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0. Introductory econometrics 

0.1 Structure of economic data

Cross-sectional data:

• Data which are collected from units of the underlying population at a given 

time period (which may vary occasionally) (the arrangement of the units in 

the dataset is irrelevant)

• Starting point is mostly the implicit assumption that the data have been col-

lected by random sampling

• Examples: Individual or household data (e.g. income), firm data (e.g. sales), 

city or country data (e.g. unemployment)

---------------------------------------------------------------------------------------------------------

Example:

---------------------------------------------------------------------------------------------------------

Observation 

number Country

Population 

density

GDP per 

capita

Labor force

(rural) GDP growth Birth rate Net migration

1 A 212.4 20116 9.8 53 8.4 -0.7

2 B 623.7 24966 3.4 73.1 6.1 3.4

3 C 93.1 19324 23.6 47.9 12.3 -1.9

: : : : : : : :

10 J 287.4 23136 8.8 59.4 12.4 1.7

11 K 166.2 20707 14.1 74 13 3.6

12 L 388.1 23624 9.6 54.3 6.9 -0.4
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Time series data:

• Data which are collected for one or more variables during several succes-

sive time periods

• Time is an important dimension (i.e. observations are often correlated over 

time) so that the arrangement of the observations in the data set contains 

potentially important information

• The frequency of data collection over time may vary strongly, e.g. daily, 

weekly, monthly, quarterly, and annual data with possible seasonal effects

• Examples: Macroeconomic data (e.g. income, consumption, investments, 

supply of money, price index), financial market data (e.g. stock prices)

---------------------------------------------------------------------------------------------------------

Example:

---------------------------------------------------------------------------------------------------------

Observation number Year Inflation US Unemployment rate US

1 1948 8.1 3.8

2 1949 -1.2 5.9

3 1950 1.3 5.3

4 1951 7.9 3.3

: : : :

54 2001 2.8 4.7

55 2002 1.6 5.8
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Pooled cross-sectional data:

• Data which have cross-sectional as well as time series characteristics since 

several cross-sectional data sets are collected independently over different 

time periods and linked to increase the sample size 

• Although the arrangement of the observations in the data set is not essen-

tial, the corresponding period is recognized as an important variable

• The data are mostly analyzed like conventional cross-sectional data

• Examples: Individual or household data (e.g. income, expenditures) during 

several years

---------------------------------------------------------------------------------------------------------

Example:

---------------------------------------------------------------------------------------------------------

Observation number Year House price Wealth tax House size

1 1993 85500 42 1600

2 1993 67300 36 1440

: : : : :

250 1993 243600 41 2600

251 1995 65000 16 1250

: : : : :

520 1995 57200 16 1100
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Panel data:

• Data which have both a time series and a cross-sectional dimension where 

(in contrast to pooled cross-sectional data) the same units (e.g. individuals, 

firms, countries) are observed over several time periods

• The number of units is often much higher than the time dimension

• The data are often first sorted by units and then by periods

• The data provide the opportunity to control for unobserved characteristics of 

the units and to examine lagged variables

• Examples: Individual or household panel data (e.g. SOEP), firm panel data 

(e.g. MIP), country panel data

---------------------------------------------------------------------------------------------------------

Example:

---------------------------------------------------------------------------------------------------------

Observation 

number Household Year Size Net income Smoking household

1 1 2000 5 3200 yes

2 1 2005 6 3500 yes

3 2 2000 2 2900 no

4 2 2005 2 3000 no

: : : : : :

299 150 2000 3 1793 no

300 150 2005 4 2380 no
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0.2 Linear regression models (for cross-sectional data)

Multiple linear regression model:

x1, x2, x3,…, xk-1, xk: Explanatory variables

β0: Intercept

β1: This parameter measures the effect of an increase of x1 on y, holding all 

other observed and unobserved factors fixed

β2: This parameter measures the effect of an increase of x2 on y, holding all 

other observed and unobserved factors fixed

ሶ:
βk: This parameter measures the effect of an increase of xk on y, holding all 

other observed and unobserved factors fixed

ε: Error term

Key assumption for the error term ε:

This assumption states that the error term ε is mean independent of the expla-

natory variables x1, x2,…, xk.

0 1 1 2 2 3 3 k-1 k-1 k ky = β + β x + β x + β x + + β x + β x + ε

1 2 kE(ε|x , x , , x ) = 0
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For the further analysis of linear regression models a sample of size n from the 

population is required.

Multiple linear regression model with k explanatory variables:

{(xi1, xi2,…, xik, yi), i = 1,…, n}

The inclusion of the observations i = 1,..., n leads to the following linear regres-

sion model:

For example, xik is the value of explanatory variable k for observation i.

Main task of regression analysis:

Estimation of the unknown regression parameters β0, β1, β2,…

Optimization problem in the ordinary method of least squares (OLS method) for 

the multiple linear regression model:

i 0 1 i1 2 i2 k ik iy  = β + β x + β x + + β x + ε

0 1 2 k

n
2

i 0 1 i1 2 i2 k ik
b , b , b ,..., b

i=1

min (y - b - b x - b x - - b x )
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The first order conditions for the k+1 estimated regression parameters are 

then: 

OLS fitted values (predicted values) are the estimated values of the dependent 

variable:

OLS regression equation:

n

i 0 1 i1 2 i2 k ik

i=1

n

i1 i 0 1 i1 2 i2 k ik

i=1

n

i2 i 0 1 i1 2 i2 k ik

i=1

n

ik i 0 1 i1 2 i2 k ik

i=1

ˆ ˆ ˆ ˆ(y - β - β x - β x - - β x ) = 0

ˆ ˆ ˆ ˆx (y - β - β x - β x - - β x ) = 0

ˆ ˆ ˆ ˆx (y - β - β x - β x - - β x ) = 0

ˆ ˆ ˆ ˆx (y - β - β x - β x - - β x ) = 0









i 0 1 i1 2 i2 k ik
ˆ ˆ ˆ ˆŷ  = β + β x + β x + + β x    for i = 1, , n

0 1 1 2 2 k k
ˆ ˆ ˆ ˆŷ = β + β x + β x + + β x
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Interpretation of the OLS estimated parameters in multiple linear regression 

models:

If x2, x3, x4,…, xk are held fixed, it follows:

In this case, the estimated parameter of the explanatory variable x1 thus indi-

cates the change of the estimated dependent variable if x1 increases by one. 

If x1, x2, x3,…, xk-1 are held fixed, it follows:

In this case, the estimated parameter of the explanatory variable xk thus indi-

cates the change of the estimated dependent variable if xk increases by one.

Therefore, the estimated parameters can be interpreted as estimated partial ef-

fects, i.e. the estimated effect of an explanatory variable implies that it is con-

trolled for all other explanatory variables. This partial effect interpretation is the 

strong advantage of regression analyses (and of econometric analyses in ge-

neral), i.e. a ceteris paribus interpretation is generally possible without the ne-

cessity of conducting a corresponding controlled experiment.

