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Abstract. A test strategy consisting of a two-step Lagrange Multiplier test is
suggested as a device to reveal spatial nonstationarity and spurious spatial regres-
sion. It is further illustrated how the test strategy can be used as a diagnostic for
presence of a spatial cointegrating relationship between two variables. Using
Monte Carlo simulations it is shown that the small-sample behaviour of the test
strategy is as desired in these cases.
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1 Introduction

Spatial regression has been discussed widely in books dedicated to developments
in spatial econometrics, notably by Anselin (1988a), Anselin and Florax (1995),
Griffith (2003), and Anselin et al. (2004). The consequenses for estimation and
inference in the presence of stable spatial processes have been extensively inves-
tigated (Bivand 1980; Richardson and Hèmon 1981; Clifford and Richardson
1985; Clifford et al. 1989; Anselin 1988a; Haining 2003; Richardson 1990). A
recent study (Fingleton 1999) makes the first steps in analysing the implications of
spatial unit roots, spatial cointegration and spatial error correction models.
A follow-up to this study is Mur and Trivez (2003), who develop the concept
of spurious spatial regression in a framework of spatial trend (non)stationarity.
Lauridsen (2006) investigates the estimation of spatial error-correction models
using an IV approach.
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The topics studied in the present article may be viewed as generalisations of
common topics studied in the general time series literature. For example, two
survey papers on the subject of unit roots in economic time series data, Diebold
and Nerlove (1990) and Campbell and Perron (1991), cite over 200 basic refer-
ences to the subject. The literature on unit roots and cointegration is one of the
most rapidly moving targets in econometrics. Stock’s (1994) survey adds hundreds
of references to those in the aforementioned surveys and brings the literature up to
date. Useful basic references on the subjects are: Geweke (1984), Hendry et al.
(1984), Judge et al. (1985), Harvey (1989, 1990), Mills (1990), Box et al. (1994),
Hamilton (1994), Enders (1995), Granger and Newbold (1996), Granger and
Watson (1984), and Patterson (2000).

The present article refines the suggestions of Fingleton (1999). Specifically,
Fingleton suggests that “very high” values of the Moran test for spatial residual
autocorrelation indicate spatial nonstationarity and spurious regression. It is,
however, left as an open question how to distinguish between stationary positive
autocorrelation and nonstationarity. The present investigation shows that a two-
step LM test for positive residual autocorrelation can provide a better-founded
basis to separate these two cases. It is further shown that the same procedure works
as a diagnostic for spurious regression. Next, it is suggested that the test procedure
works well as a test for spatial cointegration, using a specific two-variable data
generating process. In all cases, the small-sample properties of the suggested
procedures are derived using Monte Carlo simulation. It is concluded that the
procedure works well in all cases, even for fairly small sample sizes.

2 Models with spatial dynamics

2.1 The regressive, spatially autoregressive model

The first order spatially autoregressive model or SAR(1) model was initially
studied by Whittle (1954) and has been used extensively in works by Ord (1975),
Cliff and Ord (1981), Ripley (1981), Upton and Fingleton (1985), Anselin
(1988a), Haining (2003), Griffith (1992), Anselin et al. (1996), Florax et al.
(2003), and Lauridsen (2006). For applied research the SAR(1) model is extended
by explanatory variables (see the more recent references mentioned above). The
regressive, spatially autoregressive model or SARX(1) model is given by:

y Wy X v= + +ρ b , (1)

in which y is an n ¥ 1 vector, X an n ¥ K matrix of explanatory variables, r the
autoregressive parameter, I the n ¥ n identity matrix and v an n ¥ 1 vector of
independently normally distributed errors with zero expectation and variances s 2,
that is v ~ N(0,s 2I), and W denotes an n ¥ n spatial weight matrix. The weights
matrix is obtained by row-standardisation of the n ¥ n contiguity matrix W* which
is defined by wij* = 1 if observation j is assumed to impact observation i, and wij* = 0
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otherwise, so that w w wij ij j n ij= =* *, ,Σ 1 . . . . For alternative specifications of the
spatial weight matrix, see for instance Cliff and Ord (1981) and Anselin (1988a).
The weights may be multidirectional, which is not the case for the time-series case
where wij = 1 if j = i - 1, for i = 2, 3, . . . , n. For the general spatial case, the
weights matrix is generally multidirectional. As proved by Anselin (1988a), mul-
tidirectionality of the weights matrix renders OLS estimation of the parameters
inconsistent. Finally, for the general case, r is restricted to the interval between –1
and +1 and may thus take on positive as well as negative values. Although meriting
interest in itself, the negative case is conceptually different from the usual positive
case. We thus narrow our focus in the present analysis to the common case where
r is positive.

