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2. Binary response models

2.1 Linear probability model

Binary dependent variables in a microeconometric analysis:

These qualitative variables have exactly two possible categories and thus take 

two values, namely one and zero

Examples for microeconometric analyses with binary response models:

• Analysis of the factors that explain whether a person is employed or unem-

ployed

• Analysis of the factors that explain whether a person uses a specific means 

of transportation or other means of transportation (as multinomial variable)

• Analysis of the factors that explain whether a person strongly agrees with a 

statement (based on an ordinal scale) or not

• Analysis of the factors that explain whether a household owns a certain in-

surance or not

• Analysis of the factors that explain whether the profits of a firm are at least 

as high as a specific amount or are lower than this amount

• Analysis of the factors that explain whether a firm has realized an innovation 

in the last three years or not
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If yi is a binary dependent variable with yi = 1 or yi = 0, xi = (xi1,…, xik)
‘ is a vec-

tor of k explanatory variables (including a constant), and β = (β1,…, βk)‘ is the 

corresponding k-dimensional parameter vector, a microeconometric model can 

simply be specified as a multiple linear regression model (for i = 1,…, n):

Such a linear regression model with a binary dependent variable is called linear 

probability model. With E(εi|xi) = 0 it follows:

Since yi is a binary variable with yi = 1 or yi = 0, it is Bernoulli distributed with 

parameter pi and the following probability function:

In the linear probability model it follows:

Interpretation of the slope parameters in the linear probability model:

• Due to the binary character of yi, the slope parameters βh (h = 2,…, k) can-

not be interpreted as the change in yi for a one-unit increase of the expla-

natory variable xih as in common linear regression models

• Instead, βh (h = 2,…, k) indicates the change in the probability pi(xi, β) that yi

takes the value one if xih increases by one unit (for a quantitative explanato-

ry variable), ceteris paribus

i i iy  = β'x  + ε

i i iE(y |x ) = β'x

i i i i i i i ip  = p (x , β) = P(y = 1|x , β) = E(y |x ) = β'x

i iy 1-y

i i i i i if (y ; p ) = p (1-p )    for y  = 0, 1
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If all other explanatory variables are held fixed, this means formally:

In line with the OLS estimation of the parameters in common linear regression 

models, the unknown regression parameters β1,…, βk in the linear probability 

model can also be estimated by OLS. This leads to the OLS estimator of the 

parameter vector ෠β = (෠β1,…, ෠βk). It follows:

• The estimator of the dependent variable is ොyi = ෠β‘xi, which is the estimator 

ොpi(xi, β) of the probability that yi takes the value one

• The estimator of the slope parameter ෠βh (h = 2,…, k) indicates the change in 

the estimated probability ොpi(xi, β) if xih increases by one unit (for a quantita-

tive explanatory variable), ceteris paribus

Problem:

Since yi is Bernoulli distributed with parameter pi(xi, β) = P(yi = 1|xi, β) = β‘xi

and εi = - β‘xi for yi = 0 and εi = 1 - β‘xi for yi = 1, it follows for the conditional va-

riance of yi and the conditional variance of the error term εi:

The conditional variance of the error term can therefore necessarily not be con-

stant, but depends on the explanatory variables which leads to heteroskedasti-

city. As a consequence, either an alternative estimation method instead of the 

OLS method or heteroskedasticity robust t statistics should at least be used.

 i i i i h ihp (x , β) = ΔP y = 1|x , β  = β Δx

i i i i i iVar(y |x ) = Var(ε |x ) = β'x (1-β'x )
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---------------------------------------------------------------------------------------------------------

Example: Determinants of labor force participation of married women (I)

By using a linear probability model, the effect of other sources of income (in 

1000 dollar) including the earnings of the husband (nwifeinc), the years of edu-

cation (educ), the years of labor market experience (exper), the squared years 

of labor market experience (expersq), the age in years (age), the number of 

children less than six years old (kidslt6), and the number of children between 

six and 18 years of age (kidsge6) on the labor force participation of married 

women is examined. The dependent dummy variable inlf takes the value one if 

the woman is employed. The following OLS regression equation was estimated 

with n = 753 women which also reports heteroskedasticity robustly estimated 

standard deviations of the estimated parameters (in brackets) in addition to 

conventionally estimated standard deviations (R2 = 0.264):

---------------------------------------------------------------------------------------------------------

ˆinlf = 0.586 - 0.003nwifeinc + 0.038educ + 0.039exper - 0.001expersq

 (0.154) (0.001)               (0.007)         (0.006)          (0.000)

 [0.152] [0.002]               [0.007]         [0.006]          [0.000]

 - 0.016age - 0.262kidslt6 + 0.013kidsge6

  (0.002)      (0.034)             (0.013)

  [0.002]      [0.032]             [0.014]
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---------------------------------------------------------------------------------------------------------

Example: Determinants of labor force participation of married women (II) 

reg inlf nwifeinc educ exper expersq age kidslt6 kidsge6, robust

Linear regression                                      Number of obs =     753

F(  7,   745) =   62.48

Prob > F      =  0.0000

R-squared     =  0.2642

Root MSE      =  .42713

------------------------------------------------------------------------------

|               Robust

inlf |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

nwifeinc |  -.0034052   .0015249    -2.23   0.026    -.0063988   -.0004115

educ |   .0379953    .007266     5.23   0.000      .023731    .0522596

exper |   .0394924     .00581     6.80   0.000     .0280864    .0508983

expersq |  -.0005963     .00019    -3.14   0.002    -.0009693   -.0002233

age |  -.0160908    .002399    -6.71   0.000    -.0208004   -.0113812

kidslt6 |  -.2618105   .0317832    -8.24   0.000    -.3242058   -.1994152

kidsge6 |   .0130122   .0135329     0.96   0.337     -.013555    .0395795

_cons |   .5855192   .1522599     3.85   0.000     .2866098    .8844287

------------------------------------------------------------------------------

---------------------------------------------------------------------------------------------------------
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---------------------------------------------------------------------------------------------------------

Example: Determinants of labor force participation of married women (III)

Interpretation:

• Based on both types of t statistics, all explanatory variables except kidsge6 

have significant effects

• One more year of education leads to an estimated increase of the probability 

of labor force participation by 0.038 or 3.8 percentage points (ceteris pari-

bus)

• Ten more years of education therefore imply an estimated increase of the 

probability of labor force participation by 0.038∙10 = 0.38 or 38 percentage 

points, which is a large effect 

• An increase of nwifeinc by 10000 dollars (i.e. ∆nwifeinc = 10) leads to an es-

timated decrease of the probability of labor force participation by 0.034 or 

3.4 percentage points, which is not a large effect

• The effect of exper depends on the value of exper: An increase of labor mar-

ket experience by one year leads to an estimated change of the probability 

of labor force participation by 0.039 - 2∙0.0006∙exper = 0.039 - 0.0012∙exper

• One additional child less than six years old implies an estimated decrease of 

the probability of labor force participation by 0.262 or 26.2 percentage 

points, which is a huge effect

---------------------------------------------------------------------------------------------------------
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Evaluation of the use of linear probability models:

• In line with the OLS estimation in linear regression models including hetero-

skedastic error terms, the parameters are easy to estimate and the estima-

ted slope parameters are easy to interpret since they are partial effects

• However: The estimated probabilities ොpi(xi, β) = ෡P(yi = 1|xi, β) that the depen-

dent variable yi takes the value one are not restricted to the interval between 

zero and one, i.e. for specific combinations of values for the explanatory va-

riables, the estimated probabilities can be smaller than zero or greater than 

one which is not possible by definition

• It is possible that a probability is not linearly related to an explanatory variab-

le for all possible values: For example, the previous microeconometric ana-

lysis implies an estimated decrease of the probability of labor force participa-

tion by 0.262 for the increase from zero children less than six years to one 

child. This decrease is equally estimated for the increase from one child to 

two children, although it seems more realistic that the decrease of the pro-

bability is stronger for the increase from zero children to one child. In fact, 

the previous analysis implies that four additional children lead to an estima-

ted decrease of the probability of labor force participation by 0.262∙4 = 1.048 

which is clearly not possible by definition.