0 1 1 2 2 k k

1 1 2 2 k k

ˆ ˆ ˆ ˆŷ = β + β x + β x + + β x

ˆ ˆ ˆŷ = β x + β x + + β x   

1 1
ˆŷ = β x 

k k
ˆˆΔy = β Δx
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Residuals (estimated error terms): Difference between the actual values of the 

dependent variable and the OLS fitted values

Alternative formulation of linear regression models:

Total sum of squares:

Explained sum of squares:

Residual sum of squares (or sum of squared residuals):

General rule:

i i i i 0 1 i1 2 i2 k ik
ˆ ˆ ˆ ˆˆ ˆε  = y - y  = y - β - β x - β x - - β x    for i = 1,…, n

i i i 0 1 i1 2 i2 k ik i
ˆ ˆ ˆ ˆˆ ˆˆy  = y + ε  = β + β x + β x + + β x + ε    for i = 1,…, n

n
2

i

i=1

SST = (y - y)

n n
2 2

i i

i=1 i=1

ˆ ˆ ˆSSE = (y - y)  = (y - y) 

n n
2 2

i i

i=1 i=1

ˆ ˆ ˆSSR = (ε - ε)  = ε 

SST = SSE + SSR

SSR SSE
 +  = 1

SST SST
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Coefficient of determination: Ratio between the explained variation and the to-

tal variation (of the dependent variable yi)

The coefficient of determination also equals the squared correlation coefficient 

between the actual dependent variables and the OLS fitted values:

Properties of the coefficient of determination:

• 0 ≤ R2 ≤ 1

• R2 never decreases if an additional (and possibly irrelevant) explanatory va-

riable is included (since SSR never rises in this case)

• Therefore, R2 is a poor measure to evaluate the quality of a linear regres-

sion model (also the adjusted coefficient of determination, which takes the 

number of explanatory variables into account, is not an appropriate measure 

for evaluating the quality of a linear regression model)

2 SSE SSR
R  =  = 1 - 

SST SST

2 2
n n

i i i i

2 i=1 i=1

n n n n
2 2 2 2

i i i i

i=1 i=1 i=1 i=1

ˆ ˆ ˆ(y - y)(y - y) (y - y)(y - y) 

R  =  = 

ˆ ˆ ˆ(y - y) (y - y) (y - y) (y - y)
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---------------------------------------------------------------------------------------------------------

Example: Determinants of (the logarithm of) wages (I)

By using a linear regression model, the effect of the years of education (educ), 

the years of labor market experience (exper), and the years with the current 

employer (tenure) on the logarithm of hourly wage (logwage) is examined:

The following OLS regression equation was estimated on the basis of n = 526 

workers:

Interpretation:

• Estimated positive effect of the years of education: If exper and tenure are 

held fixed, an increase of the years of education by one year leads to an es-

timated increase of the logarithm of wage by 0.092

• Exper and tenure (as expected) have also positive estimated effects, if the 

other explanatory variables are held fixed, respectively 

---------------------------------------------------------------------------------------------------------

0 1 2 3logwage = β + β educ + β exper + β tenure + ε

ˆlogwage = 0.284 + 0.092educ + 0.0041exper + 0.022tenure
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---------------------------------------------------------------------------------------------------------

Example: Determinants of (the logarithm of) wages (II)

reg logwage educ exper tenure

Source |       SS       df MS              Number of obs =     526

-------------+------------------------------ F(  3,   522) =   80.39

Model |  46.8741806     3  15.6247269           Prob > F      =  0.0000

Residual |  101.455582   522  .194359353           R-squared =  0.3160

-------------+------------------------------ Adj R-squared =  0.3121

Total |  148.329763   525  .282532881           Root MSE      =  .44086

------------------------------------------------------------------------------

logwage |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

educ |    .092029   .0073299    12.56   0.000     .0776292    .1064288

exper |   .0041211   .0017233     2.39   0.017     .0007357    .0075065

tenure |   .0220672   .0030936     7.13   0.000     .0159897    .0281448

_cons |   .2843595   .1041904     2.73   0.007     .0796755    .4890435

------------------------------------------------------------------------------

---------------------------------------------------------------------------------------------------------
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0.3 Expected value and variance of OLS estimators

Assumptions for the analysis of the expected value of OLS estimators:

• Assumption A1: Linear in parameters                                                                 

The relationship between the dependent variable y and the explanatory va-

riables x1, x2,…, xk is linear in the parameters with                                         

y = β0 + β1x1 + β2x2 +…+ βkxk + ε

• Assumption A2: Random sampling                                                                         

The OLS estimation is based on a random sample with n observations from 

the population with {(xi1, xi2,…, xik, yi), i = 1,…, n} so that it follows for a par-

ticular observation i: yi = β0 + β1xi1 + β2xi2 +…+ βkxik + εi

• Assumption A3: No perfect collinearity

In the sample (and therefore also in the population) none of the explanatory 

variables is constant and no exact linear relationship between the explana-

tory variables exists

• Assumption A4: Zero conditional mean

E(ε|x1, x2,…, xk) = 0

Under these four assumptions all OLS estimators are unbiased:

h h
ˆE(β ) = β    for h = 0, 1,…, k
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Remark about assumption A4:

If this assumption holds, the explanatory variables are characterized as exoge-

nous. In contrast, if it is violated, endogenous variables or endogeneity are pre-

sent.

• A4 is e.g. violated in the case of measurement errors in the explanatory va-

riables or if the functional relationship between the dependent and explana-

tory variables is misspecified

• One of the major violations of A4 is the omission of a relevant explanatory 

variable, which is correlated with other explanatory variables

Possible biases due to the omission of relevant explanatory variables („omitted 

variable bias“)

The correct linear regression model is as follows (where assumptions A1 

through A4 hold): 

However, the following misspecified linear regression model that omits xk is es-

timated (e.g. due to the lack of knowledge or the lack of data):

The OLS regression equations in the correct and misspecified linear regression 

models are as follows:

0 1 1 2 2 k-1 k-1 k ky = β + β x + β x + + β x + β x + ε

0 1 1 2 2 k-1 k-1y = β + β x + β x + + β x + ε
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In this case, the following relationship exists (h = 1,…, k-1):

෩δh (h = 1,…, k-1) is the OLS estimated slope parameter for xh from a regres-

sion of xk on all other explanatory variables (including a constant). It follows:

The OLS estimator of the slope parameter is thus usually biased, even when 

the direction of the bias is ambiguous. The estimator is only unbiased if βk or ෨δh

is zero. If ෨δh is zero, xh and xk are uncorrelated in the sample.

In contrast: 

The inclusion of irrelevant explanatory variables (i.e. one or more explanatory 

variables that have no partial effect on the dependent variable) has no impact 

on the unbiasedness of the OLS estimators and thus does not lead to biases

→ However, the inclusion of irrelevant explanatory variables has an impact on 

the variance of the OLS estimators

0 1 1 2 2 k-1 k-1 k k

0 1 1 2 2 k-1 k-1

ˆ ˆ ˆ ˆ ˆŷ = β + β x + β x + β x + β x

y = β + β x + β x + β x





h h k h
ˆ ˆβ  = β + β δ

h h k hE(β ) = β + β δ
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Assumptions for the analysis of the variance of OLS estimators:

• Assumptions A1 through A4 from the analysis of the expected value of OLS 

estimators

• Assumption A5: Homoskedasticity

The conditional variance of the error term ε is constant, i.e.                 

