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A WALD TEST FOR SPATIAL NONSTATIONARITY 

 

ABSTRACT 

A test strategy consisting of a two-step Lagrange multiplier test was recently suggested as a 

device to reveal spatial nonstationarity, spurious spatial regression and presence of a spatial 

cointegrating relationship between two variables. Due to the well known radicality of such pre-

tests in finite samples, the present paper suggests a Wald post-test, based on maximum likelihood 

estimation. The finite-sample distribution  of the test under nonstationarity is derived using Monte 

Carlo simulation and applied to an empirical example. 

 

JEL Classifications: C21; C40; C51; J60. 
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1. INTRODUCTION 

 

Spatial regression has been discussed widely in books dedicated to developments in spatial 

econometrics, notably by Anselin (1988a), and Anselin and Florax (1995). The consequenses for 

estimation and inference in the presence of stable spatial processes have been extensively 

investigated (Haining 1990; Anselin 1988a; Bivand 1980; Richardson 1990; Richardson and 

Hèmon 1981;  Clifford and  Richardson 1985; Clifford, Richardson and Hèmon 1989). A recent 

study (Fingleton 1999) takes the first steps into analyses of implications of spatial unit roots, 

spatial cointegration and spatial error correction models. A follow-up to this study is found in 

Mur and Trivez (2003), where the concept of spurious spatial regression is established in a 

framework of spatial trend (non)stationarity. In Lauridsen (2004) estimation of spatial error-

correction models using an IV approach is investigated. Further, Lauridsen and Kosfeld (2004) 

and Kosfeld and Lauridsen (2004) establish and apply a two-step Lagrange Multiplier test for 

nonstationarity. 

 

The topics studied in the present investigation may be viewed as generalisations of common 

topics studied in a basin of time series literature. For example, two survey papers on the subject of 

unit roots in economic time series data, Diebold and Nerlove (1990) and Campbell and Perron 

(1991) cite over 200 basic sources on the subject. The literature on unit roots and cointegration is 

one of the most rapidly moving target in econometrics. Stock’s (1994) survey adds hundreds of 

references to those in the aforementioned surveys and brings the literature up to date as of then. 

Useful basic references on the subjects are  Box et al. (1994); Judge et al. (1985); Mills (1990); 

Granger and Watson (1996); Granger and Newbold (1996); Hendry et al. (1984); Geweke (1984); 

Harvey (1989, 1990); Enders (1995); Hamilton (1994); and Patterson (2000). 
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The present paper refines recent suggestions. Specifically, Fingleton (1999) suggests that “very 

high” values of the Moran test for spatial residual autocorrelation indicate spatial nonstationarity 

and spurious regression. It is, however, left as an open question how to distinguish between 

stationary positive autocorrelation and nonstationarity. Lauridsen and Kosfeld (2004) shows that a 

two-step Lagrange multiplier (LM) test for positive residual autocorrelation can provide a better 

founded basis to separate these two cases and that the same procedure works as a diagnostic for 

spurious regression and spatial cointegration. The practical applicability of the suggested LM test 

approach was illustrated in Lauridsen and Kosfeld (2004) and Kosfeld and Lauridsen (2004), 

using cases from recent empirical research. But they did not treat the well known radicality 

problem of the LM test, due to its high finite-sample power function. It is well known that the LM 

test, the Likelihood Ratio (LR) test and the Wald test for any hypothesis are asymptotically 

equivalent, but that they for any finite sample size obey the inequality LM > LR > Wald. The 

present paper introduces the Wald test as a device for detecting spatial nonstationarity and derives 

the finite-sample distribution of this test under the null using Monte Carlo simulation. Though 

focus is on the application of the test as a device to reveal spatial nonstationarity, the established 

results can be straightforwadly generalised to obtain a device to test for spurious regression and 

for spatial cointegration along the lines suggested by Lauridsen and Kosfeld (2004). 

 

2. MODELS WITH SPATIAL DYNAMICS 

 

2.1. The regressive, spatially autoregressive model. 

The first order spatially autoregressive model (SAR(1) model) was initially studied by Whittle 

(1954) and has been used extensively in works by Ord (1975); Cliff and Ord (1981); Ripley 
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(1981); Upton and Fingleton (1985); Anselin (1988a); Griffith (1992); Haining (1990); Lauridsen 

(2004). For applied research the SAR(1) model is extended by explanatory variables (see Upton 

and Fingleton, 1985; Anselin, 1988a; Haining, 1990; Lauridsen, 2004). The regressive, spatially 

autoregressive model (SARX(1) model) is established as 

 

