2. Binary response models

2.1 Linear probability model

Binary dependent variables in a microeconometric analysis:
These qualitative variables have exactly two possible categories and thus take two values, namely one and zero

Examples for microeconometric analyses with binary response models:

- Analysis of the factors that explain whether a person is employed or unemployed
- Analysis of the factors that explain whether a person uses a specific means of transportation or other means of transportation (as multinomial variable)
- Analysis of the factors that explain whether a person strongly agrees with a statement (based on an ordinal scale) or not
- Analysis of the factors that explain whether a household owns a certain insurance or not
- Analysis of the factors that explain whether the profits of a firm are at least as high as a specific amount or are lower than this amount
- Analysis of the factors that explain whether a firm has realized an innovation in the last three years or not

If y_{i} is a binary dependent variable with $y_{i}=1$ or $y_{i}=0, x_{i}=\left(x_{i 1}, \ldots, x_{i k}\right)^{\prime}$ is a vector of k explanatory variables (including a constant), and $\beta=\left(\beta_{1}, \ldots, \beta_{k}\right)$ ' is the corresponding k-dimensional parameter vector, a microeconometric model can simply be specified as a multiple linear regression model (for $\mathrm{i}=1, \ldots, \mathrm{n}$):
$y_{i}=\beta^{\prime} \mathrm{x}_{\mathrm{i}}+\varepsilon_{\mathrm{i}}$
Such a linear regression model with a binary dependent variable is called linear probability model. With $\mathrm{E}\left(\varepsilon_{i} \mid \mathrm{X}_{\mathrm{i}}\right)=0$ it follows:
$E\left(y_{i} \mid x_{i}\right)=\beta^{\prime} x_{i}$
Since y_{i} is a binary variable with $y_{i}=1$ or $y_{i}=0$, it is Bernoulli distributed with parameter p_{i} and the following probability function:
$f_{i}\left(y_{i} ; p_{i}\right)=p_{i}^{y_{i}}\left(1-p_{i}\right)^{1-y_{i}}$ for $y_{i}=0,1$
In the linear probability model it follows:

$$
p_{i}=p_{i}\left(x_{i}, \beta\right)=P\left(y_{i}=1 \mid x_{i}, \beta\right)=E\left(y_{i} \mid x_{i}\right)=\beta^{\prime} x_{i}
$$

Interpretation of the slope parameters in the linear probability model:

- Due to the binary character of y_{i}, the slope parameters $\beta_{h}(h=2, \ldots, k)$ cannot be interpreted as the change in y_{i} for a one-unit increase of the explanatory variable $x_{i h}$ as in common linear regression models
- Instead, $\beta_{h}(h=2, \ldots, k)$ indicates the change in the probability $p_{i}\left(x_{i}, \beta\right)$ that y_{i} takes the value one if $\mathrm{x}_{\mathrm{i} h}$ increases by one unit (for a quantitative explanatory variable), ceteris paribus

If all other explanatory variables are held fixed, this means formally:

$$
\Delta \mathrm{p}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}, \beta\right)=\Delta \mathrm{P}\left(\mathrm{y}_{\mathrm{i}}=1 \mid \mathrm{x}_{\mathrm{i}}, \beta\right)=\beta_{\mathrm{h}} \Delta \mathrm{x}_{\mathrm{ih}}
$$

In line with the OLS estimation of the parameters in common linear regression models, the unknown regression parameters $\beta_{1}, \ldots, \beta_{k}$ in the linear probability model can also be estimated by OLS. This leads to the OLS estimator of the parameter vector $\hat{\beta}=\left(\hat{\beta}_{1}, \ldots, \widehat{\beta}_{k}\right)$. It follows:

- The estimator of the dependent variable is $\hat{y}_{i}=\hat{\beta}^{\prime} x_{i}$, which is the estimator $\hat{p}_{i}\left(x_{i}, \beta\right)$ of the probability that y_{i} takes the value one
- The estimator of the slope parameter $\hat{\beta}_{h}(h=2, \ldots, k)$ indicates the change in the estimated probability $\hat{\mathrm{p}}_{i}\left(\mathrm{x}_{\mathrm{i}}, \beta\right)$ if x_{ih} increases by one unit (for a quantitative explanatory variable), ceteris paribus

Problem:

Since y_{i} is Bernoulli distributed with parameter $p_{i}\left(x_{i}, \beta\right)=P\left(y_{i}=1 \mid x_{i}, \beta\right)=\beta^{\prime} x_{i}$ and $\varepsilon_{i}=-\beta^{\prime} x_{i}$ for $y_{i}=0$ and $\varepsilon_{i}=1-\beta^{\prime} x_{i}$ for $y_{i}=1$, it follows for the conditional variance of y_{i} and the conditional variance of the error term ε_{i} :
$\operatorname{Var}\left(y_{i} \mid x_{i}\right)=\operatorname{Var}\left(\varepsilon_{i} \mid x_{i}\right)=\beta^{\prime} x_{i}\left(1-\beta^{\prime} x_{i}\right)$
The conditional variance of the error term can therefore necessarily not be constant, but depends on the explanatory variables which leads to heteroskedasticity. As a consequence, either an alternative estimation method instead of the OLS method or heteroskedasticity robust t statistics should at least be used.

Example: Determinants of labor force participation of married women (I)

By using a linear probability model, the effect of other sources of income (in 1000 dollar) including the earnings of the husband (nwifeinc), the years of education (educ), the years of labor market experience (exper), the squared years of labor market experience (expersq), the age in years (age), the number of children less than six years old (kidslt6), and the number of children between six and 18 years of age (kidsge6) on the labor force participation of married women is examined. The dependent dummy variable inlf takes the value one if the woman is employed. The following OLS regression equation was estimated with $\mathrm{n}=753$ women which also reports heteroskedasticity robustly estimated standard deviations of the estimated parameters (in brackets) in addition to conventionally estimated standard deviations ($R^{2}=0.264$):

$$
\text { in̂lf } \begin{aligned}
\text { i } & 0.586-0.003 \text { nwifeinc }+0.038 \text { educ }+0.039 \text { exper }-0.001 \text { expersq } \\
& (0.154)(0.001) \\
(0.007) & (0.006) \\
& {[0.152][0.002] }
\end{aligned} \quad[0.007] \quad[0.006] \quad[0.000]
$$

- 0.016age - 0.262kidslt6 +0.013 kidsge 6
(0.002) (0.034) (0.013)
[0.002] [0.032] [0.014]

Example: Determinants of labor force participation of married women (II)

Example: Determinants of labor force participation of married women (III)

Interpretation:

- Based on both types of t statistics, all explanatory variables except kidsge6 have significant effects
- One more year of education leads to an estimated increase of the probability of labor force participation by 0.038 or 3.8 percentage points (ceteris paribus)
- Ten more years of education therefore imply an estimated increase of the probability of labor force participation by $0.038 \cdot 10=0.38$ or 38 percentage points, which is a large effect
- An increase of nwifeinc by 10000 dollars (i.e. Δ nwifeinc $=10$) leads to an estimated decrease of the probability of labor force participation by 0.034 or 3.4 percentage points, which is not a large effect
- The effect of exper depends on the value of exper: An increase of labor market experience by one year leads to an estimated change of the probability of labor force participation by 0.039-2.0.0006 exper $=0.039-0.0012 \cdot$ exper
- One additional child less than six years old implies an estimated decrease of the probability of labor force participation by 0.262 or 26.2 percentage points, which is a huge effect

Evaluation of the use of linear probability models:

