Hierarchical distributed scenario-based model predictive control of interconnected microgrids

Alissa Schenk and Christian A. Hans | TU Berlin and University of Kassel
Electric power networks are changing

Today

Future

Energy systems are changing

- Increasing amount of renewable generators
- Transition
 - from a small number of large-scale units
 - to a large number of small-scale units
- Uncertainty in generation will increase with installed renewable units

⇒ Need to cope with fluctuations and changing structure

Sources: [Kohleausstiegsgesetz, 2020, Erneuerbare-Energien-Gesetz, 2021]
Future power networks

Conventional RES Storage Load

MG 1 MG 2

MG 4 MG 3

Grid coupling

MG 1 → MG 2 → MG 3 → MG 4
Existing certainty equivalence hierarchical distributed MPC [Hans et al., 2019]
Novel scenario-based hierarchical distributed MPC [Schenck and Hans, 2024]

Contents

Control-oriented model

Control approach

Case study

Conclusions
Modelling of uncertainties

\[\begin{align*}
&\text{– Probabilities of tree (by design)} \\
&\quad \text{• Probabilities of stage } j \in \mathbb{N}_{[0,J]} \\
&\quad \quad \sum_{m \in \text{nodes}_i(j)} \pi^{(m)} = 1 \quad (1a) \\
&\quad \text{• Probabilities of child nodes of ancestor } m \in \mathcal{M}_i \setminus \text{nodes}_i(J) \\
&\quad \quad \sum_{m_+ \in \text{child}_i(m)} \pi^{(m_+)} = \pi^{(m)} \quad (1b) \\
&\text{– Nonanticipativity constraint} \\
&\quad v_i^{(m)} = v_i^{(n)} \quad \forall n \in \text{child}_i(\text{anc}_i(m)). \quad (2)
\end{align*} \]
Power- and setpoint-related constraints

- Renewable energy sources
 \[
 p_{r,i}^{\text{min}} \leq u_{r,i}^{(m)} \leq p_{r,i}^{\text{max}}, \quad (3a)
 \]
 \[
 p_{r,i}^{\text{min}} \leq p_{r,i}^{(m)} \leq p_{r,i}^{\text{max}}. \quad (3b)
 \]

- Storage units
 \[
 p_{s,i}^{\text{min}} \leq u_{s,i}^{(m)} \leq p_{s,i}^{\text{max}}, \quad (4a)
 \]
 \[
 p_{s,i}^{\text{min}} \leq p_{s,i}^{(m)} \leq p_{s,i}^{\text{max}}. \quad (4b)
 \]

- Conventional rotating units
 \[
 \text{diag}(p_{t,i}^{\text{min}}) \delta_{t,i}^{(m)} \leq u_{t,i}^{(m)} \leq \text{diag}(p_{t,i}^{\text{max}}) \delta_{t,i}^{(m)}, \quad (5a)
 \]
 \[
 \text{diag}(p_{t,i}^{\text{min}}) \delta_{t,i}^{(m)} \leq p_{t,i}^{(m)} \leq \text{diag}(p_{t,i}^{\text{max}}) \delta_{t,i}^{(m)}. \quad (5b)
 \]

- Point of common coupling (PCC)
 \[
 p_{g,i}^{\text{min}} \leq p_{g,i}(j) \leq p_{g}^{\text{max}}. \quad (6)
 \]
Modelling of dynamical system behaviour

- Storage dynamics and limits
 \[x_i^{(m)} = x_i^{(m-)} - T_s p_{s,i}^{(m)} \]
 \[x_i^{\min} - \sigma_i^{(m)} \leq x_i^{(m)} \leq x_i^{\max} + \sigma_i^{(m)} \]