Var(ε|x1, x2,…, xk) = σ2. If the assumption is violated, i.e. if the variance de-

pends on the explanatory variables, this leads to heteroskedasticity.

→ The assumptions A1 through A5 are also known as the Gauss-Markov as-

sumptions (in the case of regression analyses with cross-sectional data)

Under the assumptions A1 through A5 the variance of the OLS estimated slope 

parameters in linear regression models is:

Rh
2 is the coefficient of determination from regressing xh on all other explanato-

ry variables (including a constant).

→ While the assumption of homoskedasticity is negligible for the unbiasedness

of the estimated parameters, the above variance is only true with the homo-

skedasticity assumption, but not in the case of heteroskedasticity

2 2

h n 2
2 2 h h
h ih h

i=1

σ σˆVar(β ) =  =    for h = 1,…, k
(1-R )SST

(1-R ) (x - x )
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Estimation of the variance σ2 of the error term ε:

The estimation of σ2 is the basis for the estimation of the variance of the OLS 

estimated regression parameters

Since σ2 = E(ε2), the following estimator would be obvious:

However, this estimator is biased. In contrast, an unbiased estimator is the ra-

tio between SSR and the difference between the sample size n and the number 

k+1 of regression parameters:

Thus, the corresponding (consistent, but not unbiased) standard error of the re-

gression (SER), which is an estimator of the standard deviation σ of the error 

term ε, is:

n
2

i

i=1

1 SSR
ε̂  =  

n n


n
2 2

i

i=1

1 SSR
ˆσ̂  = ε  =  

n-k-1 n-k-1


n
2 2

i

i=1

1
ˆˆ ˆσ = σ  = ε  

n-k-1
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An unbiased estimator of the variance of the OLS estimated slope parameters 

in linear regression models is therefore: 

Standard deviation of the OLS estimated slope parameters:

This standard deviation can then be estimated as follows:

The use of these estimates (also called standard errors of the estimated para-

meters) is particularly based on the homoskedasticity assumption A5. In con-

trast, the variance of the OLS estimated slope parameters is estimated with a 

bias in the case of heteroskedasticity (although heteroskedasticity has no influ-

ence on the unbiasedness of the estimated regression parameters).

2

h 2

h h

σ̂ˆˆVar(β )  =    for h = 1,…, k
(1-R )SST

h 2

h h

σˆVar(β )  =    for h = 1,…, k
(1-R )SST

h 2

h h

σ̂ˆˆVar(β )  =    for h = 1,…, k
(1-R )SST
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Under the assumptions A1 through A5 it follows:

The OLS estimators are the best linear unbiased estimators (BLUE) of the re-

gression parameters in linear regression models

Components of BLUE:

• “Unbiased“ indicates that the estimator is not biased

• “Linear“ indicates that the estimator is a linear function of the data and the 

dependent variable

• “Best“ indicates that the estimator has the smallest variance

In accordance with the Gauss-Markov theorem, OLS estimators have the smal-

lest variance in the class of all linear and unbiased estimators. However, the 

prerequisite for this property is that the assumptions A1 through A5 hold.
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0.4 Testing of hypotheses about regression parameters

Additional assumption A6: Normality

The error term ε is independent from the explanatory variables x1, x2, …, xk and 

normally distributed with an expected value of zero and a variance of σ2:          

ε ~ N(0; σ2)

→ The assumptions A1 through A6 are also called classical linear model as-

sumptions. Therefore, the corresponding approach is also called classical li-

near regression model.

Under the assumptions A1 through A6 it follows for the dependent variable:

It follows:

The OLS estimators are the best unbiased estimators (BUE) of the regression 

parameters in linear regression models. The OLS estimators thus have the 

smallest variance not only in the class of all linear unbiased estimators, but al-

so in the larger class of all unbiased estimators.

→ Indeed, if the error term ε is not normally distributed, the realization of statis-

tical tests is no problem if the sample size n is large

2

1 2 k 0 1 1 2 2 k ky|x , x ,…, x ~ N(β + β x + β x + + β x ; σ )
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If assumption A6 (normally distributed error term ε) holds, the OLS estimated 

slope parameters in linear regression models are also normally distributed, i.e. 

it follows (h = 1,…, k):

It follows (h = 1,…, k):

In addition, each linear function of the OLS estimated regression parameters 
β0, 

β1,…, βk is normally distributed.

2

h h h h h n
2 2

h ih h

i=1

σˆ ˆ ˆβ ~ N[β ; Var(β )]  resp.  β ~ N β ; 

(1-R ) (x - x )

 
 
 
 
  



h h h h

h
n

2 2

h ih h

i=1

ˆ ˆβ - β β - β
 ~ N(0; 1)  resp.   ~ N(0; 1) 

σˆVar(β )

(1-R ) (x - x )
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However, the variances and standard deviations of the OLS estimated slope 

parameters in linear regression models are usually unknown and thus have to 

be estimated. Under the assumptions A1 through A6 it follows:

k+1 is the number of unknown regression parameters. 

The main null hypothesis that is tested in empirical applications is: 

The null hypothesis about the slope parameter βh implies that the explanatory 

variable xh has no partial effect on the dependent variable y. The test statistic in 

this case is the following t statistic (t value), which includes the estimated stan-

dard deviation (standard error) of the estimated parameters:

h h h h
n-k-1 n-k-1

h
n

2 2

h ih h

i=1

ˆ ˆβ - β β - β
 ~ t  resp.  ~ t

σ̂ˆˆVar(β )

(1-R ) (x - x )

0 hH : β  = 0   for h = 1,…, k

h

h
ˆ hβ

h

β̂
t = t  = t  =

ˆˆVar(β )
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The testing of H0: βh = 0 at a given significance level is based on the property 

that the t statistic is t distributed with n-k-1 degrees of freedom under the null 

hypothesis. In empirical analyses a two-tailed test is usually examined. The 

two-sided alternative hypothesis is:

The null hypothesis is thus rejected if:

More general null hypothesis:

The null hypothesis is rejected if βh is strongly different from ah. The appropri-

ate test statistic is the following more general t statistic:

If H0: βh = ah is true, this t statistic is again t distributed with n-k-1 degrees of 

freedom. The null hypothesis is rejected at the significance level α in favor of 

the alternative hypothesis H1: βh ≠ ah if |t| > tn-k-1;1-α/2.

1 hH : β 0   for h = 1,…, k

n-k-1;1-α/2t  > t

0 h hH : β  = a    for h = 1,…, k

h h

h

β̂ - a
t = 

ˆˆVar(β )
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---------------------------------------------------------------------------------------------------------

Example: Effect of air pollution on housing prices (I)

By using a linear regression model, the effect of the logarithm of nitrogen 

oxides (in ppm) in the air (lognox), the logarithm of the weigthed distances (in 

miles) from five employment centers (logdist), the average number of rooms in 

houses (rooms), and the average ratio between teachers and pupils in schools 

(stratio) on the logarithm of the median housing prices (logprice) is examined 

with a sample of n = 506 communities. The following OLS regression equation 

was estimated (R2 = 0.584):

Due to the high common t values, all explanatory variables have an effect at 

common significance levels (e.g. 0.05, 0.01). Another interesting null hypothe-

sis refers to the testing whether β1 equals the value -1, i.e. H0: β1 = -1. In this 

case it follows t = (-0.954+1)/0.117 = 0.393. Therefore, the null hypothesis can-

not be rejected at common significance levels (i.e. the estimated elasticity is 

not significantly different from the value -1).

