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Abstract. This paper investigates regional convergence in unified Germany for the period 
1992-2000. We adopt a spatial econometric approach on the basis of an extended Solow 
model. If spatial dependence across regions turns out to be substantial, its ignorance leads to 
biased and inconsistent estimates of the convergence rate and impacts of control variables; in 
case of a nuisance dependence biased estimates of standard errors would mislead statistical 
inference. In the parsimonious spatial setting proposed here, we allow for higher order 
spatial lags as well as mixed forms of spatial dependencies across regions. On the basis of 
this framework findings on ß-convergence are presented for unified Germany. 
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1. Introduction 

 

The issue on whether poor countries and regions tend to catch-up richer economies plays a 

prominent role in growth theory. The so-called convergence debate has originally arisen from 

predictions of neo-classical growth theory (Baumol, 1986) but is nowadays lead by contrary 

propositions of endogenous growth theory. Influential articles on the convergence of countries 

and US regions stem from Barro and Sala-I-Martin (1991), Mankiw, Romer and Weil (1992), 

Islam (1995) and Bernhard and Jones (1996a, 1996b). Armstrong (1995) and Fingleton (1999) 

have studied convergence across European regions. The papers of Seitz (1995), Schalk and 

Untiedt (1996), Bohl (1998), Funke and Strulik (1999) and Niebuhr (2001) address the issue 

of regional income convergence to West Germany. Barrell and te Velde (2000) and Funke and 

Strulik (2000) provide evidence on East-West convergence in unified Germany. 

For testing the convergence hypothesis different econometric approaches have been 

employed which comprise traditional cross-section regressions, panel econometric methods 
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and Markov chains. Although single papers pointed to the spatial dimension of growth 

processes (e.g. Armstrong, 1995), for a long time no spatial effects have explicitly been taken 

into account in convergence studies. The crucial question is not whether a growth impetus 

comes to a halt at a regional border but how strong its effect will be. Are spatial effects in 

convergence analysis sufficiently strong that they really matter? What changes are involved if 

spatial effects will explicitly taken into account in econometric growth analysis? Rey and 

Montouri (1999) first addressed these questions when investigating US regional income 

convergence. They showed that ignorance of spatial effects is not justified in general. The 

consequences of theirs ignorance depend on the kind of spatial dependence which is actually 

present in the growth process. 

This paper adopts a spatial econometric perspective for testing the convergence hypothesis 

for unified Germany. For West Germany both absolute and conditional income convergence 

is strongly reported by nearly all growth studies. Regarding unified Germany econometric 

evidence is missing. Just recently regionally disaggregated data on economic growth for a 

short decade are available from official statistic sources which enables us to trace the 

economic development in unified Germany up to now in a spatial econometric setting. 

Although not explicitly distinguished in neo-classical growth theory, a differentiation between 

income per capita and labour productivity turns out to be highly relevant for assessing 

German regional convergence. Econometrically, the existing spatial approaches are extended 

by choosing a general spatial model as suitable framework for growth analysis. It turns out 

that the usually employed spatial lag or spatial error model can fall short in catching spatial 

dependence in convergence models. For model identification we mainly make use of robust 

LM diagnostics (Bera and Yoon, 1993) which have been shown to be superior compared to 

traditional criteria (see Anselin and Florax, 1995) applied up to now in spatial convergence 

analysis.  

The paper is organised as follows. In Section 2 the human capital augmented Solow model 

as the base for convergence analysis is outlined. Section 3 deals with spatial econometric 

modelling issues. Alternative models and diagnostics for spatial dependence are presented. 

Section 4 contains a description of the regional data set. Section 5 offers an exploratory 

analysis on spatial dependence of the variables employed. Results on convergence are 

discussed in detail in Section 6. Section 7 concludes. 
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2. Growth Theoretic Basis 

 

In empirical studies of growth human capital has proved to provide a significant 

contribution in explaining the variation of labour productivity even in a neoclassical 

modelling framework (see e.g. Mankiw, Romer and Weil, 1992; Seitz, 1995; Islam, 1995; 

Niebuhr, 2001).. Stressing the importance of human capital as an input factor, Lucas (1988) 

modelled the production function for human capital different from that for other goods. Here 

we adopt the view of Mankiw, Romer and Weil (1992, pp. 416) who suppose that both 

production functions are not fundamentally different (see also Romer, 1996, pp. 126). 

The regional production functions in the augmented Solow model are of type Cobb-

Douglas:1 

(2.1) âá1âá L(t)][A(t)H(t)K(t)Y(t) −−⋅= . 

Y, K, H, A, and L denote the production, physical capital, human capital, level of technology 

and labour input of a region considered at time t, respectively; A⋅L  denotes the regional 

labour input in efficiency units. The parameters α  and )1â1,0á(0 â <<<<  are the 

production elasticities of physical and human capital; 1-α-ß >0 is the elasticity of labour 

input. On competitive markets the input factors are paid by their marginal products. Labour L 

and the level of technology A are assumed to grow exogenously at rates n and g. While 

technology growth g is supposed to be uniform in all regions of the economy, the growth rate 

of population, n, generally differs from region to region. 

To trace the evolution of production, physical and human capital in the economy we define 

the variables in efficiency units of labour: 

      ,L)Y/(Aŷ ⋅= L)K/(Ak̂ ⋅=  and L)H/(Aĥ ⋅= . 

With constant fractions of income invested in physical and human capital, ks  and hs , a 

regional economy evolves according to the differential equations2 

(2.2) (t)k̂ä)g(n(t)ŷs(t)k̂ k ⋅++−⋅=&  

and 

(2.3) (t)ĥ)g(n(t)ŷs(t)ĥ hi ⋅++−⋅= δ& , 

                                                 
1 It is assumed that (2.1) underlies the production of consumption, physical and human capital. The goods can be 

transformed costless in either of each utilisation. 
2 A dot above a variable describes its derivation with respect to time: .dt/dxx =&  
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where δ denotes the uniform depreciation rate of physical and human capital. If there are 

decreasing returns to “aggregate” capital ( 1âá <+ ), a region converges to its steady-state 

(2.4) â)á1/(1
â
h

-â1
k )

ägn

ss
(k̂ −−∗

++
=  

and 

(2.5) â)á1/(1
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h
á
k )

ägn
ss

(ĥ −−
−

∗

++
=  

in which the relation 

(2.6) ) â)á1/(1
âá

â
h

á
ktg

ä)g(n

ss
(eA(0)y −−

+
⋅∗

++
⋅=  

with y=Y/L holds for labour productivity. Since the parameters n, g and δ as well as the 

quantities s k  and hs  can differ from region to region, only conditional convergence applies in 

general. Unconditional convergence would presuppose a catching-up by poorer regions 

without a need to control for regional-specific differences. 