- Steady-state approximations of lower control layers
 - Power limit of renewable energy sources
 \[p_{r,i}^{(m)} = \min(u_{r,i}^{(m)}, w_{r,i}^{(m)}) \]
 - Power sharing of grid-forming storage & conventional
 \[\text{diag}(\mathcal{X}_{i,1}, \ldots, \mathcal{X}_{i,T_i})^{-1}(p_{r,i}^{(m)} - u_{r,i}^{(m)}) = \rho_i^{(m)} \delta_{t,i}^{(m)} \]
 \[\text{diag}(\mathcal{X}_{i,(T_i+1)}, \ldots, \mathcal{X}_{i,(T_i+S_i)})^{-1}(p_{s,i}^{(m)} - u_{s,i}^{(m)}) = \rho_i^{(m)} \mathbf{1}_{S_i} \]
 - Power controller at the PCC
 \[p_{g,i}(\text{stage}_{i}^{(m)}) = -(1_{R_i}^T p_{r,i}^{(m)} + 1_{T_i}^T p_{r,i}^{(m)} + 1_{S_i}^T p_{s,i}^{(m)} + 1_{D_i}^T w_{d,i}^{(m)}) \]

Decision variables of MG \(i \in \mathbb{I} \)

<table>
<thead>
<tr>
<th>Control input</th>
<th>(\mathbf{v}i = [u{t,i}^T, u_{s,i}^T, u_{r,i}^T, \delta_{t,i}^T]^T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>(\mathbf{p}i = [p{t,i}^T, p_{s,i}^T, p_{r,i}^T, p_{g,i}]^T)</td>
</tr>
<tr>
<td>Stored energy</td>
<td>(x_i)</td>
</tr>
<tr>
<td>Uncertain input</td>
<td>(w_i = [w_{d,i}^T, w_{r,i}^T]^T)</td>
</tr>
</tbody>
</table>
Modelling of interconnecting power lines

- DC power flow approximations for AC grids [Purchala et al., 2005].

\[
\begin{bmatrix}
 p_{e,1}(j) \\
 p_{e,2}(j) \\
 p_{e,3}(j) \\
 p_{e,4}(j)
\end{bmatrix}
=
\begin{bmatrix}
 0 & 1 & 0 & 0 \\
 0 & 0 & 2/3 & 1/3 \\
 0 & 0 & 1/3 & 2/3 \\
 0 & 0 & -1/3 & 1/3
\end{bmatrix}
\begin{bmatrix}
 p_{g,1}(j) \\
 p_{g,2}(j) \\
 p_{g,3}(j) \\
 p_{g,4}(j)
\end{bmatrix}
\]

(12a)

\[0 = 1_i^T p_g(j)\]
(12b)

- Line power limit

\[p_e^{\text{min}} \leq p_e(j) \leq p_e^{\text{max}}.\]
(12c)
Operating costs

- Costs of individual MGs

\[
\ell_i = \sum_{m \in I_i} \pi_j^{(m)} (\ell_{r,i}^{(m)} + \ell_{s,i}^{(m)} + \ell_{t,i}^{(m)} + \ell_{sw,i}^{(m)} + \ell_{g,i}^{(m)}) \gamma^{\text{stage}_i(m)}. \tag{13}
\]

- Cost for power transmission

\[
\ell_e = \sum_{j=1}^{J} p_{e}(j) C_{e} p_{e}(j) \cdot \gamma^{j}. \tag{14}
\]
Contents

Control-oriented model

Control approach

Case study

Conclusions
Problem 1 (Central mixed-integer MPC)

minimize $\ell_e + \sum_{i \in \mathbb{I}} \ell_i$

subject to
eqs. (2) to (12) for all $m \in \mathbb{I}_i$
as well as initial conditions $x_{i}^{(0)} = x_i(k)$, $\delta_{t,i}^{(0)} = \delta_{t,i}(k)$
for all $i \in \mathbb{I}$.

Does not scale well

Mean solver time for simple example grid already > 2 minutes
Problem 2 (Central relaxed problem MPC)

\[
\begin{align*}
\text{minimize} & \quad \ell_e + \sum_{i \in I} \ell_i \\
\text{subject to} & \quad \text{eqs. (2) to (12) for all } m \in \mathbb{L}_i \\
& \quad \text{as well as initial conditions } x_i^{(0)} = x_i(k), \, \delta_{t,i}^{(0)} = \delta_{t,i}(k) \\
& \quad \text{with } \delta_{t,i}^{(m)} \in [0, 1]^{T_i} \text{ and } \delta_{r,i}^{(m)} \in [0, 1]^{R_i} \text{ for all } m \in \mathbb{L}_i \\
& \quad \text{and all } i \in I.
\end{align*}
\]
Algorithm 1 (Hierarchical distributed MPC)

1. **Initialize:** At time k, $\forall i \in \mathbb{I}$, measure $x_i(k), \delta_{t,i}(k)$ and obtain scenario tree.
2. **ADMM loop:** for $l = 0, \ldots, l_{\text{max}} \in \mathbb{N}$:

 (i) For all MGs $i \in \mathbb{I}$ (in parallel):

 \Rightarrow Solve Problem 3 in parallel to obtain $P_{g,i}^{l+1}$.

