3. Multinomial response models

3.1 General model approaches

Multinomial dependent variables in a microeconometric analysis:

These qualitative variables have more than two possible mutually exclusive ca-
tegories (although binary variables can be considered as special cases of mul-
tinomial variables) which are not ordered

Examples for microeconometric analyses with multinomial response models:

Analysis of the choice of a person among several means of transportation
(e.g. car, bus, train)

Analysis of the employment status of a person (e.g. blue-collar worker,
white-collar employee, self-employed person)

Analysis of the portfolio structure of a household (e.g. no securities, only
stocks, only bonds, bonds and stocks)

Analysis of the choice of a voter among several parties (e.g. CDU/CSU,
SPD, Bundnis 90/Die Grunen, Die Linke)

Analysis of the innovation status of a firm (e.g. no innovations, only product
Innovations, only process innovations, product and process innovations)

Analysis of the choice of a car buyer among several energy sources (e.g.
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gasoline, diesel, hybrid, gas, biofuel, hydrogen, electric)



Utility function of multinomial discrete choice models:

The basis of the microeconomic motivation is that an observation i can choose
among J mutually exclusive alternatives of a qualitative variable. As discussed
before, the hypothetical (linear) utility function of i for alternative j is as follows:

u;=Bx;+vz;+g fori=1..,nj=1,.,J

The deterministic component of the utility function comprises the k;-dimensio-
nal vector x, = (X,..., X;.) Of individual characteristics, the k,-dimensional vec-
tor z; = (Zjy,--- zijkz)‘ of a}ternative specific attributes, and corresponding para-
meter vggtors B, = (Bigs---» Bjkl)‘ andy = (Yq,--- ykz)‘. The sftochastic component
of the utility function refers to the error term ¢g; that comprises all unobservable
factors. The z; are summarized in the J-k,-dimensional vector z; = (z,..., Z;5)
and then the x; and z; are summarized in the (k,+J-k,)-dimensional vector X; =
(X;, ). The B, are summarized in the J-k;-dimensional vector B = (8'y,..., B;)"

While the utilities u; are unobservable, the realizations of the following dummy
variables can be observed (i=1,...,n;j=1,..., J):
y = {1 if i chooses alternative j

ij

0 otherwise

According to the stochastic utility maximization hypothesis, observation i choo-
ses category | if the utility of alternative j is the largest of all utilities, i.e. u; > u;
i=1,...,n,j=1,...,d,]#]).
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Choice probabilities (i.e. probabilities that i chooses j) in multinomial discrete
choice models:

pij(xi, B) Y) = P(Yij:1|Xja B) Y) = P(uij > uij’; VJ # jllxii B) Y)
= P(B'jxi—l— y'z..—|— & > Bllx.—k Y'Z T €5
B'in‘FYZ T 8 > BJlX +YZ|11+ 8|Jl’
B'jxi+ yzij Eij = BJ+1X T ’YZIJ+1+ Ejj+1s- -
BIin—i_ Yzt g > Byx+v'z,+ 8iJ)
= P( i1~ &jj (B it V'Zij) - (BI1Xi+ Y'Zi)s- -
Eij17 &j (B T V'Zij) - (Blj-lxi—l_ V'Zi,j-1);
Eij+1™ Eij (B it V'Zij) il (B'j+1xi+ V'Zij1)5e o
€)= & < (Bin+ V'Zij) - (BIJXPL V'Zia))
= P<8ij'_ & < (B}Xi—i_ Y'Zij) - (B'j'xi—i_ V'Zij')Q V) # J')
These choice probabilities are the basis for the discrete choice analysis. Diffe-
rent distribution assumptions for the stochastic component ¢; lead to different

choice probabilities and thus to different multinomial discrete choice models. 4
The special case of J = 2 leads to binary discrete choice models.



ML estimation in multinomial discrete choice models:

In the following, the J-dimensional vector y, = (Yiy,.-., ¥i;) comprises the obser-
vable dependent variables as discussed above and X; comprises all explanato-
ry variables. Furthermore, all (free) parameters (particularly in § and y, but pos-
sibly also variance covariance parameters, see later) are summarized in the
vector 6. In the case of multinomial discrete choice models, the y; are multino-
mially distributed with the parameters 1 and the choice probabilities p;(X;, B, y).
Based on a random sample (X, y,) fori=1,..., n observations, the likelihood
and log-likelihood functions are:

L(6) = F:fi(Yi; X, 0) = Hpil(Xia 0)"pp(X;, 0)7 - pyy(X;, 0)°
=1 i=1
n_ J

- I_H 0 (X, e)yij

n J

logL(0) = ZZYilegpij(Xia 0)

i=1 j=1
The ML estimator solves the first-order conditions for maximizing the log-likeli-
hood function. Thus by equalizing the score with zero it follows:

J 6Iogp (X,, 0)

= argsolves Zs (0) —ZZ Vi =0 .

i=1 j=1




Fundamental distribution assumption for multinomial logit models:

The error terms ¢; are independently and identically standard extreme value
distributed over all categories j = 1,..., J. With this assumption, a single diffe-
rence of two ¢; has a standard logistic distribution. In the special case of J = 2
the multinomial logit model falls back to the binary logit model.

Choice probabilities in general multinomial logit models (i=1,...,n;j=1,..., J):

Bixit vz

pij(xi’ B, v) =P(y;=1IX;, B, v) = —

Z eB'mXi T Y'Zim
m=1

As required, these values vary between zero and one and add up to one over
all j.

However, these choice probabilities comprise too many parameters in 3 and
thus are not identified since any constant can be added to each of the parame-
ter vectors B,,..., B; without changing the probabilities, i.e. only the differences
between B,,..., B, are relevant. Therefore, one of these vectors has to be para-
meterized. Common approaches are to set the parameter vector for alternative
1 or for alternative J to zero, i.e. B; = 0 or B; = 0. In the following, we consider
the second approach.