Barro and Sala-i-Martin (1999, pp. 87) have shown how the evolution of labour 

productively can be traced for an economy outside the steady-state in the Solow model. In the 

case of the augmented Solow model the same dynamic equation results (Mankiw, Romer, 

Weil, 1992, pp. 422; Romer, 1996, pp. 139). By a Taylor series expansion around the steady 

state, one gets3,  

(2.7) (0)ŷln eŷln )e(1)(ŷln tëtë ⋅+⋅−= −∗−t , 

where the parameter )( 0ë ë >  is the rate of convergence. Using equation (2.6) it can be 

shown that the growth of labour productivity, [ ](0)ŷ / (t)ŷln , is a function of the model 

parameters determining the steady state and of its initial level )0(ŷ : 

(2.8) h
të

k
të sln 

âá1
á

)e(1sln 
âá1

á
)e(1(0)]ŷ(t)/ŷln[

−−
−+

−−
−= ⋅−⋅−  

                                (0)ŷln  )e(1ä)g(nln 
âá1

âá
)e(1 tëtë ⋅−⋅− −−++

−−
+

−− . 

According to the transition equation (2.8) the growth of labour productivity is positively 

related to the accumulation rates of physical and human capital and negatively related to the 

                                                 
3 Only the steady state value *ŷ  of the production per efficiency unit labour (eq. 2.6) is different determined. 
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sum of the exogenous quantities n, g and δ and the initial level of labour productivity. The 

latter effect implies that a regional economy will grow the faster towards its steady state the 

farer away it is from it in the starting position. A catching-up seems to be possible for poorer 

regions, but absolute convergence can only be expected if economic conditions tend to 

equalise across the regions. 

Convergence occurring by a higher growth rate of poorer regions is called ß convergence. In 

case of ß convergence the dispersion of labour productivity does not necessary diminish, since 

disturbances can offset the negative effect of growth rate differences (see e.g. Barro and Sala-

I-Martin, 1999, pp. 383). An equalisation of dispersion across regions characterises the 

concept of σ convergence. It ensues ß convergence but the reverse does not necessarily hold. 

 

 

3. Spatial Econometric Methods 

3.1 Modelling Spatial Processes 

 

In order to study the convergence process empirically, the transition equation (2.8) has to 

be transformed into an appropriate econometric model. Since the cross-sections in this study 

are labour markets, we adopt a spatial econometric modelling approach. Spatial dependence 

can be substantive in the sense that it “follows from the existence of a variety of spatial 

interaction phenomena” or as “a by-product of measurement errors” (Anselin, 1988, p. 11). In 

the first case it has to be captured by spatial lags of the relevant economic variables, whereas 

in the latter the disturbances are spatially autocorrelated. Usually, in spatial econometric 

models only spatial lags in the dependent variable are taken into account, while spatial lagged 

exogenous variables are not explicitly modelled.4  

Here we consider the mixed regressive, spatial autoregressive moving average model 

(spatial ARMAX model) as a general spatial model which allows for both kind of spatial 

dependence.5 Given n spatial units in the economy we can state the convergence equation 

(2.8) in terms of the general spatial model compact in matrix form. Let y be an nx1 vector of 

the dependent variable ln[y(t)/y(0)], X an nx4 observation matrix of the exogenous variables  

                                                 
4 In analogy to time series analysis a spatial econometric model with lagged exogenous variables could be 

termed as a spatial distributed lag model (see e.g. Lauridsen, 2002). As in time series analysis one can argue 
that spatial effects stemming from exogenous variables will be captured by a spatial lagged endogenous 
variable. 

5 Huang (1984) has been the first who has introduced the spatial ARMA model in econometrics. In addition to 
the spatial lags, our model includes control variables (X).  
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1, ln sk, ln sh and ln (n+g+δ), ß an nx4 parameter vector reflecting the effects of the exogenous 

variables on the dependent variable ln[ ]y(t)/y(0)  and εε  an nx1 disturbance vector. The 

autoregressive structure is determined by the AR paramters ρi and nxn spatial weight matrices 

Wi, i=1,2,…,p, whereas the moving average structure is defined by the MA parameters θj and 

nxn spatial weight matrices Wj, j=1, 2,…q. Then the ARMAX(p,q) model of the growth 

equation (2.8) can be presented in the form  

(3.1) y = ρ1⋅W1⋅y + … + ρp⋅Wp⋅y + ß⋅X + εε  + θ1⋅W1⋅εε  + … + θq⋅Wq⋅εε  

with εε ∼N(0, σ2⋅I). From (3.1) one obtains the mixed regressive, spatial autoregressive model 

[ARX(p) model] by imposing the parameter restrictions θ1=θ2=…=θq=0: 

(3.2) y = ρ1⋅W1⋅y + … + ρp⋅Wp⋅y + ß⋅X + εε . 

By contrast, for the parameter restrictions ρ1=ρ2=…=ρp=0 the mixed regressive, spatial 

moving average model [MAX(q) model]  

(3.3) y = ß⋅X + εε  + θ1⋅W1⋅εε  + … + θq⋅Wq⋅εε  + ß⋅X + εε  

results. 

In our regional growth analysis the spatial weight matrices W1, W2, …, Ws, s=p,q are 

considered to be neighbourhood or contiguity matrices. More exactly Wi denotes an ith order 

neighbourhood matrix having only non-zero entries for contiguous regions. Let *
iW  be an nxn 

neighbourhood matrix which entries *
ki,W l take only the values 1 and 0:  

(3.4) 




=
otherwise0

neighboursorderthareandkregionsif1
W*

ki,

il
l . 

The entries of Wi result from a row normalization of *
iW which is done by dividing the 

elements of the kth row of *
iW  by the kth row sum 

l
∑ *

ki,W l . Thus the kth component of the 

nx1 spatial lag vector Wi⋅⋅y renders the mean of the variable Yk in the ith order neighbourhood 

regions of k.6 

Anselin (1998, p.6) brings into prominence that the general spatial model has rarely 

considered in empirical studies. Instead, special cases like the ARX(1) model (first order 

spatial lag model) 

(3.5) y = ρ1⋅W1⋅y + ß⋅X + εε  
                                                 
6 While a first order neighbourhood is defined by two regions having a common border, in an ith order neigh-

bourhood of two regions i-1 regions must lie between them. 
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or the MAX(1) model 

(3.6) y = ß⋅X +θ1⋅W1⋅εε  +  εε . 

have obtained attention in applied spatial econometrics (see e.g. Ord, 1975; Haining, 1988; 

Schulze, 1999; Niebuhr, 2001). The ARX(1) model is conventionally called mixed regressive, 

autoregressive model or spatial lag model. Instead of the moving average error process in 

(3.6) in spatial econometrics traditionally a first order autoregressive process, 

(3.7) εε  = θ1⋅W1⋅εε  + νν , 

is preferred for modelling the spatial error process- (see- Hordijk, 1979; Anselin, 1988, pp. 34; 

LeSage, 1998, pp. 50). In this case the spatial error model, i.e. the linear regression model 

with spatial autoregressive errors, reads  

(3.8) y = ß⋅X + θ1⋅W1⋅εε  + νν .7 

Its equivalent form 

(3.9) y = ß⋅X + (I - θ1⋅W1)-1⋅ νν  = ß⋅X + (I + θ1⋅W1 + 2
1

2
1è W⋅  + 3

1
3
1è W⋅  + …)⋅νν 8 

gains attraction since it shows that a random shock hitting a special region will not only effect 

this region but propagate in space. In order to guarantee diminishing nuisance dependence we 

impose the parameter restriction |θ|<0. A propagation mechanism results likewise from the 

spatial lag model since it can be equivalently represented by an infinite spatial moving 

average error process (Anselin, 1999, p. 7). This opens the possibility to trace spillover effects 

within a spatial modelling frame. 