 \Rightarrow Send $P_{g,i}^{l+1}$ to central entity.

 (ii) Central entity:

 \Rightarrow Solve Problem 4 to obtain $\hat{P}_{g,i}^{l+1}$.

 \Rightarrow Update Lagrange multipliers:

 $\Lambda^{l+1}_i = \Lambda^l_i + \kappa (P_{g,i}^{l+1} - \hat{P}_{g,i}^{l+1})$.

 \Rightarrow Communicate $\hat{P}_{g,i}^{l+1}$ and Λ^{l+1}_i to all MGs $i \in \mathbb{I}$.

 \Rightarrow Check termination criterion:

 if $(|\Lambda^l_i - \Lambda^{l+1}_i| < \epsilon$ and $|P_{g,i}^{l+1} - P_{g,i}^{l+1}| < \epsilon$ and $|P_{g,i}^{l+1} - \hat{P}_{g,i}^{l+1}| < \epsilon)$ or $l = l_{\text{max}}$,

 then set $P_{g,i}^* = \hat{P}_{g,i}^{l+1}$ and go to 3.

3. **Mixed-integer update:** For all microgrid (MG) $i \in \mathbb{I}$ (in parallel):

 - Solve Problem 5.
Algorithm 1 (Hierarchical distributed MPC)

1. **Initialize:** At time k, $\forall i \in \mathbb{I}$, measure $x_i(k)$, $\delta_{t,i}(k)$ and obtain scenario tree.

2. **ADMM loop:** for $l = 0, \ldots, l_{\text{max}} \in \mathbb{N}$:
 (i) For all MGs $i \in \mathbb{I}$ (in parallel):
 » Solve Problem 3 in parallel to obtain $\hat{P}_{g,i}^{l+1}$.
 » Send $\hat{P}_{g,i}^{l+1}$ to central entity.
 (ii) Central entity:
 » Solve Problem 4 to obtain \hat{P}_{g}^{l+1}.
 » Update Lagrange multipliers:
 \[\Lambda_{l+1}^{i} = \Lambda_{l}^{i} + \kappa \left(\hat{P}_{g,i}^{l+1} - \hat{P}_{g,i}^{l+1} \right) \]

 » Communicate $\hat{P}_{g,i}^{l+1}$ and Λ_{l+1}^{i} to all MGs $i \in \mathbb{I}$.
 » Check termination criterion:
 \[\left| \Lambda_{l}^{i} - \Lambda_{l+1}^{i} \right| < \epsilon \]
 \[\left| \hat{P}_{g,i}^{l+1} - \hat{P}_{g,i}^{l+1} \right| < \epsilon \]
 \[\left| \hat{P}_{g,i}^{l+1} - \hat{P}_{g,i}^{l+1} \right| < \epsilon \]

 if $l = l_{\text{max}}$

3. **Mixed-integer update:** For all MG $i \in \mathbb{I}$ (in parallel):
 • Solve Problem 5.
Algorithm 1 (Hierarchical distributed MPC)

1. **Initialize:** At time k, $\forall i \in \mathbb{I}$, measure $x_i(k)$, $\delta_{t,i}(k)$ and obtain scenario tree.

2. **ADMM loop:** for $l = 0, \ldots, l_{\text{max}} \in \mathbb{N}$:

 (i) For all MGs $i \in \mathbb{I}$ (in parallel):

 - Solve Problem 3 in parallel to obtain $P_{g,i}^{l+1}$.
 - Send $P_{g,i}^{l+1}$ to central entity.

