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Summary: Outliers can have uncontrolled effects on the results of a factor
analysis. A valid interpretation of a factor structure in empirical research
therefore requires a control of this special kind of outliers. They are called
influential observations and can be identified by adapting Hampel’s concept
of the influence function. In this paper we apply Hampel’s concept for
developing influence diagnostics for exploratory factor analysis. We derive
alternative empirical versions of influence functions as explorative tools for
identifying outliers in principal factor analysis.
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1 Introduction

The identification of outliers with a general outlier detection procedure poses
many problems regarding application. Since outliers are heterogeneous, a
detection method will fail to recognize all outliers. Outliers with respect to
location e.g. need not necessarily be outliers with respect to the correlation
structure. Although an outlier detection method can perhaps identify both
of these outliers in some cases, it cannot be used in identifying others.

Empirical research gives high priority to detecting ‘bad data’ which have
an effect on the results given by a statistical method. These kinds of outliers
are important in application because they can invalidate all conclusions de-
riving from a data analysis. The relevance of an identification of such ‘bad
data’ in factor analysis is emphasized by Huber (1981, p. 199) who states
that “ all too often a ... factor analysis ‘explains’ a structure that, ..., has
been created by a mere one or two outliers ...”. Outliers which have an effect
on a special statistical method are called influential observations. It is this
kind of deviate data we are concerned with here.

Hampel (1974) has developed the concept of the influence function that
provides a basis for identifying influential observations. It always requires a
method specific frame, because whether an observation is influential or not
can only be judged with reference to a special statistical method. For using
this instrument in empirical research it is necessary to make it operational.
In dependence on the concrete setting one can obtain alternative empirical
versions of the influence function. The valuation of the observations follows
from an adequate norm of an empirical version of the influence function which
provides influence diagnostics for a statistical method.

In regression analysis there exists well developed influence diagnostics
which have proved to be valuable in econometric applications (s. e.g. Bel-
sley, Kuh, and Welch, 1981). Influence functions in principal components
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were derived by e.g. Critchley (1985) on the basis of the perturbation the-
ory of eigenvalues and eigenvectors (Wilkinson, 1965; Sibson, 1979). In this
paper we use the same approach to develop influence diagnostics for princi-
pal factor analysis. Although we adopt a covariance-oriented framework for
this purpose, according to the perturbational analysis it is based, the influ-
ence diagnostics are useful in a correlation-oriented framework as well (see
Critchley, 1985, p. 635).

Tanaka and Odaka (1989a) have dealt with this problem in a somewhat
different approach of sensitivity analysis (for ML factor analysis see Tanaka
and Odaka, 1989b). The authors develop influence functions for the product
of the factor matrix and its transpose whereas our focus explicitely lies on
the factor matrix. It is this matrix which plays a crucial role in interpreting
the results of factor analysis in applications. Castaño-Tostado and Tanaka
(1991) discuss two matrix coefficents (especially Escoufier’s RV-coefficient) to
detect influential observations. Our approach aims to operationalise pertu-
bational effects in a more data-oriented way by studying alternative versions
of empirical influence functions. Its efficient use in empirical research stems
from the fact that only one eigenanalysis is required for determining influence
diagnostics for all observations. The influence diagonstics are not affected by
factor rotation.

2 The factor analytic model

Let x = (X1, X2, . . . , Xp)′ be a p × 1 random vector of manifest variables
whose distribution function Fθ(x) is an element of a class F(Ω) = {Fθ : θ ∈
Pθ} of distribution functions with the parameter vector θ ∈ Pθ.Pθ denotes
the parameter space and Ω the sample space. Generally only the first two
moments of the distribution of the random vector x are considered in factor
analysis:

E(x) = µ(F ) = [µ1(F ), µ2(F ), . . . , µp(F )]′,
Cov(x) = Σ(F ) = [σij ], i, j = 1, 2, . . . , p .

This implies considering the class

FN (Ω) = {Fµ,Σ : µ ∈ Pµ,Σ ∈ PΣ} ⊂ F(Ω)

of p-variate normal distributions with the parameter spaces Pµ ⊆ Rp and
PΣ ⊂ Rp×p.

The multiple factor model is based on the notion that the p manifest vari-
ables Xj , j = 1, 2, . . . , p, are generated by a smaller number of common fac-
tors Fk, k = 1, 2, . . . ,m, and p specific or unique factors Uj , j = 1, 2, . . . , p.
Let f = (F1, F2, . . . , Fm)′ be an m × 1 random vector of the common fac-
tors, u = (U1, U2, . . . , Up)′ a p × 1 random vector of the unique factors and
Λ(F ) = [λjk(F )], j = 1, 2, . . . , p; k = 1, 2, . . . ,m, the factor matrix whose
elements λjk are called factor loadings. Then the structural relation between
the variables and factors can be written in the form

x = µ(F) + Λ(F) · f + u (1)
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under the linearity assumption. Without loss of generality one can set E(x) =
0 and E(u) = 0. Furthermore the definitions and assumptions

Cov(f) = E(ff ′) = Φ(F ),
Cov(u) = E(uu′) = Ψ(F ) = diag[ψ1(F ), ψ2(F ), . . . , ψp(F )]′ ,
E(fu′) = 0

are set (see e.g. Ost, 1996, pp. 641; Seber, 1983, pp. 213; Kosfeld, 1986, pp.
17). The covariance matrix of the common factors, Φ(F ), is an element of
the parameter space PΦ ⊂ Rm×m and the covariance matrix of the unique
factors, Ψ(F ), belongs to the parameter space PΨ ⊂ Rp×p.

