
TasGPI: A Global Load Balancing
Framework for C++

M A S T E R T H E S I S
Department of Electrical Engineering and Computer Science

Universität Kassel

Submitted by: Adrian Steinitz

Matriculation number: 35673745
E-Mail: uk077035@student.uni-kassel.de

Presented to: Research Group Programming Languages/Methodologies

First examiner: Prof. Dr. Claudia Fohry
Second examiner: Prof. Dr. Oliver Hohlfeld

Supervisor: Dr. Jonas Posner

Filed on: October 4, 2023

Statutory Declaration

I herewith declare that I have composed the present thesis myself and without use of

any other than the cited sources and aids. Sentences or parts of sentences quoted

literally are marked as such; other references with regard to the statement and scope

are indicated by full details of the publications concerned. The thesis in the same

or similar form has not been submitted to any examination body and has not been

published. This thesis was not yet, even in part, used in another examination or as a

course performance. Furthermore I declare that the submitted written (bound) copies

of the present thesis and the versions submitted per e-mail and disc are consistent

with each other in contents.

Kassel, October 4, 2023

Adrian Steinitz

Contents i

Contents

Contents i

Index of abbreviations iv

1 Introduction 1

2 Background 4

2.1 The PGAS model . 4

2.2 APGAS . 5

2.3 RDMA . 6

2.4 GPI-2 . 7

2.4.1 Segments . 8

2.4.2 One-sided communication . 9

2.4.3 Weak synchronization . 10

2.4.4 Collective communication . 12

2.4.5 Atomic operations . 12

2.4.6 Fault tolerance . 13

2.5 Global Load Balancing . 14

2.5.1 Dynamic Independent Tasks 14

2.5.2 Lifeline Graphs . 15

2.5.3 The GLB algorithm . 16

2.5.4 Multi-Worker GLB . 17

3 Concepts of TasGPI 19

4 Implementation of TasGPI 22

4.1 Using TasGPI . 22

Contents ii

4.2 Overview . 24

4.3 Worker logic . 33

4.4 Steal behaviour in distributed memory 36

4.4.1 General procedure . 36

4.4.2 Attempt random steals . 39

4.4.3 Process pending steal requests 39

4.4.4 Reject pending steal requests 41

4.4.5 Activate lifelines . 42

4.4.6 Poll lifelines . 44

4.4.7 Initialize lifelines dynamic . 44

4.5 Steal behaviour in shared memory . 45

4.6 Termination detection . 46

4.7 Steal queue using RDMA . 48

5 Experiments 53

5.1 Unbalanced Tree Search . 53

5.2 Monte-Carlo Simulation . 54

5.3 Benchmark environments . 54

5.4 Results . 55

5.5 Discussion . 59

6 Related work 63

7 Conclusion 65

List of Figures v

List of Tables vi

List of Listings vii

Bibliography viii

Contents iii

A Appendix xiv

A.1 TasGPI worker workflow . xiv

A.2 UTS benchmark raw data . xv

A.3 Monte-Carlo benchmark raw data . xvii

A.4 Completion with error (Mellanox) . xviii

Index of abbreviations iv

Index of abbreviations

TasGPI Tasks for GPI

SPMD Single Program Multiple Data

MPMD Multiple Program Multiple Data

MPI Message Passing Interface

IB InfiniBand

PGAS Partitioned Global Address Space

APGAS Asynchronous Partitioned Global Address Space

RDMA Remote Direct Memory Access

RoCE RDMA over Converged Ethernet

WR Work Request

NIC Network Interface Card

RNIC RDMA enabled NIC

GLB Global Load Balancing

DIT Dynamic Independent Task

GPI Global address Programming Interface

GASPI Global Address Space Programming Interface

UTS Unbalanced Tree Search

1 Introduction 1

1 Introduction

Modern compute clusters are used to tackle problems from various fields of research

like physics, medicine and artificial intelligence. Many of these problems are highly

irregular and do not allow for predetermined scheduling. Instead, the workloads

have to be balanced at runtime to ensure optimal usage of the available compute

resources.

The above-mentioned clusters usually utilize a hybrid approach, where each compute

node in the distributed system is in itself a shared memory machine. In addition,

specialized accelerators and networking technologies have been introduced. Among

them are high-speed interconnects like InfiniBand (IB) or RDMA over Converged Eth-

ernet (RoCE). These technologies allow for Remote Direct Memory Access (RDMA)

and one-sided communication, i.e. data transfers managed purely by the sender with-

out involvement of the target CPU. While these technologies require careful design

to fully utilize their capabilities, they allow for an overlap of communication and

computation and vastly reduced latency. In such clusters, programmers can leverage

both shared and distributed memory programming to accelerate their computations.

The resulting complexities, however, also put a great burden on programmers.

A programming model that alleviates this burden is the Partitioned Global Address

Space (PGAS) model. It provides programmers with a global address space shared

between all processes (called places) of a distributed system, while still distinguishing

remote and local memory operations. An extension of PGAS called Asynchronous

Partitioned Global Address Space (APGAS) enhances the model by introducing

activities, i.e. lightweight threads of execution that may be executed asynchronously

on any place [50].

1 Introduction 2

One common way to fully utilize the above-mentioned architectures is to partition

problems into smaller sub-problems, which are expressed as tasks. Here, a task

denotes a discrete transferable unit of work that can be executed in parallel to other

tasks.

In shared memory systems, work stealing is a popular technique to schedule tasks and

balance the load between processors. Unfortunately, this approach can be inefficient

in a distributed memory setting. Primary reasons for inefficiencies are the increased

cost of communication via an interconnect, as well as the larger number of processors

prevalent in distributed systems.

Saraswat et al. propose a suitable extension of work stealing to distributed systems

with their Global Load Balancing (GLB) framework [44]. An initial implementation of

GLB is provided by the GLB library written for X10 [54]. Since then, several variants

of the GLB technique were introduced to improve upon the initial implementation.

Recently, one variant with significantly increased performance was proposed by Reitz

et al. [42]. So far, implementations of the GLB technique utilize active messages

provided by the APGAS model. However, research shows that the use of data-driven

RDMA communication instead of active messages might be able to reduce the latency

of such communications [7].

This thesis makes the following contributions: A variant of the GLB technique using

exclusively RDMA and one-sided communication was conceptualized. Then, a new

prototypical framework for GLB named Tasks for GPI (TasGPI) was implemented

using the RDMA focused PGAS library GPI-2 [18]. Other than the utilization of

RDMA for communication, TasGPI attempts to stay as faithful to the reference

variant by Reitz et al. as possible. The framework was then benchmarked against

the reference variant in order to evaluate, if RDMA and one-sided communication

can be used to further enhance the performance of the GLB technique.

Given GPI-2’s lack of support of APGAS’s activity concept, several elements of the

GLB technique had to be redesigned. This encompasses critical elements such as

termination detection. Further, to facilitate extensibility, system-specific optimiza-

1 Introduction 3

tions, and future evaluations, the framework was designed in a modular manner.

This was achieved by extracting core parts (e.g. steal-behaviour) of the worker logic

into strategies, i.e. replaceable classes implementing the required behaviour.

TasGPI’s performance for regular and irregular workloads was experimentally eval-

uated via two benchmarks. Unfortunately, technical challenges prevented the uti-

lization of RDMA in the experiments. Therefore, a suitable workaround was found

in the form of an ethernet wrapper provided by GPI. It simulates RDMA over

TCP, suggesting the issues lie with the Global address Programming Interface (GPI)

library or RDMA hardware. This way, the operational functionality and correctness

of the implementation could be established and the benchmarks executed. However,

at the time of writing, we are unable to definitely attribute the achieved results

to the quality of the implementation, the emulation of RDMA over TCP, or the

compatibility of RDMA with GLB.

The experiments show near-linear speedups akin to the reference variant, particularly

when dealing with larger problem sizes. However, it’s worth noting that benchmarks

involving smaller problem sizes yielded less favorable outcomes.

This thesis commences with the essential background knowledge in Chapter 2.

Following this, Chapter 3 outlines the fundamental ideas and design decisions of

TasGPI. Chapter 4 then details the actual implementation of TasGPI. The thesis

continues by providing a brief overview of the experiments conducted to validate

the correctness and assess the performance of TasGPI, and discusses the obtained

results in Chapter 5. After that, Chapter 6 gives a brief overview of related work.

The thesis concludes by summarizing the key findings and prospective future work

in Chapter 7.

2 Background 4

2 Background

This chapter contains the technical background necessary to understand this thesis.

First, the PGAS model and its extension APGAS are described in Section 2.1 and

Section 2.2, respectively. Following that, Section 2.3 describes the principles of

RDMA. Then, a detailed description of the Global address Programming Interface

(GPI) is given in Section 2.4. Finally, the GLB technique itself is described in

Section 2.5.

2.1 The PGAS model

The Partitioned Global Address Space (PGAS) model allows programmers to access

memory via a shared global address space similar to shared memory programming.

The physical memory, however, is not unified as is the case in shared memory.

Instead, every process (called place or rank) has some local memory, that is intercon-

nected with other places memory. Usually, one place is mapped to one compute node

in the Single Program Multiple Data (SPMD) model, but in most implementations

other configurations (e.g. one place per core or diverging code paths) are possible [13].

(a) Message Passing (b) PGAS (c) Shared Memory

Figure 2.1: Simplified illustration of the memory models. The PGAS model may
be semantically put between the message passing and shared memory
models.
Adapted from [13].

2 Background 5

As shown in Figure 2.1, the PGAS model may be put conceptually between the

message passing and shared memory models. The bars between processes and memory

may be interpreted as their distance, i.e. their cost of communication.

Message passing (Figure 2.1(a)) only allows explicit messages between processes,

represented by the solid bars. Direct access to the targets memory is impossible,

instead the receiving place has to process a message and modify its memory itself.

The shared memory approach (Figure 2.1(c)), on the other hand, has no bars,

representing the free and equal access of the processes to the shared memory.

In PGAS, processes may directly access another place’s memory as depicted in

Figure 2.1(b). This still incurs the increased cost caused by the network interconnect,

but does not necessarily involve the target process. In fact, modern communication

techniques like RDMA (compare Section 2.3) may be used to bypass the process

completely, thus alleviating the need for unnecessary synchronization between sender

and receiver [9]. Thus, the details of communication are hidden from the programmer

whilst keeping the varying costs for local and remote memory access transparent to

the developer.

2.2 APGAS

The APGAS model extends the PGAS model described in Section 2.1 by introducing

the concept of activities and the needed constructs to manage those [45]. For the

sake of brevity, the specifics of constructs are omitted from this description.

The APGAS model was first introduced in the X10 programming language [51]. An

implementation of the APGAS model for Java 8 is also available as part of the X10

project [2].

An activity is a piece of code, that may be executed on a place. Every program

in the APGAS model has at least one activity, called root activity. Once the root

activity terminates, the program terminates as well.

Each activity may launch new activities locally or remotely on other places. Activities

spawned that way, may access immutable variables of the enclosing scope. To that

2 Background 6

end, developers may use the async construct. The construct spawns the desired

activity and immediately returns. Once launched that way, the activity remains on

the place for its lifetime.

Different implementations diverge in the access capabilities of activities. The X10

implementation, for example, only allows local memory access for activities. However,

programmers may emulate global access behaviour in X10 by launching activities at

the target place that write to the desired location, thus not violating the restriction.

To enable developers control over the flow of execution, the APGAS model also

introduces the finish construct. The construct allows programmers to wait until

an activity (and activities spawned by it recursively) has terminated. The construct

thus can be used for distributed termination detection, i.e. it may be used to detect

that no work, i.e. activities, remains in the system [45].

To further enhance the ability of programmers to synchronize activities, the APGAS

model also introduces the atomic construct. Atomic blocks are executed as if they

were only one step and no other activity was running. In addition, the APGAS

model also supports guarded atomics. Here, the atomic block is associated with an

atomic expression. The runtime blocks, until the expression evaluates to true, in

which case the atomic block is executed. As with traditional mutual exclusion, the

critical section should remain as small as possible.

In summary, the APGAS model provides programmers with powerful tools to express

concurrency in addition to the convenient memory view provided by PGAS.

2.3 RDMA

Remote Direct Memory Access (RDMA) is a networking technique, that allows direct

memory access between remote systems in a network, without involving the CPU or

operating system of the recipient. This so-called kernel bypass allows computation

and communication to overlap. In addition, RDMA allows zero-copy data transfer,

i.e. the need for intermediary communication buffers is eliminated [30, 15].

2 Background 7

Since RDMA is a very complex topic, this section gives only a shallow introduction

to the relevant aspects of the technique. A comprehensive overview of RDMA and

the surrounding concepts and technologies may be found at “RDMA protocol verbs

specification” [23].

To use RDMA, nodes must be equipped with special Network Interface Cards (NICs)

called RDMA enabled NIC (RNIC). To facilitate communication, the application

registers memory buffers with involved RNICs. Data can then be transferred between

such buffers without additional copies [15, 30].

To transfer data, the application creates a so-called Work Request (WR) [23, p.126ff].

The WR is posted to a Work Queue on the RNIC. At this point, control returns to the

application and the transfer is handled entirely by the RNICs of sender and receiver,

allowing for the aforementioned overlap of computation and communication [15].

This kind of communication is called one-sided, since the application layer of only

one side, i.e. the sender, is involved in the exchange [15].

In addition, RDMA has very low network-latency. Mellanox IB adapters, for instance,

can achieve latencies under 1 µs [25]. This makes RDMA a very suitable technology

for latency sensitive messages.

While the advantages described above can be a great benefit for distributed programs,

RDMA communication can be quite complex. Programmers are presented with a

variety of options, that may lead to degraded performance, if used incorrectly [15,

30]. In addition, the one-sided nature of communication means that the remote

side is not notified once a data exchange completes. Instead, the application must

implement a suitable synchronization mechanism [15].

2.4 GPI-2

GPI-2 is an implementation of the PGAS standard Global Address Space Program-

ming Interface (GASPI) [12, 20]. For the sake of readability, GPI-2 will be referred

to as GPI for the rest of this thesis. GPI is a fully thread-safe library available for

2 Background 8

(a) A data exchange using place id, segment
id and offset. See Section 2.4.1.

(b) A complete message exchange using
weak synchronization. See Section 2.4.3.

Figure 2.2: An exemplary data exchange using gaspi_write.
Adapted from [46].

C/C++ and Fortran and was developed at the Fraunhofer Institute for Industrial

Mathematics (ITWM). It is open source and available on GitHub [17].

The main focus of the library lies on efficient one-sided communication using RDMA.

This way, GPI can provide true asynchronous and one-sided data exchanges as

described in Section 2.3. It aims to replace the synchronous two-sided approach

implemented by message passing, as implemented by the Message Passing Interface

(MPI) [20]. Like MPI, GPI supports both SPMD and Multiple Program Multiple

Data (MPMD) style executions [12, p.18].

The following subsections give a brief but detailed overview over the most important

concepts of the library.

2.4.1 Segments

GPI implements the PGAS model by allowing programmers to register partitions of

memory called segments. Every segment is assigned a unique id, that can be used to

identify it.

2 Background 9

The memory of a segment is pinned as a requirement for the RDMA and does not

follow any specific memory model. Instead, the programmer registering the segment

decides the purpose, size and (if desired) physical location of the underlying memory.