Usually only first order variants of the general spatial model are used in practice. One 

reason may be  the lack of efficient algorithms in spatial econometric software.9 Add to this 

powerful diagnostics tools for model identification are only available since the mid 90ties (see 

Anselin and Florax, 1995). In view of the former issue and potential multicollinearity the 

estimation of the general spatial model can be simplified if one is willing to allow for spatial 

effects in a condensed form. The contiguity matrix *
12...sW  for neighbourhoods up to the sth 

                                                 
7 The spatial error models (3.6) and (3.8) are observationally equivalent. However, one has to be conscious that 

an identification problem arises if one wishes to combine the spatial lag model (3.5) with the spatial error 
model (3.8) using the same weight matrix (Anselin and Florax, 1995, p. 24). The identification problem does 
not occur in the special variant of the spatial ARMAX model. 

8 The last representation follows from the properties of lag polynomials well-known form time-series analysis 
(see e.g. Franses pp. 32). In contrast to time series analysis, we have to distinguish between the ith order 
weight matrix Wi and the ith power of the weight matrix Wi. 

9 Even at present time the general spatial model can only be applied in SpaceStat (Anselin, 1999) in a restricted 
form with a uniparametric spatial autoregressive error process. 
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order (cumulative contiguity) can be easily calculated from the ith (i=1,2,…s) order 

neigbourhood matrices W1, W2, …, Ws: 

   qp,s,... *
s

*
2

*
1

*
12...s =+++= WWWW . 

Using the row-standardized cumulative contiguity matrix 12...sW  the spatial ARMAX model 

(3.1) simplifies to 

(3.10) y = ρ⋅ 12...pW ⋅y + ß⋅X + θ⋅ 12...qW ⋅εε  + εε .  

In the representation (3.7) ρ and θ are global autoregressive and moving average 

parameters, which comprise spatial effects from 1st up to pth and qth order neighbours, 

respectively. The spatial lag vector 12...pW ⋅y  here contains e.g. the means of all regions up to 

a neighbourhood of pth order so that the autoregressive parameter measures the total effect of 

the dependent variable in the broader defined neighbourhood regions on y. Of course, the use 

of the contiguity matrix *
12...sW  can also offer a way for a generalisation of the first order 

spatial autoregressive error model (3.8). Moreover, the ARMAX representation reflects the 

structure of the general spatial model if one works with a general spatial weight matrix.10 

 
 

3.2 Tests for Spatial Dependence 

 

In a spatial econometric analysis spatial dependence can be established by examining the 

residuals âXye ˆ−=  obtained from OLS estimation of the multiple linear regression model 

(3.11) y = X⋅ß + εε . 

It can be conceived as the most restricted form of the general spatial model (3.1) when all 

spatial effects are ignored (ρ1=ρ2=…=ρp=0 and θ1=θ2=…=θq=0). If spatial effects are present, 

the residuals will not be white noise but spatially autocorrelated. In this case nuisance effects 

would imply a loss of efficiency in the OLS estimator of ß. . Standard errors of the regression 

coefficient would be biased and usual t tests misleading. If spatial dependence arises from 

spatial lags in the dependent variable, the problem is more serious insofar as the OLS 

estimator of ß would become biased and inconsistent (Cliff and Ord, 1973, pp. 87; Anselin, 

1988, pp.58). 

                                                 
10  For the construction of general spatial weight matrices see Anselin (1988, pp. 19).  
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Tests for spatial dependence in general are rarely applied in empirical economic research. 

However, Moran’s I test plays a predominant role in applied spatial econometric analysis. Let 

x be an nx1 observation vector of a variable X measured in deviations from the mean. Then 

for a general weight matrix W Moran’s I takes the form 

(3.12) 
n/´
S/´

I w

xx

xWx

⋅
⋅⋅

= , 

where n is the number of regions and Sw the sum of weights.11 The numerator of I is a 

covariance measure between X and its spatial lag and the denominator corresponds to the 

variance of X -; its expected value E(I)=-(n-1)-1 approaches zero for large n. Since Moran’s I 

is expected to lie in the range between –1 and 1, its interpretation resembles the well-known 

non-spatial correlation measures. For carrying out a test on spatial autocorrelation one can 

take advantage of the asymptotically standard normal distribution of Moran’s I in 

standardised form (Cliff and Ord (1973), pp. 29). 

In our study the Moran test is used to establish if and up to what neighbourhood order the 

variables entering the extended neoclassical growth model are spatially autocorrelated. When 

applied to the residuals (x=e) the multiple linear regression model (3.11) it is not very helpful 

for spatial model building, since it cannot discriminate among spatial alternatives (Anselin 

and Rey, 1991; Anselin and Florax, 1995, pp. 34). As an overall test it could only indicate, 

whether the errors prove to be spatially autocorrelated at all. 

On the assumption that the disturbances are normally distributed a Likelihood Ratio test 

(LR test) can also applied for discovering spatial effects. Let ß̂  be the OLS estimator (= ML 

restricted estimator) for ß in the regression model without allowing for spatial dependence 

and spatß̂  the maximum likelihood (ML) estimator (= ML unrestricted estimator) for the 

presumed spatial regression model. Then the LR statistic defined as twice the difference of the 

log likelihood functions (l ) of the unrestricted and restricted regressions models, 

(3.13) LR = 2⋅[ )ˆ()ˆ( spat ßß ll − ], 

is known to be asymptotically distributed as a χ² variate with degrees of freedom given by the 

number of constraints (Anselin, 1988, pp. 67; Darnell, 1994, pp. 222). In the spatial case the 

                                                 
11 Cliff and Ord, 1973, pp. 8; Anselin, 1988, pp. 101. In case of a row-standardised because of Sw=n the 

quantities Sw and n cancel out. For the sake of simplicity in this section we suppress any order index for the 
spatial weight matrix in definitions of diagnostics for spatial dependence. 
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number of constraints correspond exactly with the number of spatial parameters included in 

the unrestricted model. 