The estimation of the factor matrix Λ(F ) is of primary importance in
factor analysis. Since the common factors are latent variables, it cannot be
accomplished directly from the structural relationship. A special case of the
analysis of covariance structures shows that the estimation procedure is based
on the relation

Σ(F ) = Λ(F ) ·Φ(F ) ·Λ′(F ) + Ψ(F ) (2)

which is called the “fundamental theorem” of factor analysis. To determine
a direct solution, the covariance matrix Φ(F ) of the common factors is made
equal to the m ×m unit matrix I. The assumption of uncorrelated factors
must not necessary be retained, because the choice of a rotation to a “simple
structure” with oblique factors can follow in a later step.

Beside the factor matrix Λ(F ) the covariance matrix Ψ(F ) of the unique
factors must be estimated on the basis of the fundamental theorem 3.2. The
elements of the main diagonal, ψj , can be interpreted as parts of the variances
of the manifest variables not “explained” by the common factors. Often
instead of the unique variances their counterparts, the communalities h2

j (F ),

h2
j (F ) = σjj − ψj , (3)

are considered in empirical investigations.
In principal factor analysis the factor extraction is performed from an

estimator of the “reduced” covariance matrix

Σ̃(F ) = Λ(F ) ·Λ′(F ) (4)

after determining the number of common factors and estimating the com-
munalities. It is generally indicated to iterate the estimators as long as the
unique variances remain non-negative. In practice, however, it may be mean-
ingful to perform only a few iterations (see Cureton and D’Agostino, 1983,
pp. 139).

3 Influence functions

3.1 The concept of the influence function

Although outliers are somehow deviate and atypical, they are not necessarily
always influential with respect to a statistical method. In statistical appli-
cations only influential observations are critical. It is those kinds of deviate



4

observations that have strong effects on a statistical analysis. At worst they
can invalidate the entire result of a statistical application. A theoretical tool
for identifying such observations is the concept of influence function (Hampel,
1974; Hampel et al. 1986, pp. 81–87, 226–227).

In factor analysis the influence function has to be considered as a vector-
valued function. Let T(F ) and T(F̃ ) be functionals on the set F of distribu-
tion functions F and F̃ , respectively. Here F̃ is a contaminated distribution
function

F̃ = (1− ε) · F + ε · δx , 0 < ε < 1 , (5)

where δx is the Dirac measure which concentrates the whole probability mass
on the point x. The influence function IF of T at F is point by point defined
as

IF(x; T, F ) = lim
ε→0

1
ε

(T(F̃ )−T(F )) . (6)

Obviously it is the right-side derivative of T(F̃ ) at the point ε = 0. The influ-
ence function (6) measures the effect of an infinitesimally small contamination
on a functional T(F ) standardized on the portion of this contamination.

To determine the effect of the individual observations on the factor load-
ings, we consider at first the column vectors λk(F ) of the factor matrix Λ(F )
separately. In principal factor analysis they have the form

λk(F ) = τ
1/2
k · ωk , k = 1, 2, . . . ,m , (7)

where the scalars τk, k = 1, 2, . . . ,m, are the largest eigenvalues of the re-
duced covariance matrix Σ̃(F ) and the vectors ωk the corresponding or-
thonormal eigenvectors (s. Harman, 1976, pp. 136). Hence Λ(F ) is here
conceived as the unrotated factor matrix. Afterwards it will be shown that
the influence functions of the rotated factor matrix can immediately be gained
from those of the unrotated factor matrix. Furthermore it will turn out that
special influence measures are identical for both matrices.

The perturbation theory of eigenvalue problems (Wilkinson, 1965, pp.
65–109) provides a basis for the development of influence functions of the
factor vectors λk(F ). Sibson (1979) and Critchley (1985) have also used this
framework for robustness studies in other methods of multivariate analysis.
In the first place for factor analysis one has to obtain some knowledge about
the structure of the perturbed reduced covariance matrix Σ̃(F̃ ):

Theorem 3.1 The perturbed reduced covariance matrix Σ̃(F̃ ) has the form

Σ̃(F̃ ) = Σ̃(F ) + ε · [x̃x̃′ − Σ̃(F )]− ε2 · x̃x̃′ (8)
with x̃ = x− µ(F )− u . (9)

Proof. See Appendix. �

Since the factor vectors λk(F ) are determined by the eigenvalues τk(F )
and eigenvectors ωk(F ) of the matrix Σ̃(F ), the effect of the perturbation
on these quantities at first requires quantification. Here we suppose that all
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eigenvalues differ. The perturbed eigenvalues and eigenvectors, τk(F̃ ) and
ωk(F̃ ), can be written as Taylor expansions of the forms

τk(F̃ ) = τk(F ) + ε · vk +
1
2
ε2 · wk +O(ε3) , (10)

ωk(F̃ ) = ωk(F ) + ε · gk +
1
2
ε2 · hk +O(ε3) , (11)

where O(ε3) denotes a remainder which is only dependent on cubic or higher
powers in ε. The scalars vk and wk as well as the m × 1 vector gk can be
determined on the basis of a lemma of Sibson (1979, p. 219). Since we need
also an expression for the m × 1 vector hk, an extension of this lemma is
necessary. First of all, we give a general formulation of the extended lemma,
in which a perturbation of a matrix B not necessarily regular is considered.
At this point the concept of the generalized inverse must be introduced. Let
M be a symmetric p× p matrix with the spectral decomposition

M =
p∑
i=1

li · ei · e′i , (12)

where li is the ith eigenvalue of M and ei the corresponding eigenvector.
Then the matrix

M+ =
p∑
i=1
li 6=0

l−1
i · ei · ei

′ (13)

with the properties

M ·M+ ·M = M , (14)

M+ ·M ·M+ = M+ (15)

is the generalized inverse of M. According to the properties (14) and (15) M
and M+ are mutually generalized inverses.