Accordingly, a segment is a contiguous block of memory with a specified address and

size [20].

Access to the segments may be made by direct memory manipulation locally, or via

the communication routines provided by GPI remotely. As depicted in Figure 2.2(a),

the latter uses a triple of the place id, segment id and an offset as well as the size of

the data to be read/written, to identify the local and remote memory locations [12,

p.57].

2.4.2 One-sided communication

Most communication routines of GPI utilize the segments described in Section 2.4.1.

The most common variant of communication provided by GPI are one-sided reads

and writes. Those are provided in their most basic form via gaspi_read and

gaspi_write, which can be used to directly read from or write to a remote segment.

In case of a read, the results are written directly to a local segment [12, p.57ff].

The requests are asynchronous and non-blocking, meaning the call may return

before the communication actually finished. This way, the process may continue

computations, while the underlying infrastructure handles the communication [12,

p.57] as seen in Figure 2.2(b). The weak synchronization via notifications also

depicted here is described in Subsection 2.4.3.

GASPI also provides the gaspi_read_list and gaspi_write_list routines, which

are semantically equivalent to multiple calls to the respective singular counterparts,

but may be more efficient, depending on the implementation [12, p.79, p.85].

Internally, GPI inserts such requests into a message queue specified by the program-

mer. Multiple such queues may be created and can be differentiated by their ID.

They may be used by the programmer to distinguish messages by their purpose to

implement separation of concerns. All entries in such a queue are synchronized with

2 Background 10

each other, but multiple queues are independent of each other. While this guarantees

that messages in a queue are posted to the network in order, there is no general

guarantee, that the messages also are processed by the network or arrive at the target

in order [12, p.11, p.57f]. An exception are notifications, which will be described in

Section 2.4.3.

GASPI guarantees fairness between queues, meaning no queue will be delayed

infinitely. However, queues are limited in size [46]. Once a queue is full, the process

must wait for it to be emptied again. To that end, GPI introduces the gaspi_wait

routine, which blocks, until a given message queue has been processed. Once this

routine returns, all requests in the queue have been processed by the network.

Importantly, this does not mean that the communication has finished. It rather

means, that the request has been put on the network and may not have been received

by the recipient yet [12, p.65].

Accordingly, one-sided communication is purely sender-initiated and managed by

the local place. While this means, that the communication does not disturb the

computation of the recipient, it also means, that the receiver (as well as the sender)

have no knowledge of the state of the communication. For instance, the receiver has

no knowledge, if relevant data has been received yet [20].

2.4.3 Weak synchronization

To resolve the issue addressed in Section 2.4.2, i.e. that the receiver has no knowledge

of incoming communications, GPI introduces weak synchronization primitives in

the form of notifications. The notification procedure is also a form of one-sided

communication and as such managed only by the local place. Different to read and

write operations however, a notification is guaranteed to be non-overtaking, i.e. the

notification is guaranteed to complete only after all previous writes were completed.

However, to guarantee this ordering, a notification has to be sent via the same queue

the corresponding one-sided communication requests have been posted to [12, p.69].

2 Background 11

Notifications in GPI are bound to specific segments and are consequently identified

by the triple of place id, segment id and notification id1. In GPI, each segment

provides up to 65536 (16 Bit) notification ids. A notification itself is a 64 Bit unsigned

integer.

The value 0, however, is reserved and may not be used as a notification value [12, p.70].

Instead, it signifies that no notification has been received for the given notification

id. A process may send an isolated notification via the gaspi_notify procedure or

as part of an extended communication call in form of the gaspi_write_notify or

gaspi_write_list_notify procedures [12, p.78f].

The receiver of a notification may wait for any number of consecutive notification

IDs via the gaspi_notify_waitsome routine [12, p.71]. The routine waits, until

at least one of the specified notifications have been received and provides the first

such ID encountered. Multiple threads may wait for the same notification. To

prevent multiple threads from erroneously processing the same notification ID, the

value of the notification is retrieved via the gaspi_notify_reset routine. The

routine atomically resets the notification to 0 and returns the notifications value.

Consequently, only one thread retrieves the correct value, while later threads retrieve

the value 0, thus knowing that the notification is already being processed [12, p.73f].

Figure 2.2(b) depicts an exemplary data exchange between two places. Node1 sends

data via gaspi_write. Node2, on the other hand, is expecting some data from Node1.

Since it has no way to detect if Node1 has already sent the required data, it instead

uses the routine gaspi_wait_some to wait for a pre-specified notification. Once the

notification has been received, the process can be sure that the data is written and

valid. It then sends a notification back to Node1 to notify it of the receipt.

In contrast to, e.g., MPI, Node1 does not need to wait for the communication to finish.

Instead, it sends the data and following notification and resumes the computation. It

later checks, if the acknowledgement has been sent by Node2. This way, the latency

of the communication can be hidden. While other technologies also allow for this

1Here, GPI differs from GASPI, which identifies notifications by the tuple of place id and
notification id [12, p. 70].

2 Background 12

overlap, RDMA has the distinct advantage of circumventing the receiver’s CPU

entirely in this process.

2.4.4 Collective communication

In addition to the one-sided communication procedures described in Section 2.4.2,

GPI also supports collective communication. Collective procedures involve a subset

of all places called group. All places are part of GASPI_GROUP_ALL, but additional

groups may be added by the programmer [12, p.11].

GPI provides a global barrier in form of gaspi_barrier and a group-wide reduction

via gaspi_allreduce. The latter provides implementations for the minimum, maxi-

mum and sum, but user provided reductions are possible via gaspi_allreduce_user [12,

p.102ff].

In contrast to one-sided communication, the memory buffers used by the collective

reduction procedures are not required to be part of the global address space. Instead,

they are copied to internal buffers [12, p.107].

Consequently, only one collective operation of the same kind may be active per

group, i.e. a group may invoke a barrier and a reduce procedure, but not two

reductions at the same time [12, p.102]. Notably, collective operations are not

assigned to a communication queue and thus synchronized independently of other

communications [12, p.14].

2.4.5 Atomic operations

GPI further provides two atomic operations. Those are guaranteed to be fair,

meaning no atomic operation will be delayed infinitely. They are also guaranteed to

be executed free of interference by other processes, thus preventing data corruption

by concurrent access [12, p.96]. Both atomic operations are restricted to operate on

gaspi_atomic_value_t2.

2GPI defines this as unsigned long. The prevalent RDMA fabric InfiniBand, for instance,
guarantees this to be a 64bit unsigned integer [3, p.263].

2 Background 13

gaspi_atomic_fetch_add allows programmers to atomically add a value to an

existing value, identified as usual by the triple of place id, segment id and offset.

After completion, the procedure also returns the previous value [12, p.96].

gaspi_atomic_compare_swap, on the other hand, atomically compares an existing

value with a programmer specified value called comparator. If the values are equal, a

new programmer specified value is written to the location. Otherwise, no further

action is taken. Like gaspi_atomic_fetch_add, the procedure returns the value

before the procedure was executed [12, p.98].

The atomic operations allow data-driven synchronization between processes. The

compare-and-swap operation, for example, is an intuitive fit for the implementation

of a global lock [12, p.100].

2.4.6 Fault tolerance

To allow for fault-tolerant code, GPI utilizes timeouts for all of its potentially blocking

operations. This way, no procedure may block forever in case of an error [12, p.13].

Timeouts are specified in milliseconds, but two special values are available.

Calls using GASPI_BLOCK block until the execution has completed with a success

or error. Since not all errors are detectable by all operations, procedures called

with GASPI_BLOCK may block indefinitely. The other special constant is provided

with GASPI_TEST, which blocks for the shortest possible amount of time before

returning [12, p.13].

All GASPI procedures consequently return one of the following values [12, p.14]:

GASPI_SUCCESS The procedure completed successfully.

GASPI_TIMEOUT The procedure could not be completed in the given timeframe.

GASPI_ERROR The procedure completed with an error.

GASPI_QUEUE_FULL The communication request could not be posted due to a

full communication queue and must be submitted again.

2 Background 14

In addition GPI provides the concept of a health vector. The health vector is a

collection of states for all processes. Each process may be either healthy or corrupt.

Each process maintains its own health vector, which is updated when a local remote

operation detects an error or consequent recovery [12, p.33f]. Since the state vector is a

purely local concept, other processes may not recognize an error until communication

is attempted with a failed process.

2.5 Global Load Balancing

Global Load Balancing is a technique for dynamic load balancing using a lifeline-based

cooperative work stealing approach [44]. It is able to handle both static and irregular

workloads efficiently while also hiding the intricacies of distributed programming

from the programmers [54].

This section first characterizes the task model supported by GLB in Subsection 2.5.1.

Following that, the lifeline graph underlying the algorithm is detailed in Subsec-

tion 2.5.2. The chapter continues with a description of the GLB technique in

Subsection 2.5.3 and concludes with an exploration of a recent multi-worker variant

in Subsection 2.5.4.

2.5.1 Dynamic Independent Tasks

A task is a discrete transferable unit of work that can be executed in parallel to

other tasks. In general, this work may depend on the results of other tasks or some

external state. However, the GLB technique imposes some restrictions on tasks in

the system [54]:

• A task may access an immutable reference state common to all tasks.

• A task may be processed by any compute unit.

• Tasks are side effect free.

• A task may generate zero or more child tasks.

2 Background 15

• Tasks generate a result of a specific, unchanging type.

• Tasks are deterministic, as they only depend on immutable state.

• The results of tasks can be reduced by a user-specified commutative and

associative reduction operator.3

Tasks adhering to those restrictions are called Dynamic Independent Task (DIT) in

accordance with other literature [36, 42].

While they may be more restricted than arbitrary tasks, they are simpler to schedule,

since no dependency graph or similar is needed. This way, the load balancing

algorithm can be kept simpler while taking burden off the programmers that would

otherwise need to keep possible side effects and dependencies in mind.

Variants supporting other task models like the nested fork-join model exist, but are

not further explored in this thesis [42].

2.5.2 Lifeline Graphs

In their paper “Lifeline-based Global Load Balancing” Saraswat et al. introduce the

concept of a lifeline graph [44].

A lifeline graph is a directed and connected graph with N nodes representing the

workers in the system. The graph has a low diameter and the out-degree of each

vertex is bounded by a parameter z defined by the user. In such a graph the edge

between two vertices is called lifeline, making the connected vertices lifelines buddies.

The low diameter of the lifeline graph ensures, that work can be disseminated quickly

in the system, even if little work was initially available. Likewise, the low degree

of each vertex bounds the outgoing lifeline steals (described in section 2.5.3) of the

respective worker. Finally, the properties of the lifeline graph ensure, that an idle

worker can always receive new work, as long as work is left in the system.

A class of graphs satisfying those restrictions are cyclical hypercubes. Such a graph

can be constructed by enumerating the nodes in the system with z-digit integers of

3This restriction allows tasks to be processed independently in any order.

2 Background 16

base h with arbitrary h and z, such that hz−1 < N ≤ hz. A lifeline exists between two

nodes if the manhattan distance of their indices (in modulo h arithmetic) equals 1.

2.5.3 The GLB algorithm

This section describes the initial X10 implementation of the GLB approach proposed

by Zhang et al. [54].

The library requires the user to provide two sequential pieces of code: A TaskQueue

implementing the actual computation and a reduction operation, as well as a TaskBag

implementing a container for pending tasks. On each place exactly one worker activity

may exist with its own Queue and Bag.

At the beginning of the computation, work is distributed among the workers. If only

one task is available or no direct mapping to the places in the system is possible, a

dynamic start is performed, meaning that the initial tasks are given to the worker

at place 0. Otherwise, the tasks are distributed statically among all workers in the

system. The decision regarding the initial distribution of tasks is made by the user.

Following initialization, each worker processes n tasks until it runs out of work. Once

a worker runs out of tasks to process, it starts stealing. In contrast to traditional

work stealing approaches, where idle workers continuously attempt to steal from

random victims, stealing in GLB happens in two stages.

In the first stage the worker attempts to steal from up to w random victims. If

no work could be obtained that way, the worker attempts to steal from its lifeline

buddies in the second round of stealing. In contrast to random steals, a victim of a

lifeline steal stores failed steal attempts. Once such a victim obtains new work, it

will also send tasks to lifeline buddies stored in that way. In both cases, thieves wait

for the result of the steal request before proceeding.

Between each round of processing, workers respond to pending steal requests by

splitting off work from their Bag and sending the resulting loot to the thief until

either no tasks, or no more steal requests are left. If unsatisfiable steal requests

remain, thieves are notified of the fact with a failure message.

2 Background 17

If no work could be obtained in either stealing stage, the worker’s activity ends and

can only be reactivated by receiving work from a lifleline buddy. Once all worker

activities on all places have ceased, the algorithm terminates and reduces the result

on place 0. GLB detects termination by utilizing the finish construct described in

Section 2.2.

The initial proposal operates under the assumption, that at most one activity can

run per place, thereby restricting the presence of multiple workers at a single place.

While this approach greatly simplifies synchronization requirements, it also limits

the potential for leveraging locality to enhance the algorithms performance and

scalability.

2.5.4 Multi-Worker GLB

As described in Section 2.5.3, the original GLB implementation is limited to one

worker per place. Multi-Worker GLB extends GLB by removing this restriction.

Different variants of multi-worker GLB exist. One of them is described below and

serves as the reference implementation for this thesis [42]. For the sake of brevity,

this section concentrates on the general workflow instead of the intricacies of the

implementation.

Reitz et al. propose a straightforward extension of GLB by removing the worker

limitation. Their approach initially made no adjustments to the logic of the workers.

Instead, workers are spawned as threads rather than processes. In addition, the

lifeline graph is extended to include each worker as a node, rather than the places.

Each worker is then treated as a separate potential victim for random and lifeline

steals [42].

Since local workers (i.e. workers residing on the same place) are aware of the other

workers at their place, they may directly communicate with each other. This way,

the workers can exploit locality by forgoing network communication and preventing

unnecessary work like serialization.

2 Background 18

The approach further introduces the concept of a coordinator. The coordinator serves

to simplify the implementation by handling the communication between workers.

For remote workers, the exchange is serialized and put on the network, while local

communication is able to forgo the network entirely [42].

To further exploit locality, the approach proposes two optimizations. First, idle

workers initially steal from the most busy local worker, if possible. Second, the

coordinator redirects incoming steal requests to the most busy local worker [42].

Another multi-worker variant called hybrid multi-worker GLB combining work steal-

ing and work sharing (briefly noted in Chapter 6) exists [53]. Reitz et al. did a

comprehensive comparison between their and the hybrid variant and found their own

variant to be up to 25.2 % more performant [42].

3 Concepts of TasGPI 19

3 Concepts of TasGPI

As mentioned in Chapter 1, this thesis proposes a new GLB variant exclusively

using RDMA and one-sided communication instead of active messages. The concept

was then implemented as the prototypical Tasks for GPI (TasGPI) framework.

TasGPI utilizes the PGAS library GPI, that provides an interface for one-sided

communication, primarily focused on efficient RDMA. The GLB variant proposed

by Reitz et al. (compare Subsection 2.5.4) served as a reference implementation.

In general, TasGPI relies exclusively on RDMA and one-sided communication for com-

munication. In contrast, existing implementations use message handlers and active

messages provided by the APGAS model to communicate. While also asynchronous,

active messages still require the target’s CPU to execute the messages.