---------------------------------------------------------------------------------------------------------

ˆlogprice = 11.08 - 0.954lognox - 0.134logdist + 0.255rooms - 0.052stratio

                 (0.32) (0.117)            (0.043)             (0.019)          (0.006)
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---------------------------------------------------------------------------------------------------------

Example: Effect of air pollution on housing prices (II)

reg logprice lognox logdist rooms stratio

Source |       SS       df MS              Number of obs =     506

-------------+------------------------------ F(  4,   501) =  175.86

Model |  49.3987581     4  12.3496895           Prob > F      =  0.0000

Residual |  35.1834907   501  .070226528           R-squared =  0.5840

-------------+------------------------------ Adj R-squared =  0.5807

Total |  84.5822488   505  .167489602           Root MSE      =    .265

------------------------------------------------------------------------------

logprice |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

lognox |  -.9535397   .1167418    -8.17   0.000    -1.182904   -.7241759

logdist |    -.13434   .0431032    -3.12   0.002    -.2190254   -.0496547

rooms |    .254527   .0185303    13.74   0.000     .2181203    .2909338

stratio |  -.0524512   .0058971    -8.89   0.000    -.0640373   -.0408651

_cons |   11.08386   .3181115    34.84   0.000     10.45887    11.70886

------------------------------------------------------------------------------

---------------------------------------------------------------------------------------------------------
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Also hypotheses about linear combinations of regression parameters can be 

tested. With arbitrary values r1, r2,…,rk and c the corresponding null hypothesis 

can be specified as follows:

The inclusion of the estimated variance of the linear combination of the slope 

parameters leads to the following t statistic, which is t distributed with n-k-1 de-

grees of freedom under the null hypothesis:

An often considered null hypothesis refers to the equality of two parameters, 

e.g.: 

The corresponding t statistic is:

H0 is thus rejected at the significance level α (in the case of a two-tailed test) if 

|t| > tn-k-1;1-α/2. 

0 1 1 2 2 k k 0 1 1 2 2 k kH : r β + r β + + r β  = c  resp.  H : r β + r β + + r β - c = 0

1 1 k k

1 1 k k

ˆ ˆr β + + r β - c
t = 

ˆ ˆˆVar(r β + + r β )

0 1 2 0 1 2H : β = β  resp. H : β - β = 0

1 2

1 2

ˆ ˆβ -β
t = 

ˆ ˆˆVar(β -β )
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Finally, also multiple linear exclusion restrictions can be tested. The starting 

point is the following (unrestricted) multiple linear regression model:

In order to test whether a group of q explanatory variables has no effect on the 

dependent variable, the null hypothesis can be stated as follows:

The restricted regression model under H0 is then:

For the corresponding F test the following F statistic (F value) is considered:

If H0: βk-q+1 = βk-q+2 =…= βk = 0 is true, this test statistic is F distributed with q 

(i.e. the number of exclusion restrictions) and n-k-1 degrees of freedom, i.e.:

The null hypothesis is rejected at the significance level α in favor of the alterna-

tive hypothesis if F > Fq;n-k-1;1-α.

0 1 1 2 2 k ky = β + β x + β x + + β x + ε

0 k-q+1 k-q+2 k 0 k-q+1 k-q+2 kH : β = 0, β = 0, , β = 0  resp.  H : β = β = = β = 0  

0 1 1 2 2 k-q k-qy = β + β x + β x + + β x + ε

r ur

r ur

ur ur

SSR - SSR

SSR - SSR n-k-1q
F =  = 

SSR SSR q

n-k-1

q;n-k-1F ~ F
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Alternative formulation with the coefficients of determination R2
r and R2

ur in the 

restricted and unrestricted linear regression models:

The most commonly considered F test in empirical analyses refers to the follo-

wing null hypothesis:

This leads to the following restricted linear regression model:

The coefficient of determination R2
r is zero in such restricted linear regression 

models so that the (R-squared form of the) F statistic in this case with q = k 

restrictions is (with R2 as the ordinary coefficient of determination in a linear re-

gression model with k explanatory variables):

2 2

ur r
2 2

ur r

2 2

ur ur

R - R

R - R n-k-1q
F =  = 

1-R 1-R q

n-k-1

0 1 2 kH : β = β = = β = 0  

0y = β + ε

2

2

2 2

R
R n-k-1kF =  = 

1-R 1-R k

n-k-1
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---------------------------------------------------------------------------------------------------------

Example: Determinants of birth weigths (I)

By using a linear regression model, the effect of the average number of ciga-

rettes the mother smoked per day during pregnancy (cigs), the birth order of 

the child (parity), the annual family income (faminc), the number of years of 

schooling for the mother (motheduc), and the number of years of schooling of 

the father (fatheduc) on the birth weight (in ounces = 28.3495 grams) of chil-

dren (bwght) is examined:

On the basis of a significance level of 0.05, the null hypothesis that the number 

of years of schooling of the parents has no effect on the birth weight is consi-

dered, i.e. H0: β4 = β5 = 0:

• For n = 1191 births the unrestricted and restricted regression models are es-

timated by OLS. It follows R2
r = 0.0364 and R2

ur = 0.0387.

• Since n-k-1 = 1191 - 6 = 1185 and q = 2 it follows for the F statistic:                   

F = [(0.0387-0.0364)/(1-0.0387)](1185/2) = 1.42

• The critical value from the F distribution with 2 and 1185 degrees of freedom 

is F2;1185;0.95 = 3.00. Therefore, the null hypothesis cannot be rejected at the 

5% significance level.

---------------------------------------------------------------------------------------------------------

0 1 2 3 4 5bwght = β + β cigs + β parity + β faminc + β motheduc + β fatheduc + ε
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---------------------------------------------------------------------------------------------------------

Example: Determinants of birth weigths (II)

reg bwght cigs parity faminc motheduc fatheduc

Source |       SS       df MS              Number of obs =    1191

-------------+------------------------------ F(  5,  1185) =    9.55

Model |  18705.5567     5  3741.11135           Prob > F      =  0.0000

Residual |  464041.135  1185  391.595895           R-squared     =  0.0387

-------------+------------------------------ Adj R-squared =  0.0347

Total |  482746.692  1190  405.669489           Root MSE      =  19.789

------------------------------------------------------------------------------

bwght |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

cigs |  -.5959362   .1103479    -5.40   0.000    -.8124352   -.3794373

parity |   1.787603   .6594055     2.71   0.007     .4938709    3.081336

faminc |   .0560414   .0365616     1.53   0.126    -.0156913    .1277742

motheduc |  -.3704503   .3198551    -1.16   0.247    -.9979957    .2570951

fatheduc |   .4723944   .2826433     1.67   0.095    -.0821426    1.026931

_cons |   114.5243   3.728453    30.72   0.000     107.2092    121.8394

------------------------------------------------------------------------------

---------------------------------------------------------------------------------------------------------
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---------------------------------------------------------------------------------------------------------