On the basis of this normalization 3; = O, the category J is the base category
(or baseline) and provides the reference point for all other alternatives. This
has to be considered for the interpretation of the estimation results (see later).
If the numerator and denominator of the choice probabilities are divided by
eB,x+vz; = @0+vz; = @Y7y, it follows:

eBIin"—Y'(Zij'ZiJ) .
P (Xi, B, v) = T forj=1,...,J-1
1+ eBmXi+Y'(Zim'ZiJ)
1
piJ (Xi’ B’ Y) - 1
1+ eBmXi+Y'(Zim'ZiJ)

— These choice probabilities refer to the most flexible multinomial logit model
approach which includes both individual characteristics and alternative spe-
fic attributes as explanatory variables. In many empirical studies, however,
only one class of explanatory variables is examined. While the term “multi-
nomial logit model” is not consistently used, it often refers to model approa-
ches that exclusively include individual characteristics. Approaches with on-
ly alternative specific attributes as explanatory variables are often called
“conditional logit models”.



3.2 (Pure) multinomial logit models

Choice probabilities in (pure) multinomial logit models (i=1,...,n;j=1,..., J):

Bix;

e’

pij(xi’ P) = 5 ,
ZeBmXi
m=1

Based on the aforementioned parameterization 3; = O, the choice probabilities
in such approaches can be alternatively written as follows:
Bix;
e’

p;(Xi, B) = = forj=1,...,J-1

1 + Z eB‘mXi
m=1

P, (X, B) = J-Ji

1+ Z eB'mXi
m=1

The inclusion of the ML estimator f into the choice probabilities leads to the
corresponding estimator py(x;, B) of the choice probabilities for all categories
j=1,..., J. According to these formulas, the (estimators of) choice probabilities
for alternative j imply that they do not only depend on the (estimator of the)
parameter vector f§;, but on all other (estimators of) parameter vectors.




In line with binary logit models (which are a special case of these multinomial
logit models) and binary probit models, the parameter estimators furthermore
cannot be interpreted like the estimators of the effect of the respective explana-
tory variable. Instead, it follows for the estimator of the (partial) marginal proba-
bility effect of a (continuous) individual characteristic x;, as explanatory variable
in (pure) multinomial logit models (i = 1,..., n):

aIﬁi'(xiv 6) A J-1 o |
Jax_h IIB)|: jh Z: |9B)Bmh:| forjzl,...,J-l
op.. (X, B X = o
p”a( 2B = (¢, D)X Bin (51 BB
Xih m=1
Interpretation:

* This formula refers to the estimator of the effect of a small infinitesimal in-
crease of xy, on the change of the probability to choose alternative j

« As aforementioned, this estimator of the marginal probability effect does not
only depend on the ML estimator Gjh for j, but also on the estimators of the
choice probabilities and thus the parameters for all other categories. Fur-
thermore, it varies with different values of all individual characteristics.

* In contrast to the case of binary logit models, Bh not even indicates the di-
rection of the estimator of marginal probability effects l.e. a positive (nega—
tive) th does not necessarily lead to positive (negative) estimators



Based onyy,..., ¥, and X,..., X,, it follows for the estimator of the average (par-
tial) marginal probability effect (AMPE,;) of the individual characteristic x;,
across all i in (pure) multinomial Iogit models:

A

AMP Hzpu(xl’ B)|:th Zplm(XM B)Bmh:| fOI'j - 19"'9 J-1

A

AMPE,; = — { P (Xi, B)Zﬁim(xia B)Bmh:|

n m=1

The (partial) marginal probability effect at the means of the individual characte-
ristics across i = 1,..., n can be correspondingly estimated.

For discrete or qualitative individual characteristics as explanatory variables
and larger changes of (continuous) individual characteristics the estimator of
marginal probability effects can again lead to very inaccurate results. The esti-
mator of a discrete change of the choice probabilities p;(x;, #) due to a discrete
change Ax,, in (pure) multinomial logit models is as follows (for j=1,..., J-1):

AP;(x;, B) = AP(y,=1[x;, B) = P(y;=1[x,+Ax,, B) - P(y,;=1Ix;, B)
Bix;

BJXI+ thAxlh

e

= 1 ] - 1
BmXi T BmhAXin BmXi
1+ E e 1+ E e
m=1 m=1

e




Since the sum over the estimated choice probabilities for all alternatives must
be equal to one, the change of one estimator of probabilities is determined by
the J-1 other changes so that it follows for the estimator of a discrete change of
the choice probability p;(x;, B) due to Ax;:

Ap;, (X, ﬁ) = 'ZAﬁij(Xiﬁ ﬁ)

Remarks:

* As in the case of estimated marginal probability effects, the sign of the esti-
mated change Ap;(x; B) forallj=1,..., J due to a discrete change Ax,, of the
individual characteristic x;, need not coincide with the sign of the correspon-
ding ML estimator th forj. If e.g. th IS positive, the numerator of the first
term in Ap;(X;, B) increases with increasing x,,. However, it is possible that
the denominator increases even more due to the values B, (Ym # j).