As described in Section 2.3, RDMA not only has very low latency and zero-copy data

transfers, it also circumvents the targets CPU. Thus, RDMA can result in lower

latencies and less overhead for communications [7] and consequently shorter times of

inactivity for idle workers.

Most communication of the GLB technique occurs at the exchange of steal requests.

In TasGPI, each worker maintains a queue of incoming steal requests that may

be accessed by all workers concurrently. The implementation exploits one-sided

RDMA operations to minimize the network cost and provide fast exchanges of such

requests. The queues are implicitly synchronized by using atomic operations on

the hardware level, further exploiting the RDMA hardware and one-sided nature of

communication.

However, the queue must be carefully designed, since RDMA is a complex technology

that presents the programmer with many performance critical decisions [15, 30].

TasGPI’s design exploits lower-level design decisions already made by the GPI library.

3 Concepts of TasGPI 20

Notably, GPI aggressively inlines1 messages if possible, and polls for local completion

of Work Requests (WRs) (compare Section 2.3). Both aspects are critical to improve

latency on RDMA hardware [5, 30].

Since inlining is only possible for small messages, TasGPI keeps latency-sensitive

control messages (e.g. rejection of steal attempts) as small as possible. The transfer of

tasks, on the other hand, is bundled into big messages. This way, TasGPI can profit

from the low latency for control messages, while still exploiting the high bandwidth

provided by RDMA for big data packages.

Furthermore, to utilize the RDMA hardware to capacity, the RNIC must be kept

busy [5, 30]. To facilitate this, TasGPI does not utilize the coordinator concept

introduced by Reitz et al. (compare Subsection 2.5.4). Instead, every worker may

directly communicate with any other worker in the system.

In addition, RDMA reads are more expensive than RDMA writes, as the former

requires a full round-trip. As such, TasGPI uses RDMA writes in favour of reads, if

possible.

Where further synchronization between workers is required, e.g. the rejection of a

steal request, TasGPI utilizes the notification concept provided by GPI (compare

Subsection 2.4.3). Considering the factors described above, a notification is a single

64 Bit RDMA write and as such can be inlined.

Other than described above, TasGPI attempts to stay as faithful to the reference

implementation as possible (compare Subsection 2.5.4). However, the change from

APGAS to PGAS and the choice of C++ necessitate further changes to the technique

which will be described in the following.

Most notably, the PGAS model does not inherently provide the means to detect

distributed termination. While existing variants rely on the finish construct pro-

vided by APGAS as mentioned in Subsection 2.5.3, TasGPI requires an explicit

implementation of termination detection. To that end, TasGPI introduces the

TerminationStrategy, which is required to implement the desired behaviour. Sim-

1Small messages are stored directly in the RNIC instead of the host memory, resulting in lower
latency [30].

3 Concepts of TasGPI 21

ilar to the finish construct of X10, TasGPI uses a counter-based termination

scheme [48].

In shared memory settings, the TerminationStrategy simply counts the number of

idle workers, signaling termination, once all workers are idle. For distributed memory

settings on the other hand, the TerminationStrategy instead counts idle places,

consequently signaling termination once all places are idle. To keep communication

low at this point, TasGPI differentiates between local (per place) and global termi-

nation, i.e. a place only communicates with other places, if all local workers are

currently idle.

Furthermore, C++ does not provide a standardized approach to data serialization.

Instead, the user’s TaskQueue assumes the responsibility of implementing procedures

to serialize data into and deserialize data from a given byte buffer. To prevent

redundant copies of the tasks, TasGPI ensures that the serialized data is directly

written into a GPI segment. Since this approach eliminates the need for direct

access to the tasks, the framework doesn’t require the user to define a TaskBag.

Consequently, users may store their tasks according to their preferences, e.g. by

directly storing them in the TaskQueue.

Last but not least, TasGPI introduces more flexibility and possibilities for system-spe-

cific optimizations. To that effect, TasGPI extracts termination detection, steal

behavior and the creation of the lifeline graph into separate strategies (compare

Figure 4.2), i.e. exchangeable implementations of the respective algorithms [19]. This

way, programmers can exchange sections of the algorithm tailored to their specific

needs, without changing the worker logic or other components of TasGPI.

4 Implementation of TasGPI 22

4 Implementation of TasGPI

This chapter describes the actual implementation of TasGPI following the concepts

discussed in Chapter 3. First, the usage of TasGPI is described in Section 4.1.

Following, Section 4.2 gives a brief overview of TasGPI’s most important classes.

Section 4.3 then describes the logic of a TasGPI worker in more detail.

Subsequently, Sections 4.4 and 4.5 describe the steal behaviour implemented by

TasGPI for distributed and shared memory models respectively. Section 4.6 then

briefly describes TasGPI’s termination detection algorithms. The chapter closes with

a detailed description of the RDMA-based queue datastructure used by TasGPI to

facilitate steals in Section 4.7.

4.1 Using TasGPI

TasGPI is a prototypical header-only framework for GLB written in C++ 20. The

accompanying source code contains a detailed description of TasGPI’s configuration

options and compilation instructions in the sub-folder documentation. To configure

and compile the project, the well-known build system CMake is used.

Building TasGPI requires the following software:

• libibverbs (v1.1.6 or higher), given TasGPI is configured for InfiniBand

• autoconf (v2.63 or higher), libtool (v2.2 or higher) and automake (v.1.11 or

higher)

• GNU Awk and SED utilities

• GNU compiler collection or a compatible compiler1

1While not documented, GPI relies on some compiler intrinsics like __sync_fetch_and_add
which necessitates this restriction.

4 Implementation of TasGPI 23

In the scope of this thesis, TasGPI was built with GCC 11 or newer. Older versions

supporting C++ 20 or higher should work, but were not tested as of yet. The

requirements stated above are directly adopted from the GPI library [17], which is

described in Section 2.4.

TasGPI relies on GPI for synchronization and one-sided communication. Should

the user require no support for distributed memory, TasGPI can be configured to

exclude GPI and network communication entirely. In this case, the dependency on

GPI is also removed.

Given TasGPI is build with support for distributed memory, version 1.5.1 (at time

of writing, the most recent version) of the GPI library is automatically added to

the project. The library is then build, and linked to TasGPI without the need for

interaction by the user. In this context, the user is able to configure the utilized

network fabric, i.e. ethernet or InfiniBand (default), and the desired job-launcher, i.e.

SSH or Slurm (default).

To use TasGPI in applications, it is recommended to add the code into its own

sub-folder in the apps directory, and adding an entry into the corresponding CMake-

Lists.txt. This way, the application has full access to the CMake project and its

configuration. TasGPI can also be externally added to existing CMake projects in

the usual manner.

The application itself must implement a TaskQueue as described in task_queue.md

of the documentation, and provide the strategies to be used. Currently, TasGPI

provides strategies for both distributed and shared memory systems. The technique

is then launched by simply instancing the Runtime and calling its run method as

shown in Listing 4.1.

The run method expects a single boolean argument. Given a truthy value, TasGPI

performs a dynamic start, i.e. all initial tasks are given to the worker with ID 0. In

addition, all other workers start out in the idle state with their lifelines activated.

Otherwise, the work is distributed evenly between workers and all workers are active

at the start of the computation.

4 Implementation of TasGPI 24

1 ta sgp i : : Runtime<
2 ExamplePiQueue ,
3 MultiWorkerHypercubeStrategy ,
4 FIFOStealStrategy ,
5 Loca lTerminat ionDetect ionStrategy
6 > runtime {} ;
7 runtime . i n i t i a l i z e () ;
8
9 const auto [i n s i d e , thrown] = runtime . run (t rue) ;

Listing 4.1: An exerpt of the MonteCarlo example provided with the accompanying
code.

Finally, the compiled application can be run. In shared memory mode, i.e. con-

figuration without GPI, the compiled programs can be directly executed on the

host machine. Otherwise, the gaspi_run utility [43] must be used, similar to MPI’s

mpi_run, to ensure proper initialization of GPI.

Example scripts to build TasGPI and run experiments are provided in the scripts

directory in the accompanying code. Their usage and requirements are detailed in

the corresponding readme.md.

4.2 Overview

Broadly speaking, TasGPI consists of three core components: The Runtime, Worker,

and the user-provided TaskQueue classes. As described in Chapter 3, these compo-

nents utilize the TerminationStrategy, LifelineStrategy, and StealStrategy to

facilitate user defined algorithms without the need for modification of the framework

itself. The following gives a high-level overview over the responsibilities and key

differences to the original GLB of those components as depicted by Figure 4.1.

Runtime

The central component of TasGPI is the Runtime. It is the only class the user is

required to instantiate manually and serves as an entry point to the GLB technique.

As seen in Figure 4.1, the Runtime expects the types of the user-defined TaskQueue,

4 Implementation of TasGPI 25

Figure 4.1: Simplified class diagram of TasGPI.

4 Implementation of TasGPI 26

as well as the three strategies, as template parameters. The resulting Runtime type

is then passed to the other components as their respective template parameters.

This way, all components can access the required types via the Runtime. This

procedure also allows for additional compile time optimizations, for instance, the

removal of pointer indirections or the need for virtual tables, that would not be

possible by using traditional polymorphism over templates.

The main functions of the Runtime are the initialization, coordination, and final

teardown of the other core components. In the initialization phase of the technique,

the Runtime first configures and initializes GPI. At this point, the Runtime also

is assigned its place_id and receives the number of total places from GPI, similar

to MPI’s MPI_Comm_size and MPI_Comm_rank. It then utilizes a barrier to ensure

that the communication between all places is established and all places are in a

valid state before continuing. Once all places entered the barrier, the Runtime

calls the static initialize_distributed methods of the TerminationStrategy

and StealStrategy, which are discussed later in this section. Given TasGPI is

configured for shared memory only, the initialization of GPI is skipped and the place

ID is always set to 0, while the number of places is set to 1.

The Runtime then continues by creating p Worker objects and storing them in a

std::vector for later use. Each worker is identified by a unique ID calculated by

place_id ∗ p + local_id, where local_id is the workers index in the local vector of

workers.

After the initialization phase, the user can start the GLB technique by calling the

run method as described in Section 4.1. At this point, the Runtime spawns one

thread per worker, which runs the run method of each worker. The Runtime then

suspends the main thread until all worker threads terminated, signaling the end of

the computation.

Once the computation has finished, each Runtime collects the results of all local

workers and reduces them via the TaskQueue’s fold method. The actual result

of the computation is then collected via gaspi_allreduce_user as described in

4 Implementation of TasGPI 27

Subsection 2.4.4, again using the fold method to reduce the partial results. Before

returning the final result, GPI is terminated, finalizing the communication between

places and freeing all resources, similar to MPI_Finalize.

Last but not least, Runtime facilitates the direct communication between local

components by providing a central interface to query their respective objects. For

instance, a Worker attempting to steal from another local Worker may directly access

the Worker object via the Runtime, forgoing any network communication.

TaskQueue

Every computation using GLB requires an implementation of a TaskQueue provided

by the user. The class simultaneously serves as the task pool for the computation as

well as describing the actual processing of tasks in a sequential manner. As described

in Chapter 3, TasGPI attempts to stay as faithful to the reference variant as possible.

However, a notable change to the TaskQueue is the addition of the serialize and

deserialize methods. Those methods are necessary to transfer tasks over the net-

work, since C++ does not support out-of-the-box serialization of non-trivially-copyable

data. Whenever the StealStrategy attempts to transfer data via the network, it

first splits a portion of the current TaskQueue by calling its split method. The

resulting temporary TaskQueue instance contains the split tasks. Usually, half of the

current tasks are taken in this process, but TasGPI allows arbitrary proportions.

Since it is usually unsafe to convert arbitrary task representations into bytes, the tasks

are instead serialized into a byte buffer. To that end, the serialize method is called

with a pointer to a memory buffer. This memory buffer usually resides directly inside

of a GPI segment to prevent additional copies of the data, but StealStrategies

are free to use intermediary buffers as needed.

To prevent buffer overflows, the method is also provided with the size of the memory

buffer. The implementation is responsible for ensuring that all written tasks fit into

the provided buffer. Once the data is serialized, the method returns the number

of written bytes. The bytes are then transferred via the network and deserialized

4 Implementation of TasGPI 28

from the received bytes into a temporary TaskQueue that can be merged into the

thief’s TaskQueue. While this approach offloads the responsibility for correct and

efficient serialization on to the user, it also provides the most flexibility and imposes

no further restrictions on the implementation of the TaskQueue.

In addition, each TaskQueue is required to define a public type alias named ResultType.

This type is then automatically used by all components of the GLB framework as

the type for the intermediate and final results. For instance, the run method of the

Runtime class automatically returns an object of type ResultType.

Since results are reduced at the end of computation, the type is currently required

to be trivially copyable. Other than that, the user is free to use arbitrary data. The

ExamplePiQueue for instance, returns a struct containing the number of simulated

points and the number of points contained in the semicircle as exemplified in

Listing 4.2.

1 s t r u c t ExamplePiQueue
2 {
3 s t r u c t S imulat ionResu l t {
4 std : : s i z e_t i n s i d e {0} ;
5 std : : s i z e_t thrown {0} ;
6 } ;
7 us ing ResultType = Simulat ionResu l t ;
8
9 [. . .]

10 }

Listing 4.2: Complex ResultType and type alias defined by the ExamplePiQueue.

Analogous to the original GLB, multiple instances of the ResultType must be

mergeable. This functionality is provided by the fold method of the TaskQueue.

Consequently, the method must be commutative and associative to guarantee deter-

ministic results, as described in Section 2.5.

LifelineStrategy

The LifelineStrategy is responsible for the computation of lifelines and reverse-life-

lines, as described in Subsection 2.5.2. To that end, each strategy has to implement

4 Implementation of TasGPI 29

two methods: lifeline and reverse_lifeline. Both methods accept the ID of

the worker, the number of places and the number of workers per place as arguments

and return a list of worker IDs in form of a std::vector.

The strategy is encouraged to use the user-provided configuration for the lifeline-

graph (most notable GLB’s z parameter), but TasGPI does not enforce this. For

instance, the provided implementation MultiWorkerHypercubeStrategy, ignores

the parameter. It instead calculates the minimum amount of lifeline buddies to span

a valid lifeline graph and uses this value.

It is worth noting, that TasGPI does not check the validity of the generated lifeline

graph. Instead, the user is responsible to ensure correctness of the used implementa-

tion.

Since TasGPI currently supports no malleability or otherwise mutable set of com-

pute nodes, the LifelineStrategy currently is designed to work without network

communication. This way, the lifeline strategies can be kept simple and easy to

implement.

StealStrategy

The StealStrategy is an integral part of the TasGPI framework. As discussed in

Chapter 3, the StealStrategy implements the actual behaviour behind the exchange

of steal requests and the exchange of tasks.

As seen in Figure 4.1, the strategy is required to implement methods corresponding

to specific points of the GLB technique. For instance, attempt_random_steals is re-

quired to attempt up to w random steals, while process_pending_steal_requests

must implement the exchange of tasks or rejection of pending steal requests.

In addition, the strategy must implement initialize_lifelines_dynamic. The

method is only called, if the technique is run with a dynamic start, as discussed

earlier. If called, the strategy should initialize all incoming lifelines as if they were

previously rejected. An important exception is the worker with ID 0, since this

worker initially receives all the work. This way, the initial wave of (probably failing)

4 Implementation of TasGPI 30

steal requests can be prevented, saving CPU time and lowering network congestion.

