic curve point multiplication. In Proceedings of the 2022
ACM Southeast Conference (ACM SE ’22). Association for Computing Machinery, New York, NY, USA, 173–180.

https://doi.org/10.1145/3476883.3520223

[36] Razvan Nane, Vlad-Mihai Sima, Christian Pilato, Jongsok Choi, Blair Fort, Andrew Canis, Yu Ting Chen, Hsuan

Hsiao, Stephen Brown, Fabrizio Ferrandi, Jason Anderson, and Koen Bertels. 2016. A Survey and Evaluation of FPGA

High-Level Synthesis Tools. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 35, 10 (Oct.
2016), 1591–1604. https://doi.org/10.1109/TCAD.2015.2513673

[37] Jonas Ney, Dominik Loroch, Vladimir Rybalkin, Nico Weber, Jens Krüger, and Norbert Wehn. 2021. HALF: Holistic

Auto Machine Learning for FPGAs. In 2021 31st International Conference on Field-Programmable Logic and Applications
(FPL). 363–368. https://doi.org/10.1109/FPL53798.2021.00069

[38] Univeristy of Kassel. 2015. Origami HLS. http://www.uni-kassel.de/go/origami. Accessed: 11.01.2022.

[39] Julian Oppermann. 2019. Advances in ILP-based Modulo Scheduling for High-Level Synthesis. Ph.D. Thesis. TU Darmstadt.

https://tuprints.ulb.tu-darmstadt.de/id/eprint/9272

[40] Julian Oppermann, Andreas Koch, Melanie Reuter-Oppermann, and Oliver Sinnen. 2016. ILP-based modulo scheduling

for high-level synthesis. In 2016 International Conference on Compliers, Architectures, and Synthesis of Embedded Systems
(CASES). 1–10. https://doi.org/10.1145/2968455.2968512

[41] Julian Oppermann, Melanie Reuter-Oppermann, Lukas Sommer, Andreas Koch, and Oliver Sinnen. 2019. Exact and

Practical Modulo Scheduling for High-Level Synthesis. ACM Transactions on Reconfigurable Technology and Systems
12, 2 (2019), 26.

[42] Julian Oppermann, Patrick Sittel, Martin Kumm, Melanie Reuter-Oppermann, Andreas Koch, and Oliver Sinnen.

2019. Design-Space Exploration with Multi-Objective Resource-Aware Modulo Scheduling. In Euro-Par 2019: Parallel
Processing, Ramin Yahyapour (Ed.). Springer International Publishing, Cham, 170–183.

[43] Ian Page and Wayne Luk. 1991. Compiling Occam into field-programmable gate arrays. In FPGAs, Oxford Workshop on
Field Programmable Logic and Applications, Vol. 15. Abingdon EE&CS Books, 271–283.

[44] Arnab Raha, Ankush Chakrabarty, Vijay Raghunathan, and Gregery T. Buzzard. 2020. Embedding Approximate

Nonlinear Model Predictive Control at Ultrahigh Speed and Extremely Low Power. IEEE Transactions on Control
Systems Technology 28, 3 (May 2020), 1092–1099. https://doi.org/10.1109/TCST.2019.2898835

[45] Bantwal R. Rau. 1994. Iterative modulo scheduling: an algorithm for software pipelining loops. In Proceedings of the
27th annual international symposium on Microarchitecture (MICRO 27). Association for Computing Machinery, New

York, NY, USA, 63–74. https://doi.org/10.1145/192724.192731

[46] Bantwal R. Rau and Christopher D. Glaeser. 1981. Some scheduling techniques and an easily schedulable horizontal

architecture for high performance scientific computing. ACM SIGMICRO Newsletter 12, 4 (Dec. 1981), 183–198.

https://doi.org/10.1145/1014192.802449

[47] Brandon Reagen, Robert Adolf, Yakun Sophia Shao, Gu-Yeon Wei, and David Brooks. 2014. MachSuite: Benchmarks for

accelerator design and customized architectures. In 2014 IEEE International Symposium on Workload Characterization
(IISWC). 110–119. https://doi.org/10.1109/IISWC.2014.6983050

[48] Patrick Sittel, Nicolai Fiege, John Wickerson, and Peter Zipf. 2022. Optimal and Heuristic Approaches to Modulo

Scheduling With Rational Initiation Intervals in Hardware Synthesis. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 41, 3 (March 2022), 614–627. https://doi.org/10.1109/TCAD.2021.3060320

[49] Patrick Sittel, Julian Oppermann, Martin Kumm, Andreas Koch, and Peter Zipf. 2018. HatScheT: A Contribution to

Agile HLS. In Int. Workshop on FPGAs for Software Programmers.
[50] Patrick Sittel, Thomas Schönwälder, Martin Kumm, and Peter Zipf. 2018. ScaLP: A Light-Weighted (MI)LP Library.

