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This is a summary of the main ideas, equations and formulae appearing in the course
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PART I: TOWARDS THE EINSTEIN EQUATIONS

1 FROM THE EINSTEIN EQUIVALENCE PRINCIPLE TO (GEODESICS
INTRODUCTION

The year 1905 was Einstein’s magical year. In that year, he published three articles, on
light quanta, on the foundations of the theory of Special Relativity, and on Brownian
motion, each one separately worthy of a Nobel prize. Immediately after his work on
Special Relativity, Einstein started thinking about gravity and how to give it a rela-
tivistically invariant formulation. He kept on working on this problem during the next
ten years, doing little else. This work, after many trials and errors, culminated in his
masterpiece, the General Theory of Relativity, presented in 1915/1916. It is clearly
one of the gratest scientific achievements of all time, a beautiful theory derived from
pure thought and physical intuition, capable of explaining, still today, 80 years later,

virtually every aspect of gravitational physics ever observed.

Einstein’s key insight was that gravity is not a physical external force like the other
forces of nature but rather a manifestation of the curvature of space-time itself. This
realization, in its simplicity and beauty, has had a profound impact on theoretical
physics as a whole, and Einstein’s vision of a geometrization of all of physics is still with

us today.

Of course, we do not have ten years to reach these insights but nevertheless the first
half of this course will be dedicated to explaining this and to developing the machinery
(of tensor calculus and Riemannian geometry) required to describe physics in a curved

space time, i.e. in a gravitational field.

In the second half of this course, we will then turn to various applications of General
Relativity. Foremost among them is the description of the classical predictions of Gen-
eral Relativity and their experimental verification. Other subjects we will cover include
the strange world of Black Holes, Cosmology, gravitational waves, and some intriguing

theories of gravity in higher dimensions known as Kaluza-Klein theories.

General Relativity may apear to you to be a difficult subject at first, since it requires a
certain amount of new mathematics and takes place in an unfamiliar arena. However,
this course is meant to be essentially self-contained, requiring only a basic familiarity
with Special Relativity, vector calculus and coordinate transformations. That means
that I will attempt to explain every single other thing that is required to understand

FEinstein’s theory of gravity.

CAVEATS AND OMISSIONS



Invariably, any set of (introductory) lecture notes has its shortcomings, due to lack of
space and time, the requirements of the audience and the expertise (or lack thereof) of
the lecturer. These lecture notes are, of course, no exception. I believe/hope that the

strengths of these lecture notes are that

e they are elementary, requiring nothing beyond special relativity and calculus,
e they are essentially self-contained,

e they provide a balanced overview of the subject, the second half of the course
dealing with a larger variety of different subjects than is usually covered in a 20

lecture introductory course.

In my opinion, among the weaknesses of this course or these lecture notes are the

following:

e The history of the development of general relativity is an important and complex
subject, crucial for a thorough appreciation of general relativity. My remarks on
this subject are scarce and possibly even misleading at times and should not be

taken as gospel.

e Exercises are an essential part of the course, but so far I have not included them

in the lecture notes themselves.

e In the first half of the course, on tensor calculus, no mention is made of manifolds
and bundles as this would require some background in topology I did not want to

assuimme.

e Moreover, practically no mention is made of the manifestly coordinate independent
calculus of differential forms. Given a little bit more time, it would be possible to
cover the (extremely useful) vielbein and differential form formulations of general

relativity, and a supplement to these lecture notes on this subject is in preparation.

e The discussion of the causal structure of the Schwarzschild metric and its Kruskal
extension stops short of introducing Penrose diagrams. These are useful and
important and, once again, given a bit more time, this is a subject that could and

ought to be covered as well.

e Cosmology is a very active, exciting, and rapidly developing field. Unfortunately,
not being an expert on the subject, my treatment is rather old-fashioned and
certainly not Y2K compatible. I would be grateful for suggestions how to improve

this section.

e Something crucial is mising form the section on gravitational waves, namely a

derivation of the famous quadrupole radiation formula. If I can come up with,



or somebody shares with me, a simple five-line derivation of this formula, I will

immediately include it here.

e There are numerous other important topics not treated in these notes, foremost
among them perhaps a discussion of the canonical ADM formalism, a discussion of
notions of energy in general relativity, the post-Newtonian approximation, other

exact solutions, and aspects of black hole thermodynamics.

Including all these topics would require at least one more one-semester course and would
turn these lecture notes into a (rather voluminous) book. The former is not possible,
given the constraints of the Diploma Course, and the latter is not my intention, so I
can only hope that these lecture notes provide the necessary background for studying

these more advanced topics.

MOTIVATION: THE EINSTEIN EQUIVALENCE PRINCIPLE

Let us now, very briefly and in a streamlined way, try to retrace Einstein’s thoughts
which, as we will see, will lead us rather quickly to the geometric picture of gravity
sketched above.

First of all, let us ask the question why we should not be happy with the classical
Newtonian description of gravity. Well, for one, this theory is not Lorentz invariant,
postulating an action at a distance and an instantaneous propagation of the gravitational
field to every point in space. This is something that Einstein had just successfully
exorcised from other aspects of physics, and clearly Newtonian gravity had to be revised

as well.

It is then immediately clear that what would have to replace Newton’s theory is some-
thing rather more complicated. The reason for this is that, according to Special Rela-
tivity, mass is just another form of energy. But then, since gravity couples to masses,
in a relativistically invariant theory, gravity will also couple to energy. In particu-
lar, therefore, gravity would have to couple to gravitational energy, i.e. to itself. As
a consequence, the new gravitational field equations will, unlike Newton’s, have to be
non-linear: the field of the sum of two masses cannot equal the sum of the gravitational
fields of the two masses because it should also take into account the gravitational energy

of the two-body system.

But now, having realized that Newton’s theory cannot be the final word on the issue,
how does one go about finding a better theory? Einstein approached this by thinking

about three issues,

1. the equivalence principle of Special Relativity;

2. the relation between inertial and gravitational mass;



3. Special Relativity and accelerations.

As regards the first issue, let me just recall that Special Relativity postulates a preferred
class of inertial frames, namely those travelling at constant velocity to each other. But
this raises the questions (I will just raise and not attempt to answer) what is special
about constant velocities and, more fundamentally, velocities constant with respect to

what? Some absolute space? The background of the stars? ...?7

Regarding the second issue, recall that in Newtonian theory, classical mechanics, there
are two a priori independent concepts of mass: inertial mass m;, which accounts for
the resistance against acceleration, and gravitational mass 1, which is the mass gravity
couples to. Now it is an important empirical fact that the inertial mass of a body is
equal to its gravitational mass. This is usually paraphrased as ‘all bodies fall at the
same rate in a gravitational field’. This realization, at least with this clarity, is usually
attributed to Galileo (it is probably not true, though, that Galileo dropped objects from
the leaning tower of Pisa to test this - he used an inclined plane, a water clock and a

pendulum).

These experiments were later on improved, in various forms, by Huygens, Newton,
Bessel and others and reached unprecedented accuracy with the work of Baron von
E6tvos (1889-. .. ), who was able to show that inertial and gravitational mass of different
materials (like wood and platinum) agree to one part in 10°. In the 1950/60’s, this was
still further improved by R. Dicke to something like one part in 10''. More recently,
rumours of a ‘fifth force’, based on a reanalysis of E6tvos’ data (but buried in the
meantime) motivated experiments with even higher accuracy and no difference between

m; and my was found.

Now Newton’s theory is in principle perfectly consistent with m; # mg, and Einstein
was very impressed with their observed equality. This should, he reasoned, not be a
mere coincidence but is probably trying to tell us something rather deep about the
nature of gravity. With his unequalled talent for discovering profound truths in simple
observations, he concluded that the equality of inertial and gravitational mass suggests
a close relation between inertia and gravity itself, suggests, in fact, that locally effects

of gravity and acceleration are indistinguishable,
locally: GRAVITY = INERTIA = ACCELERATION

He substantiated this with some classical thought experiments, Gedankenexperimente,

as he called them, which have come to be known as the elevator thought experiments.

Consider somebody in a small sealed box (elevator) somewhere in outer space. In the
absence of any forces, this person will float. Likewise, two stones he has just dropped

(see Figure 1) will float with him.

10



Figure 1: An experimenter and his two stones freely floating somewhere in outer space,
i.e. in the absence of forces.

Now assume (Figure 2) that somebody on the outside suddenly pulls the box up with
a constant acceleration. Then of course, our friend will be pressed to the bottom of the

elevator with a constant force and he will also see his stones drop to the floor.

Now consider (Figure 3) this same box brought into a constant gravitational field. Then
again, he will be pressed to the bottom of the elevator with a constant force and he will
see his stones drop to the floor. With no experiment inside the elevator can he decide if
this is actually due to a gravitational field or due to the fact that somebody is pulling

the elevator upwards.

Thus our first lesson is that, indeed, locally the effects of acceleration and gravity are
indistinguishable. Now consider somebody cutting the cable of the elevator (Figure 4).
Then the elevator will fall freely downwards but, as in Figure 1, our experimenter and

his stones will float as in the absence of gravity.

Thus lesson number two is that, locally the effect of gravity can be eliminated by going
to a freely falling reference frame (or coordinate system). This should not come as a
surprise. In the Newtonian theory, if the free fall in a constant gravitational field is
described by the equation

Z =g (+ other forces) , (1.1)

then in the accelerated coordinate system

&(x,t) =x—gt2/2 (1.2)

11
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Figure 2: Constant acceleration upwards mimics the effect of a gravitational field: ex-

perimenter and stones drop to the bottom of the box.
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Figure 3: The effect of a constant gravitational field: indistinguishable for our experi-

menter from that of a constant acceleration in Figure 2.
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Figure 4: Free fall in a gravitational field has the same effect as no gravitational field

(Figure 1): experimenter and stones float.
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Figure 5: The experimenter and his stones in a non-uniform gravitational field: the

stones will approach each other slightly as they fall to the bottom of the elevator.

the same physics is described by the equation

& =0 (+ other forces) , (1.3)

and the effect of gravity has been eliminated by going to the freely falling coordinate

system &.

In the above discussion, I have put the emphasis on constant accelerations and on
‘locally’. To see the significance of this, consider our experimenter with his elevator in
the gravitational field of the earth (Figure 5). This gravitational field is not constant but
spherically symmetric, pointing towards the center of the earth. Therefore the stones
will slightly approach each other as they fall towards the bottom of the elevator, in the

direction of the center of the gravitational field.

Thus, if somebody cuts the cable now and the elevator is again in free fall (Figure 6), our

experimenter will float again, so will the stones, but our experimenter will also notice

15
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Figure 6: Experimentator and stones freely falling in a non-uniform gravitational field.
The experimenter floats, so do the stones, but they move closer together, indicating the

presence of some external force.

that the stones move closer together for some reason. He will have to conclude that

there is some force responsible for this.

This is lesson number three: in a non-uniform gravitational field the effects of gravity
cannot be eliminated by going to a freely falling coordinate system. This is only possible

locally, on such scales on which the gravitational field is essentially constant.