In contrast, the original GLB technique facilitates a similar behaviour by initially

only spawning a single worker activity on place 0.

Given the strategy supports distributed memory, it is also required to implement

the static initialize_distributed method. The method is called after GPI is

initialized and is supposed to create any needed components (e.g. segments or

communication queues, as described in Section 2.4) or negotiate needed information

with remote places. Developers are free to use the whole spectrum of the GPI

library. In this context it may be noted that TasGPI strongly encourages the use of

GPI, but developers are free to initialize a different communication library and use

this one instead, as long as it does not interfere with GPI. As described earlier, a

barrier ensures, that all strategies are initialized on all places prior to finalizing the

initialization phase.

TasGPI provides two implementations of the StealStrategy. For distributed mem-

ory, TasGPI implements the PGASFifoStealStrategy, which utilizes RDMA and

one-sided communication provided by GPI. Its implementation is discussed in

Section 4.4.

The FIFOStealStrategy, on the other hand, targets shared memory machines and

can only be used in shared memory configurations. It facilitates the GLB technique

by direct communication between the local StealStrategies and is briefly described

in Section 4.5.

TerminationStrategy

TasGPI can not rely on the finish construct of APGAS, as decsribed in Chapter 3.

Instead, the user is required to specify the desired termination behaviour in the form

of a TerminationStrategy.

In contrast to the other strategies, only one TerminationStrategy is instantiated

and maintained per place and shared between all local workers. As such, develop-

ers must ensure proper synchronization of the implementation via mutual exclu-

4 Implementation of TasGPI 31

sion or other appropriate synchronization primitives. Like the StealStrategy, the

TerminationStrategy is initialized at startup via its static initialize_distributed

method. Both methods share the same purpose and restrictions described above.

The termination strategy has a simple functional interface consisting of only two

methods, as seen in Figure 4.1. The first, update_state, is called by the Worker

class whenever the state of the worker changes or the add_work method is called. A

reference to the responsible worker is passed to the method via reference.

When called, the TerminationStrategy is responsible to collect any necessary data

and update its internal state. The other method, has_terminated, is periodically

called by idle workers to detect global termination (compare Section 4.3). The

method must only return true, once no work remains in the system.

Otherwise, the user has total freedom on how the strategy implements the detection.

For instance, a simple (yet poorly scaleable) termination detection scheme could

utilize a shared global counter of the number of tasks in the system. Once the number

reaches 0, termination is achieved. More complex schemes could involve voting trees,

token passing and similar mechanisms [31, 32].

While developers are not restricted in their use of network communication in either

method, TasGPI encourages to avoid its use in the has_terminated method. Instead,

network operations should only be performed if the system state actually changed,

making update_state the better choice.

TasGPI provides two implementations of the TerminationStrategy. For distributed

termination detection, the CounterTerminationStrategy facilitates termination

detection by counting idle places. The LocalTerminationDetectionStrategy, on

the other hand, implements a scheme for shared memory systems and utilizes a similar

approach by counting idle workers. Both implementations are briefly discussed in

Section 4.6.

4 Implementation of TasGPI 32

Worker

The Worker class implements the scaffolding of the GLB algorithm. It implements

the workflow of GLB, as described in Section 4.3, but relies on the Strategies to

implement the actual behaviour of steals and termination detection. Due to its

importance, this workflow is explained in detail in Section 4.3.

While APGAS based implementations of GLB realize workers as transient activities

(compare Section 2.2), TasGPI creates the desired number of workers at initialization

and maintains them until the computation finishes, as described above. As described

previously, each worker resides on its own thread until termination. At initialization,

each worker creates its own copies of the user-provided TaskQueue, StealStrategy

and LifelineStrategy.

First, each worker calculates its own lifelines (and respective reverse-lifelines) as de-

scribed in Subsection 2.5.2, using the LifelineStrategy. To prevent computational

overhead, the results are stored in std::vector for later retrieval.

Then, the TaskQueue is initialized by calling its initialize method. Given a

dynamic start is performed, i.e. all tasks are initially given to worker 0, each

worker also calls the previously discussed initialize_lifelines_dynamic method

on their StealStrategy. Finally, each worker updates its own state at the shared

TerminationStrategy. At this point, the worker is fully initialized.

During the computation, any worker may be in one of three states: PROCESSING,

STEALING, or IDLE. While processing, the worker repeatedly calls the process method

on its TaskQueue, while intermittently processing steal requests, analogous to the

original GLB technique. After each iteration of processing, the worker stores the

new number of tasks in its TaskQueue in an atomic variable that may be accessed by

other workers or Strategies. This value can then be used as a heuristic for further

optimizations, without requiring synchronization of the TaskQueue. For instance, a

feasible optimization using this heuristic may be implemented by first attempting

to steal from the most busy local worker before attempting to steal from random

workers as described in Subsection 2.5.4.

4 Implementation of TasGPI 33

Once a worker runs out of tasks, it enters the STEALING state. Here, the worker

attempts to acquire new work analogous to the original GLB technique described in

Section 2.5. Given new tasks were acquired that way, the worker starts processing

again.

Otherwise, the worker enters the IDLE state. In this state, the worker waits for work

from its lifelines or termination of the overall computation. To reduce CPU overhead,

workers utilize condition variables to passively wait for the arrival of work. Since

this work may never arrive, the worker periodically wakes up to reject any pending

steal requests and check if global termination occurred. Should the StealStrategy

implement the poll_lifelines method, it is also called to process received lifelines.

The presence of the method is again detected at compile time via the new concepts

feature of C++.

Other than the scaffolding of the GLB technique, the Worker provides synchronized

access to its own TaskQueue, state and variables. For instance, the merge method

may be called by the StealStrategy to enqueue stolen tasks without fear of cor-

ruption due to concurrent access. This way, the Strategies and other workers

can access any required state without the need for explicit synchronization. Since

TasGPI has no knowledge about the kind of access (i.e. read or write access), the

implementation utilizes mutual exclusion via std::unique_lock. For instance, the

worker’s split_queue method is implemented as shown in Listing 4.3.

1 QueueType sp l i t_queue () {
2 std : : unique_lock l ck (m_queue_mutex) ;
3 re turn m_queue . s p l i t () ;
4 }

Listing 4.3: Mutual exclusion via std::unique_lock, exemplified by split_queue()

4.3 Worker logic

As mentioned in Chapter 3, TasGPI tries to implement the original worker logic

described in Section 2.5 as faithfully as possible. Figure 4.2 depicts the main loop

4 Implementation of TasGPI 34

of a TasGPI worker in the form of a flow chart. In addition, a formulation of the

implemented logic in pseudocode can be found in the appendix as Listing A.1.

Similar to the original GLB implementation, the worker’s main loop can be roughly

separated into three phases corresponding to the worker’s current state: The work

phase (green), the steal phase (blue) and the termination phase (red). The work and

steal phases are largely unchanged. The only difference consists of the extraction

of the steal logic into a StealStrategy. The termination phase, on the other hand,

had to be adapted to work with the PGAS model.

In contrast to APGAS based implementations, the worker thread does not terminate

once it activates its lifelines. Due to the lack of the activity construct in PGAS,

the ability to restart a worker on a remote place would have to be explicitly imple-

mented by the runtime. Whilst not impossible, this would introduce a new layer of

communication and as such was deemed unappealing.

Instead, the worker remains active, but reduces idle CPU cycles. This is achieved

by passively waiting for the arrival of new work, in which case the worker wakes

up and resumes operation as depicted in the termination phase of Figure 4.2. In

addition, the worker intermittently wakes to check, if new work has been received

via a lifeline buddy. If the steal strategy is not able to directly enqueue work into

the workers Queue, it may implement a poll_lifelines method. Provided such

a method exists, it is automatically called by the worker to allow the strategy to

check for progress without necessitating a background thread or similar mechanism.

If on the other hand, the StealStrategy is able to directly enqueue work into the

worker’s Queue (e.g. in the case of a shared memory or coordinated implementation),

the worker simply checks, if work is already available.

Given work has been received, the worker starts processing again. Otherwise, the

worker checks if the TerminationStrategy detected quiescence. If the latter is

the case, the worker terminates, as no work is left in the system. Once all local

workers have terminated in this fashion, the places reduce their local results using

gather_allreduce and return the final result to the user.

4 Implementation of TasGPI 35

Figure 4.2: Flow diagram of the TasGPI workers main loop. The main loop may be
seperated into three phases: Work (green), Stealing (blue) and Termina-
tion (red). Calls to strategies are highlighted in purple.

4 Implementation of TasGPI 36

4.4 Steal behaviour in distributed memory

This section initially presents the general procedure implemented by TasGPI for

distributed memory systems, which is discussed in Subsection 4.4.1. This general

description is subsequently supplemented by further detailing the procedures required

by the StealStrategy as depicted by Figure 4.2. First, Subsection 4.4.2 describes

the process underlying random steals, followed by Subsection 4.4.3 elucidating the

processing of steal requests. Subsection 4.4.4 subsequently outlines the rejection

of unprocessed steal requests. The section concludes by describing the process of

lifeline management in Subsection 4.4.5, with Subsection 4.4.6 characterizing how

polling is used to process work received via stored lifelines.

4.4.1 General procedure

Since TasGPI utilizes purely one-sided communication, instead of spawning remote

activities, the steal procedure of TasGPI is slightly modified in comparison to

APGAS based implementations of GLB, as noted in Chapter 3. To facilitate the

GLB technique, TasGPI workers utilize different data structures residing on local or

PGAS memory as depicted in Figure 4.3.

Similar to the original GLB technique, TasGPI differentiates between random and

lifeline steals, as described in Section 2.5.3. Whenever a worker runs out of tasks, it

enters the steal phase (compare Figure 4.2, marked in blue).

Instead of spawning an activity on the victim’s place, the thief writes a steal request

directly into the victim’s memory. To that end, each worker maintains a globally

accessible queue on a PGAS memory partition. Due to the one-sided nature of

RDMA, thieves directly place their steal requests into this queue, without involving

the victim. As seen in Figure 4.3, this queue will be called inquiry queue. Due to its

importance, the implementation of this queue is described in detail in Section 4.7.

Each steal request contains the thief’s ID, as well as a marker distinguishing random

from lifeline steals. This way, only one such queue has to be maintained. Since the

inquiry queue can be accessed concurrently by multiple workers, the implementation

4 Implementation of TasGPI 37

Figure 4.3: Components involved in TasGPIs distributed stealing procedure (simpli-
fied).

must be properly synchronized in order to prevent data corruption or loss, as described

in Section 4.7.

As in the original GLB, busy workers periodically answer their incoming steal requests.

To that end, a victim pops requests from its inquiry queue and transfers a portion

of its tasks to the thief, until it has no more work left to share. To transfer tasks

between workers, each worker maintains a steal buffer. Each steal buffer is a region of

memory on a PGAS partition as depicted in Figure 4.3.

While a worker waits for a steal response (compare Section 2.5.3), it grants temporary

ownership of its steal buffer to the victim, i.e. the victim may write to the buffer

without fear of interference by other workers. Accordingly, no further synchronization

is needed to transfer the tasks to the thief, thus reducing network communication and

simplifying the process. A victim then shares work with a thief by simply serializing

a portion of its tasks and writing them directly into the thiefs’ steal buffer. Once

the remote write finished, the waiting thief is notified (compare Subsection 2.4.3) of

4 Implementation of TasGPI 38

the successful steal. By utilizing gaspi_write_notify, this process takes only one

network operation. The thief then reclaims ownership of its steal buffer, deserializes

the contained work from the steal buffer and adds it to its bag.

Once a worker processed all pending steal requests or runs out of work to share, it

rejects any remaining steal requests. To that end, it sends rejection messages to all

pending thieves. However, the victim also stores rejected lifeline steals, as described

in Section 2.5.3. For this purpose, each worker maintains a set of lifelines in stored

lifelines, as depicted in Figure 4.3. Since the owning worker manages the set of lifelines

exclusively, the data structure resides on local memory. As such, well-known data

structures of the shared memory domain may be used and no further synchronization

is needed.

Once a worker acquires more tasks, it also shares work with stored lifelines in

addition to queued steal requests, as described in Section 2.5.3. In contrast to

random and lifeline steals, where steals are processed sequentially, stored lifelines

require additional synchronization, since multiple workers may attempt to serve the

same stored lifeline concurrently. Each worker therefore also maintains a lifeline buffer

in addition to its steal buffer, as depicted in Figure 4.3. However, ownership of the

buffer is not transferred implicitly as described above, instead workers attempting to

serve work via a stored lifeline need to acquire ownership explicitly. To that end,

each lifeline buffer is secured via a lock.

Initially, this lock is acquired by the owning worker. Once the worker runs out of tasks

and attempts its lifeline steals, it also releases the lock, potentially granting access to

its lifeline buddies. Whenever a worker attempts to serve a stored lifeline, it initially

attempts to acquire the thief’s lock. Given the lock is acquired, the serialized tasks

are transferred via the thief’s lifeline buffer and subsequent notification, analogous to

random steals. If the lock could not be obtained, however, the worker may safely

assume that the lifeline has already been served, i.e. the worker was granted new

tasks already. In this case, the victim evicts the stored lifeline until a new lifeline

steal was rejected. Finally, an idle worker who is granted new tasks also reacquires

4 Implementation of TasGPI 39

its own lock, signalling its lifeline buddies that no further work is needed at this time.

This way, unnecessary transfers of tasks can be prevented.

4.4.2 Attempt random steals

Whenever a worker runs out of work, it initially attempts to steal from w random

victims as described in Section 2.5.3. The general workflow of this procedure is

depicted by Figure 4.4.

Figure 4.4: Flow chart of TasGPIs random steal procedure.

Initially, the worker generates a random victim ID. It then directly enqueues a

random steal request into the victim’s inquiry queue. As in the original approach,

the worker now waits for an answer in the form of work or a rejection message.

Given work was received, the tasks are deserialized from the steal buffer and added

to the worker’s queue before returning. If, on the other hand, a rejection message

was received, the worker attempts to steal from a new random victim. This process

is repeated until work has been received or the worker runs out of steal attempts.

4.4.3 Process pending steal requests

As seen in Figure 4.2, each worker intermittently processes steal requests received

from other workers as described in Subsection 4.4.2. The general behaviour of the

procedure is depicted in Figure 4.5.

Initially, the worker checks if it has enough tasks to share. Should this not be the

case, the routine returns without further processing. Otherwise, the worker processes

stored lifeline requests (compare Subsection 4.4.4) and pending steal requests. Since

4 Implementation of TasGPI 40

Figure 4.5: Flow chart of TasGPIs procession of pending steal requests.

stored lifelines already exhausted their random steal attempts, such requests are

given precedence over random steal requests in an attempt to keep as many workers

busy as possible.

To process a stored lifeline, the worker first attempts to lock the thief’s lifeline buffer

(compare Section 4.4.1). If the lock could not be acquired, the worker has already

received work or is currently in the process to do so. In this case, the lifeline request is

considered as completed and not further processed. On the one hand, this procedure

optimistically assumes that more tasks will be generated by the tasks that were

already received by the thief. On the other hand, network communication caused

by lifeline requests can be minimized that way, since work is only sent if the thief

actually has no tasks.