Example: Determinants of birth weigths (III)

reg bwght cigs parity faminc

Source |       SS       df MS              Number of obs =    1191

-------------+------------------------------ F(  3,  1187) =   14.95

Model |  17579.8997     3  5859.96658           Prob > F      =  0.0000

Residual |  465166.792  1187  391.884408           R-squared     =  0.0364

-------------+------------------------------ Adj R-squared =  0.0340

Total |  482746.692  1190  405.669489           Root MSE      =  19.796

------------------------------------------------------------------------------

bwght |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

cigs |  -.5978519   .1087701    -5.50   0.000    -.8112549   -.3844489

parity |   1.832274   .6575402     2.79   0.005     .5422035    3.122345

faminc |   .0670618   .0323938     2.07   0.039     .0035063    .1306173

_cons |   115.4699   1.655898    69.73   0.000     112.2211    118.7187

------------------------------------------------------------------------------

Testing command and results in STATA (only possible directly after the OLS 

estimation in the unrestricted regression model, differences are due to roun-

dings):              

test motheduc=fatheduc=0

( 1)  motheduc - fatheduc = 0

( 2)  motheduc = 0

F(  2,  1185) =    1.44

Prob > F =    0.2380

---------------------------------------------------------------------------------------------------------
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0.5 Asymptotic properties

Definition of consistency:

Let Wn be the estimator of parameter θ based on a sample y1, y2,…,yn. Then 

Wn is a consistent estimator of θ if P(|Wn – θ| > ξ) converges (for ξ > 0) to zero 

for n → ∞. In this case Wn converges stochastically to θ, i.e. plim(Wn) = θ.

Consistency of OLS estimators:

• If the assumptions A1 through A4 hold, the OLS estimators βh (h = 0,1,…, k) 

in linear regression models are consistent estimators of βh, i.e. plim(βh) = βh

• For the consistency of OLS estimators the same assumptions as for the un-

biasedness are therefore required, i.e. e.g. the assumption A5 (homoske-

dasticity) can be violated. In fact, for the consistency of OLS estimators al-

ready a weakening of A4 is sufficient in addition to the assumptions A1 

through A3, i.e. A4‘: E(ε) = 0 and Cov(xh, ε) = 0 (h = 1, 2,…, k).

Inconsistency of OLS estimators:

• Remember: If E(ε|x1, x2,…, xk) ≠ 0, i.e. if A4 is violated, the OLS estimators 

in linear regression models are not unbiased

• In the same manner, all OLS estimators are inconsistent if ε is correlated 

with any explanatory variable, i.e. if A4‘ is violated
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Asymptotic distributions of OLS estimators:

The exact normal distribution of the OLS estimators in linear regression models 

(and therefore the exact t and F distributions of the t and F statistics) is based 

on assumption A6, i.e. ε ~ N(0; σ2). However, functions of the OLS estimators 

can also be asymptotically normally distributed if A6 is violated. 

If the assumptions A1 through A5 hold, it follows for the OLS estimated slope 

parameters in linear regression models (even without assumption A6):

This property does not contradict the previous property according to which this 

function is exactly t distributed with n-k-1 degrees of freedom if the assump-

tions A1 through A6 hold since also the following notation is feasible (since the 

t distribution converges to the standard normal distribution if the number of de-

grees of freedom increases):

a
h h

h

β̂ - β
 ~  N(0; 1)

ˆˆVar(β )

a
h h

n-k-1

h

β̂ - β
 ~  t

ˆˆVar(β )
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It follows:

Even for the case that the error term ε is not normally distributed, the previous-

ly considered t and F tests can be conducted and the confidence intervals can 

be constructed. The prerequisite for this is that the sample size n is sufficiently 

large. For small n (or a small number of degrees of freedom n-k-1), e.g. the ap-

proximation of the t statistic towards the t distribution is insufficient. 

Asymptotic efficiency:

Under the Gauss-Markov assumptions (and thus with the assumptions A1 

through A5), OLS estimators βh (h = 0, 1,…, k) are asymptotically efficient in a 

class of consistent estimators ෨βh of the regression parameters in linear regres-

sion models, i.e. it follows for the asymptotic variance Avar:

h h h h
ˆAvar[ n(β -β )]  Avar[ n(β ]-β )
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0.6 The structure of dependent and explanatory variables

Logarithmized und squared variables:

Linear regression models can comprise non-linear relationships by including 

(naturally) logarithmized und squared variables

Overview of the inclusion of logarithmized variables:

Linear 

regression

model

Dependent 

variable

Explanatory 

variable

Interpretation of the 

estimated slope

parameter

Level-level y xh ∆ොy = βh∆xh

Level-log y logxh ∆ොy ≈ (βh/100)%∆xh

Log-level logy xh %∆ොy ≈ (100βh)∆xh

Log-log logy logxh %∆ොy ≈ βh%∆xh
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---------------------------------------------------------------------------------------------------------

Example: Effect of air pollution on housing prices

By using a linear regression model, the effect of the logarithm of nitrogen 

oxides (in ppm) in the air (lognox) and the average number of rooms in houses 

(rooms) on the logarithm of the median housing prices (logprice) is examined 

with a sample of n = 506 communities. The OLS estimation with STATA leads 

to the following results (R2 = 0.514): 

reg logprice lognox rooms

------------------------------------------------------------------------------

logprice |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

lognox |  -.7176732   .0663397   -10.82   0.000    -.8480102   -.5873361

rooms |   .3059183   .0190174    16.09   0.000      .268555    .3432816

_cons |   9.233737   .1877406    49.18   0.000     8.864885    9.602589

------------------------------------------------------------------------------

It follows:

• An increase of nitrogen oxides by 1% (i.e. %∆nox = 1) leads to an approxi-

mately estimated reduction of the median housing prices by 0.718% (if the 

variable rooms is held fixed)

• An increase of the average number of rooms by one (i.e. ∆rooms = 1) leads 

to an approximately estimated increase of the median of the real estate pri-

ces by 0.306∙100 = 30.6% (if nox is held fixed)

---------------------------------------------------------------------------------------------------------
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Squared explanatory variables: 

These variables allow for increasing or decreasing (partial) marginal effects in 

linear regression models 

Additional inclusion of a squared explanatory variable x1
2 (besides the k-1 ex-

planatory variables x1, x2,…, xk-1):

In this case β1 does not indicate alone the change of y with respect to x1. The 

OLS regression equation is:

If x2,…, xk-1 are held constant, it follows the approximation:

Therefore, the estimated (partial) marginal effect of x1 on y also depends on β2 

and the values of x1. 

2

0 1 1 2 1 3 2 k-1 k-2 k k-1y = β + β x + β x + β x + + β x + β x + ε

2

0 1 1 2 1 3 2 k-1 k-2 k k-1
ˆ ˆ ˆ ˆ ˆ ˆŷ = β + β x + β x + β x + + β x + β x

1 2 1 1 1 2 1

1

ŷˆ ˆ ˆ ˆŷ  (β +2β x ) x   resp.    β + 2β x
x
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Interaction terms:

These terms allow that the (partial) effect (or elasticity or semi elasticity) of an 

explanatory variable in linear regression models depends on different values of 

another explanatory variable

Additional inclusion of an interaction term for x1 and x2 (besides the k-1 expla-

natory variables x1, x2,…, xk-1):

Again, in this case β1 does not indicate alone the change of y with respect to x1. 

