[=]

PROJECT WAGOMU:
ELASTIC HPC RESOURCE MANAGEMENT

JONAS POSNER AND PATRICK FINNERTY EI

University of Kassel (Germany) jonas.posner@uni-kassel.de | Kobe University (Japan) finnerty.patrick@fine.cs.kobe-u.ac.jp

o
i3

MOTIVATION

O Hardware resources of today’s supercomputers are typically managed in a static way o
IS

1 Users submit their programs as jobs, specifying a fixed set of resources and time not actively

managed

‘/[)Yistributed
% File System

1 A resource manager decides when to start which job on which nodes

O This node-oriented, static resource management needs to be addressed

X Resource managers are inflexible in scheduling jobs T [:/
X Programs cannot change their resources to meet their changing needs of different phases Queue
. Job
X Uncontrolled dynamic changes of resources affect program execution times in unpredictable ways Job
. o . o . . . Job
> This project envisions elastic resource management via Asynchronous Many-Task (AMT) programming Resource Manager (Job Scheduler)
v New resources can be integrated into running jobs and resources can be released from running jobs Job pECE
v Resource change requests can be initiated from either the resource manager side and the program side & &
User User User

PROGRAM SIDE: ASYNCHRONOUS MANY-TASK (AMT): CURRENT STATUS

Implements what to do
before/after malleable
reconfiguration

Batch Job

rogram-specific hedul % 3 | L B e— —]
Coordinates procedures (prog P) Scheduler % wb b ... Heurf—:"ll");esi 7777777777777777777 .
between the program and % Heur—CPU
the malleable runtime 4 Malleable “malleable ready” “malleable stop” = 127 A B | -
\ . ; ; ;
Handler Impl %"3 L s [s s S [| IR i
Implements the “shrink 2” O 8
communication " Program) « 6+ b i
protocol with the batch - “released grow 1 R R N o N R R N i R | |
job scheduler (modular) \ host-foo host-baz Q |
Malleable host-bar” g 2)5 AN USRS S AN SNSRI SUNNS S NN S | S— i
Communicator : Z 0 ; ; i i i ;
0 o0 100 150 200 250 300 300 400
Batch Job Socket Malleable : SR
Scheduler Communicator ; Malleable phase Termination Running time in seconds

APGAS Runtime Figure 3: AMT: Evolving resource allotments [4]

Figure 2: AMT: Lifecycle elastic program [3]

Figure 1: AMT: Elastic architecture [3]

RESOURCE MANAGER SIDE: SIMULATIONS: CURRENT STATUS [1, 3, 5]

840

~ avgAgree
backflll has 836. 54 h avgPool
820 - 5 5 5 5 avgSteal

IIO iS | | |
activley minAgree
managed 1 800 minPool
o minSteal

Distributed

backflll has 86. 02%

L 3 3 3 3 | 3 3 refA ree
% % File System 780 P &

prefPool

760 - prefSteal

Time in Hours

RM to Job:

Expand Request
Request Job 720 ¢

Job
Job 700

Resource Manager (Job Scheduler)

Average Node Utilization in Percent

10 20 30 40 50 60 70 80 90 100
Percentage of Malleable Jobs Percentage of Malleable J ObS

Figure 4: Supercomputer: Elastic architecture Figure 5: Simulations: Overall completion time [5] Figure 6: Simulations: Average node utilization [5]

ROAD MAP PROJECT INFORMATION

= Elastic Asynchronous Many-Task (AMT) runtime system O Aggregation of several (future) projects in Germany and Japan
O Status: Prototyped with APGAS for Java [2, 4] O Main Project Members:
O Next Step: Move to C++ using MPI Sessions O Jonas Posner, University of Kassel, Germany
= Elastic job scheduling algorithms O Patrick Finnerty, Kobe University, Japan
O Status: Evaluated via simulations [5] 1. Funding Source: Central Research Fund (ZFF)
O Next Step: Use real supercomputer log traces O Runtime: 2022 — 2023

= Interaction between AMT runtime and resource manager 2. Funding Source: Deutsche Forschungsgemeinschatt (DFG)
O Status: Prototyped with Java [3] O Runtime: 2024 — 2027
O Next Step: Extend Slurm supporting elasticity interactions ? Status: Under review

METHODOLOGY

O Development of innovative algorithms to enable resource elasticity O Evaluations via both simulations and real-world experiments
O Implementation of prototypical AMT runtimes in Java and C++ O Improvement and combination of the techniques step-by-step

REFERENCES

J. Posner and P. Finnerty. Project Wagomu. 2024. URL: https://github.com/ProjectWagomu.

P. Finnerty, R. Takaoka, T. Kanzaki, and J. Posner. “Malleable APGAS Programs and their Support in Batch Job Schedulers”. In: Euro-Par AMTE. 2023. DOI: 10.1007/978-3-031-48803~-0_8.

P. Finnerty, J. Posner, J. Biirger, L. Takaoka, and T. Kanzaki. “On the Performance of Malleable APGAS Programs and Batch Job Schedulers”. In: SNCS. 2024. DOI: 10.1007/s42979-024-02641-7.
J. Posner, R. Goebel, and P. Finnerty. “Evolving APGAS Programs: Automatic and Transparent Resources Adjustments at Runtime”. In: WAMTA. 2024. To appear.

J. Posner, F. Hupfeld, and P. Finnerty. “Enhancing Supercomputer Performance with Malleable Job Scheduling Strategies”. In: Euro-Par PECS. 2023. DOI: 10.1007/978-3-031-48803-0_14.

mailto:jonas.posner@uni-kassel.de
mailto:finnerty.patrick@fine.cs.kobe-u.ac.jp
https://github.com/ProjectWagomu
https://doi.org/10.1007/978-3-031-48803-0_8
https://doi.org/10.1007/s42979-024-02641-7
https://doi.org/10.1007/978-3-031-48803-0_14