* As in the case of estimated marginal probability effects, the estimated chan-
ges Ap;(x; B) vary with different values not only of x,, but also with different
values of all other individual characteristics and thus across different obser-
vations

* On this basis, average discrete changes of p;(x;, B) (j = 1,..., J) across all i
and corresponding discrete changes of p;(x;, B) at the means of the individu-
al characteristics across i = 1,..., n can be estimated 10



While the ML estimator th neither indicates the extent nor the direction of the
effect of an individual characteristic x;, on the estimator pj(x;, B) of the choice
probability for alternative j, it nevertheless has an important informative value.
This can be recognized by dividing the estimator p;(x;, B) of the choice probabi-

lity for j and the corresponding estimator p,,(x;, B) for the base category J. For
the so-called odds it follows for j=1,..., J-1:

eB'in
1+ ) e’
( i B) m=1 — eB'in — eﬁjlxi1+"'+ ﬁjklxikl
pulx, By 1
J-1

1 + Z eBImXi
m=1

Interpretation:

This formula shows that although the ML estimator th does not indicate the ef-
fect of x;, on the estimator pj(x;, B) of the choice probability for j alone, it indi-
cates the direction of the effect on p;(x; B) relative to the estimator p,;(x;, B) of
the choice probability for the base category J. If th IS p05|t|ve (negative), an in-
crease of x;, increases (decreases) the odds, i.e. p;(x;, B) relative to p,(x;, ).
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The previous analysis of the estimation of the probability effects relative to the
base category can be extended to the discussion of the odds for two arbitrary

alternatives j and r. It follows (Vr # j):

eﬁ‘jxi
A A 1+ ) el Bx,
Py (X, [i’) _ ; e = OB = BBt B By g
Pi (Xi, B) g eBr

J-1
1 + Z eBmXi
m=1

Interpretation:

This formula implies that the difference between the two ML estimators B]h and
B, indicates the direction of the effect of x,, on the estimator pj (x, B) of the
choice probability for categoryj relative to the estimator p; (x;, B) of the choice
probability for category r. If th IS greater (Iess) than f3,,, an increase of X, in-
creases (decreases) pj(x; B) relative to p..(x, P).
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Example: Determinants of secondary school choice (1)

By using a (pure) multinomial logit model, the effect of the following individual
characteristics on the choice of 675 pupils in Germany between the three se-
condary school types Hauptschule, Realschule, and Gymnasium is analyzed:

Years of education of the mother (motheduc) as mainly interesting explana-
tory variable

Dummy variable for labor force participation of the mother (mothinlf) that
takes the value one if the mother is employed

Logarithm of household income (loghhincome)
Logarithm of household size (loghhsize)

Rank by age among the siblings (birthorder)
Year dummies for 1995-2002

The three alternatives of the multinomial dependent variable secondary school
(schooltype) take the values one for Hauptschule, two for Realschule, and
three for Gymnasium, whereby Hauptschule is chosen as base category. As a
consequence, two vectors of parameters for the alternatives Realschule and
Gymnasium are estimated. The ML estimation of the multinomial logit model
with STATA leads to the following results:



Example: Determinants of secondary school choice (ll)

mlogit schooltype motheduc mothinlf loghhincome loghhsize birthorder year1995 yearl996
yearl997 yearl998 yearl999 year2000 year2001 year2002, base(l)

Multinomial logistic regression Number of obs = 675
LR chi2 (26) = 221.20
Prob > chi2 = 0.0000
Log likelihood = -622.24169 Pseudo R2 = 0.1509
schooltype | Coef std. Err z P>|z| [95% Conf. Intervall]
_____________ o
1 | (base outcome)
_____________ o
2 |
motheduc | .2987624 .0789985 3.78 0.000 .1439282 .4535967
mothinlf | -.3910109 .2284116 -1.71 0.087 -.8386895 .0566677
loghhincome | .4073928 .2254481 1.81 0.071 -.0344774 .8492631
loghhsize | -1.145075 .4452722 -2.57 0.010 -2.017792 -.2723571
birthorder | -.1229556 .1255023 -0.98 0.327 -.3689357 .1230245
yearl1995 | .0767306 .4236393 0.18 0.856 -.753587 .9070483
yearl996 | .2193122 .4457021 0.49 0.623 .6542478 1.092872
yearl1997 | .1001198 .4370522 -0.23 0.819 .9567264 .7564868
yearl1998 | .4394545 .4872894 0.90 0.367 .5156151 1.394524
yearl1999 | .5753325 .4617021 1.25 0.213 .3295869 1.480252
year2000 | .1609341 .4550522 0.35 0.724 .7309519 1.05282
year2001 | .4590218 .4554232 1.01 0.314 .4335913 1.351635
year2002 | .1428137 .4488494 0.32 0.750 .7369149 1.022542
_cons | -5.795185 2.312289 -2.51 0.012 -10.32719 -1.263182
_____________ o



_____________ o
|
motheduc | .6554335 .0811063 8.08 0.000 .496468 .814399
mothinlf | -.3775209 .2353811 -1.60 0.109 -.8388595 .0838177
loghhincome | 1.710194 .2832594 6.04 0.000 1.155016 2.265372
loghhsize | -1.471701 .4843607 -3.04 0.002 -2.42103 -.5223712
birthorder | -.2736975 .1359262 -2.01 0.044 -.540108 -.007287
yearl995 | .0761265 .4281856 0.18 0.859 -.7631019 .915355
yearl996 | .1559678 .4471054 0.35 0.727 -.7203426 1.032278
yearl997 | -.6671805 .4582662 -1.46 0.145 -1.565366 .2310047
yearl998 | .1200219 .4989005 0.24 0.810 -.8578052 1.097849
yearl999 | -.3979308 .4970546 -0.80 0.423 -1.37214 .5762783
year2000 | -.0598782 .4663055 -0.13 0.898 -.9738202 .8540638
year2001 | .0855021 .4662402 0.18 0.854 -.8283119 .9993161
year2002 | -.3087189 .4494414 -0.69 0.492 -1.189608 .5721701
_cons | -23.05832 2.962141 -7.78 0.000 -28.86401 -17.25263