Alternatively, i.e. if the lock was acquired, the worker splits off a portion of its work

and transfers it to the thief via the locked lifeline buffer. In both cases, the worker

evicts the stored lifeline from its stored lifelines before returning to the beginning of

the procedure.

Provided the worker has no more stored lifelines, it instead handles pending steal

requests. While those steal requests may be either lifeline steals or random steals,

they are handled effectively in the same way. Analogous to the stored lifelines

4 Implementation of TasGPI 41

described above, the worker splits off a portion of its tasks and sends them to the

thief. However, instead of sending work to the lifeline buffer, pending steal requests

utilize the steal buffer, which does not require locking, since the thief grants exclusive

access to the victim, until it received an answer.

The procedure is repeated until the worker runs out of work to share, or neither

stored lifelines nor pending steal requests remain in the worker’s inquiry queue, in

which case the routine returns.

4.4.4 Reject pending steal requests

After processing its steal requests, a worker rejects any remaining inquiries as depicted

by Figure 4.6.

Figure 4.6: Flow chart of TasGPIs rejection of pending steal requests.

To that end, the worker loops over the pending steal requests, sending each thief a

rejection message as described in Section 2.5.3. As in the original GLB technique, the

worker stores rejected lifeline steals in its stored lifelines. Should the worker receive

tasks in the future, it then shares work with such lifeline thieves as described in

Subsection 4.4.3. Once all pending requests have been rejected, the routine returns.

4 Implementation of TasGPI 42

4.4.5 Activate lifelines

If an idle worker failed to steal from random victims as described in Subsection 4.4.2,

it instead activates its lifelines. To that end, the worker sends lifeline steal requests,

analogous to the process described in Section 2.5.3.

As depicted in Figure 4.7, the worker initially unlocks its lifeline buffer.

Figure 4.7: Flow chart of TasGPIs lifeline activation procedure.

By doing so, the worker ensures that it can receive work in its lifeline buffer. While

the lifeline buffer is only used for stored lifeline steals, since these need additional

synchronization as described in Subsection 4.4.1, it is necessary to unlock the lifeline

buffer previous to attempting the lifelines steals, to prevent early eviction of stored

lifelines. A possible scenario exemplifying this is depicted by Figure 4.8.

Figure 4.8: Precocious rejection of stored lifeline may occur, if buffer is not unlocked.

Here, the worker Thief has two lifeline buddies, namely Victim 1 and Victim2, and

failed to acquire work via random steals. Subsequently, it activates its lifelines by

4 Implementation of TasGPI 43

sequentially requesting work from its lifeline buddies. In this scenario, both Victim 1

and Victim 2 are initially out of work themselves, leading to both victims rejecting

the lifeline requests. The issue, marked via a red bolt, arises, once Victim 1 received

work from another worker and attempts to serve the stored lifeline to the thief.

Would Thief only unlock its lifeline buffer, once all lifeline steals are finished, Victim

1 would erroneously assume that Thief already received work since the lock could

not be acquired, as described in Subsection 4.4.3. Subsequently, Victim 1 would evict

the lifeline early, unnecessarily increasing the delay of Thief to acquire new work. In

the worst case, all lifelines of a worker could be evicted in that manner, effectively

cutting the worker off from new work.

By releasing the lock previous to the lifeline steals, the worker prevents this scenario

from happening. However, this also means that a thief may simultaneously receive

work from a stored lifeline, as well as from a lifeline steal. Accordingly, a worker who

received tasks via a lifeline steal must also check whether work was received via a

stored lifeline. Fortunately, this check is implicitly done when the thief reacquires its

lock, as described in Subsection 4.4.1.

If the lock could not be reacquired, it means the lock was acquired by another worker,

thus a served lifeline was processed. The thief accordingly needs to deserialize the

work from the lifeline buffer and add it to its TaskQueue, before proceeding.

Consequently, the worker sequentially attempts lifeline steals to its lifeline buddies

only after releasing the lock on its lifeline buffer. As in the original GLB approach,

lifeline steals are otherwise functionally equivalent to random steals, except that the

victim stores failed lifeline steals as described in Subsection 4.4.4.

Given the worker received new tasks via a lifeline steal, it reacquires the lock of

its own lifeline buffer, respecting the exception described above. Otherwise, the

lifeline buffer stays unlocked, signaling lifeline buddies that work is still required.

The procedure then returns once new tasks were acquired or all lifeline buddies

rejected the inquiry.

4 Implementation of TasGPI 44

4.4.6 Poll lifelines

Due to the one-sided communication utilized by TasGPI, an idle worker in the

termination phase (See Figure 4.2, marked in red) has to poll for the arrival of new

tasks via its lifelines. To that end, TasGPI utilizes notifications (compare 2.4.3),

making the check comparatively cheap. The process is quite simple, as depicted by

Figure 4.9.

Figure 4.9: Idle workers need to periodically poll the state of their lifeline buffers.

First, the worker has to actively check if lifeline work has been received, as described

in Section 4.4.1. To that end, it simply checks whether another worker acquired its

lifeline lock. Given the lock was acquired, the worker waits for confirmation that

the transfer of tasks was finished. It then deserializes the tasks written to its lifeline

buffer and adds them to its TaskQueue. Finally, the routine returns after the worker

reacquired its own lock as described in Subsection 4.4.1.

4.4.7 Initialize lifelines dynamic

As mentioned in Section 4.2, this method is used to initialize the StealStrategy

if a dynamic start is requested by the user. The strategy consequently assumes a

state, as if all incoming lifelines had been previously rejected. TasGPI utilizes the

pre-calculated reverse lifelines, i.e. the incoming edges of the worker in the lifeline

graph, to efficiently store the lifelines without the need for network communication

as depicted in Figure 4.10.

Since a dynamic start assigns all initial tasks to the worker with ID 0, lifelines of

this worker are consequently ignored.

4 Implementation of TasGPI 45

Figure 4.10: Given a dynamic start, initializes the incoming lifelines as if they were
previously rejected.

4.5 Steal behaviour in shared memory

This section briefly describes the steal behaviour implemented by TasGPI for shared

memory machines. Since the focus of this thesis lies on distributed memory, this

section only presents the general approach of the StealStrategy implemented for

shared memory.

In contrast to the distributed steal behaviour described in Section 4.4, workers in

shared memory environments operate without communication via an interconnect.

Instead, thieves query their victims from the runtime and directly call appropriate

methods on the victim or its strategies, as exemplified by Listing 4.4.

1 auto &t h i e f = c_runtime . get_worker (r eque s t . t h i e f) ;
2 t h i e f . ge t_stea l_st ra tegy () . s a t i s f y _ l i f e l i n e (spl i t_work) ;

Listing 4.4: Direct communication between workers in shared memory environments.
(Modified excerpt of fifo_steal_strategy.hpp)

Here, a victim of a random steal directly queries the thief’s worker object from the

runtime and calls the handler method satisfy_steal on it. This approach also

eliminates the need for explicit communication buffers as described in Subsection 4.4.1.

Instead, any required data is explicitly passed as arguments to the appropriate

handler methods (compare Listing 4.4, the tasks are directly passed to the handler

as split_work). Additionally, weak synchronization (compare Subsection 2.4.3) is not

4 Implementation of TasGPI 46

needed in shared memory systems and replaced in favour of well-known mechanisms

like atomics, mutual exclusion, and condition variables.

Beyond that, shared memory stealing works mostly analogous to distributed memory

stealing described in Section 4.4. However, in contrast to the behaviour described

in Subsection 4.4.3, a worker receiving work via a stored lifeline actively closes its

lifelines by removing itself from the stored lifelines of its lifeline buddies.

4.6 Termination detection

As described in Chapter 3, TasGPI does not have access to the finish construct

which is usually used to detect distributed termination in GLB. Instead, TasGPI

requires an explicit implementation of a termination detection scheme in the form

of a TerminationStrategy. As mentioned in Section 4.2, TasGPI provides exam-

ple implementations for distributed and shared memory. Both variants utilize a

counter-based termination scheme, similar to X10’s implementation of the finish

construct [48], to detect termination as described below.

The shared memory variant simply counts idle workers. Since all workers are local,

no network communication is needed and synchronization of the shared counter is

guaranteed via the usage of std::atomic<std::size_t>. Once all workers are in

the idle state, no work remains in the system and the strategy signals termination.

In the case of distributed memory, TasGPI distinguishes between local (i.e. per place)

termination and global termination in order to minimize network communication.

To that end, TasGPI maintains a shared counter in a PGAS partition and a place

local counter. The local counter tracks the number of idle local workers via an

std::atomic, analogous to the shared memory variant described above.

The global counter, on the other hand, tracks the number of idle places. Accordingly,

the last worker on an active place entering the IDLE state, increments the shared

counter by one. Respectively, the first worker on an idle place receiving new work

via a shared lifeline decrements the counter.

4 Implementation of TasGPI 47

To minimize congestion on the shared counter, the shared counter is only read when

it is actually updated. Accordingly, only the last place incrementing the counter can

actually detect termination. Since the implementation utilizes atomic fetch_add

operations to increment the counter, the worker automatically receives the current

count. Given, the post-increment counter equals the number of places in the system,

termination is detected. The counter consists of a single gaspi_atomic_value_t on

a shared memory partition of place 0. Corruption of the counter is prevented by

allowing only atomic operations on the shared memory.

Since only the incrementing worker detects termination, the result is then dissem-

inated among the other places via gaspi_notify. This way, the has_terminated

method of the TerminationStrategy has no need to poll the shared counter. In-

stead, a single check against the termination-notification is made, requiring only local

memory access. This way, network communication and congestion on the shared

counter can be minimized.

However, for distributed systems, the counter alone is not enough to detect global

termination, due to the one-sided nature of communication and the additional latency

introduced by the interconnect. Accordingly, TasGPI has to also ensure distributed

quiescence, i.e. the absence of ongoing network communication, in addition to

termination of all workers. Multiple options exist to that effect, and the topic is

subject to ongoing research. An in-depth discussion of the available algorithms would

unfortunately go beyond the scope of this thesis. However, a good overview may be

found at [31, 32].

Due to time constraints, TasGPI implements a rather simple solution for the problem.

By preventing workers with outstanding communications from going idle, the problem

can be circumvented in its entirety. Since only active messages, i.e. messages

containing actual work, can reactivate a worker, other messages (e.g. rejections of

steal requests) need not be considered in this context.

Accordingly, the current implementation of the distributed TerminationStrategy

requires workers to remain in the PROCESSING state until all active messages have

4 Implementation of TasGPI 48

been acknowledged. An acknowledgement in this context, is a single notification

signaling receipt of the tasks. To prevent racing conditions, the acknowledgment must

be posted only after the recipient updated its state with the TerminationStrategy.

This way, termination can only be detected if no active messages are in flight.

Combined with the global counter, this approach can be used to correctly detect

distributed termination.

It is important to note that this approach introduces additional latency due to

the additional acknowledgement messages. As described in Section 2.3, each ad-

ditional message takes roughly 1 µs. In addition, the current approach requires

the StealStrategy to implement the acknowledgements, resulting in undesirable

coupling between the strategies. While these tradeoffs are acceptable for this pro-

totype, future iterations of the TerminationStrategy should implement a more

sophisticated and scalable termination scheme.

4.7 Steal queue using RDMA

As described in Chapter 3, TasGPI uses a queue exclusively utilizing RDMA and

one-sided communication primitives to facilitate the exchange of steal requests

between workers. The inquiry queue (see Figure 4.3) proposed by TasGPI allows

the retrieval of elements from the queue using only cheap local memory operations.

Simultaneously, the remote addition of new elements requires only two network

operations for most cases. The following describes the design and mechanisms

utilized by the proposed datastructure.

Since multiple workers may enqueue requests, but only one worker processes them,

the queue is a multi-producer single-consumer queue. In general, two approaches

exist to implement such concurrent queues and can be adapted to the PGAS model:

Linked lists and circular buffers. Since the number of possible concurrent steal

requests to a single worker is bounded by the number of workers and the features of

a linked list (e.g. dynamic size and fast insertion at random indices) are not needed,

TasGPI uses circular buffers. In contrast to linked lists, this approach does not

4 Implementation of TasGPI 49

require pointers or dynamic memory operations, making circular buffers a good fit

for the PGAS model.

In their simplest form, a circular buffer consists of a contiguous segment of memory

and metadata in the form of two indices, as depicted by Figure 4.11. The indices,

often called head- and tail-pointer, denote the current start and end indices of the

queue. New elements are inserted at the head index, while elements are consumed

from the tail index. Once such an index exceeds the bounds of the underlying

contiguous memory, it instead wraps around using modulo arithmetic.

Figure 4.11: Circular buffer with capacity of 10 and current size of 6. Meta data is
marked in purple, occupied slots in green.

Since a steal request only requires the ID of the worker and request type, i.e. if it is

a random steal or a lifeline steal, TasGPI is able to store each request in a single

64 Bit integer. Here, the most significant bit denotes the type, resulting in a lifeline

steal if it is set or a random steal otherwise2. This approach leaves the remaining

63 Bit for the worker ID, allowing for more than nine quintillion possible worker

IDs. The metadata is also stored in a single 64 Bit integer, using 32 Bit for the

head and tail indices respectively. Hence, TasGPI only requires the queues’ capacity

plus one 64 Bit integers per queue. The capacity of the queue can be configured in

pgas_fifo_steal_strategy.hpp and is currently set to 256.

Using this approach, the state of the queue, i.e. the metadata describing it, can be

queried and manipulated in a single atomic operation (compare Subsection 2.4.5).

This allows for efficient concurrent insertion of new elements into the queue, as

described by Listing 4.5.

First, a worker performs an atomic fetch-and-add operation on the target queues

metadata (line 3), incrementing the head index by one and receiving the previous
2While gaspi_atomic_value_t are unsigned, the most significant Bit can be interpreted as the

signed bit as in Figure 4.11

4 Implementation of TasGPI 50

1 push (victim_id , i s _ l i f e l i n e) {
2 // In c r e a s e head by one and r e t r i e v e prev ious value
3 meta = atomic_fetch_add_meta (vict im_id)
4 wr i t e_s l o t = read_write_slot (meta)
5
6 i f (queue_fu l l (meta)) {
7 po l l_unt i l_ f r e e (victim_id , wr i t e_s l o t)
8 }
9

10 // I f l i f e l i n e , s e t most s i g n i f i c a n t b i t
11 i f (i s _ l i f e l i n e) {
12 to_enqueue = set_msb (my_worker_id)
13 } e l s e {
14 to_enqueue = my_worker_id ;
15 }
16
17 wr i t e_not i fy (victim_id , wr i te_s lot , to_enqueue)
18 }

Listing 4.5: Insertion of an element into the circular buffer in pseudocode.

metadata. By doing so, the worker reserves the pre-increment head index for exclusive

access. Here, the head index may overtake the tail index, indicating that the queue

is currently full. Should this be the case, the worker has to poll the metadata of the

target queue until the reserved slot is free and the data can be written (lines 6 to

8). A cancellation of the reservation is not possible, since it would require expensive

synchronization due to the concurrent manipulation of the metadata. In practice,

even with small capacities, this scenario did not occur in the performed experiments.

Once the targeted index is free, the worker writes its ID (including the most significant

bit as appropriate, lines 10 to 15) directly into the target memory (line 17). Since this

communication is completely one-sided, the consumer of the steal requests can not

be sure if a reserved slot has already been written to, or if the data is still in transit.

