UN I KASSEL
VERSIT'A'T

Formula Collection

I. Return measures

Name	Formula	Explanation	
discrete return	$\mathrm{R}_{\mathrm{t}}=\frac{P_{t}-P_{t-1}}{P_{t-1}}=\frac{P_{t}}{P_{t-1}}-1$	$\begin{gathered} R_{t} \\ P_{t-1} \\ P_{t} \end{gathered}$	$\begin{aligned} & =\text { return } \\ & =\text { price in period } \mathrm{t}-1 \\ & \text { (pervious period) } \\ & =\text { price in period } \mathrm{t} \end{aligned}$
average return	$\bar{r}=\frac{r_{1}+r_{2}+\ldots+r_{T}}{T}=\frac{1}{T} \sum_{t=1}^{T} r_{t}$	$\begin{gathered} \bar{r} \\ r_{t} \\ \mathrm{~T} \end{gathered}$	```= average return (expected return, mean return) \(=\) return in period t \(=\) number of periods```
geometric return	$\bar{r}_{G}=\left[\left(1+r_{1}\right)\left(1+r_{2}\right) \ldots\left(1+r_{T}\right)\right]^{1 / T}-1$	$\begin{gathered} r_{t} \\ \bar{r}_{G} \\ \mathrm{~T} \end{gathered}$	$=$ return in period t $=$ geometric return $=$ number of periods
logarithmic return	$\ln \left(\frac{P_{t}}{P_{t-1}}\right)$	P_{t}	$=$ price in period t
multi period return (e.g. over 3 years)	$\left[\left(1+r_{1}\right)\left(1+r_{2}\right)\left(1+r_{3}\right)\right]-1$	r_{t}	$=$ return in period t
annual return	$R=\sqrt[T]{1+R}-1$	T	= number of periods
return on equity	$\frac{\text { net income }}{E_{B}}=\frac{\text { EPS }}{E_{B} \text { per share }}$	$\begin{gathered} E_{B} \\ \text { EPS } \end{gathered}$	= Book value of equity = Earnings per share
expected return	$E[r]=\mu=\sum_{i=1}^{n} p_{i} r_{i}$	$\begin{gathered} \mu \\ \mathrm{n} \\ p_{i} \\ r_{i} \end{gathered}$	= expected value = number of scenarios $=$ probability of scenario i $=$ return for scenario i
stock return	$r=\frac{\left(P_{T}-P_{0}\right)+\operatorname{Div}_{t}}{P_{o}}=\frac{P_{T}-P_{0}}{P_{0}}+\frac{\operatorname{Div}_{t}}{P_{0}}$	P_{T} P_{0} Div $_{t}$	$=$ stock price at the end of the period = stock price at the beginning $=$ dividend at the end of the period

U N I K A S S EL
V E R S I T 'A' T

II. Statistical essentials - Portfolio management

Name	Formula	Explanation	
expected value (average)	$\mathrm{E}(\mathrm{x})=\mu=\sum_{i=1}^{n} x_{\mathrm{i}} * p\left(x_{\mathrm{i}}\right)$	$\begin{gathered} \mathrm{E}(\mathrm{x})= \\ \mu \\ x_{\mathrm{i}} \\ p\left(x_{\mathrm{i}}\right) \end{gathered}$	= expected value $=$ mean value $=$ outcome $_{\mathrm{i}}$ = probability of outcome $_{\mathrm{i}}$
arithmetic mean	$\overline{\mathrm{x}}=\frac{1}{n} \sum_{i=1}^{n} x_{\mathrm{i}}$	$\begin{gathered} \mathrm{n} \\ x_{i} \end{gathered}$	$\begin{aligned} & =\text { number } \\ & =\text { outcome }_{\mathrm{i}} \end{aligned}$
variance	$\operatorname{Var}(x)=\tilde{\sigma}^{2}=\sum_{i=1}^{n} p(x i) *\left(x_{i}-\overline{\mathrm{x}}\right)^{2}$	$p\left(x_{\mathrm{i}}\right)$	$=$ probability of outcome $_{\mathrm{i}}$
sample variance	$\operatorname{Var}(x)=\tilde{\sigma}^{2}=\frac{1}{n-1} \sum_{t=1}^{n}\left(x_{i}-\overline{\mathrm{x}}\right)^{2}$	$\begin{gathered} \mathrm{n} \\ x_{i} \\ \overline{\mathrm{x}} \end{gathered}$	$\begin{aligned} & =\text { number } \\ & =\text { outcome }_{\mathrm{i}} \\ & =\text { arithmetic mean } \end{aligned}$
standard deviation (volatility)	$\sigma=\sqrt{\operatorname{Var}(x)}=\sqrt{\sigma^{2}}$	Var	= variance
volatility timescale	$\sigma=\tilde{\sigma} * \sqrt{t}$	t	= time unit of sampling
semi variance	$\sigma^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(\mathrm{x}_{\mathrm{i}}^{\text {negativ }}-\overline{\mathrm{x}}\right)^{2}$	$\begin{gathered} \mathrm{n} \\ \mathrm{x}_{\mathrm{i}}^{\text {negativ }} \\ \overline{\mathrm{x}} \end{gathered}$	$\begin{aligned} & =\text { number } \\ & =\text { negative outcome } \\ & =\text { arithmetic mean } \end{aligned}$
covariance	$\operatorname{Cov}_{(1,2)}=\sum_{i=1}^{n} p_{i}\left[r_{i, 1}-E\left(r_{1}\right)\right]\left[r_{i, 2}-E\left(r_{2}\right)\right]$	$\begin{gathered} \operatorname{Cov}_{1,2} \\ p_{i} \\ r_{i, 1} \\ r_{i, 2} \end{gathered}$	= covariance between the return of asset 1 and 2 = probability of scenario i = return of asset 1 for scenario i $=$ return of asset 2 for scenario i
sample covariance	$\operatorname{Cov}_{1,2}=\frac{1}{n-1} \sum_{i=1}^{T}\left[r_{i, 1}-E\left(r_{1}\right)\right]\left[r_{i, 2}-E\left(r_{2}\right)\right]$	$\begin{gathered} \operatorname{Cov}_{1,2} \\ \mathrm{~N} \end{gathered}$	$\begin{aligned} & =\text { covariance between } \\ & \text { asset } 1 \text { and } 2 \\ & =\text { number of samples } \end{aligned}$