Using these properties Lemma 3.1 (see Appendix) can be established. It
is the basis for quantifying the effects of perturbations on the eigenvalues and
eigenvectors of the reduced covariance matrix.

Theorem 3.2 The coefficients vk, gk, wk and hk of the taylor expansions
(10) and (11) are given by

vk = ωk
′ · x̃x̃′ · ωk − τk, (16)

gk = −
∑

(k)
(τh − τk)−1 · ωhωh′ · x̃x̃′ · ωk , (17)

wk = 2ωk · {[x̃x̃′ −
∑

τh · ωhωh′] · gk − x̃x̃′ · ωk} (18)

hk =
∑

(k)
(τh − τk)−1ωhωh

′ · {2[vk · I− x̃x̃′ +
∑

τjωjωj
′] · gk

+ (wk · I + 2 · x̃x̃′) · ωk} , (19)

where
∑

(k) stands for the summation over all terms not having the subscript
k.
Proof. See Appendix. �
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In contrast to factor analysis the problem of a generalized inverse does not
appear in principal components. The covariance matrix underlying principal
components is always positive definite, whereas the reduced covariance matrix
underlying a factor analysis is indefinite. Although the manifest variables are
generated by the factors, an interpretation of the influence of the observations
in dependence on the factor scores cannot immediately be given in factor
analysis. Because of their latency, the factor scores can only be estimated
from the data. On the other hand with the component scores in principal
components one will yield a rather vivid presentation, inasmuch as they arise
directly as a linear transformation of the observations.

Indeed the “reduced” observation vector x̃ occurs with the coefficients of
the perturbed eigenvalues and eigenvectors of the reduced covariance matrix
Σ̃(F̃ ) in the influence functions of the parameters of the factor analytic model.
Since x̃ must be estimated for the observations from the factor scores, it must
nevertheless be recurred on them. But under this genuine estimation aspect
the factor scores are solely included in the influence diagnostics.

Theorem 3.3 The influence function IF(x;λk, F ) of the vector of unrotated
loadings of the kth common factor on the manifest variables, λk(F ), has the
form

IF(x;λk, F ) = τ
1/2
k · (1

2
τ−1
k · vk · ωk + gk) . (20)

The rotated factor vector λ∗k(F ) has the influence function

IF(x;λ∗k, F ) = [τ1/2
1 (

1
2
τ−1
1 v1ω1 + g1), . . . , τ1/2

m (
1
2
τ−1
m vmωm + gm)] · tk ,

(21)

in which tk contains the elements of the kth column of the transformation
matrix T′.

Proof. Using the relation (6) IF(x;λk, F ) is given by

IF(x;λk, F ) = lim
ε→0
{λk[(1− ε)F + εδx]− λk(F )}/ε (22)

with expression (7) representing λk(F ). If one inserts the Taylor expansions
(10) and (11) for τk(F̃ ) and ωk(F̃ ) in equation (22), one will obtain the
expression

IF(x;λk, F ) = lim
ε→0

[τ1/2
k (1 +

1
2
εvkτ−1

k )(ωk + εgk)− τ1/2
k ωk]/ε ,

with regard to the formation of the power expansion (s. Bronstein and Se-
mendjajew, 1985, p. 31):

[1 + εvkτ−1
k +O(ε2)]1/2 = 1 +

1
2
εvkτ−1

k +O(ε2) .

Hence equation (20) follows as the differential quotient at the point ε = 0.
The influence function IF(x;λ∗k, F ) of the column vector λ∗k of the rotated

factor matrix Λ∗(F ) is obtained by use of the relation

λ∗k(F̃ ) = [λ1(F̃ ),λ2(F̃ ), . . . ,λm(F̃ )] · tk′ . (23)
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The interpretation of the influence functions (20) and (21) is not elemen-
tary. The first expression 1

2τ
−1/2
k vkωk in IF(λk),

IF(λk) ≡ IF(x;λk, F ) ,

contains only those quantities determining the factor vector λk. But the
amount of the contribution of the eigenvalues τk and eigenvectors ωk is rated
by the difference between the matrix of cross products of the “reduced” con-
taminant x̃ and the reduced covariance matrix Σ̃(F ). On the other hand, the
change of λk(F ) on the second expression τ

1/2
k gk does not only dependent

on the direction of the other eigenvectors but also on the difference between
the kth eigenvector and the other eigenvectors. Inasmuch as the covariance
structure of the “reduced” contaminant x̃ is in accordance with that in the
population, its influence on the factor vector λk(F ) is equal to zero.