→ As a consequence, the linear probability model is not used frequently in 

practice
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2.2 Binary probit and logit models

Binary dependent variables yi in a microeconometric model with the vector of k 

explanatory variables xi = (xi1,…, xik)
‘ and the corresponding k-dimensional pa-

rameter vector β = (β1,…, βk)‘ are generally Bernoulli distributed with the follow-

ing probability function (for i = 1,…, n):

Different binary response models result from different specifications of the pro-

bability pi(xi, β) = P(yi = 1|xi) that yi takes the value one. In the case of linear 

probability models, this probability is identical to β‘x which does not ensure that 

the value is between zero and one as discussed above. 

Such values can be guaranteed by several nonlinear functions Fi(xi, β) = Fi(β‘xi) 

and particularly by distribution functions of arbitrary random variables. In the 

case of binary probit models, Fi(β‘xi) = Φi(β‘xi) is the value of the distribution 

function of the standard normal distribution at the linear function β‘xi:

The probabilities pi(xi, β) in binary probit models are therefore calculated by in-

tegration.

2
iβ'x t

-
2

i i i i i i i i

-

1
F (β'x ) = Φ (β'x ) = p (x , β) = P(y = 1|x , β) =  e  dt

2π



   

 

ii

ii

1-yy

i i i i i i i

1-yy

i i i i i

f y ; x , β  = p (x , β) 1-p (x , β)  

                    = P(y = 1|x , β) 1-P(y = 1|x , β)    for y  = 0, 1
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In the case of binary logit models, Fi(β‘xi) = Λi(β‘xi) is the value of the distribu-

tion function of the standard logistic distribution at the linear function β‘xi:

In contrast to binary probit models, the probabilities pi(xi, β) in binary logit mo-

dels need not be calculated by integration, but can be derived from a closed 

form.

→ Despite the substantial differences in the functional forms, the probabilities   

pi(xi, β) = P(yi = 1|xi, β) in binary probit and logit models are very similar (ex-

cept for a constant scaling factor, see below) so that the choice between 

them makes little difference in practice (in contrast to the difference between 

multinomial probit and logit models, see later) 

Binary probit and logit models can also be motivated by an underlying continu-

ous latent variable yi
* (which can be interpreted as a utility, see later) which de-

pends on β‘xi and an error term εi (for i = 1,…, n):

If the latent variables would be observable, this would lead to linear regression 

models. However, latent variables are not observable. But they can be related 

to the observed binary dependent variables yi:

i

i

β'x

i i i i i i i i β'x

e
F (β'x ) = Λ (β'x ) = p (x , β) = P(y = 1|x , β) = 

1+e

*

i i iy  = β'x  + ε
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It follows for the probability pi(xi, β) that yi takes the value one:

Different binary response models can be derived by different distribution as-

sumptions for εi. 

If εi has a standard normal distribution (with expected value of zero and vari-

ance one), this leads to binary probit models. If εi has a standard logistic distri-

bution with expected value of zero and variance π2/3, this leads to binary logit

models. In both cases εi is symmetrically distributed around zero so that it fol-

lows in binary probit and logit models:

The assumption of a known variance of εi is not problematic since this variance 

is not identified in both binary response models and thus cannot be estimated 

besides β so that it has to be normalized. The assumption of zero as the thres-

hold as discussed above is also unproblematic if a constant is included in β‘xi

(therefore, such a constant should generally be incorporated).  

*

i

i *

i

1   if y  0
y  = 

0   if y < 0

 



*

i i i i i i i i i ip (x , β) = P(y = 1|x , β) = P(y 0|x , β) = P(β'x + ε 0) = P(ε -β'x )  

i i i i i i i i

i i i i i i i i

p (x , β) = P(y = 1|x , β) = Φ (β'x ) = 1-Φ (-β'x )

p (x , β) = P(y = 1|x , β) = Λ (β'x ) = 1-Λ (-β'x )
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Interpretation of a parameter βh in binary response models with respect to the 

(partial) effect of the corresponding explanatory variable xih (h = 2,…, k) on the 

probability pi(xi, β) = P(yi = 1|xi, β):

• The parameter βh cannot be interpreted as simply as in the linear probability 

model, i.e. it cannot be interpreted as the change in pi(xi, β) if xih increases 

by one unit (for a quantitative explanatory variable), ceteris paribus

• Instead, the (partial) marginal probability effects of xih in binary response 

models are as follows (for i = 1,…, n):    

While Fi(β‘xi) is the distribution function of the standard normal distribution in

binary probit models and the distribution function of the standard logistic dis-

tribution in binary logit models, fi(β‘xi) is the density function of the standard

normal distribution in binary probit models and the density function of the 

standard logistic distribution in binary logit models. 

• If all other explanatory variables are held fixed, it thus follows for a change 

∆xih:

The smaller the change ∆xih, the better is this linear approximation.

i i i i i i i
i i h

ih ih i ih

p (x , β) F (β‘x ) dF (β‘x ) β‘x
 =  =  = f (β‘x )β

x x d(β‘x ) x

  

  

 i i i h ihΔp (x , β) f(β‘x )β Δx
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(Partial) marginal probability effects of xih in binary probit models with φi(β‘xi) as 

the density function of the standard normal distribution:

(Partial) marginal probability effects of xih in binary logit models with Λi(β‘xi) as 

the distribution function of the standard logistic distribution :

Important aspects of (partial) marginal probability effects in binary probit and 

logit models: 

• The sign of the parameter βh indicates the direction of the marginal probabi-

lity effects

• The marginal probability effects are maximal for β‘xi = 0 since the density 

functions are maximal at this value

• The marginal probability effects vary with different values not only of the ex-

planatory variable xih but also with different values of all other explanatory 

variables and thus across different observations

i i i i i i i
i i h

ih ih i ih

p (x , β) (β‘x ) dΦ (β‘x ) β‘x
 =  =   φ (β‘x )β

x x d(β‘x ) x

  


  

 
 

i

i

i i i i i i i

ih ih i ih

β'x

h i i i i h2
β'x

p (x , β) (β‘x ) dΛ (β‘x ) β‘x
 =  =  

x x d(β‘x ) x

e
                 = β  = Λ (β‘x ) 1-Λ (β‘x ) β

1+e

  