For testing the kind of spatial dependence two Lagrange Multiplier tests by Bera and Yoon 

(1993) have proved to be promising. In Monte Carlo experiments Anselin and Florax (1995) 

have shown that the Bera-Yoon Lagrange Multiplier tests has high power in discriminating 

between spatial lag and error dependence. The basic idea of these tests consists in correcting 

the Lagrange Multiplier test statistics for spatial error and lag dependence, LM(err) and 

LM(lag) (see e.g. Anselin and Florax, 1995, pp. 25),  

(3.14) LM(err) = )'tr(/)ó̂/( 222 WWWeWe´ +⋅⋅  

and 

(3.154.4) LM(lag) = )]'tr(ó̂)/ˆ)'ˆ/[()ó̂/( 2222 WWWßMWXßWXyWe´ ++⋅⋅ , 

with the ML estimator /nó̂ 2 ee ⋅́= for the error variance σ² and M = I – X(X’X)-1X’ known 

from regression analysis as a projection matrix. In order to discriminate among the 

alternatives, the spatial lag dependence is eliminated from LM(err) by extracting a function of 

yWe´ ⋅⋅ , whereas a function of eWe´ ⋅⋅  is subtracted from LM(lag) in order to control spatial 

error dependence.12 This means that the adjusted LM error test, LMrob(err), responds to spatial 

error dependence but not to spatial lag dependence. In contrary, the adjusted LM lag test, 

LMrob(lag), is expected to indicate spatial lag dependence but not spatial error dependence. 

Under the assumption that the errors are normally distributed both test statistics, LMrob(err) 

and LMrob(lag), obey a χ2 distribution with one degree of freedom. 

 

 

4. Data 

 

The study of regional convergence in unified Germany refers to the period 1992-2000. 

Although official statistics provides data for disaggregated administrative areal units, our 

notion of a region is economic in nature. Making no allowance for economic relationship in 

space may involve distortions regarding economic conditions and development (see Eckey, 

Horn and Klemmer, 1990). For this Eckey (2001) has defined German functional regions by 

aggregating districts (Kreise) on the basis of commuter flows. The functional regions arising 

in this way are called ‘regional labour markets’. Starting from 440 German districts Eckey 

                                                 
12 See Bera and Yoon (1993); Anselin and Florax (1995, pp. 25). 
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(2001) constructed 180 German labour markets of which 133 are mainly located in West 

Germany and 47 in East Germany.13 

Since growth theory takes full employment for granted, the convergence relationship can 

be applied to both income per capita and labour productivity.14 Both indicators are calculated 

in real terms, where districtional data on gross domestic product (GDP), employment and 

polulation  have been aggregated and state data on the GDP price index have been 

disaggregated to match with the regional labour markets concept. All data stem from the 

“National Accounts of the States” (“Volkswirtschaftliche Gesamtrechnung der Länder”) 

compiled by the Statistical State Office Baden-Württemberg. 

In the augmented Solow model the sum of population growth, capital depreciation and 

growth of technological progress enters as an exogenous variable. Mankiw, Romer and Weil 

(1992, p. pp. 413) and Islam (1995, p. pp.1139) e.g. view the last two components to be 

constant in their country samples and set them equal to 0.05 in order to “match the available 

data”.15 Since for unified Germany regional differentiated depreciation rates are not available 

as well, we have calculated a uniform average depreciation rate of 4.8% for the period of 

investigation from data on depreciation and invested capital (Statistisches Bundesamt, 1999, 

2001).16 Our choice of the rate of technological progress is based on an empirical study of 

Grömling (2001) who estimated a value of 0.6% for unified Germany in the period 1992-

1999. Investment rates for the overall regional economies as measures of regional savings 

rates sk are not available on the disaggregation level required. Regional investment rates are 

only available for the industrial sector. Because the industrial sector no more represents even 

the largest sector of the economy, there is a founded danger that distortions may produce 

uncontrolled effects when working with such restricted indicator. That is why we prefer to 

measure regional investment intensity by the newly established enterprises in relation to the 

working population. Districtional data on newly established businesses are available for 1998-

2000 on the CD “Statistik regional” are offered by the Federal Statistical Office Germany. In 

our study the regional data for the investment proxy are computed in form of temporal 

averages per capita  

                                                 
13 There are three overlapping regions which consists of a majority of West German districts. Therefore they are 

labelled as West German regions. 
14 Formally the equality of both concepts is established by normalising the labour participation rate to 1. In 

applied work a differentiation between the two concepts is necessary. 
15 Mankiw, Romer and Weil (1992), p. 413. In both studies the deprecation rate is set equal to 0.03, whereas for 

the rate of technological progress a value of 0.02 is chosen. 
16 The depreciation rate appears to be very stable over the period of investigation. 
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Since investment in human capital is much more difficult to measure than investment in 

physical capital, we substitute sh in convergence equation (2.8) by an indicator of the level of 

human capital.17 Human capital is in general viewed as labour qualifications acquired in 

education and training. In West German regional growth studies the proportion of working 

population with a university degree or a degree at an advanced technical college is used as an 

indicator for human capital.18 

Due to data accessibility it is usually referred only to the part of population bounded by 

law to the social security system. Beside the self-employed persons, especially all officials 

and civil servants are missing in this statistic. To reduce distortion effects as far as possible 

we construct a comprehensive human capital indicator which comprises officials and civil 

servants. The two highest career groups of civil servants are well matched with the degrees of 

the employees being bound to the social security system. Disaggregated data on the 

qualifications and careers of the working population have been provided by the German 

Federal Statistical Office and the German statistical state offices. It is assumed that the 2000 

data are representative for the period under investigation. 

 

 

5. Spatial Autocorrelation of Variables 

 

In order to get an impression on the extent of spatial autocorrelation - encounter Moran’s I 

is applied to all variables that enter the regional growth model. This can be viewed as a 

preliminary spatial data analysis to our spatially econometric modelling approach. Since 

Moran’s I is just an overall measure of spatial autocorrelation we do not expect to get an 

insight in the kind of spatial dependence we ultimately have to take into account. However, 

beyond a general impression of the strength of spatial autocorrelation we additionally expect 

to obtain some clues on the possible dimension of spatial dependence. For this we use 

contiguity matrices up to an order of six in calculating Moran’s I. 

Table 5.1 shows the pattern of spatial autocorrelation for the growth rate of real GDP per 

capita and total employment (columns 2 and 5) in the period 1992 - 2000 for the 180 German 

labour markets. In general the spatial autocorrelation diminishes with a higher order of 

                                                 
17 Formally, if ln(sh) is substituted by the log level variable H, equation (2.8) changes insofar as the production 

elasticity of human capital, ß, now only appears in the numerator of the coefficient of ln(H). See Mankiw, 
Romer and Weil (1992), p. 418. 