If one creates on the basis of the influence functions IF(λk) and IF(λ∗k)
for the factor matrices Λ(F ) and Λ∗(F ) corresponding p × m “influence
matrices”, it is easily seen that the relation

[IF(λ∗1), . . . , IF(λ∗m)] = [IF(λ1), . . . , IF(λm)] ·T′

holds. The matrix of influence functions of the rotated factor loadings can be
gained by applying the transformation matrix to the corresponding matrices
of the unrotated factor loadings. In spite of this simple relation, the situation
gets more entangled in case of the influence functions IF(λ∗k). In that case
the influence of a contaminant x̃ on the factor vector λ∗k(F ) is determined by
the location of all eigenvectors which correspond to the m largest eigenvalues
of the reduced covariance matrix Σ̃(F ) without taking the “correction” gk
into account.

3.2 Empirical versions of the influence function

3.2.1 Empirical influence functions

Usually F will be unknown, so that one has to refer to the empirical distribu-
tion function Fn given by a sample. Particular emphasis is therefore placed
on the influence of an observation xi on the estimators λ∗k(Fn) or λk(Fn). A
first approach to this item is established by the empirical influence function

ÎF(x; T, F ).

Definition 3.1 The empirical influence function ÎF(x; T, F ) results from
expression (6) by replacing the distribution function F with the empirical
distribution function Fn:

ÎF(x; T, F ) ≡ IF(x; T, Fn). (24)

�

Thus, one can easily obtain the empirical influence functions of the esti-
mators λk(Fn) and λ∗k(Fn).
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Corollary 3.1 Let

v̂k = ω̂′k · ˆ̃xˆ̃x
′
· ω̂k − τ̂k (25)

and ĝk = −
∑

(k)
(τ̂h − τ̂k)−1 · ω̂hω̂′h · ˆ̃xˆ̃x

′
· ω̂k (26)

with ˆ̃x = x− µ(Fn)− û (27)

be estimators for the coefficients vk and gk, respectively. The empirical in-
fluence function of the unrotated factor vector λk(F ) is then given by

ÎF(x;λk, F ) = τ̂
−1/2
k (

1
2
· τ−1
k · v̂k · ω̂k + ĝk) (28)

and the function of the rotated factor vector λ∗k(F ) by

ÎF(x;λ∗k, F ) = [τ̂1/2
1 (

1
2
τ̂−1
1 v̂1ω̂1 + ĝ1), . . . , τ̂1/2

m (
1
2
τ̂−1
m v̂mω̂m + ĝm)] · tk .

(29)

Proof. The equations (28) and (29) follow directly from theorem 3.2 in
consideration of definition 3.1 with Fn rather than F . �

The values of the empirical influence function at the points x = xi are of
particular interest:

ÎFi(λ∗k) ≡ ÎF(xi;λ∗k, F ) .

They approximately indicate the effect which observation xi exerts on the
estimator λ∗k(F ). More precisely, ÎFi(λ∗k) reflects the rate of change for the
loadings of the kth common factor in the p manifest variables which result
from an addition of an observation vector xi under F = Fn. The sample size
here is not taken into account.

3.2.2 Deleted empirical influence functions

The effect of a deletion of the ith observation on the estimators λk(Fn) and
λ∗k(Fn) can be measured by means of the deleted empirical influence function.
This pertains to a multitude of functions of which values are of interest at
one point in particular: the reason is that an evaluation of the influence of
the ith observation on the estimation the function value of the ith deleted
influence function at the point x = xi is relevant. The fiction of a sample
size growing over all limits is therein still retained.

Definition 3.2 Let

F(i) ≡ [1 + (n− 1)−1] · Fn − (n− 1)−1 · δi (30)

with

δi =

{
1 if x = xi

0 otherwise



9

be the empirical distribution function with an omission of the ith observation.
The deleted empirical influence functions ÎF(i)(x; T, F ), i = 1, 2, . . . , n, are
then obtained by substitution of F with F(i) in equation (6), respectively:

ÎF(i)(x; T, F ) ≡ IF(x; T, F(i)) , i = 1, 2, . . . , n . (31)

�

Consequently the deleted empirical influence functions for the factor vec-
tor λk(F ) take the form

ÎF(i)(x;λk, F ) = τ̂
1/2
(i)k · (

1
2
· τ̂−1

(i)k · v̂(i)k · ω̂(i)k + ĝ(i)k) (32)

for i = 1, 2, . . . , n. Here, the subscript (i) indicates the deletion of the ith
observation. v̂(i)k and ĝ(i)k can be determined by replacing τ̂(i)k, ω̂(i)k, and
µ̂(i)k for τk, ω̂k, and µ(Fn) in the equations (25) and (26) with

µ̂(i) ≡ µ(F(i)) = µ(Fn)− (n− 1)−1[xi − µ(Fn)] . (33)

In principle the function value of the ith deleted empirical influence function
ÎF(i)(λk),

ÎF(i)(λk) ≡ ÎF(i)(x;λk, F ) ,

at the point x = xi can be determined by again solving the corresponding
eigenvalue problem. But already at a moderate sample size a standard-like
execution of this kind of influence analysis is scarcely practicable because of
the computational expense. However, it can be shown that the function val-
ues of the deleted empirical influence functions ÎF(i)(λk) can approximately
be computed from the statistics of the spectral decomposition of Σ̃(Fn). Our
derivations are based on the general approximation formulae which are given
by Critchley (1985) for any functionals T(Fn).