  
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→ The formulas for the (partial) marginal probability effects in binary response 

models show that the relative effects of two explanatory variables xih and xig

do not depend on fi(β‘xi) and therefore not on the explanatory variables in xi

since the ratio of the marginal probability effects of xih and xig is:

In practice it is generally interesting to evaluate the marginal probability effect 

of the explanatory variable xih for a typical observation i (e.g. person, house-

hold, firm). With xi = (xi1,…, xik)
‘ as vector of k explanatory variables for i a pos-

sible calculation is the average (partial) marginal probability effect (AMPEh) of 

xih which includes the marginal probability effects fi(β‘xi)βh for each observation 

i = 1,…, n:

 

n

h i i h

i=1

n

h i i h

i=1

n

h i i i i h

i=1

1
AMPE  = f (β‘x )β

n

1
AMPE  = φ (β‘x )β    in the binary probit model

n

1
AMPE  = Λ (β‘x ) 1-Λ (β‘x ) β    in the binary logit model

n







i i h h

i i g g

f (β‘x )β β
 = 

f (β‘x )β β
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Another possible computation refers to the (partial) marginal probability effect 

(MPEMih) of xih that is calculated at the mean തx = 1/nσi=1
n xi of the explanatory 

variables across the observations i = 1,…, n:

Due to the non-linearity of the approaches, the two types of effects are general-

ly not identical, although they can be very similar in practice.

The discussion so far has implicitly assumed continuous explanatory variables. 

However, if explanatory variables are discrete (e.g. numbers of children) or 

qualitative (e.g. gender) or if larger changes of continuous explanatory variab-

les are considered, the computation of the (partial) effect of an infinitesimal 

change of an explanatory variable xih can be very inaccurate. Therefore, a dis-

crete change of pi(xi, β) due to a discrete change ∆xih is (for i = 1,…, n):

Again it is possible to calculate (partial) average (discrete) effects and (dis-

crete) effects at the mean തx = 1/nσi=1
n xi of the explanatory variables (see later).

i i i i h ih i i

i i i i h ih i i

i i i i h ih i i

Δp (x , β) = F (β‘x + β Δx ) - F (β‘x )

Δp (x , β) = Φ (β‘x + β Δx ) - Φ (β‘x )   in the binary probit model

Δp (x , β) = Λ (β‘x + β Δx ) - Λ (β‘x )   in the binary logit model

 

ih i h

ih i h

ih i h

MPEM  = f (β‘x)β   

MPEM  = φ (β‘x)β    in the binary probit model

MPEM  = Λ (β‘x) 1-Λ(β‘x) β    in the binary logit model
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2.3 ML estimation and testing in binary probit and logit models

As discussed above, the dependent variables yi in binary response models are 

dummy variables and thus are generally Bernoulli distributed with the probabili-

ty pi(xi, β). Based on a random sample (xi, yi) for i = 1,…, n observations, the 

log-likelihood function therefore is:

In binary probit and logit models it follows:

 

 

 

1 1 1 1 1 1

n n n n n n

n

i i i i i i

i=1

i i

logL(β) = y logp (x , β) + (1-y )log 1-p (x , β)  + +

                y logp (x , β) + (1-y )log 1-p (x , β)  

             = y logp (x , β) + (1-y )log 1-p (x , β)

             = y logF (β‘x

  

  

  

 
n

i i i i

i=1

) + (1-y )log 1-F (β‘x )  

 

 

n

i i i i i i

i=1

n

i i i i i i

i=1

logL(β) = y logΦ (β‘x ) + (1-y )log 1-Φ (β‘x )

logL(β) = y logΛ (β‘x ) + (1-y )log 1-Λ (β‘x )

  

  




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The score has the following form:

In binary probit and logit models it follows:

The ML estimator ෠β solves the first-order conditions for maximizing the log-like-

lihood function, i.e. s(β) = 0. In general, a closed-form solution for ෠β is not avail-

able so that iterative numerical optimization algorithms must be applied. Fur-

thermore, it can be shown that the log-likelihood functions in both binary probit

and logit models are globally concave so that the optimization process leads to 

a unique (global) maximum (and not a minimum).

 

 

n
i i i i i

i=1 i i i i

n
i i i

i i i

i=1 i i i i

logL(β) y - p (x , β) p (x , β)
 =  s(β) = 

β p (x , β) 1-p (x , β) β

y - F (β‘x )
                =  f (β‘x )x    

F (β‘x ) 1-F (β‘x )

 

 




 

 
 

 

n
i i i

i i i

i=1 i i i i

n
i i i

i i i i i

i=1 i i i i

n

i i i i

i=1

y - Φ (β‘x )
s(β) =  φ (β‘x )x

Φ (β‘x ) 1-Φ (β‘x )

y - Λ (β‘x )
s(β) =  Λ (β‘x ) 1-Λ (β‘x ) x  

Λ (β‘x ) 1-Λ (β‘x )

       = y - Λ (β‘x ) x









17

Also the ML estimator ෠β in binary response models is approximately normally 

distributed for large but finite samples of n observations with the following vari-

ance covariance matrix:

It follows for large samples:

     
 

-1
2n

-1 -1 -1
i i i i

i

i=1 i i i i

f (β‘x ) x x 'ˆVar(β) = nI β  = -E nH β  = -E H β  = 
F (β‘x ) 1-F (β‘x )

 
            

 


    

 

-1
2nappr appr

-1
i i i i

i=1 i i i i

-1
2nappr

i i i i

i=1 i i i i

f (β‘x ) x x 'ˆ ˆβ ~  N β; -E H β      or     β ~  N β; 
F (β‘x ) 1-F (β‘x )

φ (β‘x ) x x '
β̂ ~  N β;    in the binary probit model

Φ (β‘x ) 1-Φ (β‘x )

β̂ ~

  
         

  
  
   





  
 

 

-1
2

nappr
i i i i i i

i=1 i i i i

-1
nappr

i i i i i i

i=1

Λ (β‘x ) 1-Λ (β‘x ) x x '
 N β; 

Λ (β‘x ) 1-Λ (β‘x )

   ~  N β; Λ (β‘x ) 1-Λ (β‘x ) x x '    in the binary logit model

  
  
     

  
     




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The variance covariance matrix of the ML estimator ෠β (just as the correspon-

ding information matrix) in binary response models for large samples is gene-

rally unknown and thus has to be estimated for the construction of confidence 

intervals and particularly for statistical tests. The standard approach for this es-

timator includes the corresponding Hessian matrix at ෠β for all observations:

For the estimation of the variance covariance matrix of ෠β, it is generally also 

possible to exclusively include the score at the ML estimator ෠β or both the Hes-

sian matrix and the score to receive a robust version in the case of a model 

misspecification. The most important elements of the estimated variance cova-

riance matrix of ෠β are on the diagonal and indicate the estimated variances of 

the ML estimated parameters.