U N I K A S S EL
V E R S I T 'A' $\mathbf{~ T}$

correlation coefficient	$p_{1,2}=\frac{\operatorname{Cov}_{1,2}}{\sigma_{1} \sigma_{2}}=\frac{\operatorname{Cov}_{1,2}}{\sqrt{\operatorname{Var}(R)_{1}} * \sqrt{\operatorname{Var}(R)_{2}}}$	Cov σ_{1} σ_{2}	= covariance between the return of asset 1 and 2 = standard deviation (volatility) of asset 1 = standard deviation (volatility) of asset 2
portfolio variance (2 Assets)	$\sigma_{p}^{2}=w_{1}^{2} \sigma_{1}^{2}+w_{2}^{2} \sigma_{2}^{2}+2 w_{1} w_{2} \operatorname{Cov}_{1,2}$	w	= weight of asset i
portfolio variance (3 Assets)	$\begin{aligned} \sigma^{2}= & w_{1}^{2} * \sigma_{1}^{2}+w_{2}^{2} * \sigma_{2}^{2}+w_{3}^{2} * \sigma_{3}^{2} \\ & +2 * w_{1} * w_{2} * \sigma_{1} * \sigma_{2} * p_{1,2} \\ & +2 * w_{2} * w_{3} * \sigma_{2} * \sigma_{3} * p_{2,3} \\ & +2 * w_{1} * w_{3} * \sigma_{1} * \sigma_{3} * p_{1,3} \end{aligned}$		
portfolio volatility	$\sigma_{P}=\sqrt{w_{1}^{2} \sigma_{1}^{2}+w_{2}^{2} \sigma_{2}^{2}+2 w_{1} w_{2} \operatorname{Cov}_{1,2}}$ or $\sigma_{P}=\sqrt{w_{1}^{2} \sigma_{1}^{2}+w_{2}^{2} \sigma_{2}^{2}+2 w_{1} w_{2} p_{1,2} \sigma_{1} \sigma_{2}}$	w σ p	$=$ weight of asset i = standard deviation (volatility) of Asset 1 and 2 = correlation coefficient
portfolio volatility for a multi-assetportfolio	$\begin{aligned} \sigma_{\mathrm{p}}^{2}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{w}_{\mathrm{i}}^{2} * \sigma_{\mathrm{i}}^{2} & +2 \sum_{\mathrm{i}=1}^{n} \sum_{\mathrm{j}<1} \mathrm{p}_{\mathrm{ij}} * \mathrm{w}_{\mathrm{i}} * \mathrm{w}_{\mathrm{j}} * \sigma_{\mathrm{i}} * \sigma_{\mathrm{j}} \\ & \rightarrow \sqrt{\sigma_{\mathrm{p}}^{2}}=\sigma_{\mathrm{p}} \end{aligned}$	w_{i} w_{j} $\begin{gathered} \sigma_{i}^{2} \\ p_{i j} \end{gathered}$	$\begin{aligned} & =\text { weight of }^{\text {asset }_{\mathrm{i}} \text { in } \%} \\ & =\text { weight of }^{\text {asset }_{j} \text { in } \%} \\ & =\text { variance of asset i } \\ & =\text { correlation } \\ & \text { coefficient } \end{aligned}$
portfolio variance $\left(\sigma_{\mathrm{p}}^{2}\right)$	$\begin{gathered} \sigma_{p}^{2}=\sum_{i=1}^{n} A_{i}^{2} * \sigma_{i}^{2} \\ +2 \sum_{i=1}^{n} \sum_{j<1} p_{i j} * A_{i} * A_{j} * \sigma_{i} * \sigma_{j} \end{gathered}$	$\begin{gathered} A_{i} \\ \sigma_{i}^{2} \\ p_{i j} \\ \\ \mathrm{n} \\ \sigma_{i}, \sigma_{j} \end{gathered}$	$\begin{aligned} & =\text { asset }_{\mathrm{i}} \\ & =\text { variance of asset } \mathrm{i} \\ & =\text { correlation } \\ & \text { coefficient between } \mathrm{i} \\ & \text { und } \mathrm{j} \\ & =\text { number of assets } \\ & =\text { standard deviation } \end{aligned}$
$\mathrm{M}_{\text {Optimimum }}$ weight of asset A in a 2 -asset portfolio	$\begin{gathered} \frac{E\left(r_{A E}\right) * \sigma_{B}^{2}-E\left(r_{B E}\right) * \operatorname{Cov}\left(r_{A E}, r_{B E}\right)}{E\left(r_{A E}\right) * \sigma_{B}^{2}+E\left(r_{B E}\right) * \sigma_{A}^{2}-\left[E\left(r_{A E}\right)+E\left(r_{B E}\right)\right] * \operatorname{Cov}\left(r_{A E}, r_{B E}\right)} \\ \text { with: } \mathrm{r}_{\mathrm{AE}}=\mathrm{r}_{\mathrm{A}}-\mathrm{r}_{\mathrm{f}} \end{gathered}$	σ_{i}^{2} Cov r_{f}	$=$ variance of asset i = covariance between the returns A, B $=$ risk free return