The OLS regression equation is :

If x2,…, xk-1 are held constant, it follows:

Therefore, the estimated (partial) marginal effect of x1 on y also depends on β3 

and x2. In this case, interesting values of x2 are generally examined (e.g. the 

mean of x2 in the sample). β1 alone only indicates the estimated (partial) effect 

of x1 if x2 is zero.

0 1 1 2 2 3 1 2 4 3 k-1 k-2 k k-1y = β + β x + β x + β x x + β x + β x + β x + ε

0 1 1 2 2 3 1 2 4 3 k-1 k-2 k k-1
ˆ ˆ ˆ ˆ ˆ ˆ ˆŷ = β + β x + β x + β x x + β x + + β x + β x

1 3 2 1 1 3 2

1

ŷˆ ˆ ˆ ˆŷ = (β +β x ) x   resp.   = β + β x
x
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Qualitative explanatory variables:

So far, the focus is implicitly on quantitative continuous dependent and explana-

tory variables in linear regression models (with an unrestricted range) such as 

wages, prices, or sales. However, in empirical analyses qualitative explanatory 

variables often play an important role such as gender, race, sectoral effects, re-

gional effects.

Qualitative variables:

• Qualitative information on explanatory variables can be captured by corres-

ponding binary (i.e. dummy) variables that have exactly two possible catego-

ries and thus take two values, namely one and zero

• The OLS estimation and the testing of hypotheses about regression parame-

ters in linear regression models with qualitative explanatory variables is fully 

equivalent to the exclusive inclusion of quantitative explanatory variables

Single binary explanatory variables:

Inclusion of qualitative variables with two categories

On the basis of a multiple linear regression model with only quantitative explana-

tory variables, an additional binary explanatory variable x0 is included (besides

now k-1 quantitative explanatory variables x1, x2,…, xk-1): 
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With E(ε|x0,x1,x2,…, xk-1) = 0 it follows:

It follows:

β1 thus is the difference in the expected value of y between x0 = 1 und x0 = 0, 

given the same values of x1, x2,…, xk-1 and ε.

→ β0 is therefore the constant for x0 = 0. For x0 = 1 the constant is β0 + β1, so

that β1 is the difference of the constant for x0 = 1 und x0 = 0.

Note: 

For one factor (e.g. gender) it is not possible to jointly include two dummy vari-

ables (e.g. one variable that takes the value one for women and one variable 

that takes the value one for men) in linear regression models since this would 

lead to perfect collinearity (simple version of „dummy variable trap“)

0 1 0 2 1 3 2 k k-1y = β + β x + β x + β x + + β x + ε

0 1 2 k-1 0 1 0 2 1 3 2 k k-1E(y|x , x , x ,…, x ) = β + β x + β x + β x + + β x

1 0 1 2 k-1 0 1 2 k-1β  = E(y|x = 1, x , x , ,  x ) - E(y|x = 0, x , x , ,  x )
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---------------------------------------------------------------------------------------------------------

Example: Determinants of (the logarithm of) wages

By using a linear regression model, the effects of gender (female), the years of 

education (educ), the years of labor market experience (exper), the squared 

years of labor market experience (expersq), the years with the current emplo-

yer (tenure) and the squared years with the current employer (tenuresq) on the 

logarithm of hourly wage (logwage) is examined. On the basis of n = 526 wor-

kers, the OLS estimation with STATA leads to the following results (R2 = 0.441):

reg logwage female educ exper expersq tenure tenuresq

------------------------------------------------------------------------------

logwage |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

female |   -.296511   .0358055    -8.28   0.000    -.3668524   -.2261696

educ |   .0801967   .0067573    11.87   0.000     .0669217    .0934716

exper |   .0294324   .0049752     5.92   0.000     .0196584    .0392063

expersq |  -.0005827   .0001073    -5.43   0.000    -.0007935   -.0003719

tenure |   .0317139   .0068452     4.63   0.000     .0182663    .0451616

tenuresq |  -.0005852   .0002347    -2.49   0.013    -.0010463   -.0001241

_cons |   .4166909   .0989279     4.21   0.000     .2223425    .6110394

------------------------------------------------------------------------------

The results imply that the estimated hourly wage for women is on average ap-

proximately 100∙0.297 = 29.7% smaller (for equal education, labor market ex-

perience, and years with the current employer).

---------------------------------------------------------------------------------------------------------
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Binary explanatory variables for multiple categories:

Inclusion of qualitative variables with more than two categories

The basis is again a multiple linear regression model with only quantitative va-

riables. Now an additional qualitative (nominal or ordinal) explanatory variable 

(e.g. sector, region, education) with q > 2 different  categories is considered. In 

this case (maximal) q-1 dummy variables x01, x02,…, x0,q-1 can be included (be-

sides now k-q+1 quantitative explanatory variables x1, x2,…, xk-q+1):

Category q of the qualitative variable (i.e. the dummy variable x0q) is consider-

ed as the base category. As a consequence, the estimated slope parameters 
β1,

β2,…, βq-1 indicate for the corresponding group of the qualitative variable 

(i.e. for x01, x02,…, x0,q-1) the estimated average difference in the dependent 

variable y compared with the base category, i.e. compared with x0q.

Note: 

It is not possible to jointly include all q dummy variables x01, x02,…, x0q since 

this would lead to perfect collinearity (general version of „dummy variable 

trap“). Many econometric packages such as STATA automatically correct for 

this mistake.

0 1 01 2 02 q-1 0,q-1 q 1 q+1 2 k k-q+1y = β + β x + β x + + β x + β x + β x + + β x + ε
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Interaction terms with binary explanatory variables:

Interaction terms can also comprise dummy variables (and thus need not only 

refer to two quantitative explanatory variables)

Additional inclusion of an interaction term for two binary explanatory variables 

x01 und x02 (besides now k-3 quantitative explanatory variables x1, x2,…, xk-3):

Interpretation:

• The inclusion of these interaction terms (besides the separate inclusion of 

the corresponding dummy variables) is an alternative to the inclusion of 

three binary explanatory variables if four categories are examined

• β1 (resp. β2) indicates for x02 = 0 (resp. x01 = 0) the estimated average diffe-

rence in the dependent variable y between x01 = 1 and x01 = 0 (resp. bet-

ween x02 = 1 and x02 = 0)

• For x01 = 1 and x02 = 0 (resp. for x01 = 0 and x02 = 1) the estimated constant 

is β0 + β1 (resp. β0 + β2)

• For x01 = 1 and x02 = 1 the estimated constant is β0 + β1 + β2 + β3

0 1 01 2 02 3 01 02 4 1 5 2 k k-3y = β + β x + β x + β x x + β x + β x + + β x + ε
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Inclusion of an interaction term for one binary explanatory variables x0 and one 

quantitative explanatory variable x1 (besides now k-2 quantitative explanatory

variables x1, x2,…, xk-2):

Interpretation:

• These interaction terms allow the analysis of possible differences in the 

(partial) effect (or elasticity or semi elasticity) of the quantitative explanatory 

variable x1 in linear regression models for the two categories of the binary 

explanatory variable x0. If β3 = 0, then there is no difference. 