-1

2n
i i i i

i=1 i i i i

-1

2n
i i i i

i=1 i i i i

i i i i i i

i

ˆf (β‘x ) x x 'ˆˆVar(β) = 
ˆ ˆF (β‘x ) 1-F (β‘x )

ˆφ (β‘x ) x x 'ˆˆVar(β) =    in the binary probit model
ˆ ˆΦ (β‘x ) 1-Φ (β‘x )

ˆ ˆ ˆˆVar(β) = Λ (β‘x ) 1-Λ (β‘x ) x x '

 
 
  

  

 
 

  
  

 
 





-1
n

=1

   in the binary logit model
 
 
 

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Remarks for empirical studies with binary probit and logit models:

• The square roots of the diagonal elements of the estimated variance covari-

ance matrixes represent the estimated standard deviations of the ML esti-

mated parameters and are reported by econometric software packages such 

as STATA by default. These values are the basis for the construction of con-

fidence intervals and the calculation of z statistics.

• The estimated variance covariance matrixes are the basis for general Wald 

test statistics (score tests are not often considered in binary probit and logit

models)

• Econometric software packages such as STATA additionally report the ma-

ximum values of the log-likelihood functions by default that are always nega-

tive in binary probit and logit models since the natural logarithms of the cor-

responding probabilities (values between zero and one) are negative

• These maximum values of the log-likelihood functions are the basis for like-

lihood ratio test statistics. The most common test statistic is reported by eco-

nometric software packages such as STATA by default and refers (in accor-

dance to the F test in linear regression models) to the null hypothesis that 

none of the explanatory variables has an effect.

• The pseudo R2 is also reported by econometric software packages such as 

STATA (whereas another popular goodness-of-fit measure in binary probit

and logit models, namely the percentage correctly predicted, is not reported)
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---------------------------------------------------------------------------------------------------------

Example: Determinants of labor force participation of married women (I)

As in the previous example, the effect of other sources of income in 1000 dol-

lar, the years of education, the simple and squared years of labor market expe-

rience, the age in years, the number of children less than six years old, and the 

number of children between six and 18 years of age on the labor force partici-

pation is examined with data from n = 753 married women. However, not a line-

ar probability model, but binary probit and logit models are now used. The ML 

estimation of the binary probit model with STATA leads to the following results:

probit inlf nwifeinc educ exper expersq age kidslt6 kidsge6

Probit regression Number of obs =        753

LR chi2(7)      =     227.14

Prob > chi2     =     0.0000

Log likelihood = -401.30219                       Pseudo R2       =     0.2206

------------------------------------------------------------------------------

inlf |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

nwifeinc |  -.0120237   .0048398    -2.48   0.013    -.0215096   -.0025378

educ |   .1309047   .0252542     5.18   0.000     .0814074     .180402

exper |   .1233476   .0187164     6.59   0.000     .0866641    .1600311

expersq |  -.0018871      .0006    -3.15   0.002     -.003063   -.0007111

age |  -.0528527   .0084772    -6.23   0.000    -.0694678   -.0362376

kidslt6 |  -.8683285   .1185223    -7.33   0.000    -1.100628    -.636029

kidsge6 |    .036005   .0434768     0.83   0.408     -.049208    .1212179

_cons |   .2700768    .508593     0.53   0.595    -.7267472    1.266901

------------------------------------------------------------------------------

---------------------------------------------------------------------------------------------------------
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---------------------------------------------------------------------------------------------------------

Example: Determinants of labor force participation of married women (II)

The corresponding ML estimation of the binary logit model with STATA leads to 

the following results:

logit inlf nwifeinc educ exper expersq age kidslt6 kidsge6

Logistic regression Number of obs =        753

LR chi2(7)      =     226.22

Prob > chi2     =     0.0000

Log likelihood = -401.76515                       Pseudo R2       =     0.2197

------------------------------------------------------------------------------

inlf |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

nwifeinc |  -.0213452   .0084214    -2.53   0.011    -.0378509   -.0048394

educ |   .2211704   .0434396     5.09   0.000     .1360303    .3063105

exper |   .2058695   .0320569     6.42   0.000     .1430391    .2686999

expersq |  -.0031541   .0010161    -3.10   0.002    -.0051456   -.0011626

age |  -.0880244    .014573    -6.04   0.000     -.116587   -.0594618

kidslt6 |  -1.443354   .2035849    -7.09   0.000    -1.842373   -1.044335

kidsge6 |   .0601122   .0747897     0.80   0.422     -.086473    .2066974

_cons |   .4254524   .8603697     0.49   0.621    -1.260841    2.111746

------------------------------------------------------------------------------

An example for the presentation of all these estimation results (in linear proba-

bility, binary probit, and binary logit models) in empirical studies (which typically 

includes at least the parameter estimates, the z statistics or estimated standard 

deviations of the estimated parameters, and some information about the signifi-

cance of the effect of the explanatory variables) is as follows:

---------------------------------------------------------------------------------------------------------
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---------------------------------------------------------------------------------------------------------

Example: Determinants of labor force participation of married women (III)

Note: *** (**, *) means that the appropriate explanatory variable has an effect at the 1% (5%, 10%) significance level,   

n = 753

---------------------------------------------------------------------------------------------------------

ML estimates (z statistics), dependent variable: labor force participation (inlf)  

Explanatory variables Linear probability model Binary probit model Binary logit model

nwifeinc -0.003**

(-2.23)

-0.012**  

(-2.48)

-0.021** 

(-2.53)

educ 0.038***

(5.23)

0.131*** 

(5.18)

0.221*** 

(5.09)

exper 0.039***

(6.80)

0.123*** 

(6.59)

0.206*** 

(6.42)

expersq -0.001***

(-3.14)

-0.002***

(-3.15)

-0.003*** 

(-3.10)

age -0.016***

(-6.71)

-0.053*** 

(-6.23)

-0.088*** 

(-6.04)

kidslt6 -0.262***

(-8.24)

-0.868*** 

(-7.33)

-1.443*** 

(-7.09)

kidsge6 0.013

(0.96)

0.036 

(0.83)

0.060 

(0.80)

constant 0.586

(3.85)

0.270

(0.53)

0.425

(0.49)
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---------------------------------------------------------------------------------------------------------

Example: Determinants of labor force participation of married women (IV)

Interpretation:

• The estimation results in all three models are qualitatively very similar, i.e. 

the signs of the parameter estimates are identical and the same explanato-

ry variables have a significant effect across the approaches

• However, the magnitudes of the estimated effects are not directly compar-

able on the basis of the parameter estimates due to the different estimators 

of average marginal probability effects (or marginal probability effects at the 

mean of the explanatory variables, see later)

• In empirical applications with binary probit and logit models (and possibly li-

near probability models) a quick way to compare the parameter estimates is 

based on the different scale factors in the marginal (probability) effects: A 

rough rule of thumb implies that the parameter estimates in binary probit

models can be multiplied by 1.6 to make them comparable with the esti-

mates in binary logit models (or conversely divided by 0.625) and divided by 

2.5 to make them comparable with the estimates in linear probability mo-

dels.

---------------------------------------------------------------------------------------------------------
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---------------------------------------------------------------------------------------------------------

Example: Determinants of labor force participation of married women (V)

Wald and likelihood ratio tests:

As an example, the null hypothesis that neither kidslt6 nor kidsge6 has any ef-

fect on the labor force participation, i.e. that the two parameters of kidslt6 and 

kidsge6 are both zero, is tested in the binary probit model. The command for 

the Wald test in STATA is:

test kidslt6=kidsge6=0

( 1)  [inlf]kidslt6 - [inlf]kidsge6 = 0

( 2)  [inlf]kidslt6 = 0

chi2(  2) =   56.70

Prob > chi2 =    0.0000

The application of the likelihood ratio test requires both the unrestricted and 

restricted ML estimation. After the unrestricted ML estimation the following 

STATA command for saving the estimation results is necessary (the choice of 

the name “unrestricted” is arbitrary):

estimates store unrestricted

After the restricted ML estimation a corresponding STATA command for saving 

the respective  estimation results is necessary (the choice of the name “restric-

ted” is again arbitrary).