- In line with the OLS estimation in linear regression models including heteroskedastic error terms, the parameters are easy to estimate and the estimated slope parameters are easy to interpret since they are partial effects
- However: The estimated probabilities $\hat{p}_{i}\left(x_{i}, \beta\right)=\widehat{\mathrm{P}}\left(y_{i}=1 \mid x_{i}, \beta\right)$ that the dependent variable y_{i} takes the value one are not restricted to the interval between zero and one, i.e. for specific combinations of values for the explanatory variables, the estimated probabilities can be smaller than zero or greater than one which is not possible by definition
- It is possible that a probability is not linearly related to an explanatory variable for all possible values: For example, the previous microeconometric analysis implies an estimated decrease of the probability of labor force participation by 0.262 for the increase from zero children less than six years to one child. This decrease is equally estimated for the increase from one child to two children, although it seems more realistic that the decrease of the probability is stronger for the increase from zero children to one child. In fact, the previous analysis implies that four additional children lead to an estimated decrease of the probability of labor force participation by $0.262 \cdot 4=1.048$ which is clearly not possible by definition.
\rightarrow As a consequence, the linear probability model is not used frequently in practice

2.2 Binary probit and logit models

Binary dependent variables y_{i} in a microeconometric model with the vector of k explanatory variables $\mathrm{x}_{\mathrm{i}}=\left(\mathrm{x}_{\mathrm{i} 1}, \ldots, \mathrm{x}_{\mathrm{ik}}\right)^{\prime}$ and the corresponding k -dimensional parameter vector $\beta=\left(\beta_{1}, \ldots, \beta_{k}\right)^{\text {i }}$ are generally Bernoulli distributed with the following probability function (for $\mathrm{i}=1, \ldots, n$):

$$
\begin{aligned}
f_{i}\left(y_{i} ; x_{i}, \beta\right) & =p_{i}\left(x_{i}, \beta\right)^{y_{i}}\left[1-p_{i}\left(x_{i}, \beta\right)\right]^{1-y_{i}} \\
& =P\left(y_{i}=1 \mid x_{i}, \beta\right)^{y_{i}}\left[1-P\left(y_{i}=1 \mid x_{i}, \beta\right)\right]^{1-y_{i}} \quad \text { for } y_{i}=0,1
\end{aligned}
$$

Different binary response models result from different specifications of the probability $p_{i}\left(x_{i}, \beta\right)=P\left(y_{i}=1 \mid x_{i}\right)$ that y_{i} takes the value one. In the case of linear probability models, this probability is identical to $\beta^{\prime} \times$ which does not ensure that the value is between zero and one as discussed above.

Such values can be guaranteed by several nonlinear functions $F_{i}\left(x_{i}, \beta\right)=F_{i}\left(\beta^{\prime} x_{i}\right)$ and particularly by distribution functions of arbitrary random variables. In the case of binary probit models, $F_{i}\left(\beta^{\prime} x_{i}\right)=\Phi_{i}\left(\beta^{\prime} x_{i}\right)$ is the value of the distribution function of the standard normal distribution at the linear function $\beta^{\prime} x_{i}$:

$$
\mathrm{F}_{\mathrm{i}}\left(\beta^{\prime} \mathrm{x}_{\mathrm{i}}\right)=\Phi_{\mathrm{i}}\left(\beta^{\prime} \mathrm{x}_{\mathrm{i}}\right)=\mathrm{p}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}, \beta\right)=\mathrm{P}\left(\mathrm{y}_{\mathrm{i}}=1 \mid \mathrm{x}_{\mathrm{i}}, \beta\right)=\int_{-\infty}^{\beta \mathrm{x}_{\mathrm{i}}} \frac{1}{\sqrt{2 \pi}} \mathrm{e}^{\frac{\mathrm{t}^{2}}{2}} d t
$$

The probabilities $p_{i}\left(x_{i}, \beta\right)$ in binary probit models are therefore calculated by integration.

In the case of binary logit models, $\mathrm{F}_{\mathrm{i}}\left(\beta^{\prime} \mathrm{x}_{\mathrm{i}}\right)=\Lambda_{i}\left(\beta^{\prime} \mathrm{x}_{\mathrm{i}}\right)$ is the value of the distribution function of the standard logistic distribution at the linear function $\beta^{\prime} \mathrm{x}_{\mathrm{i}}$:
$F_{i}\left(\beta^{\prime} x_{i}\right)=\Lambda_{i}\left(\beta^{\prime} x_{i}\right)=p_{i}\left(x_{i}, \beta\right)=P\left(y_{i}=1 \mid x_{i}, \beta\right)=\frac{e^{\beta x_{i}}}{1+e^{\beta x_{i}}}$
In contrast to binary probit models, the probabilities $p_{i}\left(x_{i}, \beta\right)$ in binary logit models need not be calculated by integration, but can be derived from a closed form.
\rightarrow Despite the substantial differences in the functional forms, the probabilities $p_{i}\left(x_{i}, \beta\right)=P\left(y_{i}=1 \mid x_{i}, \beta\right)$ in binary probit and logit models are very similar (except for a constant scaling factor, see below) so that the choice between them makes little difference in practice (in contrast to the difference between multinomial probit and logit models, see later)

Binary probit and logit models can also be motivated by an underlying continuous latent variable y_{i}^{*} (which can be interpreted as a utility, see later) which depends on $\beta^{\prime} x_{i}$ and an error term ε_{i} (for $\mathrm{i}=1, \ldots, \mathrm{n}$):
$\mathrm{y}_{\mathrm{i}}^{*}=\beta^{\prime} \mathrm{x}_{\mathrm{i}}+\varepsilon_{\mathrm{i}}$
If the latent variables would be observable, this would lead to linear regression models. However, latent variables are not observable. But they can be related to the observed binary dependent variables y_{i} :
$y_{i}= \begin{cases}1 & \text { if } y_{i}^{*} \geq 0 \\ 0 & \text { if } y_{i}^{*}<0\end{cases}$
It follows for the probability $p_{i}\left(x_{i}, \beta\right)$ that y_{i} takes the value one:
$p_{i}\left(x_{i}, \beta\right)=P\left(y_{i}=1 \mid x_{i}, \beta\right)=P\left(y_{i}^{*} \geq 0 \mid x_{i}, \beta\right)=P\left(\beta^{\prime} x_{i}+\varepsilon_{i} \geq 0\right)=P\left(\varepsilon_{i} \geq-\beta^{\prime} x_{i}\right)$
Different binary response models can be derived by different distribution assumptions for ε_{i}.

If ε_{i} has a standard normal distribution (with expected value of zero and variance one), this leads to binary probit models. If ε_{i} has a standard logistic distribution with expected value of zero and variance $\pi^{2} / 3$, this leads to binary logit models. In both cases ε_{i} is symmetrically distributed around zero so that it follows in binary probit and logit models:
$\mathrm{p}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}, \beta\right)=\mathrm{P}\left(\mathrm{y}_{\mathrm{i}}=1 \mid \mathrm{x}_{\mathrm{i}}, \beta\right)=\Phi_{\mathrm{i}}\left(\beta^{\prime} \mathrm{x}_{\mathrm{i}}\right)=1-\Phi_{\mathrm{i}}\left(-\beta^{\prime} \mathrm{x}_{\mathrm{i}}\right)$
$\mathrm{p}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}, \beta\right)=\mathrm{P}\left(\mathrm{y}_{\mathrm{i}}=1 \mid \mathrm{x}_{\mathrm{i}}, \beta\right)=\Lambda_{\mathrm{i}}\left(\beta^{\prime} \mathrm{x}_{\mathrm{i}}\right)=1-\Lambda_{\mathrm{i}}\left(-\beta^{\prime} \mathrm{x}_{\mathrm{i}}\right)$
The assumption of a known variance of ε_{i} is not problematic since this variance is not identified in both binary response models and thus cannot be estimated besides β so that it has to be normalized. The assumption of zero as the threshold as discussed above is also unproblematic if a constant is included in $\beta^{\prime} x_{i}$ (therefore, such a constant should generally be incorporated).