FEinstein formalized the outcome of these thought experiments in what is now known as

the FEinstein Equivalence Principle:

At every space-time point in an arbitrary gravitational field it is possible
to choose a locally inertial (or freely falling) coordinate system such that,
within a sufficiently small region of this point the laws of nature take the

same form as in unaccelerated Cartesian coordinate systems in the absence

16



of gravitation.
(GEODESICS

Thus, conversely, we can learn about the effects of gravitation by transforming the
laws of nature (equations of motion) from an inertial Cartesian coordinate system to
other (accelerated, curvilinear) coordinates. We do this for the motion of a massive free

particle, described in an inertial coordinate system {¢4} by

&) =0, (1.4)

where 7 is proper time, defined by

dr? = —napdetde? . (1.5)

Let us now see what this equation looks like when written in some other (non-inertial,

accelerating) coordinate system 2#(¢4). Following the usual rules for changes of vari-

ables,
d . 0 dat
A 1.
dTé oxt dr '’ (16)
etc., the equation of motion becomes the geodesic equation
d?zt dz¥ da?
re — = 1.
dr? A dr dr 0 (1.7)
while proper time is calculated from
dr* = —gudatds” (1.8)

Here, the metric tensor g, and the affine connection or Christoffel symbol L' | are

given by
0EA O¢B
Juv = nABax_“ G (1.9)
ozt 924
U = aet oonr - (1.10)

Thus, the affine connection represents the gravitational force. It can be expressed in
terms of first derivatives of the metric tensor which thus plays the role of a gravitational

potential:

Flf»\ = g"Tpn

Fpl/)\ = %(gpua)\"i‘gp)\w_gu)\ap)- (1'11)

Here g"? is the inverse metric, i.e. g*?q,, = o*.
g I g gp v

17



Hence, given the metric one can directly calculate the Christoffel symbol without having
to know (or determine) an inertial coordinate system first. This identifies the metric

tensor as the fundamental dynamical variable of gravity.

For massless particles, some other parameter instead of the proper time 7 (e.g. o = ¢°)

has to be used because d7? = 0 but the equations remain the same, i.e. one has

A2zt dx? dx?

“, == = 1.12

do? YA do do 0 ( )
with duh e
P dx

0=—g,——— . 1.13

gll dO' dO' ( )

The latter equation, rather than telling how to calculate proper time (as for massive

particles) sets the initial conditions approporiate to a massless particle.
METRICS AND COORDINATE TRANSFORMATIONS

Above we saw that the motion of free particles in Minkowski space in curvilinear coordi-
nates is described in terms of a modified metric, g,,, and a force term IV, representing
the ‘pseudo-force’ on the particle. It thus follows from the Einstein Equivalence Prin-
ciple that an appropriate description of true gravitational fields is in terms of a metric
tensor g, («) (and its associated Christoffel symbol) which can only locally be related
to the Minkowski metric via a suitable coordinate transformation (to locally inertial
coordinates). Thus our starting point will now be a space-time equipped with some

metric g, ().

A space-time equipped with a metric tensor g, is called a metric space-time or (pseudo-
JRiemannian space-time. It encodes the information how to measure (spatial and tem-
poral) distances via

ds? = g, (v)dztdz” (1.14)

Such distances should not depend on which coordinate system is used. Hence, changing

coordinates from the {z#} to new coordinates {y* (")} and demanding that
g (@)datda” = gy (y)dy" dy” (1.15)

one finds that under a coordinate transformation the metric transforms as

oxt ox”

Gutv! = Gy T (1.16)

Objects which transform in such a nice and simple way under coordinate transformations
are known as tensors - the metric is an example of a covariant symmetric rank two tensor.

We will study these in much more detail later.

One point to note about this transformation behaviour is that if in one coordinate system

the metric tensor has one negative and three positive eigenvalues (as in a locally inertial

18



coordinate system), then the same will be true in any other coordinate system (even
though the eigenvalues themselves will in general be different) - this statement should
be familiar from linear algebra as Sylvester’s law of inertia. This explains the qualifier
‘pseudo’: a pseudo-Riemannian space-time is a space-time equipped with a metric tensor
with one negative and three positive eigenvalues while a Riemannian space is a space
equipped with a positive definite metric. Space-like distances correspond to ds? > 0,
time-like distances to d7? = —ds? > 0, and null or light-like distances to ds? = d7% = 0.

By drawing the coordinate grid determined by the metric tensor, one can convince
onseself that in general a metric space or space-time need not or cannot be flat. Example:
the coordinate grid of the metric d6?+sin? 0d¢? cannot be drawn in flat space but can be
drawn on the surface of a two-sphere because the infinitesimal parallelograms described

by ds? degenerate to triangles at 6 = 0, 7.

At this point the question naturally arises how one can tell whether a given (per-
haps complicated looking) metric is just the flat metric written in other coordinates or
whether it describes a genuinely curved space-time. We will see later that there is an
object, the Riemann curvature tensor, constructed from the second derivatives of the
metric, which has the property that all of its components vanish if and only if the metric
is a coordinate transform of the flat space Minkowski metric. Thus, given a metric, by
calculating its curvature tensor one can decide if the metric is just the flat metric in

disguise or not.
CHRISTOFFEL SYMBOLS, GEODESICS AND COORDINATE TRANSFORMATIONS

Knowing how the metric transforms under coordinate transformations, we can now also

determine how the affine connection transforms. A straightforward calculation gives

I oyt ox¥ 9x* Oyt 9’k
VN T

1.1
YA 9zh Oyv' oyN + Azt oy oyN (1.17)

Thus, F’f,)\ is not a tensor, but the second term is there precisely to compensate for the
fact that * is also not a tensor - the combined geodesic equation transforms in a nice

way under coordinate transformations. Indeed one has

deNI N #/’ ldyyl dy)\l _ ay“’ d2x;¢ N i ﬁ@
dr? VXdr o dr dzt | dr? vAdr dr

(1.18)

Therefore, as (Jy* /O0z#) is an invertible matrix, the geodesic equation is true in one
coordinate system (y) if it is true in another coordinate system (x). This is the prototype
of the kinds of physical laws we are looking for - those which are valid in any coordinate
system. The reason why this is true for the geodesic equation is that it transforms
in such a simple way under coordinate transformations - as a contravariant one-tensor

(equivalently: as a vector).
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2 THE PHYSICS AND GEOMETRY OF (GEODESICS
THE GEODESIC EQUATION FROM A VARIATIONAL PRINCIPLE

We obtained the geodesic equation by transforming the equation for a straight line into
an arbitrary coordinate system. It is thus likely that in general a geodesic extremizes
the proper distance (or proper time) between two space-time points. This is indeed the
case. The action is simply [dr with dr? = —gudrtdz”. Actually, for a particle of
rest mass m one should really use the action principle m [ dr. But of course m drops
out of the variational equations (as it should by the equivalence principle) and we will

therefore ignore m in the following.

In order to perform the variation, it is useful to introduce an auxiliary parameter ¢ in

the initial stages of the calculation and to write

/dT = /(dT/da)da = /(—gw%%)lﬂda . (2.1)

By the standard variational procedure one then finds
5 / dr = / d7g, (i + 1" i7i)oa” (2.2)

There is a small problem with this action principle for massless particles (null geodesics).
For this reason and many other practical purposes it is much more convenient to use
the Lagrangian

L=guata” (2.3)

and the action S = [ Ldr which also gives rise to the geodesic equation.
THE NEWTONIAN LiMIT

We saw that the 10 components of the metric g,, play the role of potentials for the
gravitational force. We now want to find the relation of these potentials to the New-
tonian potential. For that we consider a particle moving slowly in a weak stationary
gravitational field (because it is only under these conditions that we know and trust the

validity of Newton’s equations).

Split the coordinates z# = (t,2'). Using dz*/dr < dt/dr (slow), guu,0 = 0 (stationary),
v = M + Ny, |h,“,| < 1 (weak), the geodesic equation can be shown to reduce to

d?a’
2z 35005

(2.4)

Indeed, the condition of slow motion implies that the geodesic equation can be approx-
imated by
P+ THE =0 . (2.5)
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Stationarity tells us that
oo = —39" dugoo = —59" digoo - (2.6)
From the weak field condition we learn that
I = =30 0:hoo (2.7)

so that
=0, Tl=—5"e0 - (2.8)
Thus the geodesic equation splits into
t =0
it = 0'hoot? . (2.9)
As the first of these just says that ¢ is constant, we can use this in the second equation to

convert the 7-derivatives into derivatives with respect to the coordinate time ¢. Hence

we obtain (2.4). Comparing this with

d?a’
a2 —bsi (2.10)
where ¢ is the Newtonian potential, e.g.
GM
p=-1 (2.11)

r

leads to hgg = —2¢ (the constant of integration is fixed by demanding that the metric

approach the flat metric at infinity) or

goo = —(1+2¢) . (2.12)

Restoring the appropriate units (in particular a factor of ¢?), one finds that ¢ ~ 10~
on the surface of the earth, 107® on the surface of the sun, so that the distortion in the
space-time geometry produced by gravitation is in general quite small (justifying our

approximations).
THE GRAVITATIONAL REDSHIFT

The gravitational redshift (i.e. the fact that photons lose or gain energy when rising or
falling in a gravitational field) is a consequence of the Einstein Equivalence Principle

(and therefore also provides an experimental test of the Einstein Equivalence Principle).

It is clear from the expression dr? = —guw(x)dztdz” that e.g. the rate of clocks is
affected by the gravitational field. However, as everything is affected in the same way
by gravity it is impossible to measure this effect locally. In order to find an observable

effect, one needs to compare data from two different points in a gravitational potential.
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The situation we could consider is that of two observers A and B moving on worldlines
(paths) 74 and vp, A sending light signals to B. In general the frequency, measured
in the observers rest-frame at A (or in a locally inertial coordinate system there) will

differ from the frequency measured by B upon receiving the signal.

In order to seperate out Doppler-like effects due to relative accelerations, we consider
two observers A and B at rest radially to each other, at radii 74 and rp, in a stationary
spherically symmetric gravitational field. This means that the metric depends only on

a radial coordinate » and we can choose it to be of the form
goo(r)dt? + gpr (r)dr? + 1r2dQ* | (2.13)

where d§)? is the standard volume element on the two-sphere (see section 11 for a more

detailed justification of this ansatz for the metric).