(2.1) y = ρWy +  Xβ + v , 

 

in which y is an n×1 vector, X an n×K matrix of explanatory variables, ρ the autoregressive 

parameter, I the n×n identity matrix and v an n×1 vector of independently normally distributed 

errors with zero expectation and variances σ2, i.e. v ~N(0,σ2I), W denotes an n×n spatial weight 

matrix. It is obtained by row-standardisation of the n×n contiguity matrix W* which is defined  by 

W*ij = 1 if the areal units i and j are neighbours, and W*ij = 0 otherwise, i.e. Wij = W*ij / Σj=1..n 

W*ij. For alternative specifications of the spatial weight matrix, see e.g. Cliff and Ord (1981) and 

Anselin (1988a). W may be noncircular, which is the case for the time-series case where Wij = 1 if 

j = i-1, for i = 2,3,..,n. For the general spatial case, W is generally circular. As proved by Anselin 

(1988a), circularity of W renders OLS estimation of the parameters inefficient. Finally, for the 

general case, ρ is restricted to the interval between -1 and +1 and thus may assume positive as 

well as negative values. Although meriting interest in itself, the negative case is conceptually 

different from the usual positive case. We thus narrow our focus in the present investigation to the 

common case where ρ is positive. 

 

2.2. Spurious regression and nonstationarity. 

If y and one or more of the x variables are generated according to SAR scemes with positive 

autoregressive parameters and y is regressed on X, i.e. 
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(2.2) y = Xβ + ε, 

with ε as the error term, a risk of spurious regression occurs. Especially, in the case of spatial 

nonstationarity, where y and one or more of the x variables have autoregressive parametres close 

to 1, the risk of spurious regression is alarmingly high. It manifests in the OLS residuals e of the 

regression tending to be highly spatially autocorrelated. This is demonstrated in Fingleton (1999) 

where extremely high values of the test statistics of the Moran test for spatial autocorrelation 

(Whittle, 1954; Anselin, 1988a) have been found. In this setting high values of Moran’s I can be 

viewed as the counterpart of low values of the Durbin-Watson statistic having been established in 

spurious time-series regression. In both cases the behaviour of the test statistics is used as an 

indication of nonstationarity.  

 

The stochastic process that the OLS residual e
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is asymptotical χ2 distributed with 1 degree of freedom under H0: ρε = 0. Therefore, a large LME 

value indicates either spatial nonstationarity or stationary, spatial error autocorrelation. This result 

corresponds to the suggestions of Fingleton (1999) with the Moran I test replacing the LM test. 

Next, under the null of nonstationarity, H0:ρε=0, ∆ε =  µ ⇔ ε = ∆+ µ follows from the spatial error 

process ε = ρεWε + µ, µ~N(0,σ2I), with ∆ = I - W as the spatial difference operator. ∆+ denotes 

the Moore-Penrose generalised inverse which satisfies the conditions ∆+∆∆+ = ∆+ and  ∆∆+∆ = ∆. 

By employing the spatial difference operator ∆ to (2.2) the transformed regression equation 

(2.4) ∆y = ∆Xβ + µ  

is obtained. Equation (2.4) implies that a regression of ∆y on ∆X provides i.i.d. errors, so that the 

LM error test statistic for this spatially differenced model (DLME) will be close to zero. On the 

other hand, if the null of nonstationarity, H0: ρε = 1, does not hold, then the spatial differencing 

will bring about an error term of the form ∆ε = (I-W)(I-ρεW)-1µ, or µ = (I-ρεW)ε. 

 

The spatially autocorrelated errors resulting from a spatially “overdifferencing” are expected to go 

along with a positive DLME value. Concluding, the test strategy consists of calculating and 

inspecting the LME and the DLME values, leading to one of three conclusions (where the test 

result is termed to be “positive” if the LM test statistic differs significantly from zero and “zero” 

otherwise): Nonstationary, spurious regression (LME positive, DLME zero); stationary spatial 

autocorrelation (LME and DLME positive); or absense of autocorrelation (LME zero, DLME 

positive). 

It is further suggested by Lauridsen and Kosfeld (2004) to investigate whether y or any of the x 

variables are spatially nonstationary. This may be revealed by using the suggested procedure for a 

regression of the variable in question (i.e. z being one of y, x1, x2, ... ) on a constant term. 

Specifically, the regressions z = αi + ε and ∆z = α∆i + ε = ε readily provide the LME and DLME 
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test statistics, which lead to one of three conclusions: z is spatially nonstationary (LME positive, 

DLME zero); z represents a stationary SAR scheme (LME positive, DLME positive); or z is free 

of any spatial pattern (LME zero, DLME positive). According to the data generating process z = 

ρWz + v, the z variables are spatially integrated of order one, SI(1), in the case of nonstationarity. 