Interpretation of a parameter β_{h} in binary response models with respect to the (partial) effect of the corresponding explanatory variable $\mathrm{x}_{\mathrm{in}}(\mathrm{h}=2, \ldots, \mathrm{k})$ on the probability $p_{i}\left(x_{i}, \beta\right)=P\left(y_{i}=1 \mid x_{i}, \beta\right)$:

- The parameter β_{h} cannot be interpreted as simply as in the linear probability model, i.e. it cannot be interpreted as the change in $p_{i}\left(x_{i}, \beta\right)$ if $x_{i h}$ increases by one unit (for a quantitative explanatory variable), ceteris paribus
- Instead, the (partial) marginal probability effects of $x_{i h}$ in binary response models are as follows (for $\mathrm{i}=1, \ldots, \mathrm{n}$):
$\frac{\partial \mathrm{p}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}, \beta\right)}{\partial \mathrm{x}_{\mathrm{ih}}}=\frac{\partial \mathrm{F}_{\mathrm{i}}\left(\beta^{\prime} \mathrm{x}_{\mathrm{i}}\right)}{\partial \mathrm{x}_{\mathrm{ih}}}=\frac{\mathrm{dF}_{\mathrm{i}}\left(\beta^{\prime} \mathrm{x}_{\mathrm{i}}\right)}{\mathrm{d}\left(\beta^{\prime} \mathrm{x}_{\mathrm{i}}\right)} \frac{\partial \beta^{`} \mathrm{x}_{\mathrm{i}}}{\partial \mathrm{x}_{\mathrm{ih}}}=\mathrm{f}_{\mathrm{i}}\left(\beta{ }^{\prime} \mathrm{x}_{\mathrm{i}}\right) \beta_{\mathrm{h}}$
While $F_{i}\left(\beta^{\prime} x_{i}\right)$ is the distribution function of the standard normal distribution in binary probit models and the distribution function of the standard logistic distribution in binary logit models, $f_{i}\left(\beta^{\prime} x_{i}\right)$ is the density function of the standard normal distribution in binary probit models and the density function of the standard logistic distribution in binary logit models.
- If all other explanatory variables are held fixed, it thus follows for a change $\Delta x_{i h}$:
$\Delta \mathrm{p}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}, \beta\right) \approx\left[\mathrm{f}\left(\beta^{〔} \mathrm{x}_{\mathrm{i}}\right) \beta_{\mathrm{h}}\right] \Delta \mathrm{x}_{\text {ih }}$
The smaller the change $\Delta x_{i h}$, the better is this linear approximation.
(Partial) marginal probability effects of x_{ih} in binary probit models with $\varphi_{\mathrm{i}}\left(\beta^{\prime} \mathrm{x}_{\mathrm{i}}\right)$ as the density function of the standard normal distribution:

$$
\frac{\partial \mathrm{p}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}, \beta\right)}{\partial \mathrm{x}_{\mathrm{ih}}}=\frac{\partial \Phi_{\mathrm{i}}\left(\beta^{`} \mathrm{x}_{\mathrm{i}}\right)}{\partial \mathrm{x}_{\mathrm{ih}}}=\frac{\mathrm{d} \Phi_{\mathrm{i}}\left(\beta^{`} \mathrm{x}_{\mathrm{i}}\right)}{\mathrm{d}\left(\beta^{`} \mathrm{x}_{\mathrm{i}}\right)} \frac{\partial \beta^{`} \mathrm{x}_{\mathrm{i}}}{\partial \mathrm{x}_{\mathrm{ih}}}=\varphi_{\mathrm{i}}\left(\beta^{`} \mathrm{x}_{\mathrm{i}}\right) \beta_{\mathrm{h}}
$$

(Partial) marginal probability effects of $x_{i h}$ in binary logit models with $\Lambda_{i}\left(\beta^{\prime} x_{i}\right)$ as the distribution function of the standard logistic distribution:

$$
\begin{aligned}
\frac{\partial \mathrm{p}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}, \beta\right)}{\partial \mathrm{x}_{\mathrm{ih}}} & =\frac{\partial \Lambda_{\mathrm{i}}\left(\beta^{`} \mathrm{x}_{\mathrm{i}}\right)}{\partial \mathrm{x}_{\mathrm{in}}}=\frac{\mathrm{d} \Lambda_{\mathrm{i}}\left(\beta^{\prime} \mathrm{x}_{\mathrm{i}}\right)}{\mathrm{d}\left(\beta^{`} x_{\mathrm{i}}\right)} \frac{\partial \beta^{`} \mathrm{x}_{\mathrm{i}}}{\partial \mathrm{x}_{\mathrm{ih}}} \\
& =\frac{\mathrm{e}^{\beta x_{\mathrm{i}}}}{\left(1+\mathrm{e}^{\beta \mathrm{x}_{\mathrm{i}}}\right)^{2}} \beta_{\mathrm{h}}=\Lambda_{\mathrm{i}}\left(\beta^{`} \mathrm{x}_{\mathrm{i}}\right)\left[1-\Lambda_{\mathrm{i}}\left(\beta^{`} \mathrm{x}_{\mathrm{i}}\right)\right] \beta_{\mathrm{h}}
\end{aligned}
$$

Important aspects of (partial) marginal probability effects in binary probit and logit models:

- The sign of the parameter β_{h} indicates the direction of the marginal probability effects
- The marginal probability effects are maximal for $\beta^{\prime} x_{i}=0$ since the density functions are maximal at this value
- The marginal probability effects vary with different values not only of the explanatory variable $\mathrm{x}_{\text {ih }}$ but also with different values of all other explanatory variables and thus across different observations
\rightarrow The formulas for the (partial) marginal probability effects in binary response models show that the relative effects of two explanatory variables $x_{i h}$ and $x_{i g}$ do not depend on $f_{i}\left(\beta^{\prime} x_{i}\right)$ and therefore not on the explanatory variables in x_{i} since the ratio of the marginal probability effects of $x_{i h}$ and $x_{i g}$ is:

$$
\frac{f_{i}\left(\beta^{\prime} x_{i}\right) \beta_{h}}{f_{i}\left(\beta^{\prime} x_{i}\right) \beta_{g}}=\frac{\beta_{h}}{\beta_{g}}
$$

In practice it is generally interesting to evaluate the marginal probability effect of the explanatory variable x_{in} for a typical observation i (e.g. person, household, firm). With $\mathrm{x}_{\mathrm{i}}=\left(\mathrm{x}_{\mathrm{i} 1}, \ldots, \mathrm{x}_{\mathrm{ik}}\right)^{\prime}$ as vector of k explanatory variables for i a possible calculation is the average (partial) marginal probability effect (AMPE ${ }_{h}$) of $x_{i h}$ which includes the marginal probability effects $f_{i}\left(\beta^{\prime} x_{i}\right) \beta_{h}$ for each observation $\mathrm{i}=1, \ldots, \mathrm{n}$:

AMPE $_{\mathrm{h}}=\frac{1}{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{f}_{\mathrm{i}}\left(\beta^{`} \mathrm{x}_{\mathrm{i}}\right) \beta_{\mathrm{h}}$
AMPE $_{h}=\frac{1}{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{n}} \varphi_{\mathrm{i}}\left(\beta^{\prime} x_{\mathrm{i}}\right) \beta_{\mathrm{h}} \quad$ in the binary probit model
AMPE $_{h}=\frac{1}{n} \sum_{i=1}^{n} \Lambda_{i}\left(\beta^{\prime} x_{i}\right)\left[1-\Lambda_{i}\left(\beta^{\prime} x_{i}\right)\right] \beta_{h} \quad$ in the binary logit model

Another possible computation refers to the (partial) marginal probability effect $\left(\mathrm{MPEM}_{i h}\right)$ of $\mathrm{x}_{\text {ih }}$ that is calculated at the mean $\overline{\mathrm{x}}=1 / \mathrm{n} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{i}}$ of the explanatory variables across the observations $\mathrm{i}=1, \ldots, \mathrm{n}$:
MPEM $_{\mathrm{in}}=\mathrm{f}_{\mathrm{i}}\left(\beta^{`} \overline{\mathrm{x}}\right) \beta_{\mathrm{h}}$
MPEM $_{\mathrm{ih}}=\varphi_{\mathrm{i}}\left(\beta^{\varsigma} \overline{\mathrm{x}}\right) \beta_{\mathrm{h}} \quad$ in the binary probit model
MPEM $_{\mathrm{ih}}=\Lambda_{\mathrm{i}}\left(\beta^{\varsigma} \overline{\mathrm{x}}\right)\left[1-\Lambda\left(\beta^{\varsigma} \overline{\mathrm{x}}\right)\right] \beta_{\mathrm{h}} \quad$ in the binary logit model
Due to the non-linearity of the approaches, the two types of effects are generally not identical, although they can be very similar in practice.