minimum-varianceapproach	$\begin{gathered} x_{M V P}(A)=\frac{2 * \sigma_{B}^{2}-2 * \operatorname{Cov}\left(r_{A}, r_{B}\right)}{2 * \sigma_{A}^{2}+2 * \sigma_{B}^{2}-4 * \operatorname{Cov}\left(r_{A}, r_{B}\right)} \\ x_{M V P}(A)=\frac{\sigma_{B}^{2}-\operatorname{Cov}\left(r_{A}, r_{B}\right)}{\sigma_{A}^{2}+\sigma_{B}^{2}-2 * \operatorname{Cov}\left(r_{A}, r_{B}\right)} \\ x_{M V P}(A)=1-x_{M V P}(B) \end{gathered}$	$\begin{gathered} \sigma_{i}^{2} \\ r_{A} \\ \\ \text { Cov } \end{gathered}$	$=$ variance of asset i $=$ return of the asset A = covariance between the returns of asset A and B
portfolio-beta	$\beta_{\text {Portfolio }}=\sum_{i=1}^{N} x_{p, i} * \beta_{i}$	$\begin{gathered} \mathrm{X}_{\mathrm{P}, \mathrm{i}} \\ \beta_{i} \end{gathered}$	$=$ weight of asset i in the portfolio = beta of asset i
excess return	$r_{a}=r_{P}-r_{B}$	$\begin{aligned} & r_{p} \\ & r_{B} \end{aligned}$	$\begin{aligned} & =\text { return Portfolio } \\ & =\text { return Benchmark } \end{aligned}$
market-timing	$r_{\text {timing }}=\sum_{i=1}^{N}\left(x_{p, i}-x_{B, i}\right) * r_{B, i}$	$X_{P, i}$ $\mathrm{X}_{\mathrm{B}, \mathrm{i}}$ $r_{B, i}$	$=$ weight of asset i in the portfolio = weight of asset i in the benchmark $=$ return i in the benchmark
selection effect	$r_{\text {selection }}=\sum_{i=1}^{N}\left(r_{p, i}-r_{B, i}\right) * x_{B, i}$	$\mathrm{r}_{\mathrm{P}, \mathrm{i}}$	$=$ return i in the portfolio
interaction effect	$r_{\text {Interaction }}=\sum_{i=1}^{N}\left(x_{p, i}-x_{B, i}\right) *\left(r_{p, i}-r_{B, i}\right)$		

U N I K A S S EL
V E R S I T 'A' $\mathbf{~ T}$

III. Cost of Capital

Name	Formula	Explanation	
WACC	$r_{E} * \frac{E}{E+D}+r_{D} * \frac{D}{E+D}$	$\begin{gathered} \mathrm{r}_{\mathrm{E}} \\ \mathrm{r}_{\mathrm{D}} \\ \mathrm{E} \\ \mathrm{D} \end{gathered}$	$\begin{aligned} & =\text { return on equity } \\ & =\text { return on debt } \\ & =\text { equity } \\ & =\text { debt } \end{aligned}$
WACC after taxes	$\mathrm{r}_{\mathrm{E}} * \frac{\mathrm{E}}{\mathrm{E}+\mathrm{D}}+\mathrm{r}_{\mathrm{D}} * \frac{\mathrm{D}}{\mathrm{E}+\mathrm{D}} *\left(1-t_{m}\right)$	$\begin{gathered} \mathrm{E} \\ \mathrm{D} \\ t_{m} \end{gathered}$	$\begin{aligned} & =\text { equity } \\ & =\text { debt } \\ & =\text { marginal tax rate } \end{aligned}$
return on equity ($\mathrm{M} \& \mathrm{M}$)	$\mathrm{WACC}+\left(\mathrm{WACC}-\mathrm{r}_{\mathrm{D}}\right) * \frac{\mathrm{D}}{\mathrm{E}}$	$\begin{gathered} \text { WACC } \\ \\ \mathrm{r}_{\mathrm{D}} \\ \mathrm{D} \\ \mathrm{E} \end{gathered}$	$=$ Weighted Average Cost of Capital = return on debt $=$ debt = equity
expected return (CAPM)	$E\left(r_{k}\right)=i_{\text {riskfree }}+\beta *\left(E\left(r_{M}\right)-i_{\text {riskfree }}\right)+\varepsilon_{k}$	$i_{\text {riskfree }}$ $\begin{gathered} \beta \\ E\left(r_{M}\right) \\ \varepsilon_{k} \end{gathered}$	$=$ risk free rate = beta factor = expected return of the market portfolio $=$ specific risk
expected return 3-factormodel Fama/French	$\begin{array}{r} E\left(r_{k}\right)=i_{\text {riskfree }}+\beta_{M} *\left(E\left(r_{M}\right)-i_{\text {riskfree }}\right)+\beta_{S} \\ * E(S M B)+\beta_{H} * E(H M L)+\varepsilon_{k} \end{array}$	$\begin{gathered} \beta_{S} \\ E(S M B) \\ \beta_{H} \\ E(H M L) \end{gathered}$	$=$ Beta small minus big -effect = factor small minus big-effect = Beta high minus low-effect $=$ factor high minus low-effect
beta-factor CAPM	$\beta_{k}=\frac{\sigma_{k} * p_{k, M}}{\sigma_{M}}=\frac{\operatorname{Cov}_{(\mathrm{k}, \mathrm{M})}}{\sigma_{\mathrm{M}}^{2}}$	$\begin{gathered} \sigma_{k} \\ p_{k, M} \\ \\ \sigma_{M} \\ \operatorname{Cov}_{(\mathrm{k}, \mathrm{M})} \\ \sigma_{M}^{2} \end{gathered}$	$=$ standard deviation of asset k = correlation between asset k and the market portfolio = standard deviation market portfolio $=$ covariance $_{(\mathrm{k}, \mathrm{M})}$ = variance market portfolio