18 See Seitz (1995), p.180; Niebuhr(2001), p. 121. 
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neighbourhood. Regarding the - growth rates a considerable positive spatial dependence can 

be stated up to regional neighbourhoods of order three. Although Moran’s I is still highly 

significant for a neighbourhood of order four, its absolute value is markedly reduced. Despite 

partly significant autocorrelation coefficients  spatial dependence is practically negligible for 

neighbourhoods of fifth and sixth order, because of the low values of the statistic. The pattern 

of spatial autocorrelation for the logs of real GDP per capita (columns 3 and 4) and GDP per 

total employment (columns 6 and 7) at the two edges of the sample period is very similar to 

that of the growth rate. 

Table 5.1: Moran’s I for regional GDP growth and level variables 
 

Order of 
contiguity 

WGDPC LGDPC92 LGDPC00 WGDPE LGDPE92 LGDPE00 

1st order   0.668** 0.698**     0.525** 0.655** 0.777** 0.684** 
2nd order   0.545** 0.551**     0.394** 0.561** 0.639** 0.518** 
3rd order   0.427** 0.454**     0.335** 0.461** 0.525** 0.419** 
4th order   0.245** 0.295**     0.248** 0.215** 0.320** 0.296** 
5th order 0.047* 0.128**     0.139**     0.013     0.112 0.146** 
6th order -0.076**  -0.0147(*) -0.023 -0.097**    -0.056*   -0.010 

 
Notes: WGDPC: growth rate of real per capita GDP, WGDPE: growth rate of real GDP per total employment, 
LGDPC92 (LGDPC00): logarithmic GDP per capita 1992 (2000), LGDPER92 (LGDPE00): logarithmic GDP 
per total employment 1992 (2000) 
** Significance at 1% level; * significance at 5% level; (*) significance at 10% level 

From Table 5.2 a somewhat different picture emerges for human capital and investment 

intensity, whereas the growth rate of population19 resembles the former one. Human capital 

and investment intensity seem only be linked within immediately contiguous regions or 

 

Table 5.2: Moran’s I for control variables 

Order of contiguity LHUMAN LNFB LDTW 
1st order      0.228**     0.101*  0.725** 
2nd order -0.015      0.169**  0.589** 
3rd order     0.076** -0.017  0.509** 
4th order     0.070**         -0.030  0.273** 
5th order   0.010 -0.038(*)  0.066** 
6th order -0.044(*)         -0.058* -0.084** 

 
Notes: LHUMAN: log human capital (proportion of highly educated people per total employment); 
NFB: log newly founded businesses; LDTW: log of  (n+g+δ) 
** Significance at 1% level; * significance at 5% level; (*) significance at 10% level 

                                                 
19 Since the parameters g and δ are hold constant across the regions, the behaviour of the variable LDTW is de-

termined by the growth rate of population. 
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second order neighbourhood regions, respectively. Moreover, in both cases spatial 

autocorrelation is not strongly marked. 

In summary, spatial correlation analysis brought some evidence that growth spillovers 

seem to be more important than the spillovers arising from human capital and investment 

strength. All in all it would appear from this that spatial dependence in the data could be well 

captured by a spatial model. 

 

 

6. Empirical Evidence on Regional Convergence  
 
6.1 Tests on Regional Income Convergence 

 

At first we investigate the convergence hypothesis of neoclassical growth theory with 

respect to income per capita. The sample comprises 180 labour markets in West and East 

Germany. The time period covers not quite a decade from 1992 till 2000.20 We test for 

absolute as well as for conditional convergence. Tests of absolute convergence hypothesis 

rely on models where apart from the intercept only log income per capita in the initial year is 

taken into account. In a spatial setting regional dependence has to be accounted for by 

modelling spatial error and/or spatial lag effects. 

The estimation of the convergence equation (2.8) without control variables and spatial 

effects serves as a point of departure. Classical regression analysis leads to estimation results 

shown in the second column of the upper part of Table 6.1. Out of this a rate of convergence 

of 6.5% on the average can be inferred21 The coefficient of initial log income per capita which 

“explains” the variation of income growth to about 75% is highly significant and takes the 

expected sign. 

Against OLS estimation of the convergence parameter it is objected that random 

fluctuations of GDP in the starting period result in a “regression towards the mean” (Quah, 

1993). As a consequence the “true” value of the convergence parameter will be systematically 

overestimated in absolute value which means that there is a bias towards convergence. Its 

 

                                                 
20 Although most growth studies refer to long periods, potential structural breaks often require a division of the 

sample period into sub-periods. Barro and Sala-i-Martin (1995, pp.382) e.g. analyse economic growth for the 
period 1880-1990 but divide it into 10-, 15- and 20- but also just 5-years  sub-periods for studying 
convergence. 

21  The speed of convergence, λ, is obtained from the convergence parameter )]/tâ[ln(1ë:)tëe(1â −−=⋅−−= ;  
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Table 6.1: Tests on absolute income convergence 
 

Spatial lag model (1st order)a Dependent 
variable 
WGDPC 

Classical 
regression model 

(OLS) 
Maximum 
Likelihood (ML) 

Instrument Variables 
Method (IV) 

Variables Coefficients Coefficients Coefficients 
Constant 4.0846** 

(0.1673) 
2.9496** 
(0.2630) 

2.74289** 
(0.3504) 

W_LAG  0.3581** 
(0.0643) 

0.4234** 
(0.0993) 

LGDPC92 -0.4035** 
(0.0171) 

-0.2924** 
(0.0262) 

-0.2722** 
(0.0346) 

Implied λ 0.0646 0.0432 0.0397 
R² 0.758 0.795 0.796 
SSE 0.00702 0.00589 0.0060 
AIC -379.802 -402.269  
BIC -373.416 -392.690  
JB 6.642* 5.623(*)  
 Diagnostics for spatial dependence 
 W1 W2 W3 
Moran 2.863** 1.981* 1.042 
LMrob(err) 0.305 0.000 0.0344 
LMrob(lag) 15.589** 8.833** 3.802* 

LR(err vs clas)=24.467** LM(err in lag): 0.950 (ML) and 1.023 (IV) 
 
Notes: a Mixed regressive, 1st order spatial autoregressive model [ARX(1) model] 
            **: 1% significance level; *: 5% significance level; (*): 10% significance level 
            R²: Coefficient of determination (for spatial models: pseudo R²); SSE: Standard error of regression; 
            AIC: Akaike information criterion; BIC: Schwartz criterion; JB: Jarque-Bera statistic; 
            Moran: Moran’s I for residuals; W i, i=1,2,3: ith order contiguity matrix (row-standardised); 
            LM(err), LMrob(err), LM(lag), LMrob(lag): Lagrange Multiplier statistics (see Section 3.2); 
            LR(err vs clas): Likelihood Ration statistic (see Section 3.2); 
            LM(err in lag): LM test for spatial error dependence in spatial lag model 
 

size depends on the magnitude of the error variance relative to the variance of the flawless 

GDP per total employment. The bias does not disappear with an increasing sample size but it 

will be negligible if the error variance proves to be small in relation to the variance of the 

“true” regressor.22 For obtaining a consistent estimator of the convergence parameter λ the 

method of instrumental variables (IV method) is recommended (see e.g. Johnston and 

DiNardo, 1997, pp. 155). 