2.2 Spurious regression and nonstationarity

If y and one or more of the x variables are generated according to SAR schemes
with positive autoregressive parameters and y is regressed on X:

y X= +b e, (2)

with e as the error term, a risk of spurious regression occurs. Especially, in the case
of spatial near nonstationarity, where y and one or more of the x variables have
autoregressive parameters close to 1, the risk of spurious regression is alarmingly
high. It manifests in the OLS residuals e of the regression tending to be highly
spatially autocorrelated. This is demonstrated in Fingleton (1999), where
extremely high values of the test statistics of the Moran test for spatial autocor-
relation (Whittle 1954; Anselin 1988a) have been found. In this setting high values
of Moran’s I can be viewed as the counterpart of low values of the Durbin-Watson
statistic, which is common in spurious time-series regression. In both cases the
behaviour of the test statistics is used as an indication of nonstationarity.

The stochastic process generating the OLS residual vector e in equation (1)
usually has to be inferred from inspecting the behaviour of the residuals. Fingleton
(1999) leaves it as an open question how to separate the case of stationary positive
autocorrelation (0 < r < 1) from the nonstationarity case (r = 1). This means that
the implicitly assumed error process:

e e m m= + ( )ρ σεW 0 I, N , ,~ 2 (3)

is considered with re = 0 under the null hypothesis of independently and identi-
cally distributed (i.i.d.) disturbances, and with re > 0 under the alternative hypoth-
esis of spatially autocorrelated errors. In general, the error process (3) is not the
spatial analogue of the Markov process underlying the Durbin-Watson test in time
series analysis (see Haining 2003, p. 299). In both cases, though, only first-order
error autocorrelation is taken into account as the alternative. Note that spatial
autocorrelation can be caused by both a spatially autoregressive SAR(1) and a
spatial moving average or SMA(1) process (see, e.g., Kelejian and Robinson 1995;
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Hepple 1995a,b). However, manifestation of spatial nonstationarity can only be
attributed to a SAR process. Moreover, Fingleton (1999) does not address the
well-known power of the Moran I test towards misspecifications in the form of, for
instance, spatial heterogeneity (see Anselin 1988a). Being an advantage in some
circumstances, this feature of the Moran I coefficient is not necessarily an advan-
tage when investigating specific features of the data generating processes under-
lying the model that is being considered.

In order to account for both shortcomings, the present study suggests a two-
step Lagrange Multiplier test for spatially autocorrelated errors. The LM error
statistic (LME) developed in Anselin (1988a,b):

LME tr ,2= ′( ) + ′( )e We W W Wσ 2 2 (4)

is asymptotically c2 distributed with 1 degree of freedom under H0: re = 0. There-
fore, a large LME value indicates either spatial nonstationarity or stationary spatial
error autocorrelation. This result corresponds to the suggestions of Fingleton
(1999) with the Moran’s I test replacing the LM test. Next, under spatial nonsta-
tionarity, re = 1,

Δe m= (5)

follows from the spatial error process (3) with D = I - W as the spatial difference
operator. By employing D to equation (2), the transformed regression equation:

Δ Δy X= +b m (6)

is obtained. Equation (6) implies that a regression of Dy on DX provides i.i.d.
errors, so that the LM error test statistic for this spatially differenced model
(DLME) will be close to zero. On the other hand, if the null of nonstationarity, H0:
re = 1. In the spatially differenced model (6) does not hold, then the spatial
differencing will bring about an error term on the form:

Δe m m e= −( ) −( ) ⇔ = −( )−I W I W I Wρ ρε ε
1 . (7)

The spatially autocorrelated errors resulting from spatial “overdifferencing” are
expected to go along with a positive DLME value. In sum, the test strategy consists
of calculating and inspecting the LME and the DLME values, and will lead to one
of the four conclusions detailed in Table 1. In Table 1, a test result is designated

Table 1. Outcomes of two-stage LM tests

DLME zero DLME positive

LME zero — Absence of spatial
autocorrelation

LME positive Spatial nonstationarity
(spurious regression)

Stationary spatial
autocorrelation
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“positive” if the LM test statistic differs significantly from zero, and it is referred
to as “zero” otherwise.