U N I K A S SEL
V ERSIT'A T

	$r_{E}=\frac{D i v_{1}+P_{1}}{P_{0}}-1=\frac{D i v_{1}}{P_{0}}+\frac{P_{1}-P_{0}}{P_{0}}$	P_{0} P_{1}	stock price today stock price in one cost of equity (DDM- Model)
or $\frac{D i v_{1}}{P_{0}}+g$	Div $_{1}$	year dividend in one year growth rate	

IV. Corporate analysis

Name	Formula	Explanation	
debt ratio	$\frac{D}{D+E}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & =\text { debt } \\ & \text { = Equity } \end{aligned}$
equity ratio	$\frac{E}{D+E}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & =\text { debt } \\ & \text { = Equity } \end{aligned}$
debt to equity ratio	$\frac{D}{E}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{E} \end{aligned}$	$\begin{aligned} & =\text { debt } \\ & \text { = Equity } \end{aligned}$
dynamic leverage ratio	liabilities - Cash \& Short Term Investments Cash Flow from Operating Activities		
interest coverage ratio	$\frac{E B I T}{\text { interest expenses }}$		
capital repayment ratio	$\frac{E B I T D A}{D+E}$		
ROCE	$\frac{E B I T}{D+E}$		
quick ratio	$\frac{\text { Cash }+C E+M S+A R}{\text { current liabilities }}$	CE MS AR	= Cash equivalents = marketable securities = accounts receivable
liabilities repayment ratio	$\frac{\text { Free Cashflow }}{D}$		
gross margin	$\frac{\text { Gross profit on sales }}{\text { revenue }}$		
EBIT-margin	$\frac{\text { EBIT }}{\text { revenue }}$		

U N I K A S S EL
$V E R R S I T A^{\prime} T$

return on sales	$\frac{\text { net income }}{\text { revenue }}$		
return on assets	net income + interest expenditures total capital		
return on investment	$\frac{\text { net income }}{\text { revenue }} * \frac{\text { revenue }}{\text { total capital }}$		
par value per share	$\frac{\text { share capital }}{N(S)}$	N(S)	$=$ number of shares
number of shares	$\frac{\text { share capital }}{\text { par value of a share }}$		
earnings per share	$\begin{gathered} \frac{\text { earnings after taxes }}{\mathrm{N}(\mathrm{~S})} \\ = \\ \text { book value per share } * \text { return on equity } \end{gathered}$		
dividend per share	$\frac{\text { earnings after taxes } * \text { payout ratio }}{\mathrm{N}(\mathrm{~S})}$		
new share price after raising new capital	$\mathrm{M}=\frac{K_{a} * n_{a}+K_{n} * n_{n}}{n_{a}+n_{n}}$	$\begin{aligned} & K_{a} \\ & n_{a} \\ & K_{n} \\ & n_{n} \end{aligned}$	```= old shares price = number of old shares = new shares price = number of new shares```
subscription ratio	$\text { SRatio }=\frac{n_{a}}{n_{n}}$		
subscription rights	$\begin{aligned} & \text { SRights }=K_{a}-M \\ & \text { SRights }=\frac{K_{a}-K_{n}}{\frac{n_{a}}{n_{n}}+1} \end{aligned}$		
operation blanche	$\frac{\text { number of SRights } * \text { price SRights }}{\text { New share price after a capital raise }}$	SRights	= subscription rights
dividend yield	$\frac{\text { dividend per share }}{\text { price per share }} * 100$		
dividend per share	$\frac{\text { net } \text { income }_{t}}{N(S)} * \text { payout ratio }$	N(S)	= outstanding shares