As already discussed in the analysis of binary logit and probit models, the pre-
sentation of estimation results in empirical studies particularly comprises the
parameter estimates, the z statistics or estimated standard deviations of the
estimated parameters, and some information about the significance of the re-
jection of the null hypothesis that the parameter is zero. An exemplary table
can have the following form:



Example: Determinants of secondary school choice (1V)

ML estimates (z statistics), dependent variable: school type, base category: Hauptschule

Explanatory variables Realschule Gymnasium
motheduc 0.299*** 0.655***
(3.78) (8.08)
mothinlf -0.391* -0.378
(-1.71) (-1.60)
loghhincome 0.407* 1.710 ***
(1.81) (6.04)
loghhsize -1.145** -1.472%**
(-2.57) (-3.04)
birthorder -0.123 -0.274**
(-0.98) (-2.01)
constant -5.795** -23.058***
(-2.51) (-7.78)
Year dummies 1995-2002 Yes
Maximum value of -622.24
log-likelihood function
Likelihood ratio test statistic 221.20***

(all parameters)

Note: *** (**, *) means that the appropriate parameter is different from zero or that the underlying null hypothesis is

rejected at the 1% (5%, 10%) significance level, n = 675



Example: Determinants of secondary school choice (V)

Interpretation:

The value of 221.20 for the likelihood ratio test statistic implies that the null
hypothesis that all 26 parameters are zero (which would imply that no expla-
natory variable has an effect on the choice of Realschule or Gymnasium re-
lative to Hauptschule) can be rejected at any common significance level

The parameter estimates for motheduc are positive for both alternatives Re-
alschule and Gymnasium and highly significantly different from zero due to
the z statistics of 3.78 for Realschule and 8.08 for Gymnasium

These parameter estimates therefore imply that the years of education of
the mother have a strong significantly positive effect on the (probability of
the) choice of Realschule compared with Hauptschule and additionally on
the (probability of the) choice of Gymnasium compared with Hauptschule

The negative value of the difference 0.299-0.655 = -0.356 of the parameter
estimates for motheduc for Realschule and Gymnasium implies that the
years of education of the mother have a negative effect on the choice of Re-
alschule relative to Gymnasium or conversely a positive effect on the choice
of Gymnasium relative to Realschule. The significance of these effects has
to be analyzed by choosing Realschule or Gymnasium as base category.



Example: Determinants of secondary school choice (VI)

Wald and likelihood ratio tests:

As an example, the null hypothesis that motheduc has no effect on the secon-
dary school choice, i.e. that the two corresponding parameters are zero, is tes-
ted. The command for the Wald test in STATA is:

test motheduc

(1) [Hauptschule]o.motheduc = 0
( 2) [Realschule]motheduc = 0
( 3) [Gymnasium]motheduc = 0
Constraint 1 dropped
chi2 ( 2) 73.70

Prob > chi?2 0.0000

With respect to the application of the likelihood ratio test, the STATA command
“estimates store unrestr’ after the unrestricted ML estimation and the command
“‘estimates store restr” after the restricted ML estimation are necessary (the
choice of the names is again arbitrary). The command for the likelihood ratio
test in STATA is then:

lrtest unrestr restr

Likelihood-ratio test LR chi2 (2)
(Assumption: restr nested in unrestr) Prob > chi?2

107.99
0.0000



Example: Determinants of secondary school choice (VII)

The estimation of the average marginal probability effect of motheduc across
all 675 pupils on the choice of Gymnasium with STATA leads to the following
results:

margins, dydx (motheduc) predict (outcome (3))

Average marginal effects Number of obs = 675
Model VCE : OIM

Expression : Pr(schooltype==3), predict (outcome (3))

dy/dx w.r.t. : motheduc

dy/dx Std. Err. z P>|z]| [95% Conf. Interval]

This value of 0.0886 means that an increase of the years of education of the
mother by one (unit) leads to an approximately estimated increase of the
choice probability for Gymnasium by 8.86 percentage points. The correspon-
ding values for Hauptschule and Realschule are -0.0797 and -0.0089. These
values differ from the estimates of the marginal probability effect at the means
of the individual characteristics across all 675 pupils. For the effects on the
choice of Gymnasium the estimation with STATA leads to the following results; 4



Example: Determinants of secondary school choice (VIII)

margins,

Conditional marginal effects
Model VCE

dydx (motheduc)

Expression
dy/dx w.r.t.

at

OIM

Pr (schooltype==3),

motheduc
motheduc
mothinlf

loghhincome
loghhsize
birthorder

yearl995
yearl996
yearl997
yearl998
yearl1999
year2000
year2001
year2002

11.44296
.5525926
11.05839
1.412881
1.76
.1377778
.12
L1111111
.0888889
.1007407
.1037037
.1185185
.117037

Std. Err. z

atmeans predict (outcome (3))

Number of obs

predict (outcome (3))

[95% Conf.

675

Interval]



Example: Determinants of secondary school choice (1X)

The estimation of the average probabilities of the choice of Gymnasium across

all 675 pupils for the minimum and maximum values of motheduc = 7 and

motheduc = 18 years with STATA leads to the following results:

margins, at (motheduc=7) predict (outcome (3))

Predictive margins Number of obs = 675
Model VCE : OIM
Expression : Pr(schooltype==Gymnasium), predict (outcome (3))
at : motheduc = 7

| Delta-method

| Margin Std. Err. z P>|z| [95% Conf. Interval]
_____________ +________________________________________________________________

cons | .0747206 .01906424 3.80 0.000 .0362222 .1132189

margins, at (motheduc=18) predict (outcome (3))

Predictive margins Number of obs = 675
Model VCE : OIM
Expression : Pr(schooltype==Gymnasium), predict (outcome (3))
at : motheduc = 18

| Delta-method

| Margin Std. Err. z P>|z| [95% Conf. Interval]
_____________ _|_________________________________________________________________

cons | .9023163 .0326609 27.63 0.000 .838302 .9663305



Example: Determinants of secondary school choice (X)