 

An appealing alternative to the LM test procedure suggested is to estimate the SAR model and 

test the hypothesis ρ=1 using a Wald test. This proposal resembles the Dickey-Fuller approach 

applied to the time series case. However, even for this special case, it is known that (1-ρ)/s.e.(ρ) 

does not adhere to a standard normal or t distribution under nonstationarity. Thus, it is necessary 

to know the distribution of the Wald test under spatial nonstationarity for different sample sizes. 

A further complication is that this distribution may be dependent on the specific contiguity matrix 

in question. The present study presents benchmark results based on three different tesselations: 

the bishop, rook and queen tesselations. These three tesselations cover a broad range of empirical 

contiguity matrices. 

 

2.3. The Wald test. 

The Wald test is based on maximum likelihood estimation of the model with spatially 

autocorrelated residuals. Specifically, the log likelihood function for y reads 

L = (2πσ2)-n/2 exp(-(y-Xβ)’A’A(y-Xβ)/(2σ2)) |A| 

with A = I - ρW (for a detailed derivation, see Anselin, 1988a). Using the first order conditions 

derived by Anselin (1988a), it is an easy matter to search the interval (-1, 1) for the estimate of ρ 

that maximises L. Based on the estimate of ρ, estimates for β and σ2 can be calculated 

analytically. Inserting these estimates in the expected value of the second order conditions, the 

covariance matrix for the parameters θ = (β’,ρ, σ2)’ can be calculated (see Anselin, 1988a for 
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details). Formally, the first order conditions read  

 dL/dβ =  (y-Xβ)’A’AX/(σ2) = 0, 

which provides β = (X’A’AX)-1X’A’Ay; 

 dL/dρ = (y-Xβ)’A’W(y-Xβ)/(σ2) - tr(A-1W) = 0;  

and 

 dL/d(σ2) =  (2πσ2)-n/2 exp(-(y-Xβ)’A’A(y-Xβ)/(2σ2)) |A| = 0, 

which provides σ2 = (y-Xβ)’A’A(y-Xβ)/n. 
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For specific sample size n and matrix W: Perform 1.000 iterations: 

Generate u as an N(0,1) series and x as U(0,1). 

Let e = ∆+u and y = i + x + e. 

Calculate the Wald test for the hypothesis ρ = 1. 

Report 1, 5 and 10 percentiles for the Wald test. 

 

To investigate the impact of contiguity matrix type, we make use of the regular bishop, rook and 

queen type contiguity matrices based on an r×r board (so that n = r2) with r assumed to take the 

values 5, 10, 15 and 20, and the irregular n=275 matrix of the Danish municipalities. The bishop 

matrix represents a square tesselation with a connectivity of four for the inner fields on the 

chessboard and one and two for the corner and border fields, respectively. The queen matrix 

represents an octogonal tesselation with a connectivity of eight for the inner fields and three and 

five for the corner and border fields. Thus, these tesselations represent extremes for a number of 

patterns, including the hexagonal tesselation, which is of importance due to its application for 

empirical maps in vector and raster based GIS (Boots and Tiefelsdorf, 2000; Tiefelsdorf, 2000). 

Actually, the hexagonal tesselation can be constructed from the queen tesselation by deleting 

connections from any field to the fields vertically above and below this. Moreover, most 

empirically observed observed regional structures in spatial econometrics are made up of regions 

with a connectivity within the range of the rook and queen tesselations. 

(table 1 around here) 

The results are reported in Table 1. It is seen that the critical limits of the Wald test under spatial 

nonstationarity are higher than for the χ2(1) distribution. Especially, this holds true for the bishop 

type matrix. For the rook and queen type matrices, the deviations are approximately equal and 
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found to be most pronounced for the 5 and 10 percentile, thus indicating that the Wald test under 

nonstationarity has a distribution with a thicker right tail than the χ2(1) distribution. 

 

4. AN EMPIRICAL ILLUSTRATION 

 

To illustrate the above concepts, we provide an empirical example which were investigated in 

more details in Lauridsen and Nahrstedt (1999) and Lauridsen (2004). The model is concerned 

with determination of a regression model for outcommuting ratios as a function of 

unemployment, participation rate, density of working places and average household size. The data 

were from a 1994 census for 275 Danish municipalities. The municipality structure is 

characterised by an average connectivity of 4.59 and a range from 1 to 8, which is within the 

ranges of the rook and queen matrices used in the Monte Carlo studies above. This example is 

especially interesting because Lauridsen (2004) estimated a SARX model with a spatial 

autoregression parameter as high as 0.99 using IV estimation. Other regional studies, e.g. Rey and 

Montouri (1999) and Kosfeld et al. (2002) report an autoregressive parameter of moderate size. 