InWorkshop Methoden und Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen und Systemen
(MBMV). Universität Tübingen, Tübingen, 10.

[51] Babe Sultana, Jannatul Ferdous Katha, Sujan Sarker, and Md. Abdur Razzaque. 2018. Multi-Mode Project Scheduling

with Limited Resource and Budget Constraints. In 2018 International Conference on Innovation in Engineering and
Technology (ICIET). 1–6. https://doi.org/10.1109/CIET.2018.8660864

[52] Robert Tarjan. 1972. Depth-First Search and Linear Graph Algorithms. SIAM J. Comput. 1, 2 (June 1972), 146–160.
https://doi.org/10.1137/0201010 Publisher: Society for Industrial and Applied Mathematics.

[53] Yaman Umuroglu, Nicholas J. Fraser, Giulio Gambardella, Michaela Blott, Philip Leong, Magnus Jahre, and Kees

Vissers. 2017. FINN: A Framework for Fast, Scalable Binarized Neural Network Inference. In Proceedings of the 2017
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. ACM, Monterey California USA, 65–74.

https://doi.org/10.1145/3020078.3021744

Preprint.

https://doi.org/10.1109/12.910814
https://doi.org/10.1109/12.910814
https://doi.org/10.1145/3476883.3520223
https://doi.org/10.1109/TCAD.2015.2513673
https://doi.org/10.1109/FPL53798.2021.00069
http://www.uni-kassel.de/go/origami
https://tuprints.ulb.tu-darmstadt.de/id/eprint/9272
https://doi.org/10.1145/2968455.2968512
https://doi.org/10.1109/TCST.2019.2898835
https://doi.org/10.1145/192724.192731
https://doi.org/10.1145/1014192.802449
https://doi.org/10.1109/IISWC.2014.6983050
https://doi.org/10.1109/TCAD.2021.3060320
https://doi.org/10.1109/CIET.2018.8660864
https://doi.org/10.1137/0201010
https://doi.org/10.1145/3020078.3021744

BLOOP: Boolean Satisifiability-based Optimized Loop Pipelining 49:33

[54] Akihisa Yamada, Satoru Nakamura, Nagisa Ishiura, Isao Shirakawa, and Takashi Kambe. 1995. Optimal scheduling

for conditional resource sharing. In Proceedings of ISCAS’95 - International Symposium on Circuits and Systems, Vol. 3.
2297–2300 vol.3. https://doi.org/10.1109/ISCAS.1995.523888

[55] Jian Zhao, Yaqin Zhao, Hongbo Li, Yun Zhang, and Longwen Wu. 2020. HLS-Based FPGA Implementation of

Convolutional Deep Belief Network for Signal Modulation Recognition. In IGARSS 2020 - 2020 IEEE International
Geoscience and Remote Sensing Symposium. 6985–6988. https://doi.org/10.1109/IGARSS39084.2020.9324385

[56] Xuan Zhou, Zhong Jun Yu, Yue Cao, and Shuai Jiang. 2019. SAR Imaging Realization with FPGA Based on VIVADO

HLS. In 2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP). 1–4. https://doi.org/10.

1109/ICSIDP47821.2019.9173161

[57] Přemysl Šůcha and Zdeněk Hanzálek. 2011. A cyclic scheduling problem with an undetermined number of parallel

identical processors. Computational Optimization and Applications 48, 1 (Jan. 2011), 71–90. https://doi.org/10.1007/

s10589-009-9239-4

Received 17 October 2022; revised 24 January 2023; revised 12 May 2023; accepted 14 May 2023

Preprint. ACM Trans. Reconfig. Technol. Syst., Vol. 16, No. 3, Article 49. Publication date: July 2023.

https://doi.org/10.1109/ISCAS.1995.523888
https://doi.org/10.1109/IGARSS39084.2020.9324385
https://doi.org/10.1109/ICSIDP47821.2019.9173161
https://doi.org/10.1109/ICSIDP47821.2019.9173161
https://doi.org/10.1007/s10589-009-9239-4
https://doi.org/10.1007/s10589-009-9239-4

	Abstract
	1 Introduction
	1.1 The modulo scheduling problem
	1.2 Motivational Example

	2 The algorithm
	2.1 SAT formulation
	2.2 Schedule length minimization
	2.3 Initiation interval minimization
	2.4 Fast initial schedule computation
	2.5 Algorithm summary

	3 Extension to rational IIs
	3.1 Extending the SAT formulation to rational IIs
	3.2 Extending SCC-based modulo scheduling to rational IIs
	3.3 Nonuniform modulo scheduling for further schedule length optimization

	4 Related work
	4.1 SAT in modulo scheduling
	4.2 Complexity of state-of-the-art exact approaches

	5 Experimental results
	5.1 Comparison with Dai&Zhang's approach
	5.2 Scheduling experiments
	5.3 FPGA implementations

	6 Conclusion
	Acknowledgments
	References