As a specific detail, one should be aware that the conclusion from the DLME
test is conditioned on the conclusion from the LME test. Thus, a further precision
of the two-step procedure might be obtained by incorporating for example a
Bonferroni type correction to the level of the combined test procedure, although it
should be kept in mind that this correction would be too conservative due to the
correlation among the LME and the DLME tests.

It may also be relevant to investigate whether y or any of the x variables are
spatially nonstationary. This may be revealed by using the suggested procedure for
a regression of the variable in question (i.e., z being one of y, x1, x2, . . .) on a
constant term. Specifically, the regressions:

z i= +α e, (8)

and

Δ Δ Δ Δz i= + =α e e, (9)

easily provide the LME and DLME test statistics, which lead to one of three
conclusions: z is spatially nonstationary (LME positive, DLME zero); z represents
a stationary SAR scheme (LME positive, DLME positive); or z is free of any
spatial pattern (LME zero, DLME positive). According to the data generating
process z = rWz + v, the z variables are spatially integrated of order one, SI(1), in
the case of nonstationarity. It should be kept in mind that this relies on the data
generating process being well specified. For example, the difference stationary
spatial random walk with drift defined by z = mi + Wz + v and the spatial trend
stationary process z = mi + Cb + v, where C is a matrix of coordinates for the
spatial units, are both nonstationary but may be diagnosed as stationary.

An intuitively appealing alternative to the LM test procedure suggested might
be to estimate the SAR model and test the hypothesis r = 1 using a Wald or
Likelihood Ratio test. At least two objections may be raised against this proposal.
First, efficient estimation of the SAR model requires maximum likelihood estima-
tion, which is in principle doable although hardly practical for simulation studies
aimed at deriving finite-sample properties of the test. Second, the proposal
resembles the Dickey-Fuller approach applied to the time series case. Even for this
special case, it is known that (1 - r)/sr does not adhere to a standard normal or t
distribution. This disclaimer may well pertain to the application of the Moran I
test, which can be viewed as a generalisation of the Dickey-Fuller test when
applied to the differenced model.

A further advantage of the LM test strategy is that it is quite flexible. Thus, it
is possible to control for omitted model features insofar that these can be incor-
porated as part of the likelihood function. For example, it is straightforward to
account for omitted heterogeneity and an omitted autoregression in the dependent
variable, along the lines suggested in Anselin (1988b).
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2.3 Spatial cointegration

Spatial cointegration denotes the case where two or more variables in a regression
are nonstationary, while the errors are stationary. Let x and y be both spatially
integrated of order one. Then in general any linear combination of x and y is also
SI(1). If, however, a linear combination y - bx exists which is stationary, x and y
are said to be spatially cointegrated. In this case the cointegrating vector is given
by (1 - b). The linear combination y - bx which renders the errors in a regression
setting is then spatially integrated of order zero, SI(0) (Fingleton 1999).

A simple data generating process which generates two nonstationary but pos-
sibly cointegrating series is the following system, which is a spatial generalisation
of a time series specification presented in Banerjee et al. (1993):

x y u u Wu e+ = = +β , ,1 (10)

x y e+ =α 2 , (11)

where e1 and e2 are white noise processes. From these definitions:

x u e= −( ) − −( )− −α α β β α β1 1
2 , (12)

y u e= − −( ) + −( )− −α β α β1 1
2 , (13)

from which it is clear that x and y are SI(1) but that they are cointegrated for any
a different from 0 and certain b values, because x + ay is I(0). Specifically, the
relation will be non-integrated if (i) a = 0 or (ii) a > 0 and b > a.

We suggest that the above LM strategy may apply to this situation. Specifi-
cally, a regression of y on X represents a cointegrating relation if LME is zero and
DLME is positive, or a non-cointegrating relation if LME is positive and DLME
is zero. The limiting case of “near cointegration” (a > 0, b > a) will also be
revealed, specifically if LME and DLME are positive.

3 Monte Carlo simulation studies: designs and results

In this section, the finite-sample properties of the above suggested test strategies
will be investigated using Monte Carlo simulation studies. The chosen Monte
Carlo designs are outlined together with the results. All calculations are done
using SAS/IML, including the software’s standard routines for random number
generation.