Therefore, TasGPI utilizes gaspi_write_notify to instantly notify the queue once

the transfer finished.

To avoid further synchronization requirements, TasGPI utilizies continuously increas-

ing head and tail indices. This way, collisions of index reservations due to modular

arithmetic can be prevented. On the other hand, this approach limits the number of

4 Implementation of TasGPI 51

possible steal requests due to the risk of overflows in the metadata. This problem is

solved by performing an atomic compare-and-swap operation to reset the head and

tail indices to zero, whenever a worker rejects remaining steal requests. This way,

TasGPI is able to efficiently circumvent the arising issue by exploiting the nature of

the GLB technique.

Complementary, the retrieval of stored requests from the queue must also be as

efficient as possible. The nature of the queue means that the tail index is exclusively

manipulated by the owning worker. Exploiting that, the owning worker may pop an

element from the queue as described in Listing 4.6.

1 pop () {
2 meta = volat i le_read_meta ()
3 i f (queue_is_empty ()) {
4 re turn n u l l
5 }
6
7 // Wait f o r a n o t i f i c a t i o n on the cur rent t a i l
8 wa i t_ fo r_no t i f i c a t i on (meta)
9

10 // Read the cur r ent t a i l va lue
11 r e t r i e v e d = read_from_tai l (meta)
12
13 vo l a t i l e_ inc r ement_ta i l ()
14
15 re turn r e t r i e v e d
16 }

Listing 4.6: Retrieval of a value from the circular buffer in pseudocode.

First, the worker performs a volatile read of its own queues metadata (line 2). This

ensures that other workers read no corrupt data due to concurrent push operations.

Next, the worker compares the head and tail indices and immediately returns if the

queue is empty (lines 3-5). Otherwise, it waits (if necessary) until the slot currently

pointed to by the tail pointer is ready using gaspi_notification_wait_some (and

subsequent gaspi_notify_reset) as described in Subection 2.4.3 (line 8). Once

ready, the steal request is read from the buffer (line 11) and returned after increment-

ing the tail index by one (lines 13 to 15). Since the metadata may be concurrently

4 Implementation of TasGPI 52

accessed by another worker, this write again is performed in a volatile manner.

Notably, this process relies solely on local data, allowing for fast retrieval of requests

in all cases.

5 Experiments 53

5 Experiments

This chapter describes the experimental evaluation of TasGPI. It commences with

descriptions of the Unbalanced Tree Search (UTS) benchmark in Section 5.1, followed

by the Monte-Carlo benchmark in Section 5.2. Then, the used hardware environment

is described in Section 5.3. The acquired measurements are subsequently presented

in Section 5.4. The chapter concludes with a discussion of the obtained results in

Section 5.5.

5.1 Unbalanced Tree Search

The UTS benchmark deterministically generates a highly unbalanced tree using the

SHA1 hashing algorithm [34]. Due to the unpredictable and highly irregular nature

of the generated tree, UTS is well suited to evaluate the performance of dynamic

load balancing schemes. The tree starts with a single node, and each node in the

tree is represented by a single hash. The initial hash value is generated from a user

provided seed.

From the root node, new nodes are recursively generated on the fly, using the parents

hash value as a basis. Due to the unpredictable nature of the hashing algorithm, the

number of generated nodes is initially unknown and can not be calculated. Instead,

the generated tree structure has to be searched.

In addition to the seed of the tree, the user can configure a cut-off depth, i.e. the

maximum depth to be searched, a branching factor, i.e. the upmost number of

children per node, and the shape of the generated tree, i.e. binomial or geometric.

The benchmark returns a single long containing the size of the generated tree for

the given configuration.

5 Experiments 54

This benchmark was ported from [37]. Their approach stores unvisited nodes in

three arrays, rather than self-contained tasks. The first array hash, stores the parents

hash value, while the upper and lower arrays store the child indices to be generated.

Thus, this triple represents exactly upper − lower tasks for each index of the arrays.

UTS is provided by the reference variant and was ported to TasGPI.

5.2 Monte-Carlo Simulation

This benchmark approximates the value of PI using the well-known Monte-Carlo

technique. To that end, the benchmark creates n random coordinates in the unit

square. By counting the number of such points falling inside the unit circle, according

to x2 + y2 ≤ 1 , PI can then be approximated by the following formula:

π = 4 ∗ points_inside

points_simulated

The number of simulated points are configured by the user at runtime, by specifying

the number of points to be simulated per worker. Each task simulates a single

point, allowing the benchmark to be run with varying granularity by configuring

GLB’s N parameter. Consequently, no new tasks are generated at runtime and the

workload is evenly distributed between all workers at the start of the computation.

The benchmark results in a double, containing the approximated value of PI.

The benchmark has been implemented from scratch for both TasGPI and the reference

variant.

5.3 Benchmark environments

The benchmarks presented in Section 5.4 were executed on the Linux Cluster of the

University of Kassel [22]. The used partition public2023 provides up to 36 nodes,

each equipped with 256 GB of main memory and two AMD EPYC 7443 24-Core

processors. Each node is connected via a Mellanox InfiniBand EDR interconnect.

5 Experiments 55

Initial tests were run on the public-1 partition of the Goethe-HLR [52]. Unfortunately,

at the time of writing, the cluster was not available for further benchmarks.

5.4 Results

The experiments were run on up to 32 nodes, where each node spawned one worker

per physical core for a maximum of 1536 workers. As noted in Chapter 1, the

experiments were run without true RDMA due to technical difficulties. Instead, an

ethernet-based wrapper (provided by GPI) simulating the desired behaviour over

TCP was used.

The UTS benchmark adapts the configuration of the reference variant with an initial

seed of 19, branching factor of 4, and geometric tree shape [42]. Likewise, GLB

was configured to process chunks of 511 tasks with three steals per round (N=511,

W=3). Parameter Z was calculated at runtime to fit the number of workers (compare

Section 4.2). Data was collected for TasGPI and the reference variant. Since Reitz

et al. support different levels of optimization (compare Section 2.5.4), the following

distinction is made:

locopt0 The reference variant, without local optimization.

locopt1 The reference variant, only attempt local steals first.

locopt2 The reference variant, all local optimizations enabled.

Each experiment was run ten times with tree depths of 17 through 20. The collected

data can be found in Appendix A.2.

As seen in Figure 5.1(b), TasGPI achieves very similar speedups to the reference

variant. On 32 places locopt0 has a slight advantage (of roughly 2.8 %) over the

other variants. In terms of runtime, TasGPI outperforms all variants of the reference

implementation as seen in Figure 5.1(a). On average, TasGPI is 19.15 % faster than

the best run of the reference versions.

5 Experiments 56

T
im

e
in

 s
ec

o
n
d
s

Nodes (places)

TasGPI-uts-d20
Java-ditglbsw.StartMultiworkerUTS-locopt0-d20
Java-ditglbsw.StartMultiworkerUTS-locopt1-d20
Java-ditglbsw.StartMultiworkerUTS-locopt2-d20

 0

 500

 1000

 1500

 2000

 2500

 3000

 1 2 4 8 16 32

(a) Runtime

S
p
ee

d
u
p

Nodes (places)

TasGPI-uts-d20
Java-ditglbsw.StartMultiworkerUTS-locopt0-d20
Java-ditglbsw.StartMultiworkerUTS-locopt1-d20
Java-ditglbsw.StartMultiworkerUTS-locopt2-d20

 1 2
 4

 8

 16

 32

 1 2 4 8 16 32

(b) Speedup

Figure 5.1: UTS Experiment with tree-depth of 20

A similar result is achieved for a tree depth of 19. As seen in Figure 5.2(a), TasGPI

performs the calculation significantly faster up to 16 places.

T
im

e
in

 s
ec

o
n
d
s

Nodes (places)

TasGPI-uts-d19
Java-ditglbsw.StartMultiworkerUTS-locopt0-d19
Java-ditglbsw.StartMultiworkerUTS-locopt1-d19
Java-ditglbsw.StartMultiworkerUTS-locopt2-d19

 0

 100

 200

 300

 400

 500

 600

 700

 800

 1 2 4 8 16 32

(a) Runtime

S
p
ee

d
u
p

Nodes (places)

TasGPI-uts-d19
Java-ditglbsw.StartMultiworkerUTS-locopt0-d19
Java-ditglbsw.StartMultiworkerUTS-locopt1-d19
Java-ditglbsw.StartMultiworkerUTS-locopt2-d19

 1 2
 4

 8

 16

 32

 1 2 4 8 16 32

(b) Speedup

Figure 5.2: UTS Experiment with tree-depth of 19

However, the total runtimes are nearly identical between all versions when run on 32

places. Consequently, TasGPI’s speedup scales similar to the reference variant up to

16 places, degrading noticeable for 32 places.

The trend continues for a tree depth of 18, as seen in Figure 5.3. Here, TasGPI

scales well up to eight places, but stagnates on 16 or more places.

Consequently, TasGPI outperforms the reference variants only up to four places.

At eight places, runtimes are practically identical, while on 16 or more places

the reference variants slightly outperform TasGPI. For a tree depth of 17, both

variants exhibit degrading speedups, as seen in Figure 5.4(b). It is important to note

that even on one place TasGPI performs the calculations only 4 % faster than the

5 Experiments 57

T
im

e
in

 s
ec

o
n
d
s

Nodes (places)

TasGPI-uts-d18
Java-ditglbsw.StartMultiworkerUTS-locopt0-d18
Java-ditglbsw.StartMultiworkerUTS-locopt1-d18
Java-ditglbsw.StartMultiworkerUTS-locopt2-d18

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 1 2 4 8 16 32

(a) Runtime

S
p
ee

d
u
p

Nodes (places)

TasGPI-uts-d18
Java-ditglbsw.StartMultiworkerUTS-locopt0-d18
Java-ditglbsw.StartMultiworkerUTS-locopt1-d18
Java-ditglbsw.StartMultiworkerUTS-locopt2-d18

 1 2
 4

 8

 16

 32

 1 2 4 8 16 32

(b) Speedup

Figure 5.3: UTS Experiment with tree-depth of 18

reference version, which is a sharp decline from the roughly 20 % achieved in the

other experiments.

T
im

e
in

 s
ec

o
n
d
s

Nodes (places)

TasGPI-uts-d17
Java-ditglbsw.StartMultiworkerUTS-locopt0-d17

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 1 2 4 8 16 32

(a) Runtime

S
p
ee

d
u
p

Nodes (places)

TasGPI-uts-d17
Java-ditglbsw.StartMultiworkerUTS-locopt0-d17

 1 2
 4

 8

 16

 32

 1 2 4 8 16 32

(b) Speedup

Figure 5.4: UTS Experiment with tree-depth of 17

From there, TasGPI only scales well up to four places, exhibiting stagnating speedups

up to 16 places. When run on 32 places, TasGPI’s speedups actually regress, resulting

in a higher runtime on 32 places than on 16 places. Consequently, the reference

variant significantly outperforms TasGPI for eight places and more.

In addition to the UTS benchmark, TasGPI was evaluated using a Monte-Carlo sim-

ulation, as described in Section 5.2. Similar to the UTS benchmark, the experiments

were run on up to 32 nodes with one worker per physical core. The GLB configuration

was adapted from the UTS benchmark. Steal optimizations of the reference variant

were disabled, as a lower number of steals are expected due to the static scheduling

of tasks. Measurements were taken for simulations with 1.649 267 4 × 1012 (large)

and 25769803776 (small) points, distributed evenly between all workers.

5 Experiments 58

The pattern observed for the UTS benchmark continues with this static workload. As

seen in Figure 5.5, TasGPI exhibits near linear speedups for the large configuration.

The reference variant, on the other hand, actually exhibits super-linear speedups.

Ti
m

e
in

 s
ec

on
ds

Nodes (places)

TasGPI
Java-ditglbsw.StartMultiworkerUTS-locopt0-d17

 0

 500

 1000

 1500

 2000

 2500

 1 2 4 8 16 32

(a) Runtime

Sp
ee

du
p

Nodes (places)

TasGPI
Java-ditglbsw.StartMultiworkerUTS-locopt0-d17

 1 2
 4

 8

 16

 32

 1 2 4 8 16 32

(b) Speedup

Figure 5.5: Strong scaling (large): Monte-Carlo simulation with 1.6492674e+12
simulated points.

However, TasGPI still has the edge when it comes to raw runtime, significantly

outperforming the reference variant for all tested place counts.

For the small configuration seen in Figure 5.6, speedups degrade for both variants,

with the reference variant performing significantly better than TasGPI. In terms

Ti
m

e
in

 s
ec

on
ds

Nodes (places)

TasGPI
Java-ditglbsw.StartMultiworkerUTS-locopt0-d17

 0

 5

 10

 15

 20

 25

 30

 35

 1 2 4 8 16 32

(a) Runtime

Sp
ee

du
p

Nodes (places)

TasGPI
Java-ditglbsw.StartMultiworkerUTS-locopt0-d17

 1 2
 4

 8

 16

 32

 1 2 4 8 16 32

(b) Speedup

Figure 5.6: Strong scaling (small): Monte-Carlo simulation with 25769803776 simu-
lated points.

of raw runtime, TasGPI outperforms the reference variant up to four places. After

that, runtimes are nearly identical with a slight edge for the reference variant.

5 Experiments 59

5.5 Discussion

In the scope of this thesis, a new variant of the GLB technique was proposed and

implemented in the form of the prototypical GLB framework TasGPI. The extraction

of key behaviours (termination detection, steal behaviour and creation of the lifeline

graph) works well and without overhead due to static polymorphism, as discussed in

Chapter 3.

TasGPI was benchmarked against the reference variant by Reitz et al. with promising

results, as described in Section 5.4. Both variants handle both static and dynamic

workloads well, as can be seen in Figure 5.5 and Figure 5.1 respectively. In terms of

raw runtime, TasGPI significantly outperforms the reference variant given sufficiently

large workloads. However, the reference variant scales much more consistently with

smaller workloads. TasGPI, on the other hand, exhibits stagnating speedups for

decreasing work loads.

The effect is probably caused by a combination of factors. With less work in the

system, workers are forced to steal more frequently since the local tasks themselves

do not generate a self-sustaining amount of new work. Similarly, an overcommitment

of workers, i.e. too many workers for a given problem size, can result in stagnating

speedups on larger processor counts. Here, the causes are increasing communication

and coordination costs, while the parallelizable portion of the application stays

constant.

Considering TasGPI’s performance in the UTS benchmark, overcommitment may

be a factor. Here, TasGPI scales well on all node-counts for a tree depth of 20

(compare Figure 5.1(b)). From there, the number of nodes for which TasGPI

exhibits near-linear scaling roughly halves with each decrease in tree depth (compare

Figures 5.2(b), 5.3(b), and 5.4(b)). For a tree depth of 17 in particular, TasGPI

loses its runtime advantage (compare Section 5.4) over the reference variant even if

executed on one place, further suggesting that the problem size may be the culprit.

However, further investigation is required to precisely identify the cause for the

observed stagnation in speedups for smaller workloads. Two potential approaches

5 Experiments 60

include examining the actual count of steal requests made by both variants, and

incorporating a synthetic benchmark (e.g. smooth weak scaling [36, p.45]) in the

evaluation.