U N I K A S SEL
V ERSIT'A'T

retention ratio	$1-\frac{\text { Div }}{\text { EPS }}$	$\begin{aligned} & \text { Div } \\ & \text { EPS } \end{aligned}$	$\begin{aligned} & =\text { dividend } \\ & \text { = earnings per share } \end{aligned}$
growth rate	$g=\frac{\text { change in profit }}{\text { profit }}$ or $g=\text { retention ratio } * \text { ROE }$		
earnings value	$\frac{\text { average income per year }}{i}$	i	= discount rate
book value per share	$\frac{(\text { book value) equity }}{N(S)}$	$\mathrm{N}(\mathrm{S})$	= number of shares
price to book ratio	$\frac{\text { share price }}{\text { book value per share }}=\frac{\text { market capitalisation }}{\text { equity }}$		
price earnings ratio	$\begin{gathered} \frac{P_{0}}{E P S_{1}}=\frac{1}{c-g} \\ E P S_{1}=E P S_{0} *(1+g) \end{gathered}$	$\begin{gathered} P_{0} \\ E P S_{1} \\ \mathrm{~g} \\ \mathrm{c} \end{gathered}$	= price of the asset = expected earnings per share in one year = growth rate $=$ cost of capital
price to cashflow ratio	$\frac{P_{0}}{\text { Cashflow per share }}$	P_{0}	= share price
PEG	$\frac{K G V}{\text { profit growth }}$	PEG	$=$ Price-Earnings- to-Growth-Ratio

U N I K A S S EL
V E R S I T 'A' T

V. Corporate valuation

Name	Formula	Explanation	
market capitalization	$P_{0} * N(S)$	$\begin{gathered} \mathrm{N}(\mathrm{~S}) \\ P_{0} \end{gathered}$	$\begin{aligned} & =\text { number of shares } \\ & =\text { share price today } \end{aligned}$
share price (Dividend-DiscountModel)	$P_{0}=\frac{D i v_{1}+P_{1}}{1+r_{E}}$	P_{0} $D i v_{1}$ P_{1} r_{E}	$=$ Price of the asset in t 0 $=$ dividend in tl $=$ Price of the asset in t 1 = expected return
share price (DDM-multi periods)	$P_{0}=\frac{\operatorname{Div}_{1}}{1+r_{E}}+\frac{\operatorname{Div}_{2}}{\left(1+r_{E}\right)^{2}}+\cdots \frac{\operatorname{Div}_{n}+P_{n}}{\left(1+r_{E}\right)^{\wedge} \mathrm{n}}$		
share price (DDM constant growth)	$P_{0}=\frac{D i v_{1}}{r_{E}-g}$	g	$=$ growth rate
enterprise value	market value equity + debt - cash		
enterprise value (DCF-Modell)	$\begin{aligned} = & \sum_{t=1}^{T} \frac{F C F_{t}}{(1+i)^{t}}+\frac{T V_{T}}{(1+i)^{T}} \\ & \text { with } \mathrm{TV}_{\mathrm{T}}=\frac{C F t+1}{i-g} \end{aligned}$	$\begin{gathered} \mathrm{FCF}_{\mathrm{t}} \\ \mathrm{TV}_{\mathrm{T}} \\ \mathrm{i} \\ \mathrm{~g} \end{gathered}$	$\begin{aligned} & =\text { free-cashflow in } \\ & \text { period } \mathrm{t} \\ & =\text { terminal value } \\ & =\text { discount rate } \\ & =\text { growth rate } \end{aligned}$
share price in t_{0}	$\mathrm{P}_{0}=\frac{\mathrm{PV}(\text { future total dividends }+ \text { repurchases })}{N(S)}$	$\begin{gathered} \text { PV } \\ \mathrm{N}(\mathrm{~S}) \end{gathered}$	= present value = outstanding shares
enterprise value (perpetuity)	$\frac{\mathrm{FCF}}{i}$	$\begin{gathered} \text { FCF } \\ \text { i } \end{gathered}$	$\begin{aligned} & =\text { free cashflow } \\ & =\text { discount rate } \end{aligned}$
share price in t_{0}	$\frac{\mathrm{V}_{0}+\mathrm{Cash}_{0}-\mathrm{Debt}_{0}}{\mathrm{~N}(\mathrm{~S})}$	$\begin{gathered} V_{0} \\ \mathrm{~N}(\mathrm{~S}) \end{gathered}$	$\begin{aligned} & =\text { enterprise value } \\ & =\text { outstanding } \\ & \text { shares } \end{aligned}$
tax shield	corporate tax rate * interest payment		
enterprise value $\left(V_{l}\right)$	$V_{u}+P V($ Tax Shield $)-P V($ Financial distress $)$	$\begin{aligned} & V_{l} \\ & V_{u} \end{aligned}$	= enterprise value levered firm =enterprise value unlevered firm
EV/ EBITDA multiple	$\frac{\mathrm{V}_{0}}{E B I T D A}$		

U N I K A S S EL
V E R S I T 'A' $\mathbf{~ T}$

equity multiple (book value)	$\frac{\text { Total Assets }}{E_{B}}$	E_{B}	$=$ Book Value equity
equity multiple (market value)	$\frac{\text { Total Assets }}{E_{M}}$	E_{M}	$=$ Market Value equity
value additivity	$\mathrm{P}(\mathrm{C})=\mathrm{P}(\mathrm{A}+\mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})$	P	$=$ Price