3.1 Spurious regression

To investigate the finite-sample properties of the suggested LME test strategy for
spurious regression, the following Monte Carlo design is investigated:
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For a specific sample size n, we perform 10,000 iterations where ex and ey are
generated as independent N(0,1) series, x = (I - rxW)–1ex, y = (I - ryW)–1ey, and
we regress y on X = [i x] and Dy on DX to obtain LME and DLME. We report the
percentage of cases out of 10,000 where LME, respective DLME exceeds the 5
percent critical value of c2(1) = 3.84. The parameters rx and ry are varied over a
grid of the values (0.0, 0.1, 0.2, . . . , 0.8, 0.9, 0.99, 1.00). To investigate the impact
of the contiguity matrix type, we make use of the rook and queen type of regular
contiguity matrices based on an r ¥ r checker board (so that n = r2) with r assumed
to take on the values 5, 10, 15, and 20. The rook matrix represents a square
tesselation with a connectivity of 4 for the inner fields on the chessboard and 2 and
3 for the corner and border fields, respectively. The queen matrix represents an
octogonal tesselation with a connectivity of 8 for the inner fields and 3 and 5 for
the corner and border fields. Thus, these tesselations represent extremes for a
number of patterns, including the hexagonal tesselation, which is of importance
due to its application for empirical maps in vector and raster based GIS (Boots and
Tiefelsdorf 2000; Tiefelsdorf 2000). Actually, the hexagonal tesselation can be
constructed from the queen tesselation by deleting connections from any field to
the fields vertically above and below this. Moreover, most empirically observed
regional structures in spatial econometrics are made up of regions with connec-
tivity within the range of the rook and queen tesselations. Further, irregular
matrices based on the 275 Danish municipalities are applied: a n = 36 matrix based
on the municipalities located on the island of Funen, a n = 97 matrix made up of
the municipalities located on Seeland together with the adjacent islands Lolland
and Falster, a n = 141 matrix created from the municipalities located on the
peninsula of Jutland, and the full matrix of n = 275 Danish municipalities, which
consists of the above municipalities plus 5 municipalities located on the island of
Bornholm. The map of the 275 municipalities, together with the above partition-
ing, is shown in Figure 1.

The behaviour of the strategy under spatial nonstationarity as well as station-
arity (including the case of near nonstationarity) is investigated by assuming ry to
take on the values (0.0, 0.1, 0.2, . . . , 0.8, 0.9, 0.99, 1.00). For each of these, rx is
assumed to take on the values (0.0, 0.1, 0.2, . . . , 0.8, 0.9, 0.99, 1.00). For the cases
of nonstationarity, we use the Moore-Penrose generalised inverse (I - W)+ instead
of (I - W)–1.

Figures 2 and 3 show that the procedure performs well, and that the perfor-
mance of the procedure is acceptable even for fairly small sample sizes, and for
regular as well as irregular matrices. For very small samples, the results for the
n = 25 regular matrices and the results for the n = 36 irregular matrix show that
the power of the tests are not convincing, as the increase in the power function for
the LME and the DLME tests is relatively slow. This is especially apparent for the
queen case. Generally, the size of the tests are as desired, being close to the true
value of 0.05. That the case of near nonstationarity causes problems in identifying
the “true” data generating process is well known from time series analysis. The
performance of the procedure seems to be unaffected by the type of contiguity
matrix, as the regular rook and queen and the irregular cases provide similar
results. It should be noticed that this observation does not guarantee robustness of
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the test procedure against misspecification of the contiguity matrix. Such mis-
specifications might occur in, for example, geostatistical studies employing an
automatically generated contiguity structure from raster based GIS and remote
sensing. Further, it is noticeable that only the SAR process in the y variable
matters, while the power function for any value of rx seems to be similar.