In contrast, the estimation of e.g. the probability of the choice of Gymnasium

for the maximum value of motheduc = 18 years at the means of the other indi-

vidual characteristics with STATA leads to the following results:

margins, at((means) all motheduc=18)

Adjusted predictions
: OIM

Model VCE

Expression
at

: Pr(schooltype==3

: motheduc

mothinlf

loghhincome
loghhsize
birthorder

yearl995
yearl996
yearl997
yearl1998
yearl1999
year2000
year2001
year2002

| | | | | | (e

18
5525926

11.05839
1.412881

1.76

.1377778

.12

L1111111
.0888889
.1007407
.1037037
.1185185

.117037

predict (outcome (3))

Number of obs

, predict (outcome (3))

675

Margin

Delta-method
Std. Err.

[95% Conf.

Intervall]



Example: Determinants of secondary school choice (XI)

The analysis of discrete changes of the choice probabilities for Hauptschule,
Realschule, and Gymnasium due to a discrete change of motheduc requires
the estimation of differences between the probabilities (an alternative for a dis-
crete explanatory variable such as mothinlf is the ML estimation with STATA by
prefixing “i.” as well as the use of the commands as before, like “margins,
dydx(mothinlf) predict(outcome(3))”). For example, the average probabilities
across all 675 pupils for several values of motheduc can be estimated. The
following table reports the results:

motheduc (in years) Hauptschule Realschule Gymnasium
7 0.6788 0.2465 0.0747
9 0.4966 0.3171 0.1864
10 0.3953 0.3339 0.2708
11 0.2975 0.3322 0.3703
12 0.2112 0.3121 0.4766
13 0.1418 0.2777 0.5805
14 0.0906 0.2353 0.6741
15 0.0555 0.1914 0.7531
16 0.0329 0.1506 0.8165
18 0.0108 0.0869 0.9023 23




Example: Determinants of secondary school choice (XII)

Interpretation:

The increase from the minimum value of seven years to the maximum value
of 18 years of education of the mother decreases the estimated average
choice probabilities for Hauptschule and Realschule by 66.80 and 15.96
percentage points (from 0.6788 to 0.0108 and from 0.2465 to 0.0869), but
increases the estimated average choice probability for Gymnasium by 82.76
percentage points (from 0.0747 to 0.9023). In the case of Gymnasium this
means an immense increase of more than 1100%.

The estimated change of the average choice probabilities for an increase of
the years of education of the mother from nine to ten (which can be interpre-
ted as the effect of “mittlere Reife”, i.e. the Realschule degree for the mo-
ther) is -10.13 percentage points for the case of Hauptschule and 8.44 per-
centage points for the case of Gymnasium

The values for an increase of motheduc from ten to 13 years (which can be
interpreted as the effect of “Abitur”, i.e. the Gymnasium degree for the mo-
ther) are -0.2535 for Hauptschule and 0.3097 for Gymnasium

The values for an increase of motheduc from 13 to 16 years (which can be
interpreted as the effect of an university degree for the mother) are -0.1089
for Hauptschule and 0.2360 for Gymnasium 24



3.3 Conditional logit models

Choice probalbilities in conditional logit models (i=1,...,n;j=1,..., J):

eY'Zij
Pz V) = ——
ZeY'Zim
m=1
The inclusion of the ML estimator y into these choice probabilities leads to the
corresponding estimator p;(z;, ¥) of the choice probabilities for all categories
j=1,...,J.

Differences to (pure) multinomial logit models:

« The ML estimator ¥ is no longer choice-specific so that no normalization is
necessary

« The estimators of the choice probabilities for alternative j do not only depend
on the attributes z;, but also on all other alternative specific attributes in
2= (Zigs---» Ziy)

« Since the alternative specific attributes vary across the categories and the
observations, the ML estimation of conditional logit models with econometric
software packages such as STATA requires another specific data organiza-

tion (“long format” versus “wide format” before)
25



Example: Data organization in the conditional logit model

In order to examine the effect of the daily travel price (in Euro) and daily travel

time (in minutes) on the choice between the use of car alone, carpool, bus, and
train for the journey to work, the following table shows an exemplary data orga-

nization for the first three persons:

Person i Transport modes Choice Travel price Travel time
1 Car alone 0 6 50
1 Carpool 0 3 50
1 Bus 0 7 60
1 Train 1 9 30
2 Car alone 1 12 70
2 Carpool 0 4 70
2 Bus 0 7 90
2 Train 0 6 80
3 Car alone 0 3 20
3 Carpool 1 1 20
3 Bus 0 4 30
3 Train 0 5 20




Estimator of the (partial) marginal probability effect of a (continuous) alternative
specific attribute z;, of alternative ] on the choice of the same alternative j in
conditional logit models (i=1,...,n,j=1,..., J):

apij (Zi’ ?)
6Zijh
Estimator of the (partial) marginal probability effect of a (continuous) alternative

specific attribute z;,, of alternative m on the choice of another alternative j in
conditional logit models (i=1,...,n,j=1,..., J):

aﬁ)ij (Zi’ ?)
azimh

In contrast to (pure) multinomial logit models, the sign of parameter estimators
gives information about the direction of estimated marginal probability effects:

« If ¥, (e.g. the estimated parameter for price) is positive (negative), an in-
crease of an attribute zy, for category j (e.g. price for bus) leads to an in-
crease (decrease) of pj(z;, y) for the same category j (e.g. the estimated
choice probability for bus)

« If ¥, (e.g. the estimated parameter for price) is positive (negative), an in-
crease of an attribute z;,, for category m (e.g. price for train) leads to a de-
crease (increase) of p;(z;, y) for another category j (e.g. the estimated choice
probability for bus) 27
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Example: Determinants of fishing mode choice (1)