Observer A sends out light of a given frequency, say n pulses per proper time unit A74.
Observer B receives these n pulses in his proper time A7p. Thus the relation between

the frequency v, emitted at A and the frequency vp observed at B is

vy ATg
— = . 2.14
VB ATy ( )

The geometry of the situation dictates that the coordinate time intervals recorded at
A and B are equal, Aty = Atp as nothing in the metric actually depends on t. In

equations, this can be seen as follows. First of all, the equation for a radial light ray is
_QOO(T)dt2 = grr(r)dr2 . (215)

From this we can calculate the coordinate time for the light ray to go from A to B.
Say that the first light pulse is emitted at point A at time ¢(A); and received at B at
coordinate time ¢(B);. Then

B
H(B)1 —t(A) = / dr(=grr(r)/go0(r))/? (2.16)
TA
But the right hand side obviously does not depend on ¢, so we also have
i 1/2
HB): — HA) = [ dr(=g, (1) goo(r))!! (217)
TA
where t9 denotes the coordinate time fo the arrival of the n-th pulse. Therefore,
t(B)1 —t(A)1 = t(B)2 — t(A4)2 , (2.18)
or
t(A)2 —t(A)1 = U(B)2 —t(B)1 , (2.19)

as claimed. Thus the coordinate time intervals recorded at A and B between the first
and last pulse are equal. However, to convert this to proper time, we have to multiply

the coordinate time intervals by an r-dependent function,

dz* dz¥
A7'A,B = (_guu(rA,B)Eﬁ)lpAtA,B , (2_20)
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and therefore the proper time intervals will not be equal. For observers at rest, dz’/dt =

0, one has
ATap = (—goo(rap))/*Atas . (2.21)
Therefore
VA
i (900(r)/go0(ra))"/* . (2.22)
Using the Newtonian approximation, this becomes
v
= ~ 1+ ¢(rp) — ¢ra) (2.23)
vB

or
I/A—I/B:GM(T‘B—T‘A) (2.24)
VB TATB ’

Note that, for example, for rg > 74 one has vg < v4 so that, as expected, a photon

loses energy when rising in a gravitational field.

While difficult to observe directly (by looking at light form the sun), this prediction has
been verified with one percent accuracy in the laboratory by Pound and Snider (using
the Mossbauer effect).

This result can also be deduced from energy conservation. A local inertial observer at
the emitter A will see a change in the internal mass of the emitter Am 4 = —hv4 when a
photon of frequency of v4 is emitted. Likewise, the absorber at point B will experience
an increase in inertial mass by Amp = hvg. But the total internal plus gravitational

potential energy must be conserved. Thus
0=Ama(l+ ¢(ra)) + Amp(l+ ¢(rp)) . (2.25)

Thus 1

2 = O 1 blr) ~ 9(ra) (2.26)
as before. This derivation shows that gravitational red-shift experiments test the Ein-
stein Equivalence Principle in its strong form, in which the term ‘laws of nature’ is
not restricted to mechanics (inertial = gravitational mass), but also includes quantum
mechanics in the sense that it tests if in an inertial frame the relation between photon

energy and frequency is unaffected by the presence of a gravitational field.
LocALLY INERTIAL AND RIEMANN NORMAL COORDINATES

Central to our initial discussion of gravity was the Einstein Equivalence Principle which
postulates the existence of locally inertial (or freely falling) coordinate systems in which
locally at (or around) a point the effects of gravity are absent. Now that we have decided
that the arena of gravity is a general metric space-time, we should establish that such

coordinate systems indeed exist. Looking at the geodesic equation, it it is clear that
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‘absence of gravitational effects’ is tantamount to the existence of a coordinate system
{¢4} in which at a given point p the metric is the Minkowski metric, g45(p) = 745 and
the Christoffel symbol is zero, [“5(p) = 0. Owing to the identity

GuvoX = F;w)\ + Fuu)\ ’ (2.27)

the latter condition is equivalent to g4p,c (p) = 0. I will sketch three arguments estab-
lishing the existence of such coordinate systems, each one having its own virtues and

providing its own insights into the issue.

1. Direct Construction

We know that given a coordinate system {¢4} that is inertial at a point p, the
metric and Christoffel symbols at p in a new coordinate system {z*} are deter-
mined by (1.9,1.10). Conversely, we will now see that knowledge of the metric
and Christoffel symbols at a point p is sufficient to construct a locally inertial

coordinate system at p.

Equation (1.10) provides a second order differential equation in some coordinate

system {x#} for the inertial coordinate system {4}, namely

82§A o aéA

drv 9~ VA Qxk (2.28)

By a general theorem, a local solution around p with given initial conditions £4(p)
and (064 /0x")(p) is guaranteed to exist. In terms of a Taylor series expansion
around p one has

oA 1964

E4(a) = E40) + gl = p) + 5

LA ®) (2" = p") (@t = p) +... (2.29)
It follows from (1.9) that the metric at p in the new coordinate system is indeed
the Minkowski metric,

ozt 0xY
gan(p) = gmp)aé%uag%u (2.30)

for an appropriate choice of the initial condition (9¢4/02*)(p) (a symmetric ma-
trix at a point can always be diagonalized by a similarity transformation). With a
little bit more work it can also be shown that in these coordinates g4p,c (p) = 0.
Thus this is indeed an inertial coordinate system at p. As the matrix (064 /0x")(p)
which transforms the metric at p into the standard Minkowski form is only unique
up to Lorentz transformations, overall (counting also the initial condition ¢4 (p))
a locally inertial coordinate system is unique only up to Poincaré transformations

- an unsurprising result.

2. Geodesic (or Riemann Normal) Coordinates
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A slightly more insightful way of constructing a locally inertial coordinate system,
rather than by directly solving the relevant differential equation, makes use of
geodesics at p. Recall that in Minkowski space the metric takes the simplest
possible form in coordinates whose coordinate lines are geodesics. One might
thus suspect that in a general metric space-time the metric will also (locally) look
particularly simple when expressed in terms of such geodesic coordinates. Since
locally around p we can solve the geodesic equation with four linearly independent
initial conditions, we can assume the existence of a coordinate system {¢4} in
which the coordinate lines are geodesics £€4(7). But this means that §"A = 0.

Hence the geodesic equation reduces to
I'peéPe¢ =0 . (2.31)

As at p the éA were chosen to be linearly independent, this implies F‘%C(p) =0,

as desired. Tt is easy to see that the coordinates £ can also be chosen in such a

way that gap(p) = nas-

. A Numerological Argument

This is my favourite argument because it requires no calculations. Assuming that
the local existence of solutions to differential equations is guaranteed by some
mathematical theorems, it is frequently sufficient to check that one has enough
degrees of freedom to satisfy the desired initial conditions (one may also need to
check integrability conditions). In the present context, this argument is useful
because it also reveals some information about the ‘true’ curvature hidden in the

second derivatives of the metric. It works as follows:

Consider a Taylor expansion of the metric around p in the sought-for new coordi-
nates. Then the metric at p will transform with the matrix (9z*/9¢4)(p). This
matrix has (4 x 4) = 16 independent components, precisely enough to impose the

10 conditions gap(p) = nap up to Lorentz transformations.

The derivative of the metric at p, gap,c (p), will appear in conjunction with the
second derivative 0?z# /OEA0EB. The 4 x (4 x 5)/2 = 40 coefficients are precisely
sufficient to impose the 40 conditions gap,c (p) = 0.

Now let us look at the second derivatives of the metric. gap,cp has (10 x
10) = 100 independent components, while the third derivative of z#(§) at p,
PPt [0EA0EBIEC has 4 x (4 x 5 x 6)/(2 x 3) = 80 components. Thus 20 linear
combinations of the second derivatives of the metric at p cannot in general be
set to zero by a coordinate transformation. Thus these encode the information
about the real curvature at p. This agrees nicely with the fact that the Riemann
curvature tensor we will construct later turns out to have precisely 20 independent

components.
MORE ON GEODESICS AND THE VARIATIONAL PRINCIPLE
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Recall from above that the geodesic equation for a metric g, can be derived from the
Lagrangian £ = g, 2#%". This has several immediate consequences which are useful for

the determination of Christoffel symbols and geodesics in practice.
The geodesic equation is just the Euler-Lagrange equation

doc_or

a5 0F  ar (2.32)

Just as in classical mechanics, a coordinate the Lagrangian does not depend on explicitly
(a cyclic coordinate) leads to a conserved quantity. In the present context this means

that if, say, 0L/0x' = 0, then the momentum p; = 9L/di! is conserved along geodesics.

For example, on the two-sphere the Lagrangian reads
L =6 +sin?0¢? . (2.33)
The angle ¢ is a cyclic variable and the angular momentum

Py = £ = 25in?0¢ (2.34)

is a conserved quantity.

By the way, another conserved quantity that one has for any geodesic is the object
g THTY, ie.

. y . d oy

it 4+ T i =0 = E(QW*T#*TV) =0 . (2.35)
This quantity can then always be chosen to be (-1) for time-like geodesics and 0 for null

geodesics.

Another immediate consequence is the following: consider a space or space-time with
coordinates {y,z"} and a metric of the form ds* = dy* + g, (z,y)dz"dz”. Then the

coordinate lines of y are geodesics. Indeed, since the Lagrangian is
L =179+ guiti” | (2.36)
the Euler-Lagrange equations are equivalent to

§— 3 guy ' = 0
it T @it + 200 i) = 0 . (2.37)
Therefore ## = 0, § = 0 is a solution of the geodesic equation, and it describes motion

along the coordinate lines of y.

In the case of the two-sphere, with its metric ds? = d6? + sin® fd¢?, this translates into

the familiar statement that the great circles, the coordinate lines of y = 6, are geodesics.
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Finally, the Euler-Lagrange form of the geodesic equations frequently provides the most
direct way of calculating Christoffel symbols - by comparing the Euler-Lagrange equa-
tions with the expected form of the geodesic equation in terms of Christoffel symbols.

For example, once again in the case of the two-sphere, for the #-equation one has

doL o
dr 90
% = 2sinfcosfp? . (2.38)
Comparing the variational equation
0 — sin 6 cos 0> = 0 (2.39)
with the geodesic equation
é + F0€99.2 + 2F€9¢9¢ + F€¢¢¢2 - 0 ) (240)

one can immediately read off that

I‘0¢¢ = —sinf cosf
Iy =T%; =0 . (2.41)

* AFFINE AND NON-AFFINE PARAMETRIZATIONS

The geodesic equation for time-like geodesics (massive particles) is
i+ T i =0 . (2.42)

where a dot denotes the derivative with respect to proper time 7. This equation is not
parametrization invariant. Indeed, consider a change of parametrization 7 — o = f(7).

Then
do"  df ﬁ

dr ~ dr do
and therefore the geodesic equation written in terms of o reads

(2.43)

d?at dz¥ dz? f dxt
M, = == 2.44
do? T do do f2 do ( )

Thus the geodesic equation retains its form only under affine changes of the proper time
parameter 7, f(7) = ar + b, and parameters ¢ = f(7) related to 7 by such an affine
transformation are known as affine parameters. Note that the variational principle based
on L always yields the geodesic equation in affine form whereas this is not necessarily
the case for the action S = [dr = [(dr/do)do.

27



3 TENSOR ALGEBRA

FrROM THE EINSTEIN EQUIVALENCE PRINCIPLE TO THE PRINCIPLE OF GENERAL
COVARIANCE

The Einstein Equivalence Principle tells us that the laws of nature (including the effects
of gravity) should be such that in an inertial frame they reduce to the laws of Special
Relativity (SR). As we have seen, this can be implemented by transforming the laws
of SR to arbitrary coordinate systems and declaring that these be valid for arbitrary

coordinates and metrics.