3.2 Test for nonstationarity

To investigate the finite-sample properties of the suggested LME test strategy for
nonstationaity of a single variable, the following Monte Carlo design is investi-

Fig. 1. The Danish municipalities
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gated. For a specific sample size n, we perform 10,000 iterations, where e is
generated as independent N(0,1) series, y = (I - rW)–1e, and we regress y on X = i
and Dy on DX in order to obtain LME and DLME results. We report the percentage
of cases out of 10,000 where LME, respective DLME exceeds the 5 percent critical
value of c2(1) = 3.84. Again, we use the rook and queen type contiguity matrices
based on an r ¥ r board with r assumed to take the values 5, 10, 15, and 20 and the
irregular empirical matrices. Further, the behaviour of the strategy under spatial:
nonstationarity as well as stationarity (including the case of near nonstationarity)
is investigated by varying r across the values (0.0, 0.1, 0.2, . . . , 0.8, 0.9, 0.99,
1.0). For the cases where r equals 1, we replace (I - W)–1 by the Moore-Penrose
generalised inverse (I - W)+.

Figures 4 and 5 show that the procedure performs well even for fairly small
sample sizes, and for the regular as well as the irregular matrices. For very small
samples, the results for the n = 25 regular cases and the n = 36 irregular case show
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Fig. 2. Monte Carlo results for spurious regression; proportion of cases where LME value rejects H0

at the 5 percent level
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that the power of the tests is very flat and thus not convincing. This holds true
under the assumption of nonstationarity as well as different stationarity cases. The
case of near nonstationarity is again included for comparative purposes. Note that
performance is independent of the type of contiguity matrix.

3.3 Test for cointegration

To investigate the finite-sample properties of the suggested LME test strategy
for cointegration using the suggested example, the following Monte Carlo
design is investigated. For a specific sample size n, we perform 10,000 iterations,
where we generate e1, e2 as independent N(0,1) series, u = (I - W)+e1,
x = a(a - b)-1u - b(a - b)-1e2 and y = –(a - b)-1u + (a - b)–1e2, and we regress y
on X = [i x] and Dy on DX, in order to obtain LME and DLME results. We again
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Fig. 3. Monte Carlo results for spurious regression; proportion of cases where DLME value rejects H0

at the 5 percent level
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report the percentage of cases out of 10,000 where LME, respective DLME
exceeds the 5 percent critical value of c2(1) = 3.84. In order to investigate the
impact of contiguity matrix type, we again use the regular rook and queen type
contiguity matrices based on an r ¥ r board with r assumed to take the values 5, 10,
15, and 20 and the irregular matrices based on the Danish case. Further, the
behaviour of the strategy under spatial nonstationarity as well as stationarity
(including the case of near nonstationarity) is investigated for varying a and b.
Specifically, a was varied across the values (0, 0.1, 0.2, . . . , 0.8, 0.9, 1.0). For
each of these, b was varied across the same values, with an exception for the cases
when a = b. For these, b was set to (a + 0.01), except for the a = 1.0 cases, where
b was set to 0.99. The results are shown in Figures 6 and 7.

Figures 6 and 7 show that the procedure performs well, especially for fairly
large n, and that the performance of the procedure is acceptable, even for fairly
small sample sizes. For very small samples, the results for the n = 25 regular cases
and the n = 36 irregular case show that the power of the test is not convincing.
Especially, in the case of cointegration (a = 1) and non-integration (a = 0), the
procedure works excellently, while the grey area case of near-integration
(0 < a < 1, b > a) is characterised by inconclusive test sizes. These conclusions
hold for both types of contiguity matrices, with a single exception for the cases
where a and b are close to each other. In such cases, the rejection percentages are
much higher for the queen than for the rook case.
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Fig. 4. Monte Carlo results for nonstationary variables; proportion of cases where LME value rejects
H0 at the 5 percent level
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Fig. 5. Monte Carlo results for nonstationary variables; proportion of cases where DLME value rejects
H0 at the 5 percent level
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4 Conclusion

Until now, it has not been well established how to separate the case of spatial
nonstationarity from the case of stationary positive autocorrelation. As a conse-
quence, reliable diagnostics for spurious spatial regression and for the existence of
spatial cointegrating relations have not been available. The present study aims to
contribute to closing these gaps by proposing a strategy for detecting spatial
nonstationarity. It is shown that the test strategy consisting of a two-step Lagrange
Multiplier test provides adequate diagnostics for both spurious spatial regression
and the presence of spatial cointegrating relations. By means of Monte Carlo
simulations it is demonstrated that the finite sample properties of the suggested
methodology are as desired.
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Fig. 6. Monte Carlo results for nonstationary cointegration; proportion of cases where LME value
rejects H0 at the 5 percent level
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