VI. Risk indicators and Risk Management

Name	Formula	Explanation	
Sharpe-Ratio	$\frac{\left(\hat{r}_{\text {Portfolio }}-i_{\text {riskfree }}\right)}{\sigma_{\text {Portfolio }}}$	$\hat{r}_{\text {Portfolio }}$ $i_{\text {riskfree }}$ $\sigma_{\text {Portfolio }}$	$\begin{aligned} & \text { = average return } \\ & \text { portfolio } \\ & \text { = risk-free rate } \\ & \text { = portfolio volatility } \end{aligned}$
SCML (Growth capital market line)	$\frac{r_{M}-i_{\text {riskfree }}}{\sigma_{M}}$	$i_{\text {riskfree }}$ r_{M} σ_{M}	= risk-free rate = return market portfolio = volatility market portfolio
Treynor-Ratio	$\frac{\hat{r}_{\text {Portfolio }}-i_{\text {riskfree }}}{\beta_{\text {Portfolio }}}$	$\hat{r}_{\text {Portfolio }}$ $i_{\text {riskfree }}$ $\beta_{\text {Portfolio }}$	$\begin{aligned} & \text { = average return } \\ & \text { portfolio } \\ & =\text { risk-free rate } \\ & =\text { beta factor } \\ & \text { portfolio } \end{aligned}$
Jensen-Alpha	$\begin{gathered} \left(\hat{r}_{\text {Portfolio }}-i_{\text {riskfree }}\right)-\left(\hat{r}_{\text {Benchmark }}-i_{\text {riskfree }}\right) \\ * \beta_{\text {Portfolio }}+\varepsilon \end{gathered}$	$\hat{r}_{\text {Benchmark }}$	= average return benchmark
Value at Risk (VaR)	$\mathrm{VaR}=\mathrm{RP} * \sigma * \mathrm{~N}(\mathrm{x}) * \sqrt{t}$	$\begin{gathered} \mathrm{RP} \\ \sigma \\ \mathrm{~N}(\mathrm{x}) \\ \sqrt{t} \end{gathered}$	$\begin{aligned} & \text { = risk position } \\ & \text { = volatility } \\ & =\text { confidence level } \\ & =\text { liquidation period } \end{aligned}$
marginal Value at Risk $\left(\Delta V a R_{i}\right)$	$=\mathrm{N}(\mathrm{x}) * \frac{\operatorname{cov}_{(\mathrm{x}, \mathrm{y})}}{\sigma_{\text {portfolio }}}$	$\begin{aligned} & \operatorname{COV}_{(\mathrm{x}, \mathrm{y})} \\ & N(\mathrm{x}) \end{aligned}$	$\begin{aligned} & =\text { covariance } \\ & =\text { confidence level } \end{aligned}$
incremental Value at Risk	$\operatorname{VaR}_{\mathrm{i}}=\mathrm{N}_{\mathrm{i}} * \beta_{\mathrm{i}} * \sigma_{\mathrm{p}} * \mathrm{a}_{\mathrm{i}}$	$\begin{aligned} & N_{i} \\ & \mathrm{~B}_{\mathrm{i}} \\ & \mathrm{a}_{\mathrm{i}} \end{aligned}$	= confidence level = beta factor = amount of the increased asset

U N I K A S S EL
$V E R E S I T A^{\prime} T$

component Value at Risk	$\mathrm{CoVaR}_{\mathrm{i}}=$ Portfolio VaR $* \bigcap_{i} * \mathrm{w}_{\mathrm{i}}$	$\begin{gathered} \beta_{i} \\ w_{i} \end{gathered}$	$\begin{aligned} & =\text { beta factor } \\ & =\text { weight of asset i } \\ & \text { in } \% \end{aligned}$
Value at Risk adjustment of liquidation period	$\mathrm{VaR}_{\mathrm{t}}=\mathrm{VaR} * \sqrt{\mathrm{t}}$	$\begin{gathered} \mathrm{VaR} \\ \mathrm{t} \end{gathered}$	$\begin{aligned} & =\text { value at Risk } \\ & =\text { time period } \end{aligned}$
Value at Risk adjustment of confidence level	$\operatorname{VaR}\left(\mathrm{x}^{*}\right)=\operatorname{VaR}(\mathrm{x}) * \frac{\mathrm{~N}\left(\mathrm{x}^{*}\right)}{\mathrm{N}(\mathrm{x})}$	$\begin{aligned} & \mathrm{N}\left(\mathrm{x}^{*}\right) \\ & \mathrm{N}(\mathrm{x}) \end{aligned}$	$\begin{aligned} & \text { = new confidence } \\ & \text { level } \\ & \text { = confidence level } \end{aligned}$
cost of capital with risk premium	$=\frac{M R P}{\operatorname{VaR}\left(r_{M}\right)}=\frac{r_{M}-i_{\text {riskfree }}}{-\left(r_{M}+N(x) * \sigma_{M}\right)}$	MRP	$=$ market risk premium
cost of capital based on earnings risk	$\frac{1+i_{\text {riskfree }}}{1-\lambda * V * d}-1$	λ V d	```= excess return per unit of risk (shape ratio) = coefficient of variation of the returns =risk diversification factor```
insurance premium	$\frac{[\operatorname{Pr}(\text { loss }) * E(\text { Payment in the loss event })]}{1+c}$	c	= cost of capital
default risk	PD * amount of risk default	PD	$=$ probability of default
return on risk-adjusted capital (RoRaC)	$\begin{gathered} =\frac{\text { net income }}{\text { allocated risk capital }} \\ =\frac{\text { price gain }- \text { risk free interest rate }}{\text { CoVaR }} \\ =\frac{\text { revenue }- \text { costs }}{\text { CoVaR }} \end{gathered}$	CoVaR	$=$ Component Value at risk
risk-adjusted return on capital (RaRoC)	$\begin{aligned} & =\frac{\text { risk adjusted net income }}{(\text { economic risk) capital }} \\ & =\frac{\text { Net income }- \text { risk capital }}{(\text { economic risk) capital }} \end{aligned}$		