However, this is a tedious method in general (e.g. to obtain the correct form of the
Maxwell equations in the presence of gravity). We will thus replace the Einstein Equiv-

alence Principle by the closely related Principle of General Covariance PGC:

A physical equation holds in an arbitrary gravitational field if

1. the equation holds in the absence of gravity, i.e. when g,,, = 1,,, I‘”V A=
0, and

2. the equation is generally covariant, i.e. preserves its form under a gen-

eral coordinate transformation.

It should be noted here that general covariance alone is an empty statement. Any
equation can be made generally covariant simply by writing it in an arbitrary coordinate
system. The significance of the PGC lies in the statement about gravity, namely that
by virtue of its general covariance an equation will be true in a gravitational field if it

is true in the absence of gravitation.
TENSORS

In order to construct generally covariant equations, we need objects that transform in a
simple way under coordinate transformations. The prime examples of such objects are

tensors.
Scalars

The simplest example of a tensor is a function (or scalar) f which under a coordinate

transformation z# — y* (z#) simply transforms as
f'y(@) = f(z) (3.1)

or, simply, f' = f.

Vectors
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The next simplest case are vectors V#(x) transforming as

_ oy

v (o)) = SV (32)

A prime example is the tangent vector & to a curve, for which this transformation
behaviour

o
dy y

it — gt = (3.3)

is just the familiar one.

It is extremely useful to think of vectors as first order differential operators, via the
correspondence

Vihe Vi=Vr, . (3.4)

One of the advantages of this point of view is that V is completely invariant under
coordinate transformations as the components V# of V' transform inversely to the basis
vectors d,,. For more on this see the (optional) section on the coordinate-independent
interpretation of tensors below.

Covectors

A covector is an object U,(x) which under a coordinate transformation transforms

inversely to a vector, i.e. as

, oxt
Uy (y(x)) = WUu(x) . (3.5)
A familiar example of a covector is the derivative U, = 9, f of a function which of course
transforms as
, Oxt
0 (0(a)) = 50 (a) (3.6

Covariant 2-Tensors

Clearly, given the above objects, we can construct more general objects which transform
in a nice way under coordinate transformations by taking products of them. Tensors in
general are objects which transform like (but need not be equal to) products of vectors

and covectors.

In particular, a covariant 2-tensor, or (0,2)-tensor, is an object A,, that transforms
under coordinate transformations like the product of two covectors, i.e.

oxH Ox¥
A:uu' (y(z)) = WWAW(I) . (3.7)

I will from now on use a shorthand notation in which I drop the prime on the transformed
object and also omit the argument. In this notation, the above equation would then

become
ox* ox¥

Au’y’ - WW Y2

(3.8)
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We already know one example of such a tensor, namely the metric tensor g, (which

happens to be a symmetric tensor).

Contravariant 2-Tensors

Likewise we define a contravariant 2-tensor (or a (2,0)-tensor) to be an object B*” that

transforms like the product of two vectors,

10 3y“/ 3y”’
B =22
oxt Ox¥

An example is the inverse metric tensor g.

(3.9)

(p, q)-Tensors

It should now be clear how to define a general (p,q)-tensor - as an object 1%, 'flf::-MVZ
with p contravariant and ¢ covariant indices which under a coordinate transformation

transforms like a product of p vectors and g covectors,

oo W O O ey (3.10)
7 Ot Oxtr ayul 8y”‘1 1...Vq

Note that, in particular, a tensor is zero (at a point) in one coordinate system if and
only if the tensor is zero (at the same point) in another coordinate system.
Thus, any law of nature (field equation, equation of motion) expressed in terms of
tensors, say in the form 7", Lf}; = 0, preserves its form under coordinate trasformations
and is therefore automatically generally covariant,

Tht = 0 e T — (3.11)

V1..-Vq e .

An important special example of a tensor is the Kronecker tensor . Together with
scalars and products of scalars and Kronecker tensors it is the only tensor whose com-

ponents are the same in all coordinate systems.

One comment on terminology: it is sometimes useful to distinguish vectors from vector
fields and, likewise, tensors from tensor fields. A vector is then just a vector V#(x) at
some point x of space-time whereas a vector field is something that assigns a vector to
each point of space-time and, likewise, for tensors and tensor fields.

Important examples of non-tensors are the Christoffel symbols. Another important
example is the the ordinary partial derivative of a (p, ¢)-tensor, O\T", Jl'jjff}fl which is not
a (p,q+1)-tensor unless p = ¢ = 0. This failure of the partial derivative to map tensors
to tensors will motivate us below to introduce a covariant derivative which generalizes
the usual notion of a partial derivative and has the added virtue of mapping tensors to

tensors.

TENSOR ALGEBRA
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Tensors can be added, multiplied and contracted in certain obvious ways. The basic

algebraic operations are the following:

1. Linear Combinations

Given two (p, q)-tensors A"}, v, and BYL b, their sum
Oyt = AVt + BR Ty (3.12)

is also a (p, q)-tensor.

2. Direct Products

) AL A . .
Given a (p, q)-tensor A“,I,i'_'_’_‘,fq and a (p', ¢')-tensor B ;1___,’;’q,, their direct product
Al Ay
ARLEE B py by (3.13)

isa (p+p',q+ q)-tensor,

3. Contractions
Given a (p, q)-tensor with p and ¢ non-zero, one can associate to it a (p—1,¢—1)-
tensor via contraction of one covariant and one contravariant index,

[ f Hl-ofp—1 _ gH1flp—1A
A P BTl = A by (3.14)

This is indeed a (p — 1,q — 1)-tensor, i.e. transforms like one. Consider, for ex-
ample, a (1,2)-tensor A‘fj)\ and its contraction B, = A/, . Under a coordinate
transformation B, transforms as a covector:

Bl/’ - Aﬁ/#/

' A
oyt 0z ox*
dzh dyv Iy~ VA

02"

- 8yu’ BT
ox” ox”

= ——A*¥ =_"_B, . 3.15
8yV’ l//J ayyl ( )

A particular example of a contraction is the scalar product between a vector and

a covector which is a scalar.

Note that contraction over different pairs of indices will in general give rise to

different tensors. E.g. A%, and A#,, will in general be different.

4. Raising and Lowering of Indices

These operations can of course be combined in various ways. A particular impor-
tant operation is, given a metric tensor, the raising and lowering of indices with
the metric. From the above we know that given a (p, ¢)-tensor A"}, ©,> the prod-

uct plus contraction with the metric tensor gm,,A“i'l'_'_’fﬁq isa (p—1,q+ 1)-tensor.
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It will be denoted by the same symbol, but with one index lowered by the metric,
i.e. we write
Guiv ALyt = A 2t (3.16)

Vi..Vg — “7V V1.4

Note that there are p different ways of lowering the indices, and they will in general
give rise to different tensors. It is therefore important to keep track of this in the
notation. Thus, in the above, had we contracted over the second index instead of

the first, we should write

g#2VA#1.~~#I;j:q = AMLHE3-fip (317)

Vl... Vv V..l

Finally note that this notation is consistent with denoting the inverse metric by

raised indices because
9" =g"9" gre - (3.18)

and raising one index of the metric gives the Kronecker tensor,

" g = gh, = ot . (3.19)

An observation we will frequently make use of to recognize when some object is a tensor
is the following (occasionally known as the quotient theorem or quotient lemma):
Assume that you are given some object A ,1,1” t,- Then if for every covector U, the
contracted object UMA” Lk b, transforms like a (p — 1, ¢)-tensor, AFLH v, 1s a (p,q)-
tensor. Likewise for contractions with vectors or other tensors so that if e.g. in an
equation of the form

Ay = Buyx,CV (3.20)

you know that A transforms as a tensor for every tensor C', then B itself has to be a

tensor.
TENSOR DENSITIES

While tensors are the objects which, in a sense, transform in the nicest and simplest
possible way under coordinate transformations, they are not the only relevant objects.
An important class of non-tensors are so-called tensor densities. The prime example of
a tensor density is the determinant g := — det g,,, of the metric tensor (the minus sign
is there only to make g positive in signature (— + ++)). It follows from the standard
tensorial transformation law of the metric that under a coordinate transformation z# —

y" (") this determinant transforms as

2 —2
g = det <g—§> g = det <%> g . (3.21)
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An object which transforms in such a way under coordinate transformations is called a
scalar tensor density of weight (-2). In general, a tensor density of weight w is an object

that transforms as

Oy\“ oyt Oy'» 9z Da
Tt — et () L YO ey (3.22)
Vi-Vg dr) Ozt Oxkr Yy Oyra 1M
In particular, this implies that ¢/?T7" transforms as (and hence is) a tensor,
’ ’ i P/ v v
izt _ OV Oy 0T 0T oy (3.23)
I/l...I/q 8.Tp’1 8.T”P 8yy1 8yy‘1 1..-Vq

Counversely, therefore, any tensor density of weight w can be written as tensor times
g~%/2. The relevance of tensor densities arises from the fundamental theorem of integral
calculus that says that the integral measure d*z (more generally d"z in dimension n)
transforms as

%y

d'y = det <%> dz (3.24)

i.e. as a scalar density of weight (+1). Thus g'/?d*z is a volume element which is
invariant under coordinate transformations and can be used to define integrals of scalars

(functions) in a general metric (curved) space in a coordinate-independent way as

/f:z/\/§d4:1:f(:1:) . (3.25)

This will of course be important in order to formulate action principles etc. in a metric

space in a generally covariant way.

There is one more important tensor density which - like the Kronecker tensor - has the
same components in all coordinate systems. This is the totally anti-symmetric Levi-
Civita symbol e#*? which, as you can check, is a tensor density of weight (-1) so that
gil/ 2ervpo js a tensor (strictly speaking it is a pseudo-tensor because of its behaviour

under reversal of orientation but this will not concern us here).

The algebraic rules for tensor densities are strictly analogous to those for tensors. Thus,
for example, the sum of two (p, ¢) tensor densities of weight w (let us call this a (p, ¢; w)
tensor) is again a (p, ¢; w) tensor, and the direct product of a (p1, ¢1; w1) and a (p2, g2; w2)
tensor is a (p1 + p2, q1 + qo; w1 + we) tensor. Contractions and the raising and lowering

of indices of tensor densities can also be defined just as for ordinary tensors.
* A COORDINATE-INDEPENDENT INTERPRETATION OF TENSORS

There is a more invariant and coordinate-independent way of looking at tensors than
we have developed so far. The purpose of this section is to explain this point of view

even though it is not indispensable for an understanding of the remainder of the course.
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Consider first of all the derivative df of a function (scalar field) f = f(z). This is
clearly a coordinate-independent object, not only because we didn’t have to specify a

coordinate system to write df but also because

of (x) f (y(x)) ,
df = —Zdgt = =222 dyH 2
which follows from the fact that d, f (a covector) and dz# (the coordinate differentials)
transform inversely to each other under coordinate transformations. This suggests that
it is useful to regard the quantities d, f as the coefficients of the coordinate independent

object df in a particular coordinate system, namely when df is expanded in the basis
{dxt}.