By using a conditional logit model, the effect of the following two alternative
specific attributes on the choice between the four fishing modes charter (i.e. fi-
shing on a charter boat), pier (i.e. fishing at the pier), private (i.e. fishing on a
private boat), and beach (i.e. fishing on the beach) is examined on the basis of
data from 1182 persons:

« Price (i.e. price of fishing mode in US dollars)

« Catchrate (i.e. average number of favorite fishes caught per hour by fishing
mode)

In addition to such attributes, conditional logit models should generally include
alternative specific constants in order to capture initial preferences for the diffe-
rent alternatives. Similar to the case of the parameters of individual characteris-
tics in (pure) multinomial logit models, only J-1 alternative specific constants
can be included so that category J is again the base category. The ML estima-
tions of the conditional logit models (using beach as base category, respective-
ly) lead to the following results (in line with the table on page 26, “fishmode” is
a possible name for the identification of the four alternatives, “choice” is a pos-
sible name for the dependent variable, and “id” is a possible name for the iden-
tification of the persons in the sample):



Example: Determinants of fishing mode choice (ll)

asclogit choice price, case(id)

basealternative (beach)

Alternative-specific conditional logit

Case variable: id

Alternative variable: fishmode

Log likelihood = -1372.9332

alternatives (fishmode)

4728
1182

4.0

281.76
0.0000

choice Coef Std. Err
fishmode
price -.0179501 .0010694

-16.79

noconstant

Number of obs =

Number of cases =

Alts per case: min =

avg =

max =

Wald chi2 (1) =

Prob > chi?2 =

P>|z| [95% Conf.
0.000 -.0200401

Interval]

-.0158542

29



Example: Determinants of fishing mode choice (lll)

asclogit choice price,

case (id)

Alternative-specific conditional logit
Case variable: id

Alternative variable:

fishmode

Log likelihood = -1236.7578

alternatives (fishmode)

basealternative (beach)

Number of obs
Number of cases

Alts per case: min =

avg

max =

Wald chi2 (1)
Prob > chi?2

4728
1182

4
4.0
4

215.97
0.0000



Example: Determinants of fishing mode choice (1V)

asclogit choice price catchrate,

Alternative-specific conditional logit
Case variable: id

Alternative variable:

fishmode

Log likelihood = -1230.7838

case (1id)

alternatives (fishmode)

Number of obs
Number of cases

Alts per case: min =

avg

max =

Wald chi2 (2)
Prob > chi?2

4728
1182

4
4.0
4

229.35
0.0000

fishmode
price
catchrate

-.0247896
.3771689

.0017044
.1099707

-.0281301
.1616303

-.021449
.5927074

basealternative (beach)



Example: Determinants of fishing mode choice (V)

An exemplary summary table for all estimation results has the following form

ML estimates (z statistics), dependent variable: fishing mode choice, base category: beach

Explanatory variables Model (1) Model (2) Model (3)
price -0.018*** -0.025*** -0.025%***
(-16.79) (-14.70) (-14.54)
catchrate - - 0.377***
(3.43)
constant: charter - 1.669*** 1.499***
(13.49) (11.28)
constant: pier - 0.284** 0.307***
(2.48) (2.68)
constant: private - 0.850*** 0.871***
(7.47) (7.64)
Maximum value of -1372.93 -1236.76 -1230.78
log-likelihood function
Wald test statistic 281.76*** 215.97*** 229.35%**

(all parameters)

Note: *** (**, *) means that the appropriate parameter is different from zero or that the underlying null hypothesis is
rejected at the 1% (5%, 10%) significance level, n = 1182



Example: Determinants of fishing mode choice (VI)

Interpretation:

« The price of a fishing mode j significantly decreases the probability of the
choice of j (= estimated own price effect) and increases the probability of the
choice of another fishing mode m # j (= estimated cross price effect), ceteris
paribus. Catchrate has a significantly positive effect on the own alternative.

« The initial preferences are significantly higher for charter, pier, and private
relative to beach

Wald and likelihood ratio tests:

As an example, the null hypothesis that neither price nor catchrate has any ef-
fect on the fishing mode choice in model (3), i.e. that the two corresponding pa-
rameters are zero, is tested. The command for the Wald test in STATA is (this
Wald test statistic is already reported in the underlying ML estimation with STA-
TA since price and catchrate are the only explanatory variables so that the tes-
ted null hypotheses are identical):

test price=catchrate=0

(1) [fishmode]price - [fishmode]catchrate = 0
(2) [fishmode]price = 0
chi2 ( 2) 229.35

Prob > chi? 0.0000 33



Example: Determinants of fishing mode choice (VII)

With respect to the application of the likelihood ratio test, the STATA command
“estimates store unrestr” after the unrestricted ML estimation and the command
“estimates store restr” after the restricted ML estimation are again necessary.
The command for the likelihood ratio test in STATA is then:

lrtest unrestr restr

533.88
0.0000

Likelihood-ratio test LR chi2 (2)
(Assumption: restr nested in unrestr) Prob > chi?2

Estimation of marginal probability effects:

« The estimation of average marginal probability effects is not directly possible
with STATA (up to STATA 15)

« The STATA command “estat mfx” reports the estimated marginal probability
effects at the means of the explanatory variables

« While this refers to all explanatory variables, the additional STATA command
“varlist()” allows the limitation on a subset of explanatory variables

« The marginal probability effects can also be estimated at specific values of
the explanatory variables

The estimation of marginal probability effects for price at the means of the ex-
planatory variables in model (3) with STATA leads to the following results: 34



Example: Determinants of fishing mode choice (VIII)

estat mfx, varlist (price)