The discussion so far has implicitly assumed continuous explanatory variables. However, if explanatory variables are discrete (e.g. numbers of children) or qualitative (e.g. gender) or if larger changes of continuous explanatory variables are considered, the computation of the (partial) effect of an infinitesimal change of an explanatory variable x_{ih} can be very inaccurate. Therefore, a discrete change of $p_{i}\left(x_{i}, \beta\right)$ due to a discrete change $\Delta x_{i h}$ is (for $\left.i=1, \ldots, n\right)$:
$\Delta \mathrm{p}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}, \beta\right)=\mathrm{F}_{\mathrm{i}}\left(\beta^{`} \mathrm{x}_{\mathrm{i}}+\beta_{\mathrm{h}} \Delta \mathrm{x}_{\text {ih }}\right)-\mathrm{F}_{\mathrm{i}}\left(\beta^{`} \mathrm{x}_{\mathrm{i}}\right)$
$\Delta \mathrm{p}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}, \beta\right)=\Phi_{\mathrm{i}}\left(\beta^{\prime} \mathrm{x}_{\mathrm{i}}+\beta_{\mathrm{h}} \Delta \mathrm{x}_{\mathrm{ih}}\right)-\Phi_{\mathrm{i}}\left(\beta^{\prime} \mathrm{x}_{\mathrm{i}}\right) \quad$ in the binary probit model
$\Delta \mathrm{p}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}, \beta\right)=\Lambda_{\mathrm{i}}\left(\beta^{`} \mathrm{x}_{\mathrm{i}}+\beta_{\mathrm{h}} \Delta \mathrm{x}_{\mathrm{ih}}\right)-\Lambda_{\mathrm{i}}\left(\beta^{`} \mathrm{x}_{\mathrm{i}}\right)$ in the binary logit model
Again it is possible to calculate (partial) average (discrete) effects and (discrete) effects at the mean $\bar{x}=1 / n \sum_{i=1}^{n} x_{i}$ of the explanatory variables (see later).

2.3 ML estimation and testing in binary probit and logit models

As discussed above, the dependent variables y_{i} in binary response models are dummy variables and thus are generally Bernoulli distributed with the probability $p_{i}\left(x_{i}, \beta\right)$. Based on a random sample ($\left(x_{i}, y_{i}\right)$ for $i=1, \ldots, n$ observations, the \log-likelihood function therefore is:

$$
\begin{aligned}
\operatorname{logL}(\beta)= & {\left[y_{1} \log p_{1}\left(x_{1}, \beta\right)+\left(1-y_{1}\right) \log \left(1-p_{1}\left(x_{1}, \beta\right)\right)\right]+\cdots+} \\
& {\left[y_{n} \log p_{n}\left(x_{n}, \beta\right)+\left(1-y_{n}\right) \log \left(1-p_{n}\left(x_{n}, \beta\right)\right)\right] } \\
= & \sum_{i=1}^{n}\left[y_{i} \log p_{i}\left(x_{i}, \beta\right)+\left(1-y_{i}\right) \log \left(1-p_{i}\left(x_{i}, \beta\right)\right)\right] \\
= & \sum_{i=1}^{n}\left[y_{i} \log F_{i}\left(\beta^{s} x_{i}\right)+\left(1-y_{i}\right) \log \left(1-\mathrm{F}_{i}\left(\beta^{s} x_{i}\right)\right)\right]
\end{aligned}
$$

In binary probit and logit models it follows:

$$
\begin{aligned}
& \log L(\beta)=\sum_{i=1}^{n}\left[y_{i} \log \Phi_{i}\left(\beta^{\prime} x_{i}\right)+\left(1-y_{i}\right) \log \left(1-\Phi_{i}\left(\beta^{\prime} x_{i}\right)\right)\right] \\
& \log L(\beta)=\sum_{i=1}^{n}\left[y_{i} \log \Lambda_{i}\left(\beta^{\prime} x_{i}\right)+\left(1-y_{i}\right) \log \left(1-\Lambda_{i}\left(\beta^{\prime} x_{i}\right)\right)\right]
\end{aligned}
$$

The score has the following form:

$$
\begin{aligned}
\frac{\partial \operatorname{logL}(\beta)}{\partial \beta} & =s(\beta)=\sum_{i=1}^{n} \frac{y_{i}-p_{i}\left(x_{i}, \beta\right)}{p_{i}\left(x_{i}, \beta\right)\left(1-p_{i}\left(x_{i}, \beta\right)\right)} \frac{\partial p_{i}\left(x_{i}, \beta\right)}{\partial \beta} \\
& =\sum_{i=1}^{n} \frac{y_{i}-F_{i}\left(\beta^{`} x_{i}\right)}{F_{i}\left(\beta^{\prime} x_{i}\right)\left[1-F_{i}\left(\beta^{`} x_{i}\right)\right]} f_{i}\left(\beta^{`} x_{i}\right) x_{i}
\end{aligned}
$$

In binary probit and logit models it follows:

$$
\begin{aligned}
s(\beta) & =\sum_{i=1}^{n} \frac{y_{i}-\Phi_{i}\left(\beta^{\prime} x_{i}\right)}{\Phi_{i}\left(\beta^{\prime} x_{i}\right)\left[1-\Phi_{i}\left(\beta^{\prime} x_{i}\right)\right]} \varphi_{i}\left(\beta^{\prime} x_{i}\right) x_{i} \\
s(\beta) & =\sum_{i=1}^{n} \frac{y_{i}-\Lambda_{i}\left(\beta^{\prime} x_{i}\right)}{\Lambda_{i}\left(\beta^{\prime} x_{i}\right)\left[1-\Lambda_{i}\left(\beta^{\prime} x_{i}\right)\right]} \Lambda_{i}\left(\beta^{\prime} x_{i}\right)\left[1-\Lambda_{i}\left(\beta^{\prime} x_{i}\right)\right] x_{i} \\
& =\sum_{i=1}^{n}\left[y_{i}-\Lambda_{i}\left(\beta^{\prime} x_{i}\right)\right] x_{i}
\end{aligned}
$$

The ML estimator $\hat{\beta}$ solves the first-order conditions for maximizing the log-likelihood function, i.e. $s(\beta)=0$. In general, a closed-form solution for $\hat{\beta}$ is not available so that iterative numerical optimization algorithms must be applied. Furthermore, it can be shown that the log-likelihood functions in both binary probit and logit models are globally concave so that the optimization process leads to ${ }_{96}$ a unique (global) maximum (and not a minimum).