 (ii) Central entity:

 - Solve Problem 4 to obtain $\hat{P}_{g,i}^{l+1}$.
 - Update Lagrange multipliers:
 $$\Lambda_{i}^{l+1} = \Lambda_{i}^{l} + \kappa (P_{g,i}^{l+1} - \hat{P}_{g,i}^{l+1}).$$
 - Communicate $\hat{P}_{g,i}^{l+1}$ and Λ_{i}^{l+1} to all MGs $i \in \mathbb{I}$.
 - Check termination criterion:

 if $|\Lambda_{i}^{l} - \Lambda_{i}^{l+1}| < \epsilon$ and $|P_{g,i}^{l} - P_{g,i}^{l+1}| < \epsilon$ and $|P_{g,i}^{l+1} - \hat{P}_{g,i}^{l+1}| < \epsilon$ or $l = l_{\text{max}}$,

 then set $P_{g,i}^{*} = \hat{P}_{g,i}^{l+1}$ and go to 3.

3. **Mixed-integer update:** For all MG $i \in \mathbb{I}$ (in parallel):

 - Solve Problem 5.

Problem 5 (Mixed-integer update at MG $i \in \mathbb{I}$)

$$\minimize_{\ell_{i}} \ell_{i}$$

subject to
eqs. (2) to (5) and (7) to (11) for all $m \in \mathbb{I}_{i}$, as well as initial conditions $x_{i}^{(0)} = x_{i}(k)$, $\delta_{t,i}^{(0)} = \delta_{t,i}(k)$ with fixed $P_{g,i}^{*} = P_{g,i}^{x}$.
Contents

Control-oriented model

Control approach

Case study

Conclusions
Closed-loop simulation results of novel approach

(a) MG 1
(b) MG 2
(c) MG 4
(d) MG 3
(e) Stored energy
(f) Grid power

Power in pu
Time in d
Energy in pu h
Stored energy out of desired area
Numerical comparison

<table>
<thead>
<tr>
<th></th>
<th>Certainty equival.</th>
<th>Stochastic (Alg. 1)</th>
<th>Prescient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renewable energy in pu h</td>
<td>318.1</td>
<td>333.8</td>
<td>334.0</td>
</tr>
<tr>
<td>Conventional energy in pu h</td>
<td>61.0</td>
<td>45.2</td>
<td>45.9</td>
</tr>
<tr>
<td>No. of switching actions</td>
<td>46</td>
<td>40</td>
<td>29</td>
</tr>
<tr>
<td>Costs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MG 1</td>
<td>1 652.8</td>
<td>1 005.9</td>
<td>786.8</td>
</tr>
<tr>
<td>MG 2</td>
<td>1 366.1</td>
<td>774.2</td>
<td>607.7</td>
</tr>
<tr>
<td>MG 3</td>
<td>2 000.2</td>
<td>1 086.1</td>
<td>1 003.8</td>
</tr>
<tr>
<td>MG 4</td>
<td>1 755.3</td>
<td>1 154.3</td>
<td>1 109.9</td>
</tr>
<tr>
<td>Transmission</td>
<td>21.7</td>
<td>19.0</td>
<td>18.7</td>
</tr>
<tr>
<td>Sum</td>
<td>6 796.1</td>
<td>4 039.5</td>
<td>3 527.0</td>
</tr>
</tbody>
</table>
Numerical properties

Algorithm 1

- Only 0.3% higher costs compared to Problem 1
- Solve time:
 - Mean: 9 s (vs. 127 s of Problem 1)
 - Maximum: 223 s
Contents

Control-oriented model

Control approach

Case study

Conclusions
Conclusions

– Scenario-based stochastic MPC scheme for the operation of interconnected MGs
– Distributed algorithm that reflects the hierarchical power system structure
 • local controllers are in charge of individual MGs
 • central entity is in charge of the transmission grid
– Better than certainty equivalence MPC concerning number of constraint violations and costs
– Sufficiently fast convergence

Next steps:
– Scalability
– Suboptimality
– Persistent feasibility
References

Scenario-based model predictive control of stochastic constrained linear systems.

Deutscher Bundestag (2020).
Gesetz zur reduzierung und zur beendigung der kohleverstromung und zur änderung weiterer gesetze (kohleausstiegsgesetz).

Gesetz für den ausbau erneuerbarer energien (Erneuerbare-Energien-Gesetz, EEG 2021).

Operation control of islanded microgrids.
Shaker Verlag.

Hierarchical distributed model predictive control of interconnected microgrids.
References II