Proposition 3.1 (see Critchley, 1985, p. 631)
Let

η =− (n− 1)−1 (34)
and q(ε) = T[Fn + ε(δi − Fn)] , j = 1, 2, . . . , n (35)

for all ε ≥ η. It is assumed that there exist a continuous second derivative
in [η; 0] and a third derivative in (η; 0) for q(.). Furthermore, it is assumed
that q′(0), q′′(0), and q′′′(ε) for η < ε < 0 do not depend on η. Then the
relations

ÎF(xi; T, F ) = q′(0) , (36)

ÎF(i)(x; T, F ) = q′(0) + η[q′′(0)− q′(0)] +O(η2) (37)

hold. �

While q′(0) indicates the rate of change of the functional T for F in direction
of the point mass δi, q′′(0) measures its curvature. ÎF(i)(xi; T, F ) is the
slightly extended gradient of q at the point η.
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Theorem 3.4 The deleted empirical influence functions for the estimator
λk(F ) have the form

ÎF(i)(x;λk, F ) = (1− η) · ÎF(λk) + η · τ̂1/2 · {1
2
τ̂−1
k ·

· [(1
2
· ŵk −

1
4
· v̂2
k · τ̂−1

k ) · ω̂k + v̂k · ĝk] + ĥk}+O(η2) (38)

and the function for the estimator λ∗k(Fn) is given by

ÎF(i)(x;λ∗k, F ) = (1− η) · ÎF(λ∗k) + η · τ̂1/2
k · {1

2
· τ̂−1
k ·

· [(1
2
· ŵk −

1
4
· v̂2
k · τ̂−1

k ) · ω̂k + v̂k · ĝk] + ĥk} · tk +O(η2) (39)

for i = 1, 2, . . . , n.
Proof. See Appendix. �

3.2.3 Sample influence functions

For judging the resistence of one-dimensional estimators, Tukey (1977) has
developed an indicator measuring the influence of an additional observation.
At first it is the sensitivity curve, which draws attention to the given sample
and therefore removes the fiction of an infinite sample size. In empirical work
of course it is disadvantageous to insinuate a new observation. Usually one
wants to know the effect of a deletion of an observation on an estimator by
explicit taking into account of the sample size. This effect can be measured
by the sample influence function.

Definition 3.3 The sample influence function ĨF(xi; T, F ) is defined by

ĨF(xi; T, F ) = (n− 1) · [T(Fn)−T(F(i))] (40)

with F(i) according to equation (30). �

ĨF(xi; T, F ) can be determined from the Taylor expansion of q(.) around
0.

Proposition 3.2 (see Critchley, 1985, p. 631)
Under the assumptions given in proposition 3.1

ĨF(xi; T, F ) = q′(0) +
1
2
ηq′′(0) +O(η2) (41)

holds. �

The presentation

ĨF(xi; T, F ) = η−1[q(η)− q(0)]

suggests an interpretation of the sample influence function as the gradient
of the line between the points (0,q(0)) and (η,q(η)). As a consequence of
proposition 3.2, the sample influence function of the vector of loadings on the
kth common factor, λk(F ), can immediately be given as a function of the
statistics of the eigenvalue problem of Σ̃(Fn).
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Theorem 3.5 The sample influence function for the unrotated factor vector
λk(F ) is

ĨF(xi;λk, F ) = ÎF(λk) +
1
2
ητ̂

1/2
k {τ̂

−1
k [(

1
2

ŵk −
1
4

v̂2
kτ̂
−1
k ) · ω̂k

+ v̂k · ĝk + ĥk}+O(η2) (42)

and that of the rotated factor vector

ĨF(xi;λ∗k, F ) = ĨF(λ∗k) +
1
2
ητ̂

1/2
k {τ̂

−1
k [(

1
2

ŵk −
1
4

v̂2
kτ̂
−1
k ) · ω̂k

+ v̂k · ĝk + ĥk} · tk +O(η2) . (43)

Proof. Equation (42) results from equation (41) with the aid of equation (28)
for q′(0) and equation (64) for q′′(0) after an arrangement and simplification
of some terms. Analogously equation (43) can be shown with regard to the
relation (23) between λk(F ) and λ∗k(F ). �

The sample influence functions

ĨFi(λk) = ĨF(xi;λk, F ) ,

ĨFi(λ∗k) = ĨF(xi;λ∗k, F )

are obtained by adding a “correction term” to the corresponding empirical
influence functions. This term, which consists of estimators of quantities
determining the eigenvalues and eigenvectors of the perturbed reduced co-
variance matrix Σ̃(F̃ ), can be relevant for small and moderate sample sizes.
With an increase in sample size the differences between the empirical influ-
ence function and the sample influence function will be diminished.

3.3 Reduced observations and norms of the influence
functions

The reduced observation vectors x̃i are given along with an estimation of the
vectors fi, i = 1, 2, . . . , n, of the factor values. Certainly an estimation of
the factor values is not without difficulty inasmuch as f is not a parameter
vector but a random vector. A feasible solution consists in regarding f as
fixed at the estimation. According to their properties it is advisable to take
the Barlett estimator

fB = [Λ′(F ) ·Ψ(F )−1 ·Λ(F )]−1 ·Λ′(F ) · [Ψ(F )]−1 · [x− µ(F )]
(44)

and the Thomson estimator

fT = Λ′(F ) · [Σ(F )]−1 · [x− µ(F )] (45)

into consideration as estimators for the vectors fi. While fB is a (conditional)
blu-estimator, fT is indeed biased, but its mean square error (MSE) is lower
than that of the former estimator (see Lawley and Maxwell, 1971, pp. 106–
111). Seber (1984, p. 221) has shown that fT can be interpreted as a ridge
estimator. In the past, preference was given to the Barlett estimator which
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is now to be viewed as an overvaluation of the blu property. In broad fields
of statistics the MSE has turned out to be the better overall-criterion which
should be also taken into account in factor analysis.