                                                 
22 The problems of regression towards the mean can be formally treated in an errors in the variables model (see 

e.g. Johnston and DiNardo, 1997, pp.153). From such a setting it can be shown that for the OLS estimator of 
the independent variable ln ŷ (0) of the convergence equation (2.8) the relation /(â̂â̂lim 2

)0(~ln11 yp σ=  

)( 22
)0(~ln vy σσ + holds where )0(~ln y denotes the flawless independent variable and v the error of the actual used 

regressor )0(ˆln y .  
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However, using an adequate instrument for the starting value of income per capita would 

not solve the problem in presence of spatial effects. In case of a substantive spatial 

dependence parameter estimation would continue to be inconsistent, whereas in occurrence of 

spatial error dependence standard errors of the parameter estimates would be biased with the 

consequence of a misleading inference. It is this issue we focus attention in our work.  

From spatial autocorrelation analysis of the model variables we know that spatial 

dependence is present in the data. However, we have to investigate through which channels 

spatial dependence manifests itself in the convergence equation. In the lower part of Table 6.1 

various diagnostics on spatial dependence are listed. At first the Moran test and robust LM 

tests are carried out for neighbourhood matrices of first, second and third order, respectively, 

for the OLS residuals. The high significance of Moran’s I for W1 clearly indicates the 

existence of spatial effects which could invalidate the results obtained from the classical 

regression setting. This finding is strongly confirmed by the LR test. The robust LM statistics 

unambiguously point to a spatial lag model for capturing these effects. Using the information 

criteria AIC and BIC for model identification the 1st order spatial lag model turns out to be 

favourable to mixed regressive, higher order spatial autoregressive models. 

The ML estimates of the first order spatial lag model (Table 6.1) show a high significance 

of coefficient of the spatial lag term. The relevance of spatial lag dependence is also brought 

about on the basis of the information criteria as well as the standard error of regression.23 

From ML estimation a noticeable lower rate of convergence of 4.3% per year in comparison 

to the corresponding OLS estimate results. 

Note that the LM(lag in err) statistic does not point to a relevance of the alternative spatial 

lag model. However, despite the good model fit the assumption of normal disturbances 

underlying ML estimation may be doubted. In contrary to OLS residuals the Jarque-Bera 

statistic for the ML residuals is not significant at the 5% but on the 10% level. In order to 

check the robustness of inference we additionally estimate the first order spatial lag model by 

applying the method of instrument variables (IV method). In essence IV estimation of the 

spatial lag model backs the results of ML estimation. The convergence rate decreases further 

by about a third percentage point to 4%. Some caution yet remains advisable as 

heteroscedasticity of OLS errors could be decreased but not fully eliminated in the spatial 

                                                 
23 In case of ML estimation the R² measure is only a pseudo coefficient of determination which is not compara-

ble to the standard R² measure of OLS estimation.  
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setting.24 Moreover, the role of control variables in the course of the process of income 

convergence has to be assessed. 

 Here we start again with the classical regression model in order to test for spatial effects 

Table 6.2).. Indeed, the existence of spatial dependence is clearly indicated by Moran’s I and 

 

Table 6.2: Tests on conditional income convergence 
 

Spatial models  Dependent 
variable 
WGDPC 

Classical 
regression 

model (OLS) Spatial lag model (1st 
order)a (ML) 

ARX(1) with spatial 
autoregr. errorsb (2SLS) 

Variables Coefficients Coefficients Coefficients 
Constant 3.5604** 

(0.4553) 
3.3093** 
(0.4392) 

3.4133** 
(0.4554) 

W_ERROR(2)   0.9122 
W_LAG(1)  0.2688** 

(0.0714) 
0.2692(*) 
(0.1484) 

LGDPC92 -0.4010** 
(0.0267) 

-0.3429** 
(0.0307) 

-0.3707** 
(0.0364) 

LDTW -0.0523 
(0.0819) 

0.0525 
(0.0818) 

0.0400 
(0.0867) 

LHUMAN 0.1186** 
(0.0221) 

0.1041** 
(0.0219) 

0.1343** 
(0.0230) 

LNFB 0.0248 
(0.0152) 

0.0173 
(0.0145) 

0.0301(*) 
(0.0170) 

Implied λ 0.0641 0.0525 0.0579 
R² 0.803 0.818 0.477 
SSE 0.00583 0.00522 0.00580 
AIC -410.367 -420.524  
BIC -394.402 -401.366  
JB 1.999 5.888(*)  
 Diagnostics for spatial dependence 
 W1 W2 W3 
Moran 0.162** 0.145** 0.068** 
LMrob(err) 2.169 14.751** 7.386** 
LMrob(lag) 2.245 0.040 1.042 
LR(lag vs. Clas)=12.157** LM(err in lag)=0.832 (W1) LM(err)=11.487** (W2) 

 
Notes: a Mixed regressive, 1st order spatial autoregressive model; b Mixed regressive, 1st order spatial auto- 
            regressive model with a 2nd order spatial autoregressive error process (using W2) 
            **: 1% significance level; *: 5% significance level; (*): 10% significance level 
            R²: Coefficient of determination (for spatial models: pseudo R²); SSE: Standard error of regression; 
            AIC: Akaike information criterion; BIC: Schwartz criterion; JB: Jarque-Bera statistic; 
            Moran: Moran’s I for residuals; W i, i=1,2,3: ith order contiguity matrix (row-standardised);  
            LM(err), LMrob(err), LM(lag), LMrob(lag): Lagrange Multiplier statistics (see Section 3.2); 
            LR(err vs clas): Likelihood Ration statistic (see Section 3.2); 
            LM(err in lag): LM test for spatial error dependence in spatial lag model 

                                                 
24 In the spatial setting he spatial Breusch-Pagan (spatial BP) statistic is only weakly significant (10% level), 

whereas the BP test displays high significance in the classical regression model. Thus, along with allowing for 
spatial dependence it is succeeded to reduce heteroscedasticity to a large degree. 
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LM statistics. In contrary, though, to unconditional convergence analysis model identification 

turns out be much more difficult. Although Moran’s I indicates the strongest spatial 

dependence in case of the first order contiguity matrix, the robust LM statistics fail to reflect 

this finding. But both the LM(err) as well as the LM(lag) statistics are highly significant.25 

According to the traditional identification criterion because of LM(lag) > LM(err) a spatial lag 

model could be viewed to be preferable to a spatial error model (Anselin and Rey, 1991). 