Furthermore, the current termination detection scheme employed by TasGPI should

be replaced by a more sophisticated algorithm. As discussed in Section 4.6, the

current implementation is rather simple and requires additional acknowledgements for

each transfer of tasks. In addition, the shared counter requires synchronized access to

the underlying memory, which may cause congestion, particularly in scenarios with

many places and little work. Both factors are likely to cause declining performance,

especially for irregular workloads on high place counts.

In terms of raw computation time, TasGPI outperforms the reference variant for

sufficiently large problems. The primary reason for this disparity likely stems from the

choice of programming languages, with TasGPI being implemented in C++ and the

reference variant being developed in Java. While C++ is considered to be faster than

Java in most scenarios, it is difficult to quantify the effect of the language. Accordingly,

no definite assertion can be made about the quality of TasGPI’s implementation.

Regardless, C++ may be the superior choice for particularly memory intensive

or long-running computations, given its manual memory management. For such

workloads, C++ is expected to perform at least as well as Java (given adequate

programming of the TaskQueue), while avoiding the need for garbage collection,

which in Java’s case may cause unpredictable delays. However, this problem can be

mitigated by utilizing off-heap memory (e.g. direct memory buffers) and choosing an

appropriate garbage collector [4, 33].

Furthermore, the choice of libraries and benchmark specific implementations can

influence the runtime and scaling of the experiments. A good example is the UTS

benchmark implemented by TasGPI. The initial implementation relied on the

recommended OpenSSL implementation of message digests [39]. Even with one

context per worker (eliminating state-sharing between workers) and following the

documented recommendations, the original implementation of UTS performance was

5 Experiments 61

rapidly deteriorating with increasing worker counts. Via extensive profiling, the issue

could be traced back to lock contention in the EVP interface. By switching to the

deprecated SHA1 [40] implementation of OpenSSL, performance was significantly

increased. For instance, 16 local workers on a 16 core machine were able to perform

the UTS benchmark for a tree depth of 15 in roughly half the time the original

implementation required. As stated above, the relative performance gain increases

with growing worker counts. The old version can be still enabled for comparisons by

setting SHA1_PROVIDER to OSSL via CMake.

Furthermore, TasGPI in its current iteration does not pin workers to specific cores

of the CPU. Accordingly, TasGPI’s results may suffer from context switches and

cache effects. In contrast, the super-linear speedup of the reference variant shown in

Figure 5.5(b) suggests that the reference variant is able to exploit cache effects.

Last but not least, the experiments could not be run using RDMA, instead relying

on a TCP wrapper provided by GPI, as noted in Section 5.4. While extensive

debugging and research was undertaken, TasGPI in its current iteration still fails

in unpredictable manners when executed with RDMA on high worker counts. At

the time of writing, no definite conclusion can be made about the root cause of the

issues. However, many causes could be ruled out:

First, the implementation was checked against the GASPI documentation [12] and

guidelines to ensure GPI is used in the correct manner, with no result. Subsequently,

the algorithms and offset calculations were checked for correctness, both manually

and via GPI’s debug library. So far, no issue with TasGPI’s implementation could

be found, and successful runs using the TCP wrapper suggest that neither the used

algorithms nor offset calculations are at fault.

In addition, TasGPI was tested on different RDMA enabled clusters. Experiments

run on the Goethe cluster (compare Section 5.3) using InfiniBand, occasionally

resulted in an error message (See A.2) which provided additional information. Since

some of the information contained in the error message is not documented publicly,

the NVIDIA support was contacted [47]. However, the suggested causes were already

5 Experiments 62

researched (i.e. buffer sizes and offsets) or out of control of the developer and handled

by GPI internals (i.e. buffer access rights and access keys).

Furthermore, a similar issue is documented by another user of the GPI library [27].

While the issue contains a proposed solution, it could not be tested yet, since the

proposal requires the change of system settings and no root access to an RDMA

enabled cluster is available. Unfortunately, GPI’s developers have not reacted to

the issue at the time of writing. Accordingly, the issue likely lies with the RDMA

hardware or the GPI library, not TasGPI’s implementation, but further investigation

is needed.

Given future iterations of TasGPI are able to utilize RDMA, improved results can

be expected. Initial runs of the experiments on low place counts but with RDMA

were promising, but the issues described above prevented the collection of sufficient

data for further analysis.

Considering TasGPI’s focus on RDMA, another important aspect of the technology

that is not fully utilized in the current iteration is the concept of zero-copy transfers

(compare Section 2.3). Since the current implementation allows users to store

arbitrary task representations (see Chapter 3), tasks must be explicitly serialized

before transferring them over the network. By enforcing a trivially copyable [8] task

representation, tasks can be stored and transferred directly between segments. This

way, both the serialization and the additional copying of tasks to a transfer buffer

can be prevented.

Considering the relatively high cost of serialization and copying [15], the potential

for performance and scalability gains could outweigh the additional restrictions

imposed on developers. At the same time, this would enable the implementation of

coordinated work stealing, i.e. thieves could steal tasks directly from their victim

without the need for steal requests. Given coordinated work stealing eliminates

the need for active participation of the victim, further research in this direction is

warranted.

6 Related work 63

6 Related work

Dynamic load balancing can be realized in the form of work stealing or work sharing [6].

Work stealing, popularized by the Cilk parallel programming system [16], has idle

workers actively steal tasks from busy workers. In contrast, work sharing achieves

load balancing by disseminating the work of busy workers to idle ones. While both

approaches have been shown to perform roughly equivalent [1], work stealing has

fewer task exchanges between workers, since exchanges only occur if workers are

idle [6].

Both approaches can be implemented in a coordinated fashion, i.e. thieves may

directly access the task pools of their victims, or in a cooperative fashion, i.e. thieves

notify their victims that work is needed, and the victim sends a portion of their tasks

from a private task pool. Similar to work stealing and work sharing, both variants

have been shown to exhibit comparable performance [38, 1].

Many solutions for scheduling tasks via work stealing exist [e.g. 35, 11, 29]. However,

early iterations of dynamic load balancers were unable to perform well on distributed

multi-core clusters that are prevalent today [41]. A variant of work stealing with good

performance on such supercomputers is the lifeline scheme of the GLB technique [44].

While initially restricted to one worker per place, the technique has since been

improved upon. One of the first variants to allow for multiple workers per place

combines intra-place work sharing with the lifeline-based work stealing approach of

GLB [53]. However, another variant of GLB by Reitz et al. [42] has since shown that

the GLB technique can be extended to multi-worker GLB with better performance and

without the additional complexity introduced by the hybrid variant. Consequently,

the newer variant served as the reference variant for this thesis.

6 Related work 64

Other research on work stealing concentrates on improving the performance of the

underlying task pools [26, 24, 41, 14]. One popular approach is the utilization of

split queues, specialized task pools that allow for greater levels of concurrency

with less synchronization and shorter critical paths [14, 28, 10]. In this context,

special attention is given to new and emerging network technologies that allow for

even better performance [10, 28].

By compacting the state of the split queue into a compact format that can be

manipulated via singular atomic operations, the communication between workers to

acquire tasks from their victims can be reduced. By utilizing modern networking

technologies like RDMA that allow for one-sided communication, low latency, and

atomic operations with kernel-bypass [21], split queues can further enhance the

performance of work stealing by allowing thieves to assess availability and steal tasks

without interrupting the active computations of their victims [10, 28]. Accordingly,

this thesis finds itself between the research on lifeline-based work stealing and

improved task pools by combining the GLB technique with modern networking

technologies.

7 Conclusion 65

7 Conclusion

This thesis presents a novel multi-worker variant of the GLB technique, with a

primary focus on RDMA and one-sided communication. One of the central goals of

this thesis was to investigate if existing GLB variants could be enhanced through the

integration of RDMA capabilities. The implementation of this approach in the form of

the prototypical framework TasGPI was realized in C++ using the PGAS library GPI.

Given previous implementations usually rely on the APGAS model, the transition to

the PGAS model necessitated significant changes, including the development of an

explicit termination detection scheme, and a shift towards data-driven communication

in favour of active messages.

An empirical evaluation of TasGPI through the UTS and Monte-Carlo benchmarks

yielded promising results. Although technical difficulties prevented the utilization

of RDMA in the experiments, TasGPI displayed near-linear scaling and superior

runtimes when compared to the reference variant, particularly for large workloads.

However, it is worth noting that TasGPI scaled less stable for small workloads,

resulting in worse performance for very small problem sizes, highlighting the need for

further research and optimizations. It can be anticipated that TasGPI’s performance

can be further improved by fixing the issues regarding RDMA and replacing the

current termination detection mechanism with a more sophisticated scheme, both in

runtime and scalability.

In summary, TasGPI is a promising prototype of the new approach to GLB, demon-

strating good results with considerable potential for future improvements. In light

of the encouraging outcomes, it becomes evident that further exploration into GLB

leveraging RDMA communication is both warranted and promising.

7 Conclusion 66

Future iterations of TasGPI should first focus on resolving the issues relating to

RDMA, possibly moving away from the GPI library in favour of more stable RDMA

libraries. In addition, the current termination detection scheme should be replaced

by a more sophisticated scheme to allow for good scaling with high place counts.

Given TasGPI aims to eliminate the interruption of the victim’s computation in steal

processes, a transition towards coordinated workstealing should be considered. In this

context, current research suggests the application of a SplitQueue data structure [10].

Combined with RDMA the approach allows for truly asynchronous steal operations

without any active involvement of the victim.

List of Figures v

List of Figures

2.1 Simplified illustration of the memory models 4

2.2 GPI data exchange . 8

4.1 Simplified class diagram of TasGPI. 25

4.2 TasGPI worker main loop . 35

4.3 TasGPI steal components . 37

4.4 FlowChart: Random steals . 39

4.5 FlowChart: Processing of pending steal requests 40

4.6 FlowChart: Rejection of steal requests 41

4.7 FlowChart: Activation of lifelines . 42

4.8 Precocious lifeline . 42

4.9 Flowchart: Poll lifelines . 44

4.10 Flowchart: Dynamic lifeline activation 45

4.11 Fixed size circular buffer . 49

5.1 UTS Experiment with tree-depth of 20 56

5.2 UTS Experiment with tree-depth of 19 56

5.3 UTS Experiment with tree-depth of 18 57

5.4 UTS Experiment with tree-depth of 17 57

5.5 Strong scaling: Monte-Carlo (Large) 58

5.6 Strong scaling: Monte-Carlo (Small) 58

List of Tables vi

List of Tables

A.1 UTS: Raw runtime data for d=20 (in seconds) xv

A.2 UTS: Raw runtime data for d=19 (in seconds) xv

A.3 UTS: Raw runtime data for d=18 (in seconds) xv

A.4 UTS: Raw runtime data for d=17 (in seconds) xvi

A.5 Monte-Carlo: Raw runtume data for large configuration (1.649 267 4 ×

1012) in seconds . xvii

A.6 Monte-Carlo: Raw runtume data for small configuration (2 576 980 377)

in seconds . xvii

List of Listings vii

List of Listings

4.1 Excerpt of Monte-Carlo example . 24

4.2 ResultType exemplified by ExamplePiQueue 28

4.3 Mutual exclusion via unique_lock . 33

4.4 Direct communication between workers 45

4.5 Insertion of an element into the circular buffer in pseudocode. 50

4.6 Retrieval of a value from the circular buffer in pseudocode. 51

A.1 TasGPI workers work loop in pseudocode xiv

A.2 Mellanox: Completion with error (Goethe) xviii

Bibliography viii

Bibliography

[1] Umut A Acar, Arthur Charguéraud, and Mike Rainey. “Scheduling parallel

programs by work stealing with private deques”. In: Proceedings of the 18th

ACM SIGPLAN symposium on Principles and practice of parallel programming.

2013, pp. 219–228.

[2] APGAS Git repository. url: https://github.com/x10-lang/x10/tree/mas

ter/apgas (visited on 06/26/2023).

[3] InfiniBand Trade Association. InfiniBand Architecture Specification. Tech. rep.

Version 1.2.1. InfiniBand Trade Association, 2007.

[4] Kinan Al-Attar et al. “Towards Java-based HPC using the MVAPICH2 Library:

Early Experiences”. In: 2022 IEEE International Parallel and Distributed

Processing Symposium Workshops (IPDPSW). IEEE. 2022, pp. 510–519.

[5] Dotan Barak. Tips and tricks to optimize your RDMA code. June 8, 2013. url:

https://www.rdmamojo.com/2013/06/08/tips-and-tricks-to-optimize-

your-rdma-code/ (visited on 08/09/2023).

[6] Robert D Blumofe and Charles E Leiserson. “Scheduling multithreaded com-

putations by work stealing”. In: Journal of the ACM (JACM) 46.5 (1999),

pp. 720–748.

[7] Benjamin A Brock et al. “RDMA vs. RPC for implementing distributed data

structures”. In: 2019 IEEE/ACM 9th Workshop on Irregular Applications:

Architectures and Algorithms (IA3). IEEE. 2019, pp. 17–22.

[8] C++ named requirements: TriviallyCopyable. url: https://en.cppreferenc

e.com/w/cpp/named_req/TriviallyCopyable (visited on 09/23/2023). Last

modified 08/11/2022.

https://github.com/x10-lang/x10/tree/master/apgas
https://github.com/x10-lang/x10/tree/master/apgas
https://www.rdmamojo.com/2013/06/08/tips-and-tricks-to-optimize-your-rdma-code/
https://www.rdmamojo.com/2013/06/08/tips-and-tricks-to-optimize-your-rdma-code/
https://en.cppreference.com/w/cpp/named_req/TriviallyCopyable
https://en.cppreference.com/w/cpp/named_req/TriviallyCopyable

Bibliography ix

[9] Georgel Calin et al. “A theory of partitioned global address spaces”. In: arXiv

preprint arXiv:1307.6590 (2013).

[10] Hannah Cartier, James Dinan, and D Brian Larkins. “Optimizing work stealing

communication with structured atomic operations”. In: Proceedings of the 50th

International Conference on Parallel Processing. 2021, pp. 1–10.

[11] Guojing Cong et al. “Solving large, irregular graph problems using adaptive

work-stealing”. In: 2008 37th International Conference on Parallel Processing.

IEEE. 2008, pp. 536–545.

[12] GASPI Consortium. GASPI: Global Address Space Programming Interface.

Specification of a PGAS API for communication. Standard. Version 17.1.

Fraunhofer ITWM, 2017.

[13] Mattias De Wael et al. “Partitioned global address space languages”. In: ACM

Computing Surveys (CSUR) 47.4 (2015), pp. 1–27.

[14] James Dinan et al. “Scalable Work Stealing”. In: Proceedings of the Conference

on High Performance Computing Networking, Storage and Analysis. SC ’09.

New York, NY, USA: Association for Computing Machinery, 2009.

[15] Philip Werner Frey and Gustavo Alonso. “Minimizing the hidden cost of

RDMA”. In: 2009 29th IEEE International Conference on Distributed Com-

puting Systems. IEEE. 2009, pp. 553–560.

[16] Matteo Frigo, Charles E Leiserson, and Keith H Randall. “The implementation

of the Cilk-5 multithreaded language”. In: Proceedings of the ACM SIGPLAN

1998 conference on Programming language design and implementation. 1998,

pp. 212–223.

[17] GPI-2 Repository. url: https://github.com/cc-hpc-itwm/GPI-2 (visited

on 06/27/2023).