Also the ML estimator $\hat{\beta}$ in binary response models is approximately normally distributed for large but finite samples of n observations with the following variance covariance matrix:

$$
\operatorname{Var}(\hat{\beta})=[\operatorname{nI}(\beta)]^{-1}=-E\left[\mathrm{nH}_{\mathrm{i}}(\beta)\right]^{-1}=-\mathrm{E}[\mathrm{H}(\beta)]^{-1}=\left[\sum_{\mathrm{i}=1}^{\mathrm{n}} \frac{\mathrm{f}_{\mathrm{i}}\left(\beta^{\prime} \mathrm{x}_{\mathrm{i}}\right)^{2} \mathrm{x}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}{ }^{\prime}}{\mathrm{F}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}\right)\left[1-\mathrm{F}_{\mathrm{i}}\left(\beta^{\prime} \mathrm{x}_{\mathrm{i}}\right)\right]}\right]^{-1}
$$

It follows for large samples:

$$
\hat{\beta} \stackrel{\text { appr }}{\sim} N\left(\beta ;-E[H(\beta)]^{-1}\right) \quad \text { or } \quad \hat{\beta} \stackrel{\text { appr }}{\sim} N\left(\beta ;\left[\sum_{i=1}^{n} \frac{f_{i}\left(\beta^{\prime} x_{i}\right)^{2} x_{i} x_{i}{ }^{\prime}}{\mathrm{F}_{\mathrm{i}}\left(\beta^{\prime} x_{i}\right)\left[1-\mathrm{F}_{\mathrm{i}}\left(\beta^{\prime} x_{i}\right)\right]}\right]^{-1}\right)
$$

$$
\hat{\beta} \stackrel{\text { appr }}{\sim} \mathrm{N}\left(\beta ;\left[\sum_{\mathrm{i}=1}^{\mathrm{n}} \frac{\varphi_{\mathrm{i}}\left(\beta^{\prime} \mathrm{x}_{\mathrm{i}}\right)^{2} \mathrm{x}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{\prime}}{\Phi_{\mathrm{i}}\left(\beta^{\prime} \mathrm{x}_{\mathrm{i}}\right)\left[1-\Phi_{\mathrm{i}}\left(\beta^{\prime} x_{\mathrm{i}}\right)\right]}\right]^{-1}\right) \text { in the binary probit model }
$$

$$
\hat{\beta} \stackrel{\text { appr }}{\sim} N\left(\beta ;\left[\sum_{i=1}^{n} \frac{\left(\Lambda_{i}\left(\beta^{\prime} x_{i}\right)\left[1-\Lambda_{i}\left(\beta^{\prime} x_{i}\right)\right]\right)^{2} x_{i} x_{\mathrm{i}}^{\prime}}{\Lambda_{\mathrm{i}}\left(\beta^{\prime} x_{i}\right)\left[1-\Lambda_{i}\left(\beta^{\prime} x_{i}\right)\right]}\right]^{-1}\right)
$$

$$
\stackrel{\text { appr }}{\sim} N\left(\beta ;\left[\sum_{i=1}^{n} \Lambda_{i}\left(\beta^{\prime} x_{i}\right)\left[1-\Lambda_{\mathrm{i}}\left(\beta^{\prime} x_{i}\right)\right] \mathrm{x}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{\prime}\right]^{-1}\right) \text { in the binary logit model }
$$

The variance covariance matrix of the ML estimator $\widehat{\beta}$ (just as the corresponding information matrix) in binary response models for large samples is generally unknown and thus has to be estimated for the construction of confidence intervals and particularly for statistical tests. The standard approach for this estimator includes the corresponding Hessian matrix at $\hat{\beta}$ for all observations:
$\operatorname{Vâr}(\hat{\beta})=\left(\sum_{i=1}^{n} \frac{f_{i}\left(\hat{\beta}{ }^{\prime} x_{i}\right)^{2} x_{i} x_{i}{ }^{\prime}}{\mathrm{F}_{\mathrm{i}}\left(\hat{\beta} x_{i}\right)\left[1-\mathrm{F}_{\mathrm{i}}\left(\hat{\beta}^{\prime} x_{i}\right)\right]}\right)^{-1}$
$\operatorname{Var}(\hat{\beta})=\left[\sum_{i=1}^{n} \frac{\varphi_{i}\left(\hat{\beta}^{\prime} x_{i}\right)^{2} x_{i} x_{i}{ }^{\prime}}{\Phi_{i}\left(\hat{\beta}^{`} x_{i}\right)\left[1-\Phi_{i}\left(\hat{\beta}^{\prime} x_{i}\right)\right]}\right]^{-1}$
in the binary probit model
$\operatorname{Var}(\hat{\beta})=\left[\sum_{\mathrm{i}=1}^{\mathrm{n}} \Lambda_{\mathrm{i}}\left(\hat{\beta}^{\prime} \mathrm{x}_{\mathrm{i}}\right)\left[1-\Lambda_{\mathrm{i}}\left(\hat{\beta}^{\prime} \mathrm{x}_{\mathrm{i}}\right)\right] \mathrm{x}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{\prime}\right]^{-1} \quad$ in the binary logit model
For the estimation of the variance covariance matrix of $\hat{\beta}$, it is generally also possible to exclusively include the score at the ML estimator $\hat{\beta}$ or both the Hessian matrix and the score to receive a robust version in the case of a model misspecification. The most important elements of the estimated variance covariance matrix of $\widehat{\beta}$ are on the diagonal and indicate the estimated variances of the ML estimated parameters.

Remarks for empirical studies with binary probit and logit models:

- The square roots of the diagonal elements of the estimated variance covariance matrixes represent the estimated standard deviations of the ML estimated parameters and are reported by econometric software packages such as STATA by default. These values are the basis for the construction of confidence intervals and the calculation of z statistics.
- The estimated variance covariance matrixes are the basis for general Wald test statistics (score tests are not often considered in binary probit and logit models)
- Econometric software packages such as STATA additionally report the maximum values of the log-likelihood functions by default that are always negative in binary probit and logit models since the natural logarithms of the corresponding probabilities (values between zero and one) are negative
- These maximum values of the log-likelihood functions are the basis for likelihood ratio test statistics. The most common test statistic is reported by econometric software packages such as STATA by default and refers (in accordance to the F test in linear regression models) to the null hypothesis that none of the explanatory variables has an effect.
- The pseudo R^{2} is also reported by econometric software packages such as STATA (whereas another popular goodness-of-fit measure in binary probit and logit models, namely the percentage correctly predicted, is not reportedg

Example: Determinants of labor force participation of married women (I)
As in the previous example, the effect of other sources of income in 1000 dollar, the years of education, the simple and squared years of labor market experience, the age in years, the number of children less than six years old, and the number of children between six and 18 years of age on the labor force participation is examined with data from $\mathrm{n}=753$ married women. However, not a linear probability model, but binary probit and logit models are now used. The ML estimation of the binary probit model with STATA leads to the following results:

Probit regression				Number of obs LR chi2(7) Prob > chi2			$\begin{array}{r} 753 \\ 227.14 \\ 0.0000 \\ 0.2206 \end{array}$
Log likelihood = -401.30219							
inlf	Coef.	Std. Err	z	$\mathrm{P}>\|\mathrm{z}\|$	[95\%		Interval]
nwifeinc	-. 0120237	. 0048398	-2.48	0.013	-. 0215		-. 0025378
educ	. 1309047	. 0252542	5.18	0.000	. 0814		. 180402
exper	. 1233476	. 0187164	6.59	0.000	. 0866		.1600311
expersq	-. 0018871	.0006	-3.15	0.002	-. 003		-. 0007111
age	-. 0528527	. 0084772	-6.23	0.000	-. 0694		-. 0362376
kidslt6	-. 8683285	. 1185223	-7.33	0.000	-1.100		-. 636029
kidsge6	. 036005	. 0434768	0.83	0.408	-. 049		. 1212179
_cons	. 2700768	. 508593	0.53	0.595	-. 7267		1.266901

Example: Determinants of labor force participation of married women (II)
The corresponding ML estimation of the binary logit model with STATA leads to the following results:

```
logit inlf nwifeinc educ exper expersq age kidslt6 kidsge6
```


An example for the presentation of all these estimation results (in linear probability, binary probit, and binary logit models) in empirical studies (which typically includes at least the parameter estimates, the z statistics or estimated standard deviations of the estimated parameters, and some information about the significance of the effect of the explanatory variables) is as follows:

Example: Determinants of labor force participation of married women (III)