However, the example of a near unit root shows that the case of spatial nonstationarity has to be 

taken into account in applied econometrics. For a time series model, an autocorrelation parameter 

of this magnitude would be considered as a safe indication of nonstationarity. It is thus a tempting 

question whether an alike indication of spatial nonstationarity may be derived for this model. 

Table 2 presents a brief description of the data. 

(table 2 around here) 

 

Table 3 presents the ML estimation of the model. In Lauridsen (2004) it was left as an open 

question whether  the unexpected negative sign for the UNEMP coefficient was caused by 
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spuriosity due to spatial nonstationarity, see also Lauridsen and Nahrstedt (1999). The Wald tests 

for spatial nonstationarity, provided in Table 3, point to stationarity of the residuals as well as of 

the single variables. An alike conclusion was derived by Lauridsen and Kosfeld (2004) based on 

OLS estimation and LM tests. It is thus safely concluded that the single variables as well as the 

entire regression are stationary. Thus, the negative sign for unemployment is rather due to 

structural properties than to spatial nonstationarity. 

(table 3 around here) 

 

5. CONCLUSIONS 

Until recently, it has not been well established how to separate the case of spatial nonstationarity 

from the case of stationary positive autocorrelation. As a consequence, reliable diagnostics for 

spurious spatial regression and for the existence of spatial cointegrating relations have not been 

available. The present study contributes to close these gaps by proposing a Wald test for detecting 

spatial nonstationarity. By means of Monte Carlo simulations the finite sample distribution of the 

suggested Wald test is provided for a fairly general set of contiguity matrix types under varying 

finite sample sizes. It is found that the critical values for the Wald test for nonstationarity are 

generally higher than the χ2 critical values. 
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__________________________________________________________________________________________________ 

TABLE 1. EMPIRICAL DISTRIBUTION OF THE WALD TEST FOR SPATIAL NONSTATIONARITY. 

__________________________________________________________________________________________________ 

Matrix:               Bishop                 Rook                   Queen         Empirical   χ2(1) 
n:               25   100  225  400   25   100  225  400      25   100  225  400     275 

Percentiles: 

1 %             11.98 8.74 9.86       7.24 7.17 6.54          7.75 7.43 6.84         5.99     6.63 

5 %              7.69 7.35 7.82       4.83 4.91 5.05          5.11 5.30 5.17         4.82     3.84 

10 %             6.64 6.68 7.10       4.09 4.27 4.30          4.41 4.43 4.64         4.17     2.71 

__________________________________________________________________________________________________ 

 



 
 18 

_____________________________________________________________________ 

TABLE 2. VARIABLES USED FOR EMPIRICAL STUDY 

_____________________________________________________________________ 

 

Variable Definition     Mean S.D. Min Max 

 

OUTCOM    Number of persons with residence in the municipality  58.14 37.79 6.00 237.00 

  and workplace in another municipality in percentage   

of the number of workplaces in the municipalitya 

 

PSH1766 Population share of 17-66 year-olds (%)a  65.22 2.85 57.90 74.20 

 

WORKPL Number of workplaces per 100 inhabitantsa  43.11 11.63 21.00 100.00 

 

IPHOUS Number of inhabitants per householda   2.39 0.16 1.74 2.77 

 

UNEMP Number of unemployed per 100 17-66 year-oldsa  9.37 2.24 5.00 18.70 

Proximity matrix: 

W1 Neighbourhood matrix for N=275 Danish municipalitiesb 
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_______________________________________________________________ 

TABLE 3. ESTIMATION OF COMMUTING MODEL 

_______________________________________________________________ 

 

Dependent variable: OUTCOM. 

 

Variable  Parameter Standard Error T value  Probability 

 

Intercept  -245.17  35.72   -6.86  <.001 

UNEMP   -3.58   0.58   -6.15  <.001 

PSH1766   4.72   0.43   10.98  <.001 

WORKPL  -2.23   0.09  -25.59  <.001 

IPHOUS  52.68   7.79    6.76  <.001 

ρε   0.63   0.05  11.51  <.001 

_______________________________________________________________ 

 

Tests for nonstationarity: 

Variable   Wald  Prob(χ2(1)) Prob(Empirical) 

 

OUTCOM 41.83  <0.01  <0.01 

UNEMP  16.17  <0.01  <0.01 

PSH1766 10.08  <0.01  <0.01 

WORKPL 34.61  <0.01  <0.01 

IPHOUS  8.26  <0.01  <0.01 

residual    47.26  <0.01  <0.01 

_______________________________________________________________ 

 