Pr (choice = beach|l selected) = .0546071
variable | dp/dx Std. Err. b4 P>|z| [ 95% C.I ] X
__________ +_________________________________________________________________
price |
beach | -.00128 .00012 -10.66 0.000 .001515 -.001044 103.42
charter | .000614 .00006 10.25 0.000 .000497 .000732 84.379
pier | .000098 .000017 5.88 0.000 .000065 .00013 103.42
private | .000568 .000056 10.16 0.000 .000458 .000677 55.257
Pr (choice = charter|l selected) = .45376978
variable | dp/dx Std. Err. Z P>|z| [ 95% C.I ] X
__________ +_________________________________________________________________
price |
beach | .000614 .00006 10.25 0.000 .000497 .000732 103.42
charter | -.006144 .000435 -14.12 0.000 -.006997 -.005291 84.379
pier | .000811 .000071 11.42 0.000 .000671 .00095 103.42
private | .00472 .000437 10.80 0.000 .003863 .005576 55.257
Pr (choice = pier|l selected) = .07206028
variable | dp/dx Std. Err z P>|z| [ 95% C.I ] X
__________ +_________________________________________________________________
price |
beach | .000098 .000017 5.88 0.000 .000065 .00013 103.42
charter | .000811 .000071 11.42 0.000 .000671 .00095 84.379
pier | -.001658 .000137 -12.07 0.000 .001927 -.001389 103.42
private | .000749 .000066 11.30 0.000 .000619 .000879 55.257



Example: Determinants of fishing mode choice (1X)

Pr(choice = private|l selected) = .41956284
variable | dp/dx Std. Err. z P>|z| [ 95% C.I ] X
__________ +_________________________________________________________________
price |
beach | .000568 .000056 10.16 0.000 .000458 .000677 103.42
charter | .00472 .000437 10.80 0.000 .003863 .005576 84.379
pier | .000749 .000066 11.30 0.000 .000619 .000879 103.42
private | -.006037 .000437 -13.82 0.000 -.006893 -.005181 55.257

Interpretation:

« At the means of the explanatory variables the estimated choice probabilities
for the four fishing modes are p;,(z, ¥) = 0.0546 for beach, p;,(z, ¥) = 0.4538
for charter, pi5(z, ¥) = 0.0721 for pier, and p,,(z, ¥) = 0.4196 for private

|t follows e.g. for the estimated marginal probability effects of the price of pri-
vate (charter) on the choice of private (at the means of the explanatory vari-
ables):
Dia(Z, V)[1-Dis(Z, V)Y, = 0.4196-(1-0.4196)-(-0.025) = -0.0060
-Diu(Z, ¥)Dix(Z, )V, = -0.4196-0.4538-(-0.025) = 0.0047
These values imply that an increase of the price of private (charter) by 1 dol-
lar leads to an approximately estimated decrease (increase) of the choice
probability for private by 0.60 (0.47) percentage points.



— As already discussed above, general multinomial logit models can include

both individual characteristics and alternative specific attributes as explana-

tory variables. In this case all previous interpretations from the (pure) multi-

nomial and conditional logit models hold true. Similar to conditional logit mo-
dels it is important to consider the specific data organization (“long format”).

Example: Data organization in the general multinomial logit model

The previous example of the analysis of the choice between the use of car

alone, carpool, bus, and train for the journey to work now additionally includes
the individual characteristic age (in years) as explanatory variable. The follow-

ing table shows an exemplary data organization for the first two persons:

Person i

Transport modes

Choice

Travel price

Travel time

Age

1

Car alone

0

6

50

32

Carpool

3

50

32

Bus

7

60

32

Train

9

30

32

Car alone

12

70

51

Carpool

4

70

51

Bus

90

51

NINININ]IFP|FP ]|

Train

oO|lo|lOoO|r |, |O|O

80

51




Example: Determinants of fishing mode choice (1)

As in the previous example, the effect of price and catchrate on the choice bet-
ween the four fishing modes charter, pier, private, and beach (base category) is
examined on the basis of data from 1182 persons. However, the individual cha-
racteristic (monthly) income (in 1000 US dollars) is now (besides alternative
specific constants) included as an additional explanatory variable. In such ge-
neral multinomial logit models, all STATA commands as in the case of conditio-
nal logit models can be used. On the basis of the ML estimation of this specific
multinomial logit model, the following tests and estimations are considered:

« The Wald test for the null hypothesis that the parameters for price and
catchrate are zero

« The Wald test for the null hypothesis that the parameters for price and in-
come are zero

« The corresponding likelihood ratio test for the null hypothesis that the para-
meters for price and income are zero(based on unrestricted and restricted
ML estimations)

« The estimation of marginal probability effects for price and income at the
means of the explanatory variables

The corresponding STATA commands lead to the following results:



Example: Determinants of fishing mode choice (ll)

asclogit choice price catchrate,

basealternative (beach)

Alternative-specific conditional logit

Case variable

Alternative variable:

Log likelihoo

d

case (id)

alternatives (fishmode)

Number of obs
Number of cases

Alts per case: min =

avg

max =

Wald chi2 (5)
Prob > chi?2

casevars (income)

4728
1182

4
4.0
4

252.98
0.0000

fishmode
price
catchrate

charter
income

-.0285106
.1426302

-.0217225
.5729337

-.131958
1.255235

.0653745
2.133497

-.2268288
.3457992

-.0283255
1.210119

id
fishmode
= -1215.1376
Coef Std. Err
-.0251166 .0017317
.357782 .1097733
(base alternative)
-.0332917 .0503409
1.694366 .2240506
-.1275771 .0506395
. 7779593 .2204939
.0894398 .0500671
.5272788 .2227927