ML estimates (z statistics), dependent variable: labor force participation (inlf)			
Explanatory variables	Linear probability model	Binary probit model	Binary logit model
nwifeinc	$-0.003^{* *}$	$-0.012^{* *}$	$-0.021^{* *}$
	(-2.23)	(-2.48)	(-2.53)
educ	$0.038^{* * *}$		
	(5.23)	$0.131^{* * *}$	
exper	$0.039^{* * *}$	(5.18)	(5.09)
	(6.80)	$0.123^{* * *}$	$0.206^{* * *}$
	$-0.001^{* * *}$	(6.59)	(6.42)
age	(-3.14)	$-0.002^{* * *}$	$-0.003^{* * *}$
	$-0.016^{* * *}$	(-3.15)	(-3.10)
kidslt6	(-6.71)	$-0.053^{* * *}$	$-0.088^{* * *}$
	$-0.262^{* * *}$	(-6.23)	(-6.04)
kidsge6	(-8.24)	$-0.868^{* * *}$	$-1.443^{* * *}$
	0.013	(-7.33)	(-7.09)
constant	(0.96)	0.036	0.060
	0.586	(0.83)	(0.80)
	(3.85)	0.270	0.425
		(0.53)	(0.49)

Note: *** (**, *) means that the appropriate explanatory variable has an effect at the $1 \%(5 \%, 10 \%)$ significance level, $\mathrm{n}=753$

Example: Determinants of labor force participation of married women (IV)

Interpretation:

- The estimation results in all three models are qualitatively very similar, i.e. the signs of the parameter estimates are identical and the same explanatory variables have a significant effect across the approaches
- However, the magnitudes of the estimated effects are not directly comparable on the basis of the parameter estimates due to the different estimators of average marginal probability effects (or marginal probability effects at the mean of the explanatory variables, see later)
- In empirical applications with binary probit and logit models (and possibly linear probability models) a quick way to compare the parameter estimates is based on the different scale factors in the marginal (probability) effects: A rough rule of thumb implies that the parameter estimates in binary probit models can be multiplied by 1.6 to make them comparable with the estimates in binary logit models (or conversely divided by 0.625) and divided by 2.5 to make them comparable with the estimates in linear probability models.

Example: Determinants of labor force participation of married women (V)
Wald and likelihood ratio tests:
As an example, the null hypothesis that neither kidslt6 nor kidsge6 has any effect on the labor force participation, i.e. that the two parameters of kidslt6 and kidsge6 are both zero, is tested in the binary probit model. The command for the Wald test in STATA is:

```
test kidslt6=kidsge6=0
    ( 1) [inlf]kidslt6 - [inlf]kidsge6 = 0
    ( 2) [inlf]kidslt6 = 0
    chi2( 2) = 56.70
```

The application of the likelihood ratio test requires both the unrestricted and restricted ML estimation. After the unrestricted ML estimation the following STATA command for saving the estimation results is necessary (the choice of the name "unrestricted" is arbitrary):
estimates store unrestricted
After the restricted ML estimation a corresponding STATA command for saving the respective estimation results is necessary (the choice of the name "restricted" is again arbitrary).

Example: Determinants of labor force participation of married women (VI)

estimates store restricted

Command for the likelihood ratio test in STATA:

```
lrtest unrestricted restricted
```

Likelihood-ratio test	LR chi2(2) $=$	63.01
(Assumption: restricted nested in unrestricted)	Prob $>$ chi2 $=$	0.0000

Both the Wald test and the likelihood ratio test therefore lead to the rejection of the null hypothesis at very low significance levels.

The estimator of the probabilities $p_{i}\left(x_{i}, \beta\right)=P\left(y_{i}=1 \mid x_{i}, \beta\right)$ for i in binary probit and logit models is based on the ML estimator $\hat{\beta}$ and the invariance principle as discussed in section 1.2:
$\hat{\mathrm{p}}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}, \hat{\beta}\right)=\hat{\mathrm{P}}\left(\mathrm{y}_{\mathrm{i}}=1 \mid \mathrm{x}_{\mathrm{i}}, \hat{\beta}\right)=\Phi_{\mathrm{i}}\left(\hat{\beta}^{\prime} \mathrm{x}_{\mathrm{i}}\right)$
$\hat{p}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}, \hat{\beta}\right)=\hat{\mathrm{P}}\left(\mathrm{y}_{\mathrm{i}}=1 \mid \mathrm{x}_{\mathrm{i}}, \hat{\beta}\right)=\Lambda_{\mathrm{i}}\left(\hat{\beta}^{\prime} \mathrm{x}_{\mathrm{i}}\right)$
It follows for the estimator of the (partial) marginal probability effects of an explanatory variable $x_{\text {ih }}$ in binary probit and logit models:
$\frac{\partial \hat{p}_{i}\left(x_{i}, \hat{\beta}\right)}{\partial \mathrm{x}_{\mathrm{ih}}}=\varphi_{\mathrm{i}}\left(\hat{\beta}^{\prime} \mathrm{x}_{\mathrm{i}}\right) \hat{\beta}_{\mathrm{h}}$
$\frac{\partial \hat{p}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}, \hat{\beta}\right)}{\partial \mathrm{x}_{\mathrm{ih}}}=\Lambda_{\mathrm{i}}\left(\hat{\beta}^{`} \mathrm{x}_{\mathrm{i}}\right)\left[1-\Lambda_{\mathrm{i}}\left(\hat{\beta}^{‘} \mathrm{x}_{\mathrm{i}}\right)\right] \hat{\beta}_{\mathrm{h}}$
Based on y_{1}, \ldots, y_{n} and x_{1}, \ldots, x_{n}, it follows for the estimator of the average probabilities $p_{i}\left(x_{i}, \beta\right)$ across all $i=1, \ldots, n$ observations in binary probit and logit models:
$\frac{1}{n} \sum_{\mathrm{i}=1}^{\mathrm{n}} \hat{\mathrm{p}}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}, \hat{\beta}\right)=\frac{1}{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{n}} \Phi_{\mathrm{i}}\left(\hat{\beta}^{\prime} \mathrm{x}_{\mathrm{i}}\right)$
$\frac{1}{n} \sum_{i=1}^{n} \hat{\mathrm{p}}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}, \hat{\beta}\right)=\frac{1}{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{n}} \Lambda_{\mathrm{i}}\left(\hat{\beta}^{\prime} \mathrm{x}_{\mathrm{i}}\right)$

For the estimators of the probability $p_{i}\left(x_{i}, \beta\right)$ at the mean $\bar{x}=1 / n \sum_{i=1}^{n} x_{i}$ of the explanatory variables in binary probit and logit models it follows:
$\hat{\mathrm{p}}_{\mathrm{i}}(\overline{\mathrm{x}}, \hat{\beta})=\Phi_{\mathrm{i}}\left(\hat{\beta}^{\prime} \overline{\mathrm{x}}\right)$
$\hat{p}_{\mathrm{i}}(\overline{\mathrm{x}}, \hat{\beta})=\Lambda_{\mathrm{i}}\left(\hat{\beta}^{\prime} \overline{\mathrm{x}}\right)$
Based on the estimators of the (partial) marginal probability effects of an explanatory variable $\mathrm{x}_{\text {ih }}$ for each i , the estimator of the average (partial) marginal probability effects of $x_{i \text { ih }}$ across all i and the corresponding estimator of the (partial) marginal probability effects of $x_{\text {in }}$ at the mean \bar{x} of the explanatory variables in binary probit and logit models are as follows:
$\mathrm{AMPE}_{\mathrm{h}}=\frac{1}{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{n}} \varphi_{\mathrm{i}}\left(\hat{\beta}^{\prime} \mathrm{x}_{\mathrm{i}}\right) \hat{\beta}_{\mathrm{h}}$
$\operatorname{AMPE}_{\mathrm{h}}=\frac{1}{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{n}} \Lambda_{\mathrm{i}}\left(\hat{\beta}^{‘} \mathrm{x}_{\mathrm{i}}\right)\left[1-\Lambda_{\mathrm{i}}\left(\hat{\beta}^{\mathrm{s}} \mathrm{x}_{\mathrm{i}}\right)\right] \hat{\beta}_{\mathrm{h}}$
$\mathrm{MP}^{\hat{E}} \mathrm{M}_{\mathrm{ih}}=\varphi_{\mathrm{i}}(\hat{\beta} \subsetneq \overline{\mathrm{x}}) \hat{\beta}_{\mathrm{h}}$
$\operatorname{MPEM}_{i \mathrm{ih}}=\Lambda_{\mathrm{i}}\left(\hat{\beta}^{‘} \overline{\mathrm{x}}\right)\left[1-\Lambda_{\mathrm{i}}\left(\hat{\beta}^{‘} \overline{\mathrm{x}}\right)\right] \hat{\beta}_{\mathrm{h}}$
The variance of the estimated marginal probability effects, the variance of the estimated average marginal probability effects, and the variance of the estimated marginal probability effects at the mean $\overline{\mathrm{x}}$ of the explanatory variables can ${ }_{27}$ be estimated by using the Delta method.