expected loss	PD * LGD * EaD	$\begin{gathered} \text { PD } \\ \text { LGD } \\ \text { EaD } \end{gathered}$	$=$ probability of default $=$ loss given default / recovery rate = exposure at default / credit default
risk-adjusted lending rates \rightarrow equity capital costs	1. standard deviation of loss rate in $\%$ 2. $\sigma_{\mathrm{PD}}=\sqrt{\mathrm{PD} *(1-\mathrm{PD})}$ 3. credit $\operatorname{VaR}(\mathrm{CVaR})=$ $\mathrm{EaD} * \sqrt{\mathrm{PD} * \sigma_{\mathrm{LGD}}^{2}+\mathrm{LGD}^{2} * \sigma_{\mathrm{PD}}^{2}}$ 4. Equity costs ${ }_{€}=\mathrm{CVaR} *$ Equity costs $\%$	$\sigma_{\text {LGD }}$ σ_{PD} $\sigma_{\text {LGD }}^{2}$ $\sigma_{P D}^{2}$ CVaR	= volatility of the loss given default = volatility of the probability of default = variance of the loss given default = variance of the loss given default = Credit Value at risk
CVaR of a credit portfolio	$\sqrt{\mathrm{CVaR}_{\mathrm{A}}^{2}+\mathrm{CVaR}_{\mathrm{B}}^{2}+2 * \mathrm{CVaR}_{\mathrm{A}} * \mathrm{CVaR}_{\mathrm{B}} * p_{1,2}}$	$p_{A, B}$	= correlation coefficient of A and B
portfolio-hedge	$\text { Hedge-Ratio }=\frac{\text { portfolio value }}{\text { (Index } * \text { contract value) }} * \text { Beta }$		

U N I K A S S EL
V E R S I T 'A' T

VII. Working Capital Management

Name	Formula	Explanation	
working capital	Current assets - current liabilities		
cost of holding working capital	working capital * c	c	$=$ cost of capital
cash conversion cycle	\emptyset days in inventory $+\emptyset$ collection period $-\emptyset$ payment period	\emptyset	$=$ average
inventory days outstanding (DIO)	$\frac{\emptyset \text { inventory }}{\text { cost of goods sold }} * 365$		
days sales outstanding (DSO)	$\frac{\varnothing \text { accounts receivable }}{\text { sales }} * 365$		
days payable outstanding (DPO)	$\frac{\emptyset \text { accounts payable }}{\text { cost of goods sold }} * 365$		

VIII. Bond valuation

U N I K A S S EL
V E R S I T 'A' $\mathbf{~ T}$

coupon payment (coupon bonds)	$\frac{\text { Coupon Rate } * \mathrm{FV}}{\text { Number Payments per Year }}$	FV	$=$ face value
yield to Maturity	$\left(\frac{\mathrm{FV}}{\mathrm{P}}\right)^{\frac{1}{t}}-1$	t P	= period Price
price bond	$\mathrm{CPN} * \frac{1}{\mathrm{Y}}\left(1-\frac{1}{(1+\mathrm{Y})^{t}}\right)+\frac{\mathrm{FV}}{(1+\mathrm{Y})^{t}}$	CPN	Y Coupon Payment = Yield to maturity

IX. Derivatives

Name	Formula	Explanation	
option price	Intrinsic value + time value		
intrinsic value call option	$P_{0}-$ strike price	P_{0}	= Current Market Price of Underlying Asset
intrinsic value put option	strike price $-P_{0}$	P_{0}	= Current Market Price of Underlying Asset
time value option	Option price - positive intrinsic value		
leverage option	$\frac{P_{0}}{(\text { Option price } * S R)}$	$\begin{gathered} P_{0} \\ \mathrm{SR} \end{gathered}$	$\begin{aligned} & =\text { share price } \\ & =\text { subscription ratio } \end{aligned}$
future Price	$\begin{gathered} \mathrm{F}_{0}=\mathrm{S}_{0} \mathrm{e}^{(\mathrm{r}-\mathrm{q}) * \mathrm{~T}} \\ \mathrm{~F}_{0}=\mathrm{S}_{0} \mathrm{e}^{(\mathrm{r}-\mathrm{rf}) * \mathrm{~T}} \\ \mathrm{~F}_{0}=\left(\mathrm{S}_{0}+\mathrm{U}_{\mathrm{PV}}\right) \mathrm{e}^{\mathrm{rT}} \end{gathered}$	e S_{0} T r q r_{f} U_{PV}	```= number of Euler = Price underlying asset today = time to maturity = risk-free rate = dividend yield = foreign risk-free rate = present value storage costs```