• If x0 = 0, it follows for the OLS regression equation:                                           

The estimated constant in this case is β0 and the estimated (partial) effect of

x1 is β2.

• If x0 = 1, it follows for the OLS regression equation:                                           

The estimated constant in this case is β0 + β1 and the estimated (partial) ef-

fect of x1 is β2 + β3.

0 1 0 2 1 3 0 1 4 2 k k-2y = β + β x + β x + β x x + β x + + β x + ε

0 2 1 4 2 k k-2
ˆ ˆ ˆ ˆŷ = β + β x + β x + + β x

0 1 2 1 3 1 4 2 k k-2
ˆ ˆ ˆ ˆ ˆ ˆŷ = β + β + β x + β x + β x + + β x
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0.7 Heteroskedasticity

Previously, for the variance of the OLS estimators assumption A5 (homoske-

dasticity) was discussed in detail:

• If Var(ε|x1, x2,…, xk) ≠ σ2, this leads to heteroskedasticity

• Unlike e.g. omitting relevant explanatory variables, heteroskedasticity has 

no impact on the unbiasedness or consistency of OLS estimators. However, 

heteroskedasticity has an impact on the (estimated) variance of the OLS es-

timated slope parameters in linear regression models.

• As discussed above, it follows in the case of homoskedasticity, i.e. under the 

assumptions A1 through A5, for the variance of the OLS estimated slope pa-

rameters (with Rh
2 as the coefficient of determination of a regression of xh on 

all other explanatory variables):

• Thus, in the case of homoskedasticity, it follows the following estimated 

standard deviation with a consistent estimator of the standard deviation σ:

2 2

h n 2
2 2 h h
h ih h

i=1

σ σˆVar(β ) =  =    for h = 1,…, k
(1-R )SST

(1-R ) (x - x )

h 2

h h

σ̂ˆˆVar(β )  =    for h = 1,…, k
(1-R )SST



46

• Since this variance is only true in the case of homoskedasticity, but not un-

der heteroskedasticity, this estimated standard deviation is a biased and in-

consistent estimator of the standard deviation of the OLS estimators

• In the case of heteroskedasticity the estimated standard deviations are thus 

no longer valid for constructing confidence intervals as well as t and F statis-

tics. The corresponding t statistics are therefore no longer t distributed (even 

for a large sample size n) and the corresponding F statistics are no longer F 

distributed in the case of heteroskedasticity.

• Finally, the desirable BLUE property (or efficiency) of OLS estimators and 

the property of asymptotic efficiency are not valid in the case of heteroske-

dasticity. However, by knowing the form of heteroskedasticity, it is possible 

to construct more efficient estimators compared to the OLS estimators.

A standard approach to test homoskedasticity is the Breusch-Pagan test (an 

alternative is the White test). The null hypothesis is:

If H0 is not true, ε2 is a function of one or more explanatory variables. If a linear 

function of all explanatory variables is considered, it follows in this case with an 

error term v with a (conditional) expected value of zero: 

2 2 2 2

0 1 2 k 0 1 2 kH : Var(ε|x , x ,…,x ) = σ   resp.  H : E(ε |x , x ,…,x ) = E(ε ) = σ

2

0 1 1 2 2 k kε  = δ + δ x + δ x + + δ x + v
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The null hypothesis of homoskedasticity is then:

Since the εi are unknown, they are replaced by the corresponding estimators, 

i.e. the residuals ොεi, so that the squared residuals are regressed on the expla-

natory variables:

A high value of the coefficient of determination R2
Ƹε2

in this auxiliary regression 

suggests the validity of the alternative hypothesis, i.e. heteroskedasticity. One 

version of the Breusch Pagan test statistic is:

Under the null hypothesis (i.e. homoskedasticity) BP is asymptotically χ2 distri-

buted with k degrees of freedom, i.e.:

Thus, the null hypothesis of homoskedasticity is (for a large sample size n) re-

jected in favor of the alternative hypothesis of heteroskedasticity at the signifi-

cance level α if:

0 1 2 kH : δ = δ = = δ = 0

2

0 1 1 2 2 k kε̂  = δ + δ x + δ x + + δ x + v

2

2

ε̂
BP = nR

a
2

kBP ~  χ

2

k;1-αBP > χ
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---------------------------------------------------------------------------------------------------------

Example: Determinants of house prices (I)

By using a linear regression model, the effect of the lot size in square feet 

(lotsize), the living space size in square feet (sqrft), and the number of bed-

rooms (bdrms) on house prices in 1000 dollar (price) is examined. The follow-

ing OLS regression equation was estimated:

On the basis of a Breusch Pagan test, the null hypothesis of homoskedasticity

is tested at the 1% significance level:

• First, the residuals ොεi are calculated. The auxiliary regression of ොε2 on lot-

size, sqrft, and bdrms leads to a coefficient of determination in the amount of 

R2
Ƹε2

= 0.1601.

• The corresponding Breusch Pagan test statistic amounts to the value of     

BP = 88∙0.1601 = 14.09

• With k = 3 the critical value is χ2
3;0.99 = 11.34. Thus, the null hypothesis is re-

jected at the 1% significance level (the corresponding p-value is p = 0.0028)

---------------------------------------------------------------------------------------------------------

2

ˆprice = -21.77 + 0.00207lotsize + 0.123sqrft + 13.85bdrms

            (29.48)  (0.00064)            (0.013)           (9.01)

n = 88; R  = 0.672
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---------------------------------------------------------------------------------------------------------

Example: Determinants of house prices (II)

reg price lotsize sqrft bdrms

Source |       SS       df MS              Number of obs =      88

-------------+------------------------------ F(  3,    84) =   57.46

Model |  617130.702     3  205710.234           Prob > F      =  0.0000

Residual |  300723.806    84  3580.04531           R-squared =  0.6724

-------------+------------------------------ Adj R-squared =  0.6607

Total |  917854.508    87  10550.0518           Root MSE      =  59.833

------------------------------------------------------------------------------

price |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

lotsize |   .0020677   .0006421     3.22   0.002     .0007908    .0033446

sqrft |   .1227782   .0132374     9.28   0.000     .0964541    .1491022

bdrms |   13.85252   9.010145     1.54   0.128     -4.06514    31.77018

_cons |  -21.77031   29.47504    -0.74   0.462    -80.38466    36.84404

------------------------------------------------------------------------------

Testing command and results in STATA (only possible directly after the OLS 

estimation):  

estat hettest, rhs iid

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity

Ho: Constant variance

Variables: lotsize sqrft bdrms

chi2(3)      =    14.09

Prob > chi2  =   0.0028

---------------------------------------------------------------------------------------------------------
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If the null hypothesis is rejected at a low significance level and thus heteroske-

dasticity is verified, this should be considered:

• One possibility is the use of alternative estimation methods instead of the 

OLS method such as the weighted least squares (WLS) method. However, 

for this estimation method, it is necessary to know the precise form of hete-

roskedasticity.

