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MOTIVATION

O Hardware resources of today’s supercomputers are typically managed in a static way o
IS

1 Users submit their programs as jobs, specifying a fixed set of resources and time not actively

managed

‘/[)Yistributed
% File System

1 A resource manager decides when to start which job on which nodes

O This node-oriented, static resource management needs to be addressed

X Resource managers are inflexible in scheduling jobs T [ :/
X Programs cannot change their resources to meet their changing needs of different phases Queue
. . . . . Job
X Uncontrolled dynamic changes of resources affect program execution times in unpredictable ways Job
. o . o . . . Job
> This project envisions elastic resource management via Asynchronous Many-Task (AMT) programming Resource Manager (Job Scheduler)
v New resources can be integrated into running jobs and resources can be released from running jobs Job pECE
v Resource change requests can be initiated from either the resource manager side and the program side & ........................ &
User User User

PROGRAM SIDE: ASYNCHRONOUS MANY-TASK (AMT): CURRENT STATUS
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APGAS Runtime Figure 3: AMT: Evolving resource allotments [4]

Figure 2: AMT: Lifecycle elastic program [3]

Figure 1: AMT: Elastic architecture [3]

RESOURCE MANAGER SIDE: SIMULATIONS: CURRENT STATUS [1, 3, 5]

840

~ avgAgree
backflll has 836. 54 h avgPool
820 - 5 5 5 5 avgSteal

IIO iS | | |
activley minAgree
managed 1 800 minPool
o minSteal

Distributed

backflll has 86. 02%

L 3 3 3 3 | 3 3 refA ree
% % File System 780 P &

prefPool

760 - prefSteal

Time in Hours

RM to Job:

Expand Request
Request Job 720 ¢

Job
Job 700

Resource Manager (Job Scheduler)

Average Node Utilization in Percent

10 20 30 40 50 60 70 80 90 100
Percentage of Malleable Jobs Percentage of Malleable J ObS

Figure 4: Supercomputer: Elastic architecture Figure 5: Simulations: Overall completion time [5] Figure 6: Simulations: Average node utilization [5]

ROAD MAP PROJECT INFORMATION

= Elastic Asynchronous Many-Task (AMT) runtime system O Aggregation of several (future) projects in Germany and Japan
O Status: Prototyped with APGAS for Java [2, 4] O Main Project Members:
O Next Step: Move to C++ using MPI Sessions O Jonas Posner, University of Kassel, Germany
= Elastic job scheduling algorithms O Patrick Finnerty, Kobe University, Japan
O Status: Evaluated via simulations [5] 1. Funding Source: Central Research Fund (ZFF)
O Next Step: Use real supercomputer log traces O  Runtime: 2022 — 2023

= Interaction between AMT runtime and resource manager 2. Funding Source: Deutsche Forschungsgemeinschatt (DFG)
O Status: Prototyped with Java [3] O  Runtime: 2024 — 2027
O Next Step: Extend Slurm supporting elasticity interactions ? Status: Under review

METHODOLOGY

O Development of innovative algorithms to enable resource elasticity O Evaluations via both simulations and real-world experiments
O Implementation of prototypical AMT runtimes in Java and C++ O Improvement and combination of the techniques step-by-step
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