We can do the same thing for any covector U,,. If U, is a covector (i.e. transforms like
one under coordinate transformations), then U := U, (x)dz* is coordinate-independent,
and it is useful to think of the U, as the coefficients of the covector U when expanded

in a coordinate basis, U = U, dz*.

We can even do the same thing for a general covariant tensor T),.... Namely, if T}, ...,
is a (0, ¢)-tensor, then
T =Ty, .p dat ... dxt (3.27)

is coordinate independent. In the particular case of the metric tensor we have already
known and used this. In that case, T is what we called ds?, ds? = gudatdx” , which we

know to be invariant under coordinate transformations.

Now, can we do something similar for vectors and other contravariant (or mixed) ten-
sors? The answer is yes. Just as covectors transform inversely to coordinate differentials,

vectors V# transform inversely to partial derivatives d,,. Thus

V= V“(x)a% (3.28)

is coordinate dependent - a coordinate-independent linear first-order differential opera-
tor. One can thus always think of a vector field as a differential operator and this is a

very fruitful point of view.

Acting on a function (scalar) f, V produces the derivative of f along V',
Vf=V"o.f . (3.29)

This is also a coordinate independent object, a scalar, arising from the contraction of a
vector and a covector. And this is as it should be because, after all, both a function and
a vector field can be specified on a space-time without having to introduce coordinates
(e.g. by simply drawing the vector field and the profile of the function). Therefore also
the change of the function along a vector field should be coordinate independent and,

as we have seen, it is.

34



Also this can, in principle, be extended to higher rank tensors, but at this point it
would be very useful to introduce the notion of tensor product, something I will not
do. Fact of the matter is, however, that any (p, ¢)-tensor " ,,11',','%,‘}; can be thought of as
the collection of components of a coordinate independent object 1" when expanded in a

particular coordinate basis in terms of the dz* and (9/0x*).

4 TENSOR ANALYSIS
TENSOR ANALYSIS: PRELIMINARY REMARKS

Tensors transform in a nice and simple way under general coordinate transformations.
Thus these appear to be the right objects to construct equations from that satisfy the

Principle of General Covariance.

However, the laws of physics are differential equations, so we need to know how to
differentiate tensors. The problem is that the ordinary partial derivative does not map

tensors to tensors, the partial derivative of a (p, ¢)-tensor is not a tensor unless p = g = 0.

This is easy to see: take for example a vector V#. Under a coordinate transformation,

its partial derivative transforms as

, oz 9 oyr
R V- H
oV oyY' dxv Ozt v
oz¥ dy* u, O 2y u
- XY I A T 4.1
oy” Qxt WV dyY azz:”ax”v (41)

The appearance of the second term shows that the partial derivative of a vector is not

a tensor.

As the second term is zero for linear transformations, you see that partial derivatives
transform in a tensorial way e.g. under Lorentz transformations, so that partial deriva-

tives are all one usually needs in special relativity.
THE COVARIANT DERIVATIVE FOR VECTOR FIELDS

We also see that the lack of covariance of the partial derivative is very similar to the
lack of covariance of the equation z#* = 0, and this suggests that the problem can be
cured in the same way - by introducing Christoffel symbols. This is indeed the case. To

arrive at the correct definition, we proceed as follows.

Let {¢4} be an inertial coordinate system. In an inertial coordinate system we can just

use the ordinary partial derivative 95V 4. We now define the new (improved, covariant)
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derivative V,V# in any other coordinate system {z*} by demanding that it transforms
as a (1,1)-tensor, i.e. we define
ox# aé.B A

VVVN = aé'—A axl/ 8BV . (4.2)

By a straightforward calculation one finds that
V,VE=9,VF+TH V| (4.3)

where F’f»\ is our old friend
u  Oxt %A
VAT OEA Oz oz

We thus adopt (4.3) as our definition of the covariant derivative in a general metric space

(4.4)

or space-time (with the Christoffel symbols calculated from the metric in the usual way).
Given the known behaviour of the Christoffel symbols under coordinate transformations,
it is of course straightforward to check that (4.3) indeed defines a (1,1)-tensor, but this
also follows from the way we arrived at the definition of the covariant derivative. Indeed,
imagin transforming from inertial coordinates to another coordinate system {y“/ }. Then
(4.2) is replaced by
! 9¢B
VvV, VH = %S;, oV . (4.5)

Comparing this with (4.2), we see that the two are related by

vy - oy+ dx¥

=W gy 4.
Oxh By”'v v (4.6)

as required.

Frequently, the covariant derivative V,V# is also denoted by a semicolon, V,V# = V#;,.
Just as for functions, one can also define the covariant directional derivative of a vector
field V along another vector field X# by

VxVH#F =XV, V. (4.7)
* INVARIANT INTERPRETATION OF THE COVARIANT DERIVATIVE

The appearance of the Christoffel-term in the definition of the covariant derivative may
at first sight appear a bit unusual (even though it also appears when one just transforms
Cartesian partial derivatives to polar coordinates etc.). There is a more invariant way
of explaining the appearance of this term, related to the more coordinate-independent
way of looking at tensors explained above. Namely, since the V#(x) are really just
the coefficients of the vector field V(z) = V#(2)d, when expanded in the basis 0, a

meanigful definition of the derivative of a vector field must take into account not only
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the change in the coefficients but also the fact that the basis changes from point to point

- and this is precisely what the Christoffel symbols do. Writing
V.,V = V.,(V*F0,)
= (3,VM0, +VAV,0) , (4.8)
we see that we reproduce the definition of the covariant derivative if we set
V,or=I",0, . (4.9)
Indeed we then have
Vv,V =(V,VH, = 8,V +T", VN9, , (4.10)

which agrees with the above definition.

It is instructive to check in some examples that the Christoffel symbols indeed describe
the change of the tangent vectors d,. For instance on the plane, in polar coordinates,
one has

V0 =T%,0, =0, (4.11)

which is correct because 0, indeed does not change when one moves in the radial di-
rection. 0, does change, however, when one moves in the angular direction given by
Jgp- In fact, it changes its direction proportional to d,; but this change is stronger for
small values of r than for larger ones (draw a picture!). This is precisely captured by
the non-zero Christoffel symbol I‘q; "

1
Vo0 =190 = ~0y - (4.12)
EXTENSION OF THE COVARIANT DERIVATIVE TO OTHER TENSOR FIELDS

We will see that, demanding that the covariant derivative satisfies the Leibniz rule,
there is a unique extension of the covariant derivative on vector fields to a differential

operator on general tensor fields, mapping (p, ¢)- to (p, ¢ + 1)-tensors.

We start with scalars ¢. As d,,¢ is already a covector, we set
Vup=0u9 . (4.13)

To define the covariant derivative for covectors U,, we note that U,V*# is a scalar for

any vector U* so that
V(U V) =0,U, V") = (0,U,)VY + U, (9,V") , (4.14)

and we demand

V(U V") = (VL UV + UV, V. (4.15)
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As we know V, V", these two equations determine V,U, to be
VU, =0,U, —I7,U, . (4.16)

That this is indeed a (0,2)-tensor can either be checked directly or, alternatively, is a

consequence of the quotient theorem.

The extension to other (p,q)-tensors is now immediate. If the (p, ¢)-tensor is the direct
product of p vectors and g covectors, then we already know its covariant derivative (using
the Leibniz rule again). We simply adopt the same resulting formula for an arbitrary
(p, q)-tensor. The result is that the covariant derivative of a general (p, g)-tensor is the
sum of the partial derivative, a Christoffel symbol with a positive sign for each of the p
upper indices, and a Christoffel with a negative sign for each of the ¢ lower indices. In

equations
vievy 1oy
VT prpy = T pyp,

Avg-ev, 1z Vi Up_ 1A
Vi 2 P P 1 p—1
+ T #)\T P1Dq +...+7T N)\T P1+Pq

v

p terms

A Vl...VP o . A Vl...VP
Dp T A, = =T, T (4.17)

g terms

Having defined the covariant derivative for arbitrary tensors, we are also ready to define
it for tensor densities. For this we recall that if T is a (p,q;w) tensor density, then

g¥/?T is a (p, q)-tensor. Thus Vu(gw/QT) is a (p,q + 1)-tensor. To map this back to a

~w/2 arriving at the definition

tensor density of weight w, we multiply this by g
V,.T =g~V ,(¢"/*T) . (4.18)
Working this out explictly, one finds
V,T = 2E(a#g)T + ytensory (4.19)
g

Vtensor
1%

where just means the usual covariant derivative for (p, ¢)-tensors defined above.

In particular for a scalar density ¢ one has

w
Vg = 0ud + @(%QW . (4.20)
MAIN PROPERTIES OF THE COVARIANT DERIVATIVE

1. Linearity

For a and b real numbers and A and B two (p, ¢)-tensors (I will sometimes drop

the indices in the following) one has

Vu(aA+bB)=aV,A+bV,B . (4.21)
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2. Leibniz rule

For A and B tensors (not necessarily of the same type), the covariant derivative

of their direct product is

V(AB) = (V,A)B + A(V,B) . (4.22)

3. Commutes with Contraction

This means that if A is a (p, ¢)-tensor and B is the (p — 1, ¢ — 1)-tensor obtained
by contraction over two particular indices, then the covariant derivative of B is
the same as the covariant derivative of A followed by contraction over these two
indices. This comes about because of a cancellation between the corresopdning
two Christoffel symbols with opposite signs. Consider e.g. a (1,1)-tensor A" and
its contraction A*,. The latter is a scalar and hence its covariant derivative is
just the partial derivative. This can also be obtained by taking first the covariant
derivative of A,

A A
VA", = 0, A" + TV \A =T, A% (4.23)

and then contracting:
VHAVV = 8MAVV + FV;L)\A)\V - F);w V)\ = aHAVI/ : (424)

4. The Metric is Covariantly Constant: V, g,y =0

This is one of the key properties of the covariant derivative V, we have defined.

I will give two arguments to establish this:

(a) Since V,g,) is a tensor, we can choose any coordinate system we like to
establish if this tensor is zero or not at a given point x. Choose an inertial
coordinate system at x. Then the partial derivatives of the metric and the
Christoffel symbols are zero there. Therefore the covariant derivative of the
metric is zero. Since Vg, is a tensor, this is then true in every coordinate

system.