-.0086898
.0906132

.1875694
.9639444



Example: Determinants of fishing mode choice (lll)

test price catchrate

(1) [fishmode]price = 0
( 2) [fishmode]catchrate = 0
chi2( 2) = 226.79
Prob > chi2 = 0.0000
test price income
(1) [fishmode]price = 0
( 2) [charter]income = 0
( 3) [pier]income = 0
( 4) [private]income = 0
chi2( 4) = 235.66
Prob > chi2 = 0.0000

estimates store unrestricted

asclogit choice catchrate, case(id) alternatives (fishmode) basealternative (beach)
estimates store restricted

lrtest unrestricted restricted

Likelihood-ratio test LR chiz2 (4) = 547.94
(Assumption: restricted nested in unrestricted) Prob > chi2 = 0.0000

40



Example: Determinants of fishing mode choice (1V)

estat mfx,

Pr (choice =

beach|1l selected)

varlist (price income)

.05248806

beach

casevars
income

-.001249
.000609
.000087
.000553

.000121
.000061
.000016
.000056

.001487
.000489
.000055
.000443

-.001011
.000729
.000118
.000663

beach

casevars
income

.000609
-.006243
.000764
.00487

.000061
.000441
.000071
.000452

.000489
.007108
.000624
.003983

.000729
-.005378
.000904
.005756



Example: Determinants of fishing mode choice (V)

.000055
.000624
.001816
.000565

.000118
.000904
-.001274
.000822

Pr (choice = pier|l selected) = .06584968
variable | dp/dx Std. Err.
_____________ +
price |
beach | .000087 .000016 5.42
charter | .0007064 .000071 10.69
pier | -.001545 .000138 -11.16
private | .000694 .0000606 10.58
_____________ +
casevars |
income | -.009306 002719 -3.42
Pr (choice = private|l selected) = .41959373
variable | dp/dx Std. Err
_____________ +
price |
beach | .000553 .000056 9.88
charter | .00487 .000452 10.77
pier | .000694 .000066 10.58
private | -.006117 .000444 -13.77
_____________ +
casevars |
income | .031761 006554 4.85

.000443
.003983
.000565
.006987

.000663
.005756
.000822
-.005246



3.4 More flexible multinomial discrete choice models

— General multinomial logit models are the most widely used multinomial dis-
crete choice models in empirical applications since the choice probabilities
can be easily calculated due to their closed form. This allows the straightfor-
ward ML estimation and statistical testing in multinomial logit models.

Independence of Irrelevant Alternatives (llA) in multinomial logit models:

This property implies that the choice probabilities between two alternatives (i.e.
the odds) are independent of the existence of further alternatives. It has been
developed in conditional logit models for the choice between the transport mo-
des car, red bus, and blue bus and is based on the restrictive independence
assumption of the error terms ¢;. If the IIA property is not true, the multinomial
logit model is misspecified so that the favorable properties of the ML estimator
(consistency, asymptotic normality, asymptotic efficiency) become lost.

Hausman-McFadden test:

The idea of this test is that in the case of IIA the parameter estimates should
not systematically change if some alternatives are omitted so that the same pa-
rameter estimates with and without some alternatives are compared. The test
statistic (which is asymptotically x? distributed with the number g of parameters
as degrees of freedom under the null hypothesis of IIA) includes the difference
of these estimates and the corresponding variance covariance matrixes. High 43
values of the test statistic lead to the rejection of the null hypothesis.



Alternative multinomial discrete choice models:

Nested logit models:

In these models the restrictive independence assumption across the ex-
treme value distributed error terms ¢; is weakened by grouping similar alter-
natives into nests (e.g. bus for red bus and blue bus). However, this model
approach depends on the correct choice of the nests. Within the nests the
lIA assumption still holds.

Mixed logit models:

In these models the error terms g; comprise two independent parts. The first
part is independently and identically standard extreme value distributed as in
the multinomial logit model. The second flexible part of error terms is able to
allow any correlations and also heteroskedasticity. Due to this flexibility, the
restrictive IlA property can be avoided. In contrast to multinomial and nested
logit models, however, the choice probabilities are generally characterized
by multiple integrals (see later) for which the calculation (as basis for the ML
estimation) can be very difficult or even impossible with conventional deter-
ministic numerical integration methods.

Multinomial probit models:

In these models the error terms ¢; are jointly normally distributed with an ex-
pectation vector zero and a flexible variance covariance matrix 2. Different
versions of multinomial probit models refer to different restrictions of 2. Vari-
ance covariance parameters that are not normalized can be estimated.  #*



Choice probabilities in multinomial probit models:
Py (X;, B, ) = P(&y- &5 < (Bxi+v'Zy) - (Bxi+ ¥z
g0- & < (Bxitv'zy) - BiaXi+ 'z
€1 €5 < (BT YZy) - (BrsXit VZijn )3 5
ea- & < (Bxit 1) - (Bxitv'z))

Bxitrzi)-Bxitrzi) B zi)-BiaxiTYzif) Bixitrz)-Biaxi 7vzijen)  BxitYzi)-BoxHr'zip)

-00 -00 -00 -00

fJ ((Dl’ (DJ 13(’0]+19‘ . ‘9(DJ )d(Dl e 'dmj-ldmjﬂ_ o 'd(DJ

fi(-) is the joint density function of the normally distributed differences of the er-
ror terms g;;. In contrast to the simple form in (general) multinomial logit models,
the choice probabilities have (J-1)-dimensional integrals. This is the main prac-
tical problem of multinomial probit models with flexible correlation structures in
the variance covariance matrix 2. For a high number J of alternatives the com-
putation of these integrals is not feasible with common integration methods in
the iterative maximization process of the ML estimation. However, simulators
can be used to approximate the probabilities which can be combined with the
ML. This leads to a simulated ML (SML) estimation. 45