The substitution of equation (1) in equation (9) gives

x̃ = Λ(F ) · f , (46)

so that the reduced observation vector of the ith unit can be estimated by
using the estimator Λ(Fn) according to equation (7) and an estimator f̂ for
f by

ˆ̃xi = Λ(Fn) · f̂i . (47)

To assess the influence of a unit on the factor matrix Λ(Fn) one needs a
measure which aggregates the information provided by the empirical version
of the influence functions IF(x;λk,F), k = 1, 2, . . . ,m. Let

if = [IF′(λ1), IF′(λ2), . . . , IF′(λm)]′ (48)

be the pm× 1 vector of the components of the vector-valued influence func-
tions of λ1(F ),λ2(F ), . . . ,λm(F ). The mapping

‖if‖ : Rpm → R

is a norm if the relations

‖if‖ ≥ 0, ‖k · if‖ = |k| · ‖if‖, ‖if + if ′‖ ≤ ‖if‖+ ‖if ′‖

hold for all k ∈ R and if , if ′ ∈ Rpm. Cook and Weisberg (1982) differentiate
outer norms, which can be based on a statistical model, and inner norms,
which take no distributional assumptions. In the latter class especially the
Hölder r norm is of importance:

‖if‖r =
[ pm∑
l=1

(|ifl|r)
]1/r

. (49)

In this case, the quantity ifl is the lth component of the vector if .
Notice that the Euclidean norm is included in equation (49) as the special

case r = 2. For reasons of simplicity and clearness, we suggest taking the
Euclidean norm into account for an influence diagnostic in factor analysis.
In addition

‖if‖2 = ‖if∗‖2 (50)

holds when if∗ is a pm × 1 influence vector for the rotated factor loadings.
This means that on the whole an influential observation changes the rotated
factor matrix to the same extend as the unrotated factor matrix.

In empirical research all three empirical versions of the influence functions
can be used for assessing the effect of an observation on the estimated factor
matrix. In most applications, according to the nearness to data, the sample
influence function will be the concept of choice.
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4 An example

An example should illustrate the performance of the alternative empirical
versions of the influence function for real data. Moreover, an intuition should
be given regarding the application of influence diagnostics in factor analysis.
For these purposes we use Kendall’s data of a sample of 48 applicants for a
position in a firm (Kendall, 1975, p. 33). Kendall extracts four factors on
the basis of a correlation matrix of the 15 variables with eigenvalues that are
greater than one. The same number of factors is indicated by the scree test
when the extraction is accomplished on the basis of the covariance matrix of
manifest variables. The factors “explain” successively 54.2%, 14.8%, 8.7%,
and 5.4% of the variance of all variables. All together 83.1% of the variability
of the manifest variables can be attributed to the four extracted factors.

Despite some inductively developed bounds for the factor loadings to be
significant are known (see e.g. Cliff and Hamburger, 1967; Pennell, 1968;
Jennrich, 1974), factor loadings are often interpreted as meaningful by a rule
of thumb in empirical research. When using standardized data for a factor
loading to be valued ”practical” significant, it is often demanded, that its
absolute value has to exceed a lower bound of 0.5 (see e.g. Ost, 1996, p.
682; Backhaus et al., 2000, p.292; for a more sophisticated rule of thumb
see Boriz, 1999, pp. 534; Guadagnoli and Velicer, 1988). In this case at
least 25% of the variance of a manifest variable can be “explained” by the
corresponding common factor. This rule can be used for interpretation of
the factor structure of a covariance-oriented factor analysis after an adequate
rotation of the factor matrix.

The factor pattern of Kendall’s data according to a varimax rotation
of the factor matrix is shown in Table 4.1. To relieve the interpretation
the significant factor loadings are underlined. Up to two cases the manifest
variables can be attached quite clearly to a common factor.

Table 4.1: Factor pattern for applicants

Factor 1 Factor 2 Factor 3 Factor 4
Application 0.261 0.281 1.880 0.350
Appearance -0.222 0.552 0.333 0.848
Academic ability -1.369 0.000 0.258 0.137
Likeability 0.198 2.387 0.655 0.636
Self-confidence 0.187 0.386 -0.205 2.202
Lucidity -0.125 0.919 0.361 2.660
Honesty 0.036 1.870 -0.499 0.606
Salesmanship 0.262 0.273 0.813 3.133
Experience -0.625 0.147 2.649 0.262
Drive 0.154 0.516 1.110 2.249
Ambition 0.182 0.314 0.525 2.623
Grasp -0.518 1.076 0.809 2.404
Potential -0.790 1.402 1.082 2.326
Keenness 1.559 1.463 1.004 1.122
Suitability -0.309 0.211 2.620 1.211
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The variable keenness shows high loadings on the first two factors, whereas
the contributions of the single factors to the variance of the variable appear-
ance remain lower than 20%. The unique variance of this variable has a
portion of more than 70% of its whole variance. More than anywhere else,
the variable appearance can be attached to the fourth factor. Only the vari-
able academic ability continues to have a low proportion of explanation of
slightly less than 50%. However, the first factor clearly dominates the factor
pattern of this variable.