(b) The other argument is by direct calculation. Recalling the identity
aﬂgl/z\ = Pu)\p + F)\I/M ’ (425)
we calculate

V,ugu)\ = 8ugu)\ - Fpuygp)\ - Fpu,\gup
= Pu)\p + F)\I/M - P/\ul/ - Fup/\
= 0. (4.26)
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5. Commutes with Raising and Lowering of Indices

This is really a direct consequence of the covariant constancy of the metric. For
example, if V, is the covector obtained by lowering an index of the vector V*#,
Vi =guV", then

VAV = ValguV?) = g VaV" . (4.27)

6. Covariant Derivatives Commute on Scalars

This is of course a familiar property of the ordinary partial derivative, but it is
also true for the second covariant derivatives of a scalar and is a consequence of
the symmetry of the Christoffel symbols in the second and third indices and is
also knowns as the no torsion property of the covariant derivative. Namely, we

have

V.V =V, Vup = V06— V,0,0
= 00— 17,0 — 0,0, +17,6=0 .  (4.28)

Note that the second covariant derivatives on higher rank tensors do not commute

- we will come back to this in our discussion of the curvature tensor later on.
THE PRINCIPLE OF MINIMAL COUPLING

The fact that the covariant derivative V maps tensors to tensors and reduces to the
ordinary partial derivative in a locally inertial coordinate system suggests the following
algorithm for assessing the effects of gravitation on physical systems and obtaining

equations satisfying the Principle of General Covariance:

1. Write down the Lorentz invariant equations of Special Relativity (e.g. those of

relativistic mechanics, Maxwell theory, relativistic hydrodynamics, ... ).
2. Wherever the Minkoski metric 7, appears, replace it by g, .

3. Wherever a partial derivative 0, appears, replace it by the covariant derivative
0

By construction, these equations are tensorial (generally covariant) and true in the
absence of gravity and hence satisfy the Principle of General Covariance. Hence they
will be true in the presence of gravitational fields (at least on scales small compared to
that of the gravitational fields - if one considers higher derivatives of the metric tensor
then there are other equations that one can write down, involving e.g. the curvature

tensor, that are tensorial but reduce to the same equations in the absence of gravity).

TENSOR ANALYSIS: SOME SPECIAL CASES
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In this section I will, without proof, give some useful special cases of covariant derivatives
- covariant curl and divergence etc. - you should make sure that you can derive all of

these yourself without any problems.

1. The Covariant Curl of a Covector

One has
v.u,-v,u,=9,U0,-9,U, , (4.29)

because the symmetric Christoffel symbols drop out in this antisymmetric linear
combination. Thus the Maxwell field strength F),, = 0,4, -0, A, is a tensor under
general coordinate transformations, no metric or covariant derivative is needed to

make it a tensor in a general space time.

2. The Covariant Divergence of a Vector
By the covariant divergence of a vector field one means the scalar
A
vV, VE=0,VF + F’L/\V . (4.30)
Now a useful identity for the contracted Christoffel symbol is
Dy =g PoAg™?) . (4.31)
Thus
VvV, V= g_l/Qaﬂ(g"'l/QV“) , (4.32)

and one only needs to calculate g and its derivative, not the Christoffel symbols

themselves, to calculate the covariant divergence of a vector field.

3. The Covariant Laplacian of a Scalar
... follows from the expression for the covariant divergence of a vector and is given
by
D¢ = ¢g"V,Vuo
= Vu(g"oy9)
g 20,(9' 9" 0,9) - (4.33)

4. The Covariant Form of Gauss’ Theorem

Let V¥ be a vector field, V,V# its divergence and recall that integrals in curved

space are defined with respect to the integration measure gl/ 2d*z. Thus one has
/ g 2diav v = / d*zd, (g 2V H) (4.34)

Now the second term is an ordinary total derivative and thus, if V# vanishes

sufficiently rapidly at infinity, one has

/ g Pdav, Vi =0 . (4.35)
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5. The Covariant Divergence of an Antisymmetric Tensor

For a (p,0)-tensor T#”" one has

VT = 9T + TH TN T TR
= g720(g" T ) + YT L (4.36)

In particular, if " is completely antisymmetric, the Christoffel terms disappear
and one is left with
VT = g Y29,(gY 2T (4.37)

6. The Covariant Curl of an Antisymmetric Tensor

Let A, ... be completely antisymmetric. Then, as for the curl of covectors, the

metric and Christoffel symbols drop out of the expression for the curl, i.e. one has
V[MA,,)\...] = (9[#14,//\...} . (4.38)

Here the sqaure brackets denote complete antisymmetrization. In particular, the
Bianchi identity for the Maxwell field strength tensor is independent of the metric

also in a general metric space time.

You will have noticed that many equations simplify considerably for completely anti-
symmetric tensors. In particular, their curl can be defined in a tensorial way without
reference to any metric. This observation is at the heart of the coordinate indepen-
dent calculus of differential forms. In this context, the curl is known as the ezterior

derivative.
COVARIANT DIFFERENTIATION ALONG A CURVE

So far, we have defined covariant differentiation for tensors defined everywhere in space
time. Frequently, however, one encounters tensors that are only defined on curves - like
the momentum of a particle which is only defined along its world line. In this section
we will see how to define covariant differentiation along a curve. Thus consider a curve
(1) (where 7 could be, but need not be, proper time) and the tangent vector field

XH(z(1)) = ##(7). Now define the covariant derivative D/D7 along the curve by

D
5o = X'V =iV, (4.39)
For example, for a vector one has
DVH# . .
5 = V4 @'Th VA
d © B vy

For this to make sense, V# needs to be defined only along the curve and not necessarily

everywhere in space time.
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PARALLEL TRANSPORT AND GEODESICS

We now come to the important notion of parallel transport of a tensor along a curve.
Note that in a general (curved) metric space time, it does not make sense to ask if two
vectors defined at points  and y are parallel to each other or not. However, given a
metric and a curve connecting these two points, one can compare the two by dragging

one along the curve to the other using the covariant derivative.

We say that a tensor 1" is parallel transported along the curve x* () if

DT
= =0 . 4.41
DT ( )

Here are some immediate consequences of this definition:

1. In a locally inertial coordinate system, this condition reduces to d1'/dt = 0, i.e.
to the statement that the tensor does not change along the curve. Thus the above
is indeed an appropriate tensorial generalization of the intuitive notion of parallel

transport to a general metric space time.

2. The parallel transport condition is a first order differential equation and thus

defined 7" (7) given an initial value 17" (79).

3. Taking T to be the tangent vector X* = g# to the curve itself, the condition for
parallel transport becomes
DX*
DTt

i.e. the geodesic equation. Thus geodesics are such curves for which their tangent

=0 i +T" i3 =0 , (4.42)

vectors are parallel transported (do not change) along the curve. For this reason

geodesics are also known as autoparallels.

4. Since the metric is covariantly constant, it is in particular parallel along any curve.
Thus, in particular, if V# is parallel transported, also its length remains constant

along the curve,

DVH D
= — (g VFVY) =0 . 4.4
S =02 o—(guV"V) =0 (4.43)

5. Now let 2#(7) be a geodesic and V# parallel along this geodesic. Then, as one
might intuitively expect, also the angle between V# and the tangent vector to the
curve X* remains constant. This is a consequence of the fact that both the norm

of V and the norm of X are constant along the curve and that

d D
— VX# v — VX# v
D v D v
guu_DT (XH)V +gquu_D7_V
= 04+0=0 (4.44)

43



6. The physical meaning of parallel transport of a vector along a curve is that it
corresponds to a physically invariant direction as determined e.g. by a Foucault

pendulum or a perfect gyroscope.
* GENERALIZATIONS

Recall that the transformation behaviour of the Christoffel symbols, equation (1.17), was
the key ingredient in the proof that the geodesic equation transforms like a vector under
general coordinate transformations. Likewise, to show that the covariant derivative of a
tensor is again a tensor all one needs to know is that the Christoffel symbols transform in
this way. Thus any other object f"f»\ could also be used to define a covariant derivative
(generalizing the partial derivative and mapping tensors to tensors) provided that it

transforms in the same way as the Christoffel symbols, i.e. provided that one has

- ., Oyt Oz dxr Oyt OPat
re,., =1# ; ; — 4.45
VA YA 9zh Oyv Oy + Ozt Oy¥' OyX (4.45)
But this implies that the difference
Al =T =T, (4.46)
transforms as a tensor. Thus, any such I is of the form
=T+ 4%, (4.47)

where A is a (1,2)-tensor and the question arises if or why the Christoffel symbols we

have been using are somehow singled out or preferred.

In some sense, the answer is an immediate yes because it is this particular connection
that enters in determining the paths of freely falling particles (the geodesics which

extremize proper time).

Moreover, the covariant derivative as we have defined it has two important properties,

namely

1. that the metric is covariantly constant, V,g,, = 0, and

2. that the torsion is zero, i.e. that the second covariant derivatives of a scalar com-

mute.

In fact, it turns out that these two conditions uniquely determine the I to be the
Christoffel symbols: the second condition implies that the f“f,)\ are symmetric in the
two lower indices, and then the first condition allows one to express them in terms of
derivatives of the metric, leading to the familiar expression for the Christoffel symbols
I"f,)\. This unique metric-compatible and torsion-free connection is also known as the

Levi-Civita connection.
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It is of course possible to relax either of the conditions (1) or (2), or both of them.
Relaxing (1), however, is probably physically not very meaningful (for more or less the

same reasons for which Einstein rejected Weyl’s original gauge theory).

It is possible, however, to relax (2), and such connections with torsion play a role in
certain generalized theories of gravity. In general, for such a connection, the notions of
geodesics and autoparallels no longer coincide. However, this difference disappears if A

happens to be antisymmetric in its lower indices, as one then has
R RN T KN e A (4.48)

so that the presence of torsion may not readily be experimentally detectable.

5 PHYSICS IN A GRAVITATIONAL FIELD
PARTICLE MECHANICS IN A GRAVITATIONAL FIELD REVISITED

We can see the power of the formalism we have developed so far by rederiving the laws
of particle mechanics in a general gravitational field. In Special Relativity, the motion
of a particle with mass m moving under the influence of some external force is governed

by the equation
axw  fn

SR:
dr m

(5.1)
where f# is the force four-vector and X# = z#. Thus, using the principle of minimal

coupling, the equation in a general gravitational field is

DXu_fu
Dr — m

GR: ; (5.2)

Of course, the left hand side is just the familiar geodesic equation, but we see that
it follows much faster from demanding general covariance (the principle of minimal

coupling) than from our previous considerations.
ELECTRODYNAMICS IN A GRAVITATIONAL FIELD

Here is where the formalism we have developed really pays off. We will see once again
that, using the minimal coupling rule, we can immediately rewrite the Maxwell equations

in a form in which they are valid in an arbitrary gravitational field.

Given the vector potential A, the Maxwell field strength tensor in Special Relativity is
SR:  Fu = 0,A, —0,A, . (5.3)
Therefore in a general metric space time (gravitational field) we have

GR: Fl = V,A, — V,A, = 9,4, — 0,4, . (5.4)
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Actually, this is a bit misleading. The field strength tensor (two-form) in any, Abelian or
non-Abelian, gauge theory is always given in terms of the gauge-covariant exterior derivative of
the vector potential (connection), and as such has nothing whatsoever to do with the metric
on space-time. So you should not really regard the first equality in the above equation as the
definition of F),,, but you should regard the second equality as a proof that F),,, always defined
by F,, = 0,A, — 0,A,, is a tensor. The mistake of adopting V,A, — V, A, as the definition
of F,, in a curved space time has led some poor souls to believe, and even claim in published
papers, that in a space time with torsion, for which the second equality does not hold, the

Maxwell field strength tensor is modified by the torsion. This is nonsense.