---------------------------------------------------------------------------------------------------------
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---------------------------------------------------------------------------------------------------------

Example: Determinants of labor force participation of married women (VI)

probit inlf nwifeinc educ exper expersq age

Probit regression                                 Number of obs =        753

LR chi2(5)      =     164.13

Prob > chi2     =     0.0000

Log likelihood = -432.80875                       Pseudo R2       =     0.1594

------------------------------------------------------------------------------

inlf |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

nwifeinc |  -.0112811   .0046216    -2.44   0.015    -.0203393   -.0022229

educ |   .1051111   .0239911     4.38   0.000     .0580894    .1521327

exper |   .1253479   .0181857     6.89   0.000     .0897046    .1609912

expersq |  -.0020406   .0005906    -3.46   0.001    -.0031982    -.000883

age |  -.0286742    .006845    -4.19   0.000    -.0420902   -.0152581

_cons |  -.6190137   .4165484    -1.49   0.137    -1.435434    .1974062

------------------------------------------------------------------------------

estimates store restricted

Command for the likelihood ratio test in STATA: 

lrtest unrestricted restricted

Likelihood-ratio test                                 LR chi2(2)  =     63.01

(Assumption: restricted nested in unrestricted)       Prob > chi2 =    0.0000

Both the Wald test and the likelihood ratio test therefore lead to the rejection of 

the null hypothesis at very low significance levels.

---------------------------------------------------------------------------------------------------------
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The estimator of the probabilities pi(xi, β) = P(yi = 1|xi, β) for i in binary probit

and logit models is based on the ML estimator ෠β and the invariance principle as 

discussed in section 1.2:

It follows for the estimator of the (partial) marginal probability effects of an ex-

planatory variable xih in binary probit and logit models:

Based on y1,…, yn and x1,…, xn, it follows for the estimator of the average pro-

babilities pi(xi, β) across all i = 1,…, n observations in binary probit and logit

models: 

i i
i i h

ih

i i
i i i i h

ih

ˆp̂ (x , β) ˆ ˆ = φ (β‘x )β
x

ˆp̂ (x , β) ˆ ˆ ˆ = Λ (β‘x ) 1 - Λ (β‘x ) β
x






 
 

i i i i i i

i i i i i i

ˆ ˆ ˆˆp̂ (x , β) = P(y  = 1|x , β) = Φ (β'x ) 

ˆ ˆ ˆˆp̂ (x , β) = P(y  = 1|x , β) = Λ (β'x )

n n

i i i i

i=1 i=1

n n

i i i i

i=1 i=1

1 1ˆ ˆp̂ (x , β) = Φ (β'x ) 
n n

1 1ˆ ˆp̂ (x , β) = Λ (β'x )
n n

 

 
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For the estimators of the probability pi(xi, β) at the mean തx = 1/nσi=1
n xi of the ex-

planatory variables in binary probit and logit models it follows:

Based on the estimators of the (partial) marginal probability effects of an expla-

natory variable xih for each i, the estimator of the average (partial) marginal pro-

bability effects of xih across all i and the corresponding estimator of the (partial) 

marginal probability effects of xih at the mean തx of the explanatory variables in 

binary probit and logit models are as follows:

The variance of the estimated marginal probability effects, the variance of the 

estimated average marginal probability effects, and the variance of the estima-

ted marginal probability effects at the mean തx of the explanatory variables can 

be estimated by using the Delta method.

n

h i i h

i=1

n

h i i i i h

i=1

ih i h

ih i i h

1 ˆ ˆˆAMPE  = φ (β‘x )β    
n

1 ˆ ˆ ˆˆAMPE  = Λ (β‘x ) 1 - Λ (β‘x ) β
n

ˆ ˆˆMPEM  = φ (β‘x)β

ˆ ˆ ˆˆMPEM  = Λ (β‘x) 1 - Λ (β‘x) β

 
 

 
 





i i

i i

ˆ ˆp̂ (x, β) = Φ (β'x) 

ˆ ˆp̂ (x, β) = Λ (β'x)
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The estimators of a discrete change of pi(xi, β) due to a discrete change ∆xih of 

an explanatory variable xih in binary probit and logit models are as follows:

Based on these estimators for all i = 1,…, n observations, the estimator of ave-

rage discrete changes (ADCh) of pi(xi, β) across all i due to a discrete change 

∆xih and the corresponding estimator of discrete changes (DCMih) of pi(xi, β) at 

the means തx1,…, തxh-1, തxh+1,…, തxk of the other explanatory variables across i in 

binary probit and logit models are as follows:

i i i i h ih i i

i i i i h ih i i

ˆ ˆ ˆ ˆˆΔp (x , β) = Φ (β‘x  + β Δx ) - Φ (β‘x ) 

ˆ ˆ ˆ ˆˆΔp (x , β) = Λ (β‘x  + β Δx ) - Λ (β‘x )

 

n

h i i h ih i i

i=1

n

h i i h ih i i

i=1

ih i 1 1 h-1 h-1 h ih ih h+1 h+1 k k

1 ˆ ˆ ˆˆADC  = Φ (β‘x + β Δx ) - Φ (β‘x )
n

1 ˆ ˆ ˆˆADC  = Λ (β‘x + β Δx ) - Λ (β‘x )
n

ˆ ˆ ˆ ˆ ˆˆDCM  = Φ β x + + β x  + β (x +Δx ) + β x + + β x  

                                   

 
 

 
 





 

 

i 1 1 h-1 h-1 h ih h+1 h+1 k k

ih i 1 1 h-1 h-1 h ih ih h+1 h+1 k k

i 1 1 h-1 h-1 h ih h+1 h+1

ˆ ˆ ˆ ˆ ˆ  - Φ β x + + β x + β x + β x + + β x

ˆ ˆ ˆ ˆ ˆˆDCM  = Λ β x + + β x + β (x +Δx ) + β x + +β x  

ˆ ˆ ˆ ˆ                                     - Λ β x + + β x + β x  + β x + +  k kβ̂ x
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---------------------------------------------------------------------------------------------------------

Example: Determinants of labor force participation of married women (I)

Similar to the previous example, the determinants of the labor force partici-

pation are examined with data from n = 753 married women. However, the 

squared years of labor market experience are now not included as explanatory 

variable. The ML estimation of the binary probit model with STATA leads to the 

following results:

probit inlf nwifeinc educ exper age kidslt6 kidsge6

Probit regression Number of obs =        753

LR chi2(6)      =     217.31

Prob > chi2     =     0.0000

Log likelihood = -406.21886                       Pseudo R2       =     0.2110

------------------------------------------------------------------------------

inlf |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

nwifeinc |  -.0115648   .0047942    -2.41   0.016    -.0209613   -.0021684

educ |   .1336902   .0251346     5.32   0.000     .0844273    .1829531

exper |   .0702165    .007571     9.27   0.000     .0553775    .0850555

age |  -.0555548   .0083447    -6.66   0.000    -.0719101   -.0391995

kidslt6 |  -.8742923   .1175098    -7.44   0.000    -1.104607   -.6439773

kidsge6 |   .0345459   .0429862     0.80   0.422    -.0497055    .1187974

_cons |   .5795817    .496205     1.17   0.243    -.3929623    1.552126

------------------------------------------------------------------------------

---------------------------------------------------------------------------------------------------------
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---------------------------------------------------------------------------------------------------------