U N I K A S S E L
V E R S I T'A' \mathbf{T}^{\prime}

X. Other Calculations

net present value	$N P V=-C+\sum_{t=1}^{n} \frac{C F_{t}}{(1+i)^{t}}$	$C F_{t}$ i t C	$\begin{aligned} & =\text { cashflow in } \\ & \text { period } \mathrm{t} \\ & \text { = discount rate } \\ & =\text { period of the } \\ & \text { cashflow } \\ & \text { = initial investment } \end{aligned}$
net present value with probability of bankruptcy	$N P V=-C+\sum_{t=1}^{n} \frac{C F_{t} *\left(1-P_{B}\right)^{t}}{(1+i)^{t}}$	P_{B}	$=$ probability of bankruptcy
present value with probability of bankruptcy (perpetuity)	$P V=\frac{C F *\left(1-P_{B}\right)}{i+P_{B}}$	P_{B}	$=$ probability of bankruptcy

Required statistic table: Normal distribution

z	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
0.0	. 5000	. 5040	. 5080	. 5120	. 5160	. 5199	. 5239	. 5279	. 5319	. 5359
0.1	. 5398	. 5438	. 5478	. 5517	. 5557	. 5596	. 5636	. 5675	. 5714	. 5753
0.2	. 5793	. 5832	. 5871	. 5910	. 5948	. 5987	. 6026	. 6064	. 6103	. 6141
0.3	. 6179	. 6217	. 6255	. 6293	. 6331	. 6368	. 6406	. 6443	. 6480	. 6517
0.4	. 6554	. 6591	. 6628	. 6664	. 6700	. 6736	. 6772	. 6808	. 6844	. 6879
0.5	. 6915	. 6950	. 6985	. 7019	. 7054	. 7088	. 7123	. 7157	. 7190	. 7224
0.6	. 7257	. 7291	. 7324	. 7357	. 7389	. 7422	. 7454	. 7486	. 7517	. 7549
0.7	. 7580	. 7611	. 7642	. 7673	. 7704	. 7734	. 7764	. 7794	. 7823	. 7852
0.8	. 7881	. 7910	. 7939	. 7967	. 7995	. 8023	. 8051	. 8078	. 8106	. 8133
0.9	. 8159	. 8186	. 8212	. 8238	. 8264	. 8289	. 8315	. 8340	. 8365	. 8389
1.0	. 8413	. 8438	. 8461	. 8485	. 8508	. 8531	. 8554	. 8577	. 8599	. 8621
1.1	. 8643	. 8665	. 8686	. 8708	. 8729	. 8749	. 8770	. 8790	. 8810	. 8830
1.2	. 8849	. 8869	. 8888	. 8907	. 8925	. 8944	. 8962	. 8980	. 8997	. 9015
1.3	. 9032	. 9049	. 9066	. 9082	. 9099	. 9115	. 9131	. 9147	. 9162	. 9177
1.4	. 9192	. 9207	. 9222	. 9236	. 9251	. 9265	. 9279	. 9292	. 9306	. 9319
1.5	. 9332	. 9345	. 9357	. 9370	. 9382	. 9394	. 9406	. 9418	. 9429	. 9441
1.6	. 9452	. 9463	. 9474	. 9484	. 9495	. 9505	. 9515	. 9525	. 9535	. 9545
1.7	. 9554	. 9564	. 9573	. 9582	. 9591	. 9599	. 9608	. 9616	. 9625	. 9633
1.8	. 9641	. 9649	. 9656	. 9664	. 9671	. 9678	. 9686	. 9693	. 9699	. 9706
1.9	. 9713	. 9719	. 9726	. 9732	. 9738	. 9744	. 9750	. 9756	. 9761	. 9767
2.0	. 9772	. 9778	. 9783	. 9788	. 9793	. 9798	. 9803	. 9808	. 9812	. 9817
2.1	. 9821	. 9826	. 9830	. 9834	. 9838	. 9842	. 9846	. 9850	. 9854	. 9857
2.2	. 9861	. 9864	. 9868	. 9871	. 9875	. 9878	. 9881	. 9884	. 9887	. 9890
2.3	. 9893	. 9896	. 9898	. 9901	. 9904	. 9906	. 9909	. 9911	. 9913	. 9916
2.4	. 9918	. 9920	. 9922	. 9925	. 9927	. 9929	. 9931	. 9932	. 9934	. 9936
2.5	. 9938	. 9940	. 9941	. 9943	. 9945	. 9946	. 9948	. 9949	. 9951	. 9952
2.6	. 9953	. 9955	. 9956	. 9957	. 9959	. 9960	. 9961	. 9962	. 9963	. 9964
2.7	. 9965	. 9966	. 9967	. 9968	. 9969	. 9970	. 9971	. 9972	. 9973	. 9974
2.8	. 9974	. 9975	. 9976	. 9977	. 9977	. 9978	. 9979	. 9979	. 9980	. 9981
2.9	. 9981	. 9982	. 9982	. 9983	. 9984	. 9984	. 9985	. 9985	. 9986	. 9986
3.0	. 9987	. 9987	. 9987	. 9988	. 9988	. 9989	. 9989	. 9989	. 9990	. 9990
3.1	. 9990	. 9991	. 9991	. 9991	. 9992	. 9992	. 9992	. 9992	. 9993	. 9993
3.2	. 9993	. 9993	. 9994	. 9994	. 9994	. 9994	. 9994	. 9995	. 9995	. 9995
3.3	. 9995	. 9995	. 9995	. 9996	. 9996	. 9996	. 9996	. 9996	. 9996	. 9997
3.4	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9998