• In the case of heteroskedasticity the general question arises whether an al-

ternative estimation method instead of the OLS estimation should really be 

applied: Since the OLS estimators are also unbiased and consistent in the 

case of heteroskedasticity (under the assumptions A1 through A4), the app-

lication of OLS can still be useful.

• However, for the construction of confidence intervals and the application of t 

or F tests in the case of heteroskedasticity, the estimated standard devia-

tions of the OLS estimators should at least be corrected

The starting point of these corrections are the actual (unknown) variances of 

the OLS estimators. The unknown variances σi
2 of the error term εi are re-

placed by the corresponding squared residuals ොεi
2 (which stem from the original 

OLS estimation). In multiple linear regression models the estimated variance of 

the OLS estimated slope parameters generally is:
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ොrih denotes the residual of observation i, which stems from the regression of xh

on all other explanatory variables, and SSRh denotes the sum of squared resi-

duals from this regression. The estimated standard deviation of the OLS esti-

mated slope parameters according to White (1980) is then:

On this basis several further asymptotically equivalent estimators of standard 

deviations have been developed. By using these estimated standard devia-

tions, heteroskedasticity robust confidence intervals and especially heteroske-

dasticity robust t statistics can be constructed. 

n
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---------------------------------------------------------------------------------------------------------

Example: Determinants of (the logarithm of) wages (I)

By using a linear regression model, the effect of the years of education (educ), 

the years of labor market experience (exper), the squared years of labor mar-

ket experience (expersq), the years with the current employer (tenure), the 

squared years with the current employer (tenuresq), as well as three combined 

variables for marital and gender status for married men (marrmale), married 

women (marrfem), and non-married women (singfem) on the logarithm of hour-

ly wage (logwage) is examined. On the basis of n = 526 workers, the following 

OLS regression equation was estimated which also reports heteroskedasticity

robust estimated standard deviations of the estimated parameters (in brackets) 

in addition to conventionally estimated standard deviations (with R2 = 0.461):

---------------------------------------------------------------------------------------------------------

ˆlogwage = 0.321 + 0.213 marrmale - 0.198marrfem - 0.110singfem + 0.0789educ 

                 (0.100) (0.055)                 (0.058)              (0.056)               (0.0067) 

                 [0.109] [0.057]                 [0.059]              [0.057]               [0.0074]

                 + 0.0268exper - 0.00054expersq + 0.0291tenure - 0.00053tenuresq

                   (0.0055)         (0.00011)              (0.0068)           (0.00023) 

                   [0.0051]         [0.00011]              [0.0069]           [0.00024 ]
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---------------------------------------------------------------------------------------------------------

Example: Determinants of (the logarithm of) wages (II)

reg logwage marrmale marrfem singfem educ exper expersq tenure tenuresq, robust

Linear regression Number of obs =     526

F(  8,   517) =   51.70

Prob > F      =  0.0000

R-squared =  0.4609

Root MSE      =  .39329

------------------------------------------------------------------------------

|               Robust

logwage |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

marrmale |   .2126756   .0571419     3.72   0.000     .1004167    .3249345

marrfem |  -.1982677     .05877    -3.37   0.001    -.3137251   -.0828103

singfem |  -.1103502   .0571163    -1.93   0.054    -.2225587    .0018583

educ |   .0789103   .0074147    10.64   0.000     .0643437    .0934769

exper |   .0268006   .0051391     5.22   0.000     .0167044    .0368967

expersq |  -.0005352   .0001063    -5.03   0.000    -.0007442   -.0003263

tenure |   .0290875   .0069409     4.19   0.000     .0154516    .0427234

tenuresq |  -.0005331   .0002437    -2.19   0.029    -.0010119   -.0000544

_cons |    .321378    .109469     2.94   0.003     .1063193    .5364368

------------------------------------------------------------------------------

---------------------------------------------------------------------------------------------------------
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0.8 Micro data and microeconometrics

→ The previous analysis focuses at least implicitly on cross-sectional or micro 

data, i.e. data from persons, households, firms, but also from regions, coun-

tries, or even supermarket-scanner data. An important feature of micro data 

is the independence between observations. Micro data are the basis of mi-

croeconometrics.

Microeconometrics:

This direction of empirical analyses uses econometric methods that have been 

developed to study microeconomic problems, i.e. they are motivated by an 

economic question and are often based on a microeconomic theory or model to 

select the dependent and explanatory variables

→ The previous analysis furthermore implicitly focuses on quantitative continu-

ous dependent variables with an unrestricted range. In this case the appli-

cation of linear regression models and the OLS estimation of the parame-

ters to empirically examine the determinants of a variable is optimal. 

However:

Microdata and thus microeconometrics are often not based on quantitative con-

tinuous dependent variables with an unrestricted range, but on other types of 

dependent variables
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Qualitative (categorial) variables (which are always discrete):

• Binary variables: These variables have exactly two possible categories (e.g. 

employment of a person, household ownership of a certain insurance, profits 

of a firm are higher than a specific amount)

• Multinomial variables: These variables have more than two possible mutual-

ly exclusive categories which are not ordered (e.g. employment status of a 

person, individual choice among several means of transportation, portfolio 

structure of a household, innovation status of a firm)

• Ordinal (ordered) variables: These variables have more than two possible 

categories which are ordered (e.g. individual satisfaction with life, personal 

strength of agreement to a political program, credit rating of a firm)

Quantitative variables which are not continuous or with a restricted range:

• Count variables: These variables are discrete and restricted to non-negative 

integers (e.g. individual number of visits to a hospital, number of journeys of 

a household, number of patents of a firm)

• Continuous variables with a restricted range: Non-negative variables (e.g. 

duration of unemployment, wages), non-negative variables with many zeros 

(e.g. expenditures for a certain good), truncated variables where realizations 

below or above a threshold are excluded (e.g. incomes below a threshold), 

censored variables where values in a certain range are transformed to a 

single value (e.g. top-coding incomes such as social security earnings)
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In the case of discrete dependent variables and continuous dependent variab-

les with a restricted range, the use of linear regression models and the OLS 

method to estimate the corresponding parameters is not appropriate so that the 

microeconometric analysis should be adjusted:

• Continuous dependent variables with a restricted range (limited dependent 

variables):                                                                                                             

The corresponding restrictions should be taken into account since in the 

case of non-negative dependent variables the OLS fitted values in linear re-

gression models can be outside the allowed range and in the case of the 

other limited dependent variables the exogeneity assumption A4 is violated 

so that the OLS estimators are generally biased

• Discrete dependent variables:                                                                               

The modeling should be completely shifted from the previous analysis of 

conditional expected values of dependent variables (or conditional expecta-

tion functions) with E(y|x1, x2,…, xk) = β0 + β1x1 + β2x2 +…+ βkxk towards 

conditional probability functions of the discrete dependent variables y

• Parameter estimation:                                                                                               

In all these cases, the OLS method should be replaced by other estimation 

methods and particularly by the maximum likelihood method which is based 

on a parametric distribution of the dependent variable and which is the most 

important estimation approach in microeconometrics