Kendall (1980, pp. 54) assigns the factor 1 (there: factor 4) entirely
to the variable academic ability which has the absolutely highest loading in
correlation-oriented factor analysis. Only the variable keenness has an abso-
lutely high loading on this factor with a reversed sign yet. In our covariance-
oriented factor analysis the last loading still exceeds the former, whereby the
variables again are polarized oppositely. Kendall interprets factor 2 (there:
factor 3) as a general likeability of a person and factor 3 (there: factor 2)
as experience. Finally, factor 4 (there: factor 1) comprises a composition of
properties and abilities such as self-confidence, salesmanship, ambition, and
lucidity.

But how stable is the extracted factor pattern? In other words: Are there
any observations which determine the factor pattern, so that it is changed
when they are deleted? An answer can be found by calculating influence
diagnostics as norms of the empirical versions of the influence function. In
table 4.2 values of the Euclidean norm are shown for all 48 applicants for the
empirical influence function, the empirical deleted influence function, and the
sample influence function. In this application there is no substantial differ-
ence in the ranking of the observations according to their influence between
the three concepts. The most striking observations concern the applicants
41 and 42 whose influence values exceed those of the other observations to a
large extent. Indeed a deletion of one of both observations leads to a different
interpretation of the factor pattern. Furthermore, without observation 41 the
variable keenness does not load significantly on factor 2. On the contrary,
this variable has then a substantial loading on factor 3. Similar to observa-
tion 41, a deletion of observation 42 will lead to the consequence that the
variable keenness will tend to be attached to the third factor rather than to
the second factor. In any case, this variable does not provide any more a
significant loading on the factor 2.

Indeed no other observation has such a great influence on the personality
structure of the applicants as the observations 41 and 42 which have been
identified by the influence diagnostics. Not only the values of the factor ma-
trix are influenced by the observations 41 and 42. Also the interpretation of
the factor pattern is changed by a deletion of one of both observations. Apart
from observation 11 which points to a possible assignment of the variable po-
tential to the second factor, no other observation has such an influence on
the analysis with respect to a change of the interpretable factor pattern.

In this way, the influence diagnostics can be used to validate the results
of a factor analysis in empirical research. When the sample size is moder-
ate or low, larger differences between the empirical versions of the influence
function are to be expected.
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Table 4.2: Influence measures for applicants

Person ‖ife‖ ‖ifd‖ ‖ifs‖
1 9.01752080 8.90236472 8.86168310
2 3.91660974 4.17023944 4.00016448
3 4.64850911 4.69944970 4.62333635
4 5.36386615 5.46496673 5.35712744
5 15.97921841 16.65358880 16.11617418
6 4.61516047 4.65779242 4.58736158
7 7.64978243 8.24710487 7.86506002
8 9.22277460 10.18268519 9.60196654
9 7.77424474 8.50405019 8.05322630

10 16.99680513 22.54297151 19.47433273
11 20.39719980 30.08333649 24.80641730
12 20.82963242 23.53698343 21.88327990
13 8.73925580 8.95439553 8.73751539
14 8.69861986 8.89441659 8.70259054
15 8.79636540 8.67573728 8.63998875
16 4.43136578 4.59474197 4.46479300
17 4.18098321 4.20901178 4.15045061
18 5.35278008 5.39261400 5.31532192
19 4.87314972 4.94839472 4.85873397
20 5.99510704 6.23934632 6.05112795
21 4.70846022 4.78229569 4.69502700
22 5.81831172 6.28302942 5.98748799
23 8.19024640 9.02776159 8.52024329
24 7.73118002 8.48602975 8.02343694
25 3.78387027 3.84362275 3.77283671
26 5.50063629 5.65203274 5.51722726
27 6.91593665 7.21016233 6.98842956
28 11.62005342 12.81004637 12.08863201
29 12.75039342 14.02028774 13.24460569
30 16.26874207 17.62254347 16.76572833
31 14.00224880 14.70068215 14.19604563
32 6.79137773 7.31827455 6.97897808
33 7.87015188 8.77650929 8.23265055
34 5.63877301 6.13381935 5.82494304
35 7.92889878 8.74091801 8.24897843
36 4.67152690 4.76445559 4.66776797
37 30.04156041 30.79973381 30.07212710
38 17.58436065 20.18379226 18.68982781
39 11.40873190 12.82078873 11.99007305
40 11.04688243 12.38294677 11.59423026
41 45.00916393 68.32826921 55.69592955
42 53.17996414 85.51808647 67.87832595
43 10.84341981 12.11134495 11.35640762
44 4.07364933 4.13316525 4.05956042
45 9.39377526 8.77275241 8.96586077
46 11.13586233 10.53836209 10.68087577
47 18.60603607 21.34515641 19.76783661
48 19.24155806 22.23416317 20.52138470

Because of its close proximity to the underlying data, the sample influence
function is a particularly adequate tool as an influence measure in factor
analysis. In empirical work it may be advantageous to use this concept
graphically in form of a ‘case plot’.
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Appendix

Proof of Theorem 3.1 When using the expectation operator E, the per-
turbed reduced covariance matrix Σ̃(F̃ ) can be written in the form