Example: Determinants of labor force participation of married women (II)

The estimation of the average probability of labor force participation across all 

women and the estimation of the probability at the means of the explanatory 

variables in the binary probit model with STATA leads to the following results:

margins

Predictive margins Number of obs =        753

Model VCE    : OIM

Expression   : Pr(inlf), predict()

------------------------------------------------------------------------------

|            Delta-method

|     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

_cons |   .5690098   .0155159    36.67   0.000     .5385992    .5994204

------------------------------------------------------------------------------

margins, atmeans

Adjusted predictions Number of obs =        753

Model VCE    : OIM

Expression   : Pr(inlf), predict()

at : nwifeinc =    20.12896 (mean)

educ =    12.28685 (mean)

exper =    10.63081 (mean)

age =    42.53785 (mean)

kidslt6         =    .2377158 (mean)

kidsge6         =    1.353254 (mean)

------------------------------------------------------------------------------

|            Delta-method

|     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

_cons |   .5837979   .0199027    29.33   0.000     .5447893    .6228064

------------------------------------------------------------------------------

---------------------------------------------------------------------------------------------------------
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---------------------------------------------------------------------------------------------------------

Example: Determinants of labor force participation of married women (III)

It is also possible to estimate probabilities for a specific value of an explanatory 

variable. For example, the estimation of the average probability of labor force 

participation for educ = 10 and the estimation of the probability at the means of 

all other explanatory variables with STATA leads to the following results:
margins, at (educ=10)

Predictive margins                              Number of obs =        753

Model VCE    : OIM

Expression   : Pr(inlf), predict()

at           : educ =          10

------------------------------------------------------------------------------

|            Delta-method

|     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

_cons |   .4728826   .0238422    19.83   0.000     .4261527    .5196124

------------------------------------------------------------------------------

margins, at((means)_all educ=10)

Adjusted predictions                            Number of obs =        753

Model VCE    : OIM

Expression   : Pr(inlf), predict()

at           : nwifeinc =    20.12896 (mean)

educ =          10

exper =    10.63081 (mean)

age             =    42.53785 (mean)

kidslt6         =    .2377158 (mean)

kidsge6         =    1.353254 (mean)

------------------------------------------------------------------------------

|            Delta-method

|     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

_cons |   .4625106   .0299787    15.43   0.000     .4037535    .5212677

------------------------------------------------------------------------------

---------------------------------------------------------------------------------------------------------
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---------------------------------------------------------------------------------------------------------

Example: Determinants of labor force participation of married women (IV)

The estimation of the average marginal probability effects with STATA leads to 

the following results:

margins, dydx(*)

Average marginal effects Number of obs =        753

Model VCE    : OIM

Expression   : Pr(inlf), predict()

dy/dx w.r.t. : nwifeinc educ exper age kidslt6 kidsge6

------------------------------------------------------------------------------

|            Delta-method

|      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

nwifeinc |   -.003532     .00145    -2.44   0.015    -.0063739   -.0006901

educ |   .0408301   .0072785     5.61   0.000     .0265645    .0550958

exper |   .0214447   .0019236    11.15   0.000     .0176745     .025215

age |  -.0169669   .0023171    -7.32   0.000    -.0215084   -.0124254

kidslt6 |  -.2670162   .0317994    -8.40   0.000    -.3293418   -.2046906

kidsge6 |   .0105506   .0131118     0.80   0.421    -.0151481    .0362493

------------------------------------------------------------------------------

These results refer to infinitesimal changes of continuous explanatory variab-

les. Due to the difference between marginal changes and discrete changes, the 

interpretation that e.g. one more year of education leads to an estimated in-

crease of the probability of labor force participation in the amount of 0.04 (or 

about 4 percentage points) is indeed a more or less good approximation, but 

not the exact value. The smaller the change in the explanatory variable, the 

better is the linear approximation.

---------------------------------------------------------------------------------------------------------
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---------------------------------------------------------------------------------------------------------

Example: Determinants of labor force participation of married women (V)

The corresponding estimation of the marginal probability effects at the means 

of the explanatory variables with STATA leads to the following results:

margins, dydx(*) atmeans

Conditional marginal effects Number of obs =        753

Model VCE    : OIM

Expression   : Pr(inlf), predict()

dy/dx w.r.t. : nwifeinc educ exper age kidslt6 kidsge6

at : nwifeinc =    20.12896 (mean)

educ =    12.28685 (mean)

exper =    10.63081 (mean)

age =    42.53785 (mean)

kidslt6         =    .2377158 (mean)

kidsge6         =    1.353254 (mean)

------------------------------------------------------------------------------

|            Delta-method

|      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

nwifeinc |  -.0045115   .0018701    -2.41   0.016    -.0081769   -.0008462

educ |   .0521537   .0098013     5.32   0.000     .0329436    .0713638

exper |   .0273921   .0029446     9.30   0.000     .0216207    .0331634

age |  -.0216724   .0032551    -6.66   0.000    -.0280522   -.0152926

kidslt6 |   -.341069   .0459363    -7.42   0.000    -.4311026   -.2510354

kidsge6 |   .0134767   .0167726     0.80   0.422     -.019397    .0463503

------------------------------------------------------------------------------

For the case of discrete explanatory variables, however, these approximate es-

timates can be very inaccurate. In addition, discrete explanatory variables can 

only take specific values (e.g. zero and one in the binary case).

---------------------------------------------------------------------------------------------------------
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---------------------------------------------------------------------------------------------------------

Example: Determinants of labor force participation of married women (VI)

Therefore, this analysis is often not very reasonable for discrete explanatory 

variables (especially in the binary case). This could be considered in STATA 

treatments of binary probit or logit models:

• First of all, the underlying STATA ML estimation has to make clear that an 

explanatory variable is discrete (i.e. that it is an integer) by prefixing “i.” (this 

produces and includes the maximum number of dummy variables based on 

the underlying variable), e.g. “i.educ” instead of “educ” as before

• The STATA command “margins educ” then reports the estimated average 

probabilities of labor force participation for all values of educ, whereas the 

command “margins educ, atmeans” reports the estimated probabilities of inlf

= 1 for all values of educ at the means of all other explanatory variables

• The STATA command “margins, dydx(educ)“ reports the estimated average 

probability changes of an increase from the base level five to the other va-

lues of educ, whereas the command “margins, dydx(educ) atmeans“ reports

the corresponding estimated probability changes of an increase from five to 

the other values of educ at the means of all other explanatory variables

• By including i.educ (i.e. 12 dummy variables) in the underlying ML estima-

tion, all following estimates of probabilities and probability changes differ 

from the case that educ is included in the underlying ML estimation

---------------------------------------------------------------------------------------------------------
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---------------------------------------------------------------------------------------------------------