In Special Relativity, the Maxwell equations read

SR: OuF" = —J"
AuFn =0 . (5.5)

Thus in a general gravitational field (curved space time) these equations become

GR: V" = —J"
ViF =0, (5.6)

where now of course all indices are raised and lowered with the metric g,, (and with
the same caveat as above regarding the use of the covariant derivative in the second

equation). Using the results derived above, we can rewrite these two equations as

GR: 8M(gl/2F“”) = —g'/2g¥
DuFn =0 . (5.7)

In Special Relativity, the equations of motion follow from the action
SR: §— / d'e Fo F™ (5.8)
so the action in a general gravitational field is
GR: S = / Jid'e g g By, (5.9)

The electromagnetic force acting on a particle of charge e is given in Special Relativity
by
SR: fH=eFki" . (5.10)

Thus in General Relativity it becomes
GR: fH=eg"F\,i" . (5.11)
The energy-momentum tensor of Maxwell theory is

SR: TH = FAF" — IptF\,FA7 . (5.12)
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Therefore in General Relativity it reads
SR: T = FAF" — 1g" F)\,F*° | (5.13)
where all indices are raised with the inverse metric g*”. The conservation equation
SR:  9,T" = J,F" | (5.14)

(deriving this requires using both sets of Maxwell equations) becomes the covariant
conservation law

GR: V,T" = J,F"™ (5.15)

We will discuss below in which sense or under which conditions this equation leads to

conserved quantities in the ordinary sense.
CONSERVED QUANTITIES FROM COVARIANTLY CONSERVED CURRENTS

In Special Relativity a conserved current J# is characetrized by the vanishing of its
divergence, i.e. by 0,J# = 0. It leads to a conserved charge () by integrating J* over
a space-like hypersurface, say the one described bu ¢ = t3. This is usually written as

something like

Q= [ Jrds, (5.16)
t=to

where dS,, is the induced volume element on the hypersurface. That @ is conserved,

i.e. independent of t(], is a consequence of
Q(t1) - Q(to) = / d4:v 8“]” =0 s (5_17)
\%4

where V is the four-volume R® x [tg,#;]. This holds provided that J vanishes at spatial
infinity.

Now in General Relativity, the conservation law will be replaced by the covariant conser-
vation law V,J# = 0, and one may wonder if this also leads to some conserved charges
in the ordinary sense. The answer is yes because, recalling the formula for the covariant
divergence of a vector,

VIt =g 20,620 | (5.18)
we see that

V. Jh =0 0,2 =0, (5.19)

so that ¢'/2J" is a conserved current in the ordinary sense. We then obtain conserved
quantities in the ordinary sense by integrating J* over a space-like hypersurface 3.
Using the generalized Gauss’ theorem appropriate for metric space-times, one can see

that @ is invariant under deformations of 3.

In order to write down more precise equations for the charges in this case, we would

have to understand how a metric on space-time induces a metric (and hence volume
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element) on a space-like hypersurface. This would require developing a certain amount
of formalism, useful for certain purposes in Cosmology and for developing a canonical
formalism for General Relativity. But as this lies somewhat outside of the things we
will do in this course, I will skip this. Suffice it to say here that the first step would be
the introduction of a normalized normal vector n# to the hypersurface X, n¥n, = —1
and to consider the object h,, = gy + nyny,. As hyn” = 0 while h,, X¥ = g, X" for

any vector X* normal to n*, h;,, induces a metric and volume element on X.

The factor ¢g/2 apearing in the current conservation law can be understood physically.
To see what it means, split J# into its space-time direction u#, with u#u, = —1, and
its magnitude p as

JH = put . (5.20)

This defines the average four-velocity of the conserved quantity represented by J# and
its density p measured by an observer moving at that average velocity (rest mass density,
charge density, number density, ...). Since u* is a vector, in order for J# to be a vector,
p has to be a scalar. Therefore this deunsity is defined as per unit proper volume. The

1/2

factor of g/ transforms this into density per coordinate volume and this quantity is

conserved (in a comoving coordinate system where J° = p, J¢ = 0).

We will come back to this in the context of cosmology later on in this course (see
section 16) but for now just think of the following picture (Figure 19): take a balloon,
draw lots of dots on it at random, representing particles or galaxies. Next choose some
coordinate system on the balloon and draw the coordinate grid on it. Now inflate
or deflate the balloon. This represents a time dependent metric, roughly of the form
ds? = r2(t)(d? + sin? 0d¢?). You see that the number of dots per coordinate volume

element does not change, whereas the number of dots per unit proper volume will.
CONSERVED QUANTITIES FROM COVARIANTLY CONSERVED TENSORS?

In Special Relativity, if T#” is the energy-momentum tensor of a physical system, it
satisfies an equation of the form

9, T" =G | (5.21)

where G* represents the density of the external forces acting on the system. In par-
ticular, if there are no external forces, the divergence of the energy-momentum tensor
is zero. For example, in the case of Maxwell theory and a current corresponding to a
charged particle we have

GY = J P = —F" 0 = —eF" it (5.22)

which is indeed the relevant external (Lorentz) force density.
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Now, in General Relativity we will instead have
VI =G & g 2o, (g T = GY — T, T (5.23)

Thus the second term on the right hand side represents the gravitational force density.
As expected, it depends on the system on which it acts via the energy momentum tensor.

And, as expected, this contribution is not generally covariant.

Now, in analogy with Special Relativity, one might like to define quantities like energy
and momentum, P, and angular momentum J**, by integrals of TH0 or xz+T"0 —
x¥TH0 over space-like hypersurfaces. However, these quantities are rather obviously
not covariant, and nor are they conserved. This should perhaps not be too surprising
because in Minkowski space these quantities are preserved as a consequence of Poincaré
invariance, i.e. because of the symmetries (isometries) of the Minkowski metric. As a
generic metric will have no such isometries, we do not expect to find associated conserved
quantities in general. However, if there are symmetries then one can indeed define
conserved quantities (think of Noether’s theorem), one for each symmetry generator. In
order to implement this we need to understand how to define and detect isometries of

the metric. For this we need the concepts of Lie derivatives and Killing vectors.

6 THE LIE DERIVATIVE, SYMMETRIES AND KILLING VECTORS

SYMMETRIES (ISOMETRIES) OF A METRIC: PRELIMINARY REMARKS

Before trying to figure out how to detect symmetries of a metric, or so-called isometries,
let us decide what we mean by symimetries of a metric. For example, we would say that
the Minkowski metric has the Poincaré group as a group of symietries, because the

corresponding coordinate transformations leave the metric invariant.

Likewise, we would say that the standard metrics on the two- or three-sphere have
rotational symmetries because they are invariant under rotations of the sphere. We can
look at this in one of two ways: either as an active transformation, in which we rotate
the sphere and note that nothing changes, or as a passive transformation, in which we
do not move the sphere, all the points remain fixed, and we just rotate the coordinate
system. So this is tantamount to a relabelling of the points. From the latter (passive)
point of view, the symmetry is again understood as an invariance of the metric under a

particular family of coordinate transformations.

Thus consider a metric g, (z) in a coordinate system {z*} and a change of coordinates
xt — y#(x¥) (for the purposes of this and the following section it will be convenient not
to label the two coordinate systems by different sets of indices). Of course, under such
a coordinate transformation we get a new metric g;W, with

oxP 0z

I (y(@)) = g oy I (6.1)
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From the above discussion we deduce that what we mean by a symmetry, i.e. invariance

of the metric under a coordinate transformation, is the statement

G () = g () (6.2)

Indeed, from the passive point of view, in which a coordinate transformation represents
a relabelling of the points of the space, this equation compares the old metric at a point
P (with coordinates z*) with the new metric at the point P’ which has the same values
of the new coordinates as the point P had in the old coordinate system, y*(P’) = z*(P).
The above equality states that the new metric at the point P’ has the same functional
dependence on the new coordinates as the old metric on the old coordinates at the
point P. Thus a neighbourhood of P’ in the new coordinates looks identical to a
neighbourhood of P in the old coordinates, and they can be mapped into each other
isometrically, i.e. such that all the metric properties, like distances, are preserved. Note
that to detect a continuous syminetry in this way, we only need to consider infinitesimal
coordinate transformations. In that case, the above amounts to the statement that
metrically the space time looks the same when one moves infinitesimally in the direction

given by the coordinate transformation.
THE LIE DERIVATIVE FOR SCALARS

We now want to translate the above discussion into a condition for an infinitesimal

coordinate transformation
at — yH(z) = o + eVH(x) (6.3)

to generate a symmetry of the metric. Here you can and should think of V# as a
vector field because, even though coordinates themselves of course do not transform like

vectors, their infinitesimal variations dz* do,

) ) oz+
uo_ B I
2 =2t (z) = §2F = T ox (6.4)
and we think of dz# as eVH.

In fact, we will do something slightly more general than just trying to detect symmetries
of the metric. After all, we can also speak of functions or vector fields with symimetries,
and this can be extended to arbitrary tensor fields (although that may be harder to
visualize). So, for a general tensor field T we will want to compare 7" (y(z)) with T'(y(x))
- this is of course equivalent to, and ounly technically a bit easier than, comparing T"(x)
with T'(x).

As usual, we start the discussion with scalars. In that case, we want to compare ¢(y(x))
with ¢'(y(z)) = ¢(x). We find

$(y()) = &' (y(2)) = ¢z + €V) = d(x) = eV e + O(¢”) . (6.5)
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We now define the Lie derivative of ¢ along the vector field V# to be

P(y(x)) — ¢'(y(z)) = VFIub . (6.6)

Ly ¢ = lim
e—0

Thus for a scalar, the Lie derivative is just the ordinary directional derivative, and this
is as it should be since saying that a function has a certain symmetry amounts to the

assertion that its derivative in a particular direction vanishes.
THE LIE DERIVATIVE FOR VECTOR FIELDS

We now follow the same procedure for a vector field W#. We will need the matrix

(Oy*/0x") and its inverse for the above infinitesimal coordinate transformation. We

have Gk
Y _ s n
D oH, +ed,VF | (6.7)
and et
T " 2
g7 o, —ed, VF +0O(e”) . (6.8)
Thus we have
oyt
Whye) = S50 (@)
= WHx)+eW" ()0, VH(x) , (6.9)
and
WH(y(z)) = WH(z) + eVY0,WH(x) + 0(62) . (6.10)

Hence, defining the Lie derivative Ly W of W by V' by

o et W) = () .11

e—0 €

we find
LyWHt =VY9,WH —-W"0,VH . (6.12)

There are several important things to note about this expression:

1. The result looks non-covariant, i.e. non-tensorial. But as a difference of two vectors
at the same point (recall the limit € — 0) the result should again be a vector. This
is indeed the case. One way to make this manifest is to rewrite (6.12) in terms of

covariant derivatives, as
LywHt = V'V, WH-W'V, VH
= VyWH-VyVHE . (6.13)

This shows that Ly W*# is again a vector field. Note, however, that the Lie
derivative, in contrast to the covariant derivative, is defined without reference to

any metric.
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2. Note that (6.12) is antisymmetric in V' and W. Hence it defines a commutator
[V, W] on the space of vector fields,

[V,WH = LyWH = —LyV# . (6.14)
This is actually a Lie bracket, i.e. it satisfies the Jacobi identity
[V W, XTI+ [X [V, W+ W XV =0 (6.15)

This can also be rephrased as the statement that the Lie derivative is also a

derivation of the Lie bracket, i.e. that one has

Ly[W, X]* = [LyW, X]* + [W, Ly X]* . (6.16)

3. I want to reiterate at this point that it is extremely useful to think of vector fields
as first order linear differential operators, via V# — V = V#9,. In this case, the

Lie bracket [V, W] is simply the ordinary commutator of differential operators,

[V, W] [VFO,, W¥0,]
= VHMOW")D, + VEW? 9,0, — WY(9,V™)d, — W'VH#9,d,
= (VYO,WH—W"8,V")d,

= (LvW)ko, =[V,W]"0, . (6.17)
From this point of view, the Jacobi identity is obvious.