Σ̃(F̃ ) = EF̃ (x̃x̃′)− {EF̃ (x̃) · [EF̃ (x̃)]′} . (51)

With regard to

EF̃ (x̃) = (1− ε) · EF (x̃) + ε · x̃ and EF (x̃) = 0 ,

the equation (51) can be simplified to

Σ̃(F̃ ) = (1− ε) · EF (x̃x̃′) + ε · x̃x̃′ − ε2 · x̃x̃′ . (52)

Because of Σ̃(F ) = EF (x̃x̃′) one can obtain the relation (8) from equation
(52) after a suitable compilation. �

Lemma 4.1 Let B, C, and D be symmetric p × p matrices forming the
Taylor expansion

B(ε) = B + ε ·C +
1
2
ε2 ·D +O(ε3) (53)

for the perturbed matrix B(ε). The perturbations of an eigenvalue l and the
corresponding eigenvector e of B are described by the Taylor expansion

l(ε) = l + ε · v +
1
2
ε2 · w +O(ε3) , (54)

e(ε) = e + ε · g +
1
2
ε2 · h +O(ε3) . (55)

Subsequently, the scalars v and w are given by the relations

v =e′Ce , (56)
w =e′(2Cg + De). (57)

For the p× 1 vectors g and h the relations

g = −(B− l·I)+·Ce , (58)

h = (B− l·I)+·[2(v·I−C) · g + (w · I−D) · e] (59)

hold.

Proof. The proofs of the expressions (56), (57), and (58) are already given
by Sibson (1979, p. 219). In relation (57) w is merely written in a simpler
form. Hence, only equation (59) remains to be proved.

Equating the coefficients of 1
2ε

2 of the eigenvalue problem

B(ε) · e(ε) = l(ε) · e(ε)

will lead to the relation

B · h + 2 ·C · g + D · e = l · h + 2 · v · g + w · e
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with the aid of the equations (53), (54), and (55). From this equation the
expression

(B− l · I) · h = 2(v · I−C) · g + (w · I−D) · e

follows. With regard to

(B− l · I)+ · (B− l · I) · h = h

then one obtains then the expression (59). �

Proof of Theorem 3.2 According to equation (53) we view B(ε) as being
equal to Σ̃(F̃ ) as given in expression (8). With regard to equation (55),
relation (56) can be written in the form

vk = ω′k · [x̃x̃′ − Σ̃(F )] · ωk (60)

with C = x̃x̃′ − Σ̃(F ) . (61)

Using the identity

ω′k ·Σ(F ) · ωk = τk

the expression (60) is immediately simplified to equation (16).
Due to equation (58) and expression (61), one obtains

gk = −[Σ̃(F )− τk · I]+ · [x̃x̃′ − Σ̃(F )] · ωk ,

which leads to the relation

gk = −
∑

(k)
(τh − τk)−1ωhωh

′(x̃x̃′ − τk · I) · ωk

with respect to the spectral decompositions (12) and (13). Because ωh′ωk =
0 for h 6= k, equation (17) ensues.

For wk the expression

wk = 2ωk′ · {[x̃x̃′ − Σ̃(F )] · gk − x̃x̃′ · ωk}

is derived from equation (57) by using expression (61) and

D = −2x̃x̃′ . (62)

In consideration of equation (12) the relation (18) holds.
Finally, hk according to equation (19) is obtained from equation (59) with

regard to the spectral decompositions (12) and (13) by using the expressions
(61) and (62). �

Proof of Theorem 3.4 The vector-valued function q(ε) can be written as

q(ε) = λ̂k(F̃ ) = [τ̂k(F̃ )]1/2ω̂k(F̃ ) (63)

for T(F ) = λk(F ) with regard to equation (7). Substitution of the Taylor ex-
pansions (54) and (55) for the estimators of the eigenvalues and eigenvectors
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τk and ωk as well as for the coefficients vk, wk, gk, and hk, gives an analo-
gous presentation for the perturbed eigenvalues and eigenvectors of Σ̃(Fn),
so that equation (63) can be transformed into the relation

q(ε) = τ̂
1/2
k · [1 +

1
2
εv̂kτ̂

−1
k +

1
2
ε2τ̂−1

k (ŵk −
1
2

v̂2
kτ̂
−1
k )]

· (ω̂k + εĝk +
1
2
ε2ĥk) +O(ε2) .

From this we can obtain the derivatives

q′(ε) = τ̂
1/2
k {

1
2
τ̂−1
k [v̂k + ε(ŵk −

1
2

v̂2
kτ̂
−1
k )] · ω̂k

+ (1 + εv̂kτ̂
−1
k )ĝk + εĥk}+O(ε3)

q′′(ε) = τ̂
1/2
k [

1
2
τ−1
k (ŵk −

1
2

v̂2
kτ̂
−1
k )ω̂k + v̂kτ̂

−1
k ĝk + ĥk] +O(ε2) .

If one now substitutes ÎF(x;λk, F ) given by equation (28) for q′(0) [because
of equation (36)] into equation (37), with regard to

q′′(0) = τ̂
1/2
k [

1
2
τ̂−1
k (ŵk −

1
2

v̂2
kτ
−1
k )ω̂k + v̂kτ̂

−1
k ĝk + ĥk] , (64)

equation (39) follows after an appropriate arrangement and simplification of
the terms. �
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