Example: Determinants of labor force participation of married women (VII)

probit inlf nwifeinc i.educ exper age kidslt6 kidsge6

Probit regression                                 Number of obs =        753

LR chi2(17)     =     226.99

Prob > chi2     =     0.0000

Log likelihood = -401.37753                       Pseudo R2       =     0.2204

------------------------------------------------------------------------------

inlf |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

nwifeinc |    -.01314   .0048546    -2.71   0.007    -.0226547   -.0036252

|

educ |

6  |    .193736   .9081473     0.21   0.831      -1.5862    1.973672

7  |   .1027714   .9212293     0.11   0.911    -1.702805    1.908348

8  |   .3288946   .7550302     0.44   0.663    -1.150937    1.808727

9  |   .1882056   .7671357     0.25   0.806    -1.315353    1.691764

10  |    .296301   .7414178     0.40   0.689    -1.156851    1.749453

11  |   .4195364   .7438581     0.56   0.573    -1.038399    1.877471

12  |   .5693924   .7183331     0.79   0.428    -.8385146    1.977299

13  |   .9000266   .7495592     1.20   0.230    -.5690824    2.369136

14  |   .9836039   .7465668     1.32   0.188    -.4796402    2.446848

15  |   .6430126   .8033719     0.80   0.423    -.9315674    2.217593

16  |    1.01244   .7428555     1.36   0.173    -.4435304     2.46841

17  |   1.847283    .769403     2.40   0.016     .3392812    3.355285

|

exper |   .0707929   .0076408     9.27   0.000     .0558171    .0857686

age |  -.0558834   .0084173    -6.64   0.000     -.072381   -.0393857

kidslt6 |  -.8956434   .1197816    -7.48   0.000    -1.130411   -.6608758

kidsge6 |   .0395377   .0433334     0.91   0.362    -.0453942    .1244697

_cons |     1.6006   .8250494     1.94   0.052    -.0164667    3.217667

------------------------------------------------------------------------------

---------------------------------------------------------------------------------------------------------
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---------------------------------------------------------------------------------------------------------

Example: Determinants of labor force participation of married women (VIII)

margins educ

Predictive margins                                Number of obs =        753

Model VCE    : OIM

Expression   : Pr(inlf), predict()

------------------------------------------------------------------------------

|            Delta-method

|     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

educ |

5  |   .3637474   .2146549     1.69   0.090    -.0569685    .7844633

6  |   .4231178   .1767365     2.39   0.017     .0767206     .769515

7  |   .3949565   .1803446     2.19   0.029     .0414877    .7484254

8  |   .4655862   .0785653     5.93   0.000      .311601    .6195714

9  |   .4213939    .087903     4.79   0.000     .2491071    .5936807

10  |   .4552969   .0637233     7.14   0.000     .3304015    .5801922

11  |   .4942804   .0664211     7.44   0.000     .3640973    .6244634

12  |   .5416587   .0221742    24.43   0.000     .4981981    .5851192

13  |   .6430566   .0642656    10.01   0.000     .5170984    .7690148

14  |   .6674272   .0601789    11.09   0.000     .5494787    .7853756

15  |   .5647403   .1134054     4.98   0.000     .3424698    .7870109

16  |    .675679   .0539922    12.51   0.000     .5698563    .7815018

17  |   .8678404   .0450665    19.26   0.000     .7795116    .9561692

------------------------------------------------------------------------------

---------------------------------------------------------------------------------------------------------
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Example: Determinants of labor force participation of married women (IX)

margins educ, atmeans

Adjusted predictions                              Number of obs =        753

Model VCE    : OIM

Expression   : Pr(inlf), predict()

at           : nwifeinc =    20.12896 (mean)

5.educ          =    .0053121 (mean)

6.educ          =    .0079681 (mean)

7.educ          =    .0106242 (mean)

8.educ          =    .0398406 (mean)

9.educ          =    .0332005 (mean)

10.educ         =    .0584329 (mean)

11.educ         =    .0571049 (mean)

12.educ         =    .5059761 (mean)

13.educ         =    .0584329 (mean)

14.educ         =    .0677291 (mean)

15.educ         =    .0185923 (mean)

16.educ         =    .0756972 (mean)

17.educ         =     .061089 (mean)

exper =    10.63081 (mean)

age             =    42.53785 (mean)

kidslt6         =    .2377158 (mean)

kidsge6         =    1.353254 (mean)

------------------------------------------------------------------------------

|            Delta-method

|     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

educ |

5  |   .3271236   .2581293     1.27   0.205    -.1788006    .8330478

6  |   .3996961   .2189889     1.83   0.068    -.0295142    .8289064

7  |   .3650102   .2206099     1.65   0.098    -.0673772    .7973976

8  |   .4526475    .098629     4.59   0.000     .2593381    .6459569

9  |   .3975614   .1090079     3.65   0.000     .1839099     .611213

10  |   .4397635   .0798217     5.51   0.000     .2833159    .5962112

11  |   .4886981   .0836898     5.84   0.000     .3246691    .6527272

12  |   .5483614   .0279464    19.62   0.000     .4935876    .6031353

13  |    .674422   .0785015     8.59   0.000      .520562     .828282

14  |   .7039288     .07251     9.71   0.000     .5618118    .8460459

15  |   .5773594   .1421988     4.06   0.000     .2986549    .8560639

16  |   .7138168   .0644014    11.08   0.000     .5875925    .8400412

17  |   .9191555   .0404382    22.73   0.000     .8398981    .9984129

------------------------------------------------------------------------------

---------------------------------------------------------------------------------------------------------
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Example: Determinants of labor force participation of married women (X)

It is again also possible to estimate probabilities that the dependent variable 

takes the value one for one specific value of an explanatory variable. For 

example, the estimation of the average probability of labor force participation 

for the case that educ = 10 with STATA leads to the following results (see also 

the results on page 36):

margins, at (educ=10)

Predictive margins                                Number of obs =        753

Model VCE    : OIM

Expression   : Pr(inlf), predict()

at           : educ =          10

------------------------------------------------------------------------------

|            Delta-method

|     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

_cons |   .4552969   .0637233     7.14   0.000     .3304015    .5801922

------------------------------------------------------------------------------

Remark: The command “margins, at (educ=10)” on page 31, which is based on 

an ML estimation that includes “educ” as explanatory variable and not “i.educ” 

and thus 12 education dummy variables leads to the estimated probability 

0.4729 or 47.29%.

---------------------------------------------------------------------------------------------------------
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Example: Determinants of labor force participation of married women (XI)

The corresponding estimation of the probability that inlf = 1 for educ = 10 and 

at the means of all other explanatory variables with STATA leads to the follow-

ing results (see also the results on page 37):

margins, at((means)_all educ=10)

Adjusted predictions                              Number of obs =        753

Model VCE    : OIM

Expression   : Pr(inlf), predict()

at           : nwifeinc =    20.12896 (mean)

educ =          10

exper =    10.63081 (mean)

age             =    42.53785 (mean)

kidslt6         =    .2377158 (mean)

kidsge6         =    1.353254 (mean)

------------------------------------------------------------------------------

|            Delta-method

|     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

_cons |   .4397635   .0798217     5.51   0.000     .2833159    .5962112

------------------------------------------------------------------------------

Remark: The command “margins, at((means)_all educ=10)” on page 31 on the 

basis of an ML estimation that includes “educ” as explanatory variable leads to 

the estimated probability 0.4625 or 46.25%.