[18] GPI2 Homepage. url: http : / / www . gpi - site . com / docs/ (visited on

06/27/2023).

https://github.com/cc-hpc-itwm/GPI-2
http://www.gpi-site.com/docs/

Bibliography x

[19] Rainer Grimm. The Strategy Pattern. Dec. 11, 2022. url: https://www.mode

rnescpp.com/index.php/the-strategy-pattern (visited on 07/15/2023).

[20] Daniel Grünewald and Christian Simmendinger. “The GASPI API specification

and its implementation GPI 2.0”. In: 7th International Conference on PGAS

Programming Models. Vol. 243. 2013, p. 52.

[21] Chuanxiong Guo et al. “RDMA over commodity ethernet at scale”. In: Pro-

ceedings of the 2016 ACM SIGCOMM Conference. 2016, pp. 202–215.

[22] Competence Center for High Performance Computing in Hessen. Linux Cluster

Kassel. url: https://www.hkhlr.de/en/clusters/linux-cluster-kassel

(visited on 08/21/2023).

[23] Jeff Hilland. “RDMA protocol verbs specification”. Version 1.0. In: (2003). url:

http://www.rdmaconsortium.org/home/draft-hilland-iwarp-verbs-v1

.0-RDMAC.pdf.

[24] Ralf Hoffmann and Thomas Rauber. “Adaptive task pools: efficiently balancing

large number of tasks on shared-address spaces”. In: International journal of

parallel programming 39 (2011), pp. 553–581.

[25] HP and Mellanox Benchmarking Report for Ultra Low Latency 10 and 40Gb/s

Ethernet Interconnect. Benchmark Report. Tech. rep. Mellanox Technologies,

July 2012. url: https://network.nvidia.com/related-docs/whitepaper

s/HP_Mellanox_FSI%20Benchmarking%20Report%20for%2010%20%26%2040

GbE.pdf (visited on 07/25/2023).

[26] Matthias Korch and Thomas Rauber. “A comparison of task pools for dynamic

load balancing of irregular algorithms”. In: Concurrency and Computation:

Practice and Experience 16.1 (2004), pp. 1–47.

[27] krzikalla. Runtime failures on larger process counts. July 29, 2021. url: https

://github.com/cc-hpc-itwm/GPI-2/issues/66 (visited on 09/23/2023).

https://www.modernescpp.com/index.php/the-strategy-pattern
https://www.modernescpp.com/index.php/the-strategy-pattern
https://www.hkhlr.de/en/clusters/linux-cluster-kassel
http://www.rdmaconsortium.org/home/draft-hilland-iwarp-verbs-v1.0-RDMAC.pdf
http://www.rdmaconsortium.org/home/draft-hilland-iwarp-verbs-v1.0-RDMAC.pdf
https://network.nvidia.com/related-docs/whitepapers/HP_Mellanox_FSI%20Benchmarking%20Report%20for%2010%20%26%2040GbE.pdf
https://network.nvidia.com/related-docs/whitepapers/HP_Mellanox_FSI%20Benchmarking%20Report%20for%2010%20%26%2040GbE.pdf
https://network.nvidia.com/related-docs/whitepapers/HP_Mellanox_FSI%20Benchmarking%20Report%20for%2010%20%26%2040GbE.pdf
https://github.com/cc-hpc-itwm/GPI-2/issues/66
https://github.com/cc-hpc-itwm/GPI-2/issues/66

Bibliography xi

[28] D Brian Larkins, John Snyder, and James Dinan. “Accelerated work stealing”.

In: Proceedings of the 48th International Conference on Parallel Processing.

2019, pp. 1–10.

[29] Daan Leijen, Wolfram Schulte, and Sebastian Burckhardt. “The design of a

task parallel library”. In: Acm Sigplan Notices 44.10 (2009), pp. 227–242.

[30] Patrick MacArthur and Robert D Russell. “A performance study to guide

RDMA programming decisions”. In: 2012 IEEE 14th International Confer-

ence on High Performance Computing and Communication & 2012 IEEE 9th

International Conference on Embedded Software and Systems. IEEE. 2012,

pp. 778–785.

[31] Jeff Matocha and Tracy Camp. “A taxonomy of distributed termination detec-

tion algorithms”. In: Journal of Systems and Software 43.3 (1998), pp. 207–

221.

[32] Friedemann Mattern. “Algorithms for distributed termination detection”. In:

Distributed computing 2 (1987), pp. 161–175.

[33] Reintech Media. Java high-performance computing: Optimizing Java code for

supercomputers. Apr. 18, 2023. url: https://reintech.io/blog/java-hig

h-performance-computing-optimizing-java-code-for-supercomputers

(visited on 09/23/2023).

[34] Stephen Olivier et al. “UTS: An unbalanced tree search benchmark”. In:

Languages and Compilers for Parallel Computing: 19th International Workshop,

LCPC 2006, New Orleans, LA, USA, November 2-4, 2006. Revised Papers 19.

Springer. 2007, pp. 235–250.

[35] Chuck Pheatt. “Intel® threading building blocks”. In: Journal of Computing

Sciences in Colleges 23.4 (2008), pp. 298–298.

[36] Jonas Posner. “Load balancing, fault tolerance, and resource elasticity for

Asynchronous Many-Task systems”. PhD thesis. University of Kassel, Germany,

2022. url: https://kobra.uni-kassel.de/handle/123456789/14032.

https://reintech.io/blog/java-high-performance-computing-optimizing-java-code-for-supercomputers
https://reintech.io/blog/java-high-performance-computing-optimizing-java-code-for-supercomputers
https://kobra.uni-kassel.de/handle/123456789/14032

Bibliography xii

[37] Jonas Posner. PLM-APGAS-Examples. url: https://github.com/posnerj

/PLM-APGAS-Applications/tree/master (visited on 08/25/2023).

[38] Jonas Posner and Claudia Fohry. “Cooperation vs. coordination for life-

line-based global load balancing in APGAS”. In: Proceedings of the 6th ACM

SIGPLAN Workshop on X10. 2016, pp. 13–17.

[39] OpenSSL Project. evp. Tech. rep. OpenSSL Project. url: https://www.open

ssl.org/docs/man1.1.1/man7/evp.html (visited on 09/23/2023).

[40] OpenSSL Project. SHA1. Tech. rep. OpenSSL Project. url: https://www.op

enssl.org/docs/man3.0/man3/SHA1.html (visited on 09/23/2023).

[41] Kaushik Ravichandran, Sangho Lee, and Santosh Pande. “Work Stealing for

Multi-core HPC Clusters”. In: Euro-Par 2011 Parallel Processing. Springer

Berlin Heidelberg, 2011, pp. 205–217.

[42] Lukas Reitz et al. “Lifeline-based load balancing schemes for Asynchronous

Many-Task runtimes in clusters”. In: Parallel Computing 116 (2023).

[43] rumach. GPI-2/bin. url: https://github.com/cc-hpc-itwm/GPI-2/tree

/next/bin (visited on 08/23/2023).

[44] Vijay Saraswat et al. “Lifeline-based Global Load Balancing”. In: vol. 46. Sept.

2011, pp. 201–212. doi: 10.1145/2038037.1941582.

[45] Vijay Saraswat et al. “The asynchronous partitioned global address space

model”. In: The First Workshop on Advances in Message Passing. 2010, pp. 1–

8.

[46] Christian Simmendinger, Mirko Rahn, and Daniel Grünewald. GASPI Tutorial.

url: http://gpi-site.com/tutorial/ (visited on 06/28/2023).

[47] Adrian Steinitz. MLX Completion with error. June 20, 2023. url: https://f

orums.developer.nvidia.com/t/mlx-completion-with-error/257118

(visited on 09/23/2023).

https://github.com/posnerj/PLM-APGAS-Applications/tree/master
https://github.com/posnerj/PLM-APGAS-Applications/tree/master
https://www.openssl.org/docs/man1.1.1/man7/evp.html
https://www.openssl.org/docs/man1.1.1/man7/evp.html
https://www.openssl.org/docs/man3.0/man3/SHA1.html
https://www.openssl.org/docs/man3.0/man3/SHA1.html
https://github.com/cc-hpc-itwm/GPI-2/tree/next/bin
https://github.com/cc-hpc-itwm/GPI-2/tree/next/bin
https://doi.org/10.1145/2038037.1941582
http://gpi-site.com/tutorial/
https://forums.developer.nvidia.com/t/mlx-completion-with-error/257118
https://forums.developer.nvidia.com/t/mlx-completion-with-error/257118

Bibliography xiii

[48] Synchronization. Finish. url: http://x10-lang.org/documentation/int

ro/latest/html/node5.html#SECTION00533010000000000000 (visited on

07/24/2023).

[49] Mellanox Technologies. Mellanox Adapters Programmer’s Reference Manual

(PRM). Supporting ConnectX®-4 and ConnectX®-4 Lx. Tech. rep. Mellanox

Technologies, 2016.

[50] The APGAS model. url: https://x10.sourceforge.net/documentation/i

ntro/latest/html/node4.html (visited on 07/24/2023).

[51] The X10 Parallel Programming Language. url: http://x10- lang.org/

(visited on 06/26/2023).

[52] Top500.org. GOETHE-HLR. url: https://www.top500.org/system/17958

8/ (visited on 08/21/2023).

[53] Kento Yamashita and Tomio Kamada. “Introducing a Multithread and Multi-

stage Mechanism for the Global Load Balancing Library of X10”. In: Journal

of Information Processing 24 (Mar. 2016), pp. 416–424. doi: 10.2197/ipsjji

p.24.416.

[54] Wei Zhang et al. “GLB: Lifeline-Based Global Load Balancing Library in X10”.

In: Proceedings of the First Workshop on Parallel Programming for Analytics

Applications. PPAA ’14. New York, NY, USA: Association for Computing

Machinery, 2014, pp. 31–40. url: https://doi.org/10.1145/2567634.2567

639.

http://x10-lang.org/documentation/intro/latest/html/node5.html#SECTION00533010000000000000
http://x10-lang.org/documentation/intro/latest/html/node5.html#SECTION00533010000000000000
https://x10.sourceforge.net/documentation/intro/latest/html/node4.html
https://x10.sourceforge.net/documentation/intro/latest/html/node4.html
http://x10-lang.org/
https://www.top500.org/system/179588/
https://www.top500.org/system/179588/
https://doi.org/10.2197/ipsjjip.24.416
https://doi.org/10.2197/ipsjjip.24.416
https://doi.org/10.1145/2567634.2567639
https://doi.org/10.1145/2567634.2567639

A Appendix xiv

A Appendix

A.1 TasGPI worker workflow

1 while(true) {
2 while(has_work_available()) {
3 set_state(PROCESSING)
4 process(get_N())
5 StealStrategy.process_steal_requests()
6 StealStrategy.decline_pending_steal_requests()
7 }
8

9 set_state(STEALING)
10 if (StealStrategy.attempt_random_steals()) {
11 resume_processing()
12 }
13 if (StealStrategy.activate_lifelines()) {
14 resume_processing()
15 }
16

17 set_state(IDLE)
18 while(true) {
19 if (StealStrategy.implements_lifeline_poll()) {
20 StealStrategy.poll_lifelines()
21 }
22 if (has_work_available()) {
23 resume_processing()
24 }
25

26 StealStrategy.decline_pending_steal_requests()
27

28 if (TerminationStrategy.has_terminated()) {
29 return_to_runtime();
30 }
31 wait_for_work(MAX_POLL_TIME)
32 }
33 }

Listing A.1: TasGPI workers work loop in pseudocode.

A Appendix xv

A.2 UTS benchmark raw data

Places TasGPI Ditglbsw-Locopt0 Ditglbsw-Locopt1 Ditglbsw-Locopt2
1 2349.32 2969.52 2868.13 2849.31
2 1180.06 1473.33 1493.04 1464.94
4 592.88 759.31 751.34 755.24
8 300.72 372.76 372.28 370.1
16 153.16 192.27 191.76 191.3
32 80.99 99.51 98.99 98.9

Table A.1: UTS: Raw runtime data for d=20 (in seconds)

Places TasGPI Ditglbsw-Locopt0 Ditglbsw-Locopt1 Ditglbsw-Locopt2
1 549.65 729.71 730.67 737.11
2 300.44 368.79 370.60 368.49
4 152.51 189.41 188.38 188.66
8 80.11 95.53 94.58 93.68
16 42.85 48.90 50.05 48.73
32 25.71 26.22 26.26 25.61

Table A.2: UTS: Raw runtime data for d=19 (in seconds)

Places TasGPI Ditglbsw-Locopt0 Ditglbsw-Locopt1 Ditglbsw-Locopt2
1 155.13 180.68 180.97 182.03
2 79.14 95.24 93.58 92.34
4 41.92 47.33 47.19 46.88
8 23.81 24.09 24.05 23.77
16 14.78 12.82 12.84 12.77
32 13.44 7.46 7.55 7.5

Table A.3: UTS: Raw runtime data for d=18 (in seconds)

A Appendix xvi

Places TasGPI Ditglbsw-Locopt0
1 44.50 46.3
2 22.87 23.22
4 13.58 12.41
8 10.15 6.54
16 9.87 3.84
32 14.0 32.93

Table A.4: UTS: Raw runtime data for d=17 (in seconds)

A Appendix xvii

A.3 Monte-Carlo benchmark raw data

Places TasGPI Ditglb
1 1008.55 2453.0397
2 505.466 1202.66986
4 307.62 584.15674
8 130.136 290.760836
16 66.384 150.592266666667
32 33.364 70.77674

Table A.5: Monte-Carlo: Raw runtume data for large configuration (1.649 267 4×1012)
in seconds

Places TasGPI Ditglb
1 15.922 34.03
2 8.94 16.03
4 5.192 6.51
8 3.422 3.21
16 2.474 1.83
32 2.214 1.39

Table A.6: Monte-Carlo: Raw runtume data for small configuration (2 576 980 377)
in seconds

A Appendix xviii

A.4 Completion with error (Mellanox)

mlx5: node45-001.cm.cluster: got completion with error:
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
0000001e 00000000 00000000 00000000
00000000 00008813 1201e912 011a89d3

Listing A.2: A Completion With Error message obtained on the Goethe cluster.

The errors structure is described at [49, p. 117ff]. More information can be found

at [3, p. 526ff].

	Contents
	Index of abbreviations
	Introduction
	Background
	The PGAS model
	APGAS
	RDMA
	GPI-2
	Segments
	One-sided communication
	Weak synchronization
	Collective communication
	Atomic operations
	Fault tolerance

	Global Load Balancing
	Dynamic Independent Tasks
	Lifeline Graphs
	The GLB algorithm
	Multi-Worker GLB

	Concepts of TasGPI
	Implementation of TasGPI
	Using TasGPI
	Overview
	Worker logic
	Steal behaviour in distributed memory
	General procedure
	Attempt random steals
	Process pending steal requests
	Reject pending steal requests
	Activate lifelines
	Poll lifelines
	Initialize lifelines dynamic

	Steal behaviour in shared memory
	Termination detection
	Steal queue using RDMA

	Experiments
	Unbalanced Tree Search
	Monte-Carlo Simulation
	Benchmark environments
	Results
	Discussion

	Related work
	Conclusion
	List of Figures
	List of Tables
	List of Listings
	Bibliography
	Appendix
	TasGPI worker workflow
	UTS benchmark raw data
	Monte-Carlo benchmark raw data
	Completion with error (Mellanox)