However, a 1st order spatial lag cannot eliminate the 2nd order spatial error dependence 

stressed before by the robust LM test statistic. Therefore we choose a mixed regressive, 1st 

order spatial autoregressive model with a 2nd order spatial autoregressive error process to 

capture the spatial effects. The speed of convergence of 5.8% per year lies well below the 

implied value from OLS estimation. 

The importance of human capital as a driving source for the growth process is exposed by 

its high significance in all regression models. In contrary, population growth does not matter 

for growth in unified Germany. Note that the relevance of physical investment for 

productivity growth is only found in the last spatial setting. OLS estimation in the classical 

model failed to prove the significance of newly founded investments as a proxy for the 

investment rate. Although far from being perfect, this proxy seems to be able to resolve at 

least the problem of uncontrolled effects that occurred in German regional convergence 

studies when working with purely industrial investment rates.26 . 

 
 
6.2 Tests on Regional Convergence of Labour Productivity 
 

While income per capita is usually interpreted to reflect the prosperity of a region, real 

GDP per total employment mimics the labour productivity. Since in growth theory full 

employment is presupposed, there is no need to distinguish between the two concepts.27 

However, empirically an increase in regional productivity over time may not go hand in hand 

with in increase in prosperity. Since one cannot assume convergence to be unaffected by 

different developments of both quantities, an extension of spatial econometric analysis to 

labour productivity could shed more light into the convergence process in unified Germany. 

The findings on unconditional convergence of labour productivity across German labour 

market regions are displayed in Table 6.3. From preliminary OLS estimation of the classical 

                                                 
25 LM(err) and LM(lag) take values of 11.3385 (p=0.00074) and 11.461 (0.00071), respectively.  
26 See Seitz (1995), p. 184; Schalk and Untiedt (1996), p. 575. 
27 In the extended Solow model the employment rate is set to one for sake of simplicity. 
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regression model a high speed of productivity convergence is uncovered. But the diagnostics 

for spatial dependence clearly indicate a misspecification of the non-spatial regression model. 

In the 1st order spatial error model, which follows straightforwardly from model 

identification, the ML estimator of the coefficient of the spatial error term proves to be highly 

significant. However, the implied convergence rate of 7.61% does only differ slightly from 

the OLS estimate.  

Table 6.3: Tests on absolute productivity convergence 
 

Spatial error model (1st order)a Dependent 
variable 
WGDPE 

Classical regression 
model (OLS) Maximum 

Likelihood (ML) 
General Method of 
Moments (GMM) 

Variables Coefficients Coefficients Coefficients 
Constant 4.9736** 

(0.1803) 
4.9616** 
(0.2204) 

4.9595** 
0.2240) 

W_ERROR  0.2805** 
(0.1012) 

0.3013 
 

LGDPE92 -0.4570** 
(0.0170) 

-0.4561** 
(0.0208) 

-0.4559** 
(0.0218) 

Implied λ 0.0763 0.0761 0.0761 
R² 0.802 0.802 0.802 
SSE 0.00406 0.00377 0.00380 
AIC -478.358 -486.667  
BIC -471.972 -480.281  
JB 6.219* 5.953(*)  
 Diagnostics for spatial dependence 
 W1 W2 W3 
Moran 0.1586** 0.0527 0.0314 
LMrob(err) 4.400* 0.655 0.383 
LMrob(lag) 0.400 1.715 1.427 

LR(err vs clas) = 8.310** LM(lag in err) = 0.272 
 
Notes: a Regression model (3.8) with 1st order spatial autoregressive error process 
            **: 1% significance level; *: 5% significance level; (*): 10% significance level 
            R²: Coefficient of determination (for spatial models: pseudo R²); SSE: Standard error of regression; 
            AIC: Akaike information criterion; BIC: Schwartz criterion; JB: Jarque-Bera statistic; 
            Moran: Moran’s I for residuals; W i, i=1,2,3: ith order contiguity matrix (row-standardised);  
            LMrob(err), LMrob(lag): Robust Lagrange Multiplier statistics (see Section 3.2); 
            LR(err vs clas): Likelihood Ration statistic (see Section 3.2) 

If one questions the normality assumption because of the weak significance of the Bera-

Jarque statistic for ML residuals an application of the general method of moments (GMM) for 

parameter estimation could be taken into consideration.. The Keljian-Prucha GMM estimator 
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(Keljian and Prucha, 1998) corroborates highly the results of ML estimation.28 The main 

difference to the non-spatial setting lies in an explicit accounting for spillovers in form of 

random shocks. The spatial error model offers a framework for tracing the propagation of a 

random shock emerging in a region throughout the neighbourhood regions. 

Table 6.4: Tests on conditional productivity convergence 
 

Spatial error models (ML)a Dependent 
variable 
WGDPE 

Classical regression 
model (OLS) 1st order 2nd order 3rd order 

Variables Coefficients Coefficients Coefficients Coefficients 
Constant 4.7050** 

(0.3266) 
4.7526** 
(0.3347) 

4.7076** 
(0.3324) 

4.7172** 
(0.3220) 

W_ERROR  0.2597* 
(0.1026) 

0.5239** 
(0.1323) 

0.6758** 
(0.1389) 

LGDPE92 -0.4542** 
(0.0278) 

-0.4591** 
(0.0288) 

-0.4583** 
(0.0292) 

-0.4605** 
(0.0286) 

LDTW -0.0181 
(0.0426) 

-0.0198 
(0.0431) 

-0.0284 
(0.0420) 

-0.0238 
(0.0414) 

LHUMAN 0.0708** 
(0.0173) 

0.0729** 
(0.0174) 

0.0787** 
(0.0166) 

0.0845** 
(0.0167) 

LNFB 0.0192 
(0.0120) 

0.0173 
(0.0117) 

0.0219(*) 
(0.0119) 

0.0223(*) 
(0.0117) 

Implied λ 0.0757 0.0768 0.0766 0.0771 
R² 0.826 0.825 0.825 0.825 
SSE 0.00364 0.00335 0.00323 0.00320 
AIC -494.971 -502.240 -507.677 -509.468 
BIC -479.007 -486.275 -491.712 -493.503 
JB 1.674 1.803 1.641 1.447 
 Diagnostics for spatial dependence 
 W1 W2 W3 
Moran 0.1503** 0.1047** 0.0854** 
LMrob(err) 9.036** 9.838** 10.580** 
LMrob(lag) 1.070 0.668 0.788 
 1st order model 2nd order model 3rd order model 
LR(err vs. clas) 7.268** 12.705** 14.496** 
LM(lag in err) 1.180 0.442 0.035 
 