---------------------------------------------------------------------------------------------------------
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Example: Determinants of labor force participation of married women (XII)

margins, dydx(educ)

Average marginal effects                          Number of obs =        753

Model VCE    : OIM

Expression   : Pr(inlf), predict()

dy/dx w.r.t. : 6.educ 7.educ 8.educ 9.educ 10.educ 11.educ 12.educ 13.educ 14.educ 

15.educ 16.educ 17.educ

------------------------------------------------------------------------------

|            Delta-method

|      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

educ |

6  |   .0593703   .2766718     0.21   0.830    -.4828964    .6016371

7  |   .0312091   .2789911     0.11   0.911    -.5156034    .5780216

8  |   .1018388   .2278317     0.45   0.655    -.3447031    .5483807

9  |   .0576465    .231372     0.25   0.803    -.3958343    .5111272

10  |   .0915494   .2233221     0.41   0.682    -.3461538    .5292526

11  |   .1305329   .2242491     0.58   0.561    -.3089872    .5700531

12  |   .1779112   .2157371     0.82   0.410    -.2449256    .6007481

13  |   .2793092   .2247299     1.24   0.214    -.1611534    .7197717

14  |   .3036798   .2233503     1.36   0.174    -.1340788    .7414383

15  |   .2009929   .2430107     0.83   0.408    -.2752993    .6772852

16  |   .3119316   .2223107     1.40   0.161    -.1237893    .7476525

17  |   .5040929   .2202834     2.29   0.022     .0723454    .9358405

------------------------------------------------------------------------------

Note: dy/dx for factor levels is the discrete change from the base level.

---------------------------------------------------------------------------------------------------------
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Example: Determinants of labor force participation of married women (XIII)

margins, dydx(educ) atmeans

Conditional marginal effects                      Number of obs =        753

Model VCE    : OIM

Expression   : Pr(inlf), predict()

dy/dx w.r.t. : 6.educ 7.educ 8.educ 9.educ 10.educ 11.educ 12.educ 13.educ 14.educ 15.educ 16.educ 17.educ

at           : nwifeinc =    20.12896 (mean)

5.educ          =    .0053121 (mean)

6.educ          =    .0079681 (mean)

7.educ          =    .0106242 (mean)

8.educ          =    .0398406 (mean)

9.educ          =    .0332005 (mean)

10.educ         =    .0584329 (mean)

11.educ         =    .0571049 (mean)

12.educ         =    .5059761 (mean)

13.educ         =    .0584329 (mean)

14.educ         =    .0677291 (mean)

15.educ         =    .0185923 (mean)

16.educ         =    .0756972 (mean)

17.educ         =     .061089 (mean)

exper =    10.63081 (mean)

age             =    42.53785 (mean)

kidslt6         =    .2377158 (mean)

kidsge6         =    1.353254 (mean)

------------------------------------------------------------------------------

|            Delta-method

|      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval]

-------------+----------------------------------------------------------------

educ |

6  |   .0725725   .3367868     0.22   0.829    -.5875174    .7326624

7  |   .0378866   .3380662     0.11   0.911    -.6247109    .7004841

8  |   .1255239   .2754063     0.46   0.649    -.4142625    .6653103

9  |   .0704378   .2794523     0.25   0.801    -.4772786    .6181542

10  |   .1126399   .2694223     0.42   0.676     -.415418    .6406979

11  |   .1615745     .27073     0.60   0.551    -.3690465    .6921956

12  |   .2212378   .2594664     0.85   0.394    -.2873069    .7297825

13  |   .3472984   .2704496     1.28   0.199     -.182773    .8773698

14  |   .3768053   .2685153     1.40   0.161    -.1494751    .9030856

15  |   .2502358   .2951319     0.85   0.397     -.328212    .8286837

16  |   .3866933    .267043     1.45   0.148    -.1367013    .9100878

17  |   .5920319    .262054     2.26   0.024     .0784155    1.105648

------------------------------------------------------------------------------

Note: dy/dx for factor levels is the discrete change from the base level.

---------------------------------------------------------------------------------------------------------
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General remarks to binary response models:

• In the case of perfect prediction for a binary explanatory variable di, the ML 

estimation of binary probit and logit models is not possible. Perfect predic-

tion for the dependent variable yi arises if yi = 1 whenever di = 1, if yi = 0 

whenever di = 1, if yi = 1 whenever di = 0, or if yi = 0 whenever di = 0. This 

practical problem in specific samples particularly arises for dummy variables 

di with a small number of di = 1 (e.g. if sectoral dummies are included as ex-

planatory variables, but only a small number of firms belongs to a specific 

industry). These binary explanatory variables have to be dropped which is 

made by econometric software packages such as STATA by default.

• In the case of linear regression models, heteroskedasticity is not a strong 

problem since the OLS estimators remain unbiased and consistent and he-

teroskedasticity robust t statistics can be applied. In contrast, heteroskedas-

ticity in binary response models is a stronger problem. Indeed the ML esti-

mators remain consistent if the heteroskedasticity is unrelated to the expla-

natory variables. However, if it is related to the explanatory variables, the ML 

estimators are generally inconsistent so that it could only be accounted for in 

the log-likelihood function if the form of heteroskedasticity is known. 

• As in most econometric models, endogenous variables or endogeneity is al-

so a strong problem in binary response models since the ML estimator is in-

consistent in this case. Against this background, several binary response 

models with endogenous regressors have been developed and discussed.
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Binary discrete choice models:

• The analysis of binary response models can be related to microeconomic 

models of choice by interpreting data on individual choices between the two 

alternatives j = 0, 1 of the binary dependent variable yi (e.g. employment or 

unemployment) within the random utility model

• In the following ui0 is the (unobservable) utility of observation i from alterna-

tive j = 0 and ui1 is the utility from alternative j = 1. It is assumed that i choo-

ses alternative j = 1 if ui1 > ui0 and alternative j = 0 if ui1 ≤ ui0.

• It is further assumed that the following hypothetical utility function uij of i for 

alternative j depends on a vector xi = (xi1,…, xik1
)‘ of individual characteristics 

as examined so far, which are constant across both alternatives j = 0, 1 (e.g. 

age, education), and additionally a vector zij = (zij1,…, zijk2
)‘ of  alternative 

specific attributes which can vary across the alternatives (e.g. price for a 

means of transportation): 

βj = (βj1,…, βjk1
)‘ and γ = (γ1,…, γk2

)‘ are the unknown parameter vectors that 

have to be estimated and εij is an unobservable stochastic component.

• The probabilities for yi = 0 and yi = 1 can then be calculated by computing 

the probabilities that ui0 or ui1 is higher, respectively. Different binary discrete 

choice models (such as binary probit and logit models) result from different 

assumptions for the stochastic component. This discrete choice analysis is 

particularly important for multinomial response models.

'

ij j i ij iju  = β x  + γ'z  + ε    for i = 1,..., n; j = 0, 1