The estimators of a discrete change of $p_{i}\left(x_{i}, \beta\right)$ due to a discrete change $\Delta x_{i n}$ of an explanatory variable $\mathrm{x}_{\text {in }}$ in binary probit and logit models are as follows:
$\Delta \hat{p}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}, \hat{\beta}\right)=\Phi_{\mathrm{i}}\left(\hat{\beta}^{\prime} \mathrm{x}_{\mathrm{i}}+\hat{\beta}_{\mathrm{h}} \Delta \mathrm{x}_{\text {in }}\right)-\Phi_{\mathrm{i}}\left(\hat{\beta}^{\prime} \mathrm{x}_{\mathrm{i}}\right)$
$\Delta \hat{p}_{i}\left(x_{i}, \hat{\beta}\right)=\Lambda_{i}\left(\hat{\beta}^{\prime} x_{i}+\hat{\beta}_{h} \Delta x_{\text {ih }}\right)-\Lambda_{i}\left(\hat{\beta}^{\prime} x_{i}\right)$
Based on these estimators for all $i=1, \ldots, n$ observations, the estimator of average discrete changes $\left(\operatorname{ADC}_{h}\right)$ of $p_{i}\left(x_{i}, \beta\right)$ across all i due to a discrete change $\Delta x_{i h}$ and the corresponding estimator of discrete changes $\left(\right.$ DCM $\left._{i h}\right)$ of $p_{i}\left(x_{i}, \beta\right)$ at the means $\bar{x}_{1}, \ldots, \bar{x}_{h-1}, \bar{x}_{h+1}, \ldots, \bar{x}_{k}$ of the other explanatory variables across i in binary probit and logit models are as follows:

$$
\begin{aligned}
& A \hat{D} C_{h}=\frac{1}{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{n}}\left[\Phi_{\mathrm{i}}\left(\hat{\beta}^{\prime} \mathrm{x}_{\mathrm{i}}+\hat{\beta}_{\mathrm{h}} \Delta \mathrm{x}_{\mathrm{ih}}\right)-\Phi_{\mathrm{i}}\left(\hat{\beta}^{\prime} \mathrm{x}_{\mathrm{i}}\right)\right] \\
& A \hat{D C}_{\mathrm{h}}=\frac{1}{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{n}}\left[\Lambda_{\mathrm{i}}\left(\hat{\beta}^{\prime} \mathrm{x}_{\mathrm{i}}+\hat{\beta}_{\mathrm{h}} \Delta \mathrm{x}_{\mathrm{ih}}\right)-\Lambda_{\mathrm{i}}\left(\hat{\beta}^{\prime} \mathrm{x}_{\mathrm{i}}\right)\right] \\
& D \hat{C} M_{i h}=\Phi_{i}\left(\hat{\beta}_{1} \bar{x}_{1}+\cdots+\hat{\beta}_{h-1} \overline{\mathrm{x}}_{\mathrm{h}-1}+\hat{\beta}_{\mathrm{h}}\left(\mathrm{x}_{\mathrm{ih}}+\Delta \mathrm{x}_{\mathrm{ih}}\right)+\hat{\beta}_{\mathrm{h}+1} \overline{\mathrm{x}}_{\mathrm{h}+1}+\cdots+\hat{\beta}_{\mathrm{k}} \overline{\mathrm{x}}_{\mathrm{k}}\right) \\
& -\Phi_{i}\left(\hat{\beta}_{1} \overline{\mathrm{x}}_{1}+\cdots+\hat{\beta}_{h-1} \overline{\mathrm{x}}_{\mathrm{h}-1}+\hat{\beta}_{\mathrm{h}} \mathrm{x}_{\mathrm{ih}}+\hat{\beta}_{\mathrm{h}+1} \overline{\mathrm{x}}_{\mathrm{h}+1}+\cdots+\hat{\beta}_{\mathrm{k}} \overline{\mathrm{x}}_{\mathrm{k}}\right) \\
& \operatorname{DC} M_{i h}=\Lambda_{\mathrm{i}}\left(\hat{\beta}_{1} \overline{\mathrm{x}}_{1}+\cdots+\hat{\beta}_{\mathrm{h}-1} \overline{\mathrm{x}}_{\mathrm{h}-1}+\hat{\beta}_{\mathrm{h}}\left(\mathrm{x}_{\mathrm{ih}}+\Delta \mathrm{x}_{\mathrm{ih}}\right)+\hat{\beta}_{\mathrm{h}+1} \overline{\mathrm{x}}_{\mathrm{h}+1}+\cdots+\hat{\beta}_{\mathrm{k}} \overline{\mathrm{x}}_{\mathrm{k}}\right) \\
& -\Lambda_{\mathrm{i}}\left(\hat{\beta}_{1} \overline{\mathrm{x}}_{1}+\cdots+\hat{\beta}_{\mathrm{h}-1} \overline{\mathrm{x}}_{\mathrm{h}-1}+\hat{\beta}_{\mathrm{h}} \mathrm{x}_{\mathrm{ih}}+\hat{\beta}_{\mathrm{h}+1} \overline{\mathrm{x}}_{\mathrm{h}+1}+\cdots+\hat{\beta}_{\mathrm{k}} \overline{\mathrm{x}}_{\mathrm{k}}\right)
\end{aligned}
$$

Example: Determinants of labor force participation of married women (I)
Similar to the previous example, the determinants of the labor force participation are examined with data from $\mathrm{n}=753$ married women. However, the squared years of labor market experience are now not included as explanatory variable. The ML estimation of the binary probit model with STATA leads to the following results:

Example: Determinants of labor force participation of married women (II)
The estimation of the average probability of labor force participation across all women and the estimation of the probability at the means of the explanatory variables in the binary probit model with STATA leads to the following results:
margins

margins, atmeans

Example: Determinants of labor force participation of married women (III)

It is also possible to estimate probabilities for a specific value of an explanatory variable. For example, the estimation of the average probability of labor force participation for educ $=10$ and the estimation of the probability at the means of all other explanatory variables with STATA leads to the following results:
margins, at (educ=10)

margins, at((means)_all educ=10)

Example: Determinants of labor force participation of married women (IV)
The estimation of the average marginal probability effects with STATA leads to the following results:
margins, dydx(*)
Average marginal effects
Number of obs
753
Model VCE : OIM
Expression : Pr(inlf), predict()
dy/dx w.r.t. : nwifeinc educ exper age kidslt6 kidsge6

	Delta-method			$P>\|z\|$	[95\% Conf. Interval]	
nwifeinc	-. 003532	.00145	-2. 44	0.015	-. 0063739	-. 0006901
educ	. 0408301	. 0072785	5.61	0.000	. 0265645	. 0550958
exper	. 0214447	.0019236	11.15	0.000	. 0176745	. 025215
age	-. 0169669	. 0023171	-7.32	0.000	-. 0215084	-. 0124254
kidslt6	-. 2670162	. 0317994	-8.40	0.000	-. 3293418	-. 2046906
kidsge6	. 0105506	. 0131118	0.80	0.421	-. 0151481	. 0362493

These results refer to infinitesimal changes of continuous explanatory variables. Due to the difference between marginal changes and discrete changes, the interpretation that e.g. one more year of education leads to an estimated increase of the probability of labor force participation in the amount of 0.04 (or about 4 percentage points) is indeed a more or less good approximation, but not the exact value. The smaller the change in the explanatory variable, the better is the linear approximation.