Notes: a ARX error model (3.8) with cumulative weight matrices W1, W1,2 and W1,2,3  
            **: 1% significance level; *: 5% significance level; (*): 10% significance level 
            R²: Coefficient of determination (for spatial model: pseudo R²); SSE: Standard error of regression; 
            AIC: Akaike information criterion; BIC: Schwartz criterion; JB: Jarque-Bera statistic; 
            Moran: Moran’s I for residuals; W i, i=1,2,3: ith order contiguity matrix (row-standardised);  
            LM(err), LMrob(err), LM(lag), LMrob(lag): Lagrange Multiplier statistics (see Section 3.2); 
            LR(err vs clas): Likelihood Ration statistic (see Section 3.2); 
            LM(lag in err): LM test for spatial lag dependence in spatial error model 

                                                 
28 Since heteroscedasticity seems still to be present the spatial model could not regarded as being ”perfect”. 

Heteroscedasticity cannot be captured- adequate by the exogenous variables used in this study. 



 21

Table 6.4 refers to the issue of conditional productivity convergence in unified Germany. 

The diagnostics for spatial dependence unequivocally point to the spatial error model as an 

adequate spatial modelling framework. Spatial effects turn out to be strong which implies that 

the classical regression model is misspecified. But unlike to the case of income convergence 

the convergence rate differs only slightly in all three spatial error models. Note also that the 

increase in the speed of convergence is small in comparison to the unconditional model. In 

any case with a value of about 7.7% the convergence rate of labour productivity exceeds that 

of income per capita considerably.  

The robust LM(err) statistics show significance up the 3rd order neighbourhood matrix. 

Obviously, the 1st and 2nd order spatial error model do not succeed to catch the spatial effects 

sufficiently well. According to all goodness of fit criteria the 3rd order spatial error model 

displays the best performance. The outcomes of the Jarque-Bera test give no reason to 

question the normality assumption in any case so that ML estimation is best suitable. 

Heteroscedasticity cannot be unambiguous assessed because the spatial Breusch-Pagan test 

and the White test indicate contradictory evidence. Regarding the control variables the same 

inference as in the spatial income per capita model holds which emphasises the importance of 

human capital and investment intensity for productivity convergence. 

Spatial econometric analysis has brought about a considerable difference in the speed of 

convergence between labour productivity and income per capita. Since income per capita, 

GDPC, equals the product of labour productivity, GDPE, and the employment rate, EC, 

 GDPC = GDPE⋅EC, 

the log income per capita, LGDPC, is given by  

 LGDPC = LGDPE + LEC, 

where LGDPE and LEC denote the natural logs of labour productivity and the employment 

rate, respectively. Hence, the variance of log income per capita can be decomposed into the 

variances of the logs of labour productivity and employment rate and twice the covariance of 

the latter variables: 

(6.1) Var(LGDPC) = Var(LGDPE) + Var(LEC) + 2⋅Cov(LGDPE, LEC). 

Table 6.5 displays the variance decomposition (6.1) for the starting year 1992 and the latest 

year 2000. Since the variances of income per capita and labour productivity diminish for the 
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Table 6.5: Variances decomposition of income per capita 

Year Var(LGDPC) Var(LGDPE) Var(LEC) Cov(LGDPE,LEC) 

1992 0.133647 0.077930 0.013617 0.021050 

2000 0.054505 0.026892 0.009770 0.008922 

Variance ratio/ 
Covariance ratio 

0.408 0.345 0.718 0.424 

 

period of investigation σ-convergence holds. Note that the variance ratio for labour 

productivity is markedly lower than that for income per capita. This outcome can be attributed 

to two factors. Firstly, the reduction of variance in the employment rate turns out to be small; 

its variance ratio is about twice as large as the variance ratio for labour productivity. 

Secondly, a positive covariance between labour productivity and employment rate means that 

employment benefits not in low but in high productivity regions.29 Because of the covariance 

ratio lies above the variance ratio for labour productivity the relationship between the two 

variables exerts an adverse effect on income convergence.  

 
 
7. Conclusions 
 

Convergence across regional labour markets in unified Germany has to be judged 

differently depending on what growth phenomenon exactly becomes the focus of attention. 

Although spatial econometric analysis corroborates both regional income and productivity 

convergence for unified Germany, the speed of convergence turns out to be considerably 

higher in case of the latter quantity. Moreover, human capital and the investment intensity 

measured by the newly founded business prove to be relevant control variables in the progress 

of the convergence process. However, only for income per capita the convergence rate in the 

conditional model differs markedly from that of the absolute convergence case. Since 

conditional convergence is stronger backed, a well-founded scope for policy measures seems 

to be given for reducing regional inequalities in the standard of living. 

An exploratory data analysis of exogenous variables displays strong spatial effects in form 

of distinct spatial autocorrelations up to a neighbourhood order of three. The spatial lag or 

spatial error model employed in recent empirical convergence analysis are not suited to 

                                                 
29 The correlation between labour productivity and the employment rate takes a value of 0.646 in 1992 and is yet 

marked in 2000 where its value lies at 0.550. 
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capture to spatial effects present in the data. For that reason we propose a parsimonious 

variant of the general spatial lag model with an identification strategy analogue to ARMA 

model building in time series analysis. Although robust LM tests for spatial lags and errors 

prove to be valuable criteria for model identification, conventional criteria are supplementary 

diagnostics. 

The spatial setting has brought about a conditional rate of convergence for income per 

capita between 5 1/4 and 5 ¾ %. From this range a half-life time between about 12 and 13 

years can be inferred. With regard to the East-West income gap the spatial growth model 

predicts a reduction of about one third within a decade. This means that East Germany’s 

relative income level of 66,1% in 2000 is expected to increase to a value between 77.2 and 

78% in 2010 if the East-West proportions in the control variables will remain stable. 

Productivity converges with a considerable higher rate of about 7.7 which implies a half-life 

time of about 9 years. For the growth decade 2000-2010 our variant of the neo-classical 

model predicts for East German regions an increase of relative labour productivity from 

73.5% in 2000 to 87.7% in 2010. 

In view of a great many incentive measures and development programmes by German 

government and EU funds the danger could occur to loosen the efforts in supporting the 

catching-up process of East Germany’s regions. Examples of other EU countries are suitable 

to become aware that despite of extensive external support a catching-up of poorer regions 

does by no means natural take place. Although income differences have been diminished 

across EU member states during the past fifteen years, regional inequalities have increase 

(Basile, de Nardis and Girardi, 2002). It turns out that it is above all catching-up of richer 

regions in periphery countries that caused across-country convergence. This example makes 

clear that the outcomes of our regional convergence study are specific to the growth process 

in unified Germany which cannot be translated to regional development in other countries. 
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