4. Having equipped the space of vector fields with a Lie algebra structure, in fact
with the structure of an infinite-dimensional Lie algebra, it is fair to ask ‘the Lie
algebra of what group?”’. Well, we have seen above that we can think of vector
fields as infinitesimal generators of coordinate transformations. Hence, formally at
least, the Lie algebra of vector fields is the Lie algebra of the group of coordinate

transformations (passive point of view) or diffeomorphisms (active point of view).
THE LIE DERIVATIVE FOR OTHER TENSOR FIELDS

To extend the definition of the Lie derivative to other tensors, we can proceed in one of

two ways. We can either extend the above procedure to other tensor fields by defining

T e i T0@) = T2 (@)

e—0 €

(6.18)

Or we can extend it to other tensors by proceeding as in the case of the covariant
derivative, i.e. by demanding the Leibniz rule. In either case, the result can be rewritten
in terms of covariant derivatives, The result is that the Lie derivative of a (p, ¢)-tensor
T is, like the covariant derivative, the sum of three kinds of terms: the directional

covariant derivative of 7" along V', p terms with a minus sign, involving the covariant
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derivative of V' contracted with each of the upper indices, and ¢ terms with a plus sign,
involving the convariant derivative of V' contracted with each of the lower indices (note
that the plus and minus signs are interchanged with respect to the covariant derivative).

Thus, e.g., the Lie derivative of a (1,2)-tensor is
LVT‘;)\ = VprTI;A - T/;AVPV” + T‘;/\VVVP + T‘l‘,pV,\V” ) (6.19)

The fact that the Lie derivative provides a representation of the Lie algebra of vector
fields by first-order differential operators on the space of (p, ¢)-tensors is expressed by
the identity

[Lv,Lw]= Lyw - (6.20)
THE LIE DERIVATIVE OF THE METRIC AND KILLING VECTORS

The above general formula becomes particularly simple for the metric tensor g,,. The
first term is not there (because the metric is covariantly constant), so the Lie derivative

is the sum of two terms (with plus signs) involving the covariant derivative of V',
Lygu = g ViV + gV, VA . (6.21)

Lowering the index of V' with the metric, this can be written more succinctly as
Lyvguw =V,V, +V,V, . (6.22)

We are now ready to return to our discussion of isometries (symmetries of the metric).
Evidently, an infinitesimal coordinate transformation is a symmetry of the metric if
ngwj = 0,

V' generates an isometry < V,V, +V,V, =0 . (6.23)

Vector fields V satisfying this equation are called Killing vectors - not because they kill
the metric but after the 19th century mathematician W. Killing.

Since they are associated with symmetries of space time, and since symmetries are
always of fundamental importance in physics, Killing vectors will play an important
role in the following. Our most immediate concern will be with the conserved quantities
associated with Killing vectors. We will return to a more detailed discussion of Killing
vectors and syminetric space times in the context of Cosmology later on. For now, let
us just note that by virtue of (6.20) Killing vectors form a Lie algebra, i.e. if V and W
are Killing vectors, then also [V, W] is a Killing vector,

ngwj = Lng“, =0= L[V,W}gwj =0 . (624)

Indeed one has

Liywi9uw = LvLwguw — Lw Ly gu =0 . (6.25)
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This algebra is (a subalgebra of) the Lie algebra of the isometry group. For example,
the collection of all Killing vectors of the Minkowski metric generate the Lie algebra of
the Poincaré group.

Here is a simple example: as mentioned before, in some obvious sense the standard met-
ric on the two-sphere is rotationally invariant. In particular, with our new terminology
we would expect the vector field 9y, i.e. the vector field with components Ve=1V=0
to be Killing. Let us check this. With the metric df? + sin?0d¢?, the corresponding
covector V,,, obtained by lowering the indices of the vector field V¥, are
V=0, V,=sin?0 . (6.26)
The Killing condition breaks up into three equations, and we verify
VoVo = 0V — Iy, V,
= —I%,sin?0=0
V9V¢ + V¢V9 = 89V¢ - F%Vu + 8¢Vg - F"%Vu
= 2sinfcosf —2cotfsinh =0
V¢V¢ = 8¢V¢ + Fu¢¢Vu =0 . (6.27)

KILLING VECTORS AND CONSERVED QUANTITIES

We are used to the fact that symmetries lead to conserved quantities (Noether’s theo-
rem). For example, in classical mechanics, the angular momentum of a particle moving
in a rotationally symmetric gravitational field is conserved. In the present context, the
concept of ‘symmetries of a gravitational field’ is replaced by ‘symmetries of the met-
ric’, and we therefore expect conserved charges associated with the presence of Killing

vectors. Here are the two most important classes of examples of this phenomenon:

1. Killing Vectors, Geodesics and Conserved Quantities

Let K* be a Killing vector field, and 2*(7) be a geodesic. Then the quantity K,z
is constant along the geodesic. Indeed,

d b D .. D .
ar K = Ri o Kt
= V,K,a"2"+0
= %(VVKM + V,K,)i!i" =0 . (6.28)

2. Killing Vectors and Conserved Quantities from the Energy-Momentum Tensor

Let K* be a Killing vector field, and T*" the covariantly conserved symmetric
energy-momentum tensor, V, """ = 0. Then J# = TH K, is a covariantly con-
served current. Indeed,

vV, = (V,T")K, +T"V,K,
= 0+ i7" (V,K,+V,K,) =0 . (6.29)
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Hence, as we now have a conserved current, we can associate with it a conserved

charge in the way discussed above.

7 CURVATURE I: THE RIEMANN CURVATURE TENSOR

CURVATURE: PRELIMINARY REMARKS

We now come to one of the most important concepts of General Relativity and Rie-
mannian Geometry, that of curvature and how to describe it in tensorial terms. Among
other things, this will finally allow us to decide unambiguously if a given metric is just
the (flat) Minkowski metric in disguise or the metric of a genuinely curved space. It
will also lead us fairly directly to the Einstein equations, i.e. to the field equations for

the gravitational field.

Recall that the equations that describe the behaviour of particles and fields in a gravi-
tational field involve the metric and the Christoffel symbols determined by the metric.
Thus the equations for the gravitational field should be generally covariant (tensorial)

differential equations for the metric.

But at first, here we seem to face a dilemma. How can we write down covariant differ-
ential equations for the metric when the covariant derivative of the metric is identically
zero? Having come to this point, Einstein himself expressed the opinion that therefore
the field equations for gravity could not be generally covariant. He also gave some
arguments in favour of this point of view which are obviously flawed and now only of
historical interest. What he ounly realized later is that there are other tensors that can
be constructed from (ordinary) derivatives of the metric which are not zero and which

can be used to write down covariant differential equations for the metric.

The most important among these are the Riemann curvature tensor and its various
contractions. In fact, it is known that these are the only tensors that can be constructed
from the metric and its first and second derivatives, and they will therefore play a central

role in all that follows.

THE RIEMANN CURVATURE TENSOR FROM THE COMMUTATOR OF COVARIANT
DERIVATIVES

Technically the most straightforward way of introducing the Riemann curvature tensor
is via the commutator of covariant derivatives. As this is not geometrically the most
intuitive way of introducing the concept of curvature, we will then, once we have de-
fined it and studied its most important algebraic properties, study to which extent the

curvature tensor reflects the geometric properties of space time.
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As mentioned before, second covariant derivatives do not commute on (p, q)-tensors
unless p = ¢ = 0. However, the fact that they do commute on scalars has the pleasant
consequence that e.g. the commutator of covariant derivatives acting on a vector field
VH# does not involve any derivatives of V#. In fact, I will first show, without actually

calculating the commutator, that
[Vuu VI/](bV)\ = ¢[Vu7 VI/]V)\ (71)

for any scalar field ¢. This implies that [V, V,]V?* cannot depend on derivatives of V'
because if it did it would also have to depend on derivatives of ¢. Hence, the commutator
can be expressed purely algebraically in terms of V. As the dependence on V' is clearly

linear, there must therefore be an object R’\UW such that

[Vu, VoV =R,V (7.2)
This can of course also be verified by a direct calculation, and we will come back to this
below. For now let us just note that, since the left hand side of this equation is clearly

a tensor for any V', the quotient theorem implies that Réw has to be a tensor. It is the

famous Riemann-Christoffel Curvature Tensor.
Let us first verify (7.1). We have
VuViudV* = (Vi Vo) VA + (Vud) (Y V) + (V) (Vo V) + ¢V, Y,V L (7.3)

Thus, upon taking the commutator the second and third terms drop out and we are left
with

[V, VooV = ([V, Vi)V + 8V, V[V
= Qb[vuavu]‘/}\ ) (7.4)

which is what we wanted to establish.

By explicitly calculating the commutator, one can confirm the structure displayed in

(7.2). This explicit calculation shows that the Riemann tensor (for short) is given by

RAW =9, — ayrAw + PAWFPW — I‘/\VpI‘/’W ) (7.5)

Note how useful the quotient theorem is in this case. It would be quite unpleasant to
have to verify the tensorial nature of this expression by explicitly checking its behaviour

under coordinate transformations.

Note also that this tensor is clearly zero for the Minkowski metric written in Cartesian
coordinates. Hence it is also zero for the Minkowski metric written in any other coor-
dinate system. We will prove the converse, that vanishing of the Riemann curvature
tensor implies that the metric is equivalent to the Minkowski metric, below.
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It is straightforward to extend the above to an action of the commutator [V, V,] on
arbitrary tensors. For covectors we have, since we can raise and lower the indices with

the metric with impunity,

[Vuuvu]vp = gp)\[VM,VV]VA