Example: Determinants of labor force participation of married women (V)
The corresponding estimation of the marginal probability effects at the means of the explanatory variables with STATA leads to the following results:

For the case of discrete explanatory variables, however, these approximate estimates can be very inaccurate. In addition, discrete explanatory variables can only take specific values (e.g. zero and one in the binary case).

Example: Determinants of labor force participation of married women (VI)

Therefore, this analysis is often not very reasonable for discrete explanatory variables (especially in the binary case). This could be considered in STATA treatments of binary probit or logit models:

- First of all, the underlying STATA ML estimation has to make clear that an explanatory variable is discrete (i.e. that it is an integer) by prefixing "i." (this produces and includes the maximum number of dummy variables based on the underlying variable), e.g. "i.educ" instead of "educ" as before
- The STATA command "margins educ" then reports the estimated average probabilities of labor force participation for all values of educ, whereas the command "margins educ, atmeans" reports the estimated probabilities of inlf $=1$ for all values of educ at the means of all other explanatory variables
- The STATA command "margins, dydx(educ)" reports the estimated average probability changes of an increase from the base level five to the other values of educ, whereas the command "margins, dydx(educ) atmeans" reports the corresponding estimated probability changes of an increase from five to the other values of educ at the means of all other explanatory variables
- By including i.educ (i.e. 12 dummy variables) in the underlying ML estimation, all following estimates of probabilities and probability changes differ from the case that educ is included in the underlying ML estimation

Example: Determinants of labor force participation of married women (VII)

Example: Determinants of labor force participation of married women (VIII)

Predictive margins				Number of obs		753
Model VCE	: OIM					
Expression	Pr(inlf), predict()					
	Delta-method					
	Margin	Std. Err.	z	$\mathrm{P}>\|\mathrm{z}\|$	[95\% Conf.	Interval]
educ						
5	. 3637474	. 2146549	1.69	0.090	-. 0569685	. 7844633
6	. 4231178	. 1767365	2.39	0.017	. 0767206	. 769515
7	. 3949565	. 1803446	2.19	0.029	. 0414877	. 7484254
8	. 4655862	. 0785653	5.93	0.000	. 311601	. 6195714
9	\| . 4213939	. 087903	4.79	0.000	. 2491071	. 5936807
10	\| . 4552969	. 0637233	7.14	0.000	. 3304015	. 5801922
11	\| . 4942804	. 0664211	7.44	0.000	. 3640973	. 6244634
12	1.5416587	. 0221742	24.43	0.000	. 4981981	. 5851192
13	1.6430566	. 0642656	10.01	0.000	. 5170984	. 7690148
14	1.6674272	. 0601789	11.09	0.000	. 5494787	. 7853756
15	. 5647403	. 1134054	4.98	0.000	. 3424698	. 7870109
16	. 675679	. 0539922	12.51	0.000	. 5698563	. 7815018
17	\| . 8678404	. 0450665	19.26	0.000	. 7795116	. 9561692

Example: Determinants of labor force participation of married women (IX)

margins educ, atmeans

Example: Determinants of labor force participation of married women (X)
It is again also possible to estimate probabilities that the dependent variable takes the value one for one specific value of an explanatory variable. For example, the estimation of the average probability of labor force participation for the case that educ $=10$ with STATA leads to the following results (see also the results on page 36):

Remark: The command "margins, at (educ=10)" on page 31, which is based on an ML estimation that includes "educ" as explanatory variable and not "i.educ" and thus 12 education dummy variables leads to the estimated probability 0.4729 or 47.29%.

Example: Determinants of labor force participation of married women (XI)
The corresponding estimation of the probability that inlf $=1$ for educ $=10$ and at the means of all other explanatory variables with STATA leads to the following results (see also the results on page 37):

Remark: The command "margins, at((means)_all educ=10)" on page 31 on the basis of an ML estimation that includes "educ" as explanatory variable leads to the estimated probability 0.4625 or 46.25%.

Example: Determinants of labor force participation of married women (XII)

Example: Determinants of labor force participation of married women (XIII)

[^0]General remarks to binary response models:

- In the case of perfect prediction for a binary explanatory variable d_{i}, the ML estimation of binary probit and logit models is not possible. Perfect prediction for the dependent variable y_{i} arises if $y_{i}=1$ whenever $d_{i}=1$, if $y_{i}=0$ whenever $d_{i}=1$, if $y_{i}=1$ whenever $d_{i}=0$, or if $y_{i}=0$ whenever $d_{i}=0$. This practical problem in specific samples particularly arises for dummy variables d_{i} with a small number of $d_{i}=1$ (e.g. if sectoral dummies are included as explanatory variables, but only a small number of firms belongs to a specific industry). These binary explanatory variables have to be dropped which is made by econometric software packages such as STATA by default.
- In the case of linear regression models, heteroskedasticity is not a strong problem since the OLS estimators remain unbiased and consistent and heteroskedasticity robust t statistics can be applied. In contrast, heteroskedasticity in binary response models is a stronger problem. Indeed the ML estimators remain consistent if the heteroskedasticity is unrelated to the explanatory variables. However, if it is related to the explanatory variables, the ML estimators are generally inconsistent so that it could only be accounted for in the log-likelihood function if the form of heteroskedasticity is known.
- As in most econometric models, endogenous variables or endogeneity is also a strong problem in binary response models since the ML estimator is inconsistent in this case. Against this background, several binary response models with endogenous regressors have been developed and discussed. ${ }^{42}$

Binary discrete choice models:

- The analysis of binary response models can be related to microeconomic models of choice by interpreting data on individual choices between the two alternatives $\mathrm{j}=0,1$ of the binary dependent variable y_{i} (e.g. employment or unemployment) within the random utility model
- In the following u_{i} is the (unobservable) utility of observation ifrom alternative $\mathrm{j}=0$ and $\mathrm{u}_{\mathrm{i} 1}$ is the utility from alternative $\mathrm{j}=1$. It is assumed that i chooses alternative $j=1$ if $u_{i 1}>u_{i 0}$ and alternative $j=0$ if $u_{i 1} \leq u_{i 0}$.
- It is further assumed that the following hypothetical utility function $u_{i j}$ of i for alternative j depends on a vector $\mathrm{x}_{\mathrm{i}}=\left(\mathrm{x}_{\mathrm{i} 1}, \ldots, \mathrm{x}_{\mathrm{ik}_{1}}\right)^{\prime}$ of individual characteristics as examined so far, which are constant across both alternatives $j=0,1$ (e.g. age, education), and additionally a vector $\mathrm{z}_{\mathrm{ij}}=\left(\mathrm{z}_{\mathrm{ij} 1}, \ldots, \mathrm{z}_{\mathrm{ij} \mathrm{k}_{2}}\right)^{\prime}$ of alternative specific attributes which can vary across the alternatives (e.g. price for a means of transportation):
$\mathrm{u}_{\mathrm{ij}}=\beta_{\mathrm{j}}^{\prime} \mathrm{x}_{\mathrm{i}}+\gamma^{\prime} \mathrm{z}_{\mathrm{ij}}+\varepsilon_{\mathrm{ij}}$ for $\mathrm{i}=1, \ldots, \mathrm{n} ; \mathrm{j}=0,1$
$\beta_{\mathrm{j}}=\left(\beta_{\mathrm{j} 1}, \ldots, \beta_{\mathrm{jk}_{1}}\right)^{\text {a }}$ and $\mathrm{\gamma}=\left(\gamma_{1}, \ldots, \gamma_{\mathrm{k}_{2}}\right)^{\text {a }}$ are the unknown parameter vectors that have to be estimated and $\varepsilon_{\mathrm{ij}}$ is an unobservable stochastic component.
- The probabilities for $y_{i}=0$ and $y_{i}=1$ can then be calculated by computing the probabilities that $u_{i 0}$ or $u_{i 1}$ is higher, respectively. Different binary discrete choice models (such as binary probit and logit models) result from different assumptions for the stochastic component. This discrete choice analysis is 43 particularly important for multinomial response models.

[^0]: Note: dy/dx for factor levels is the discrete change from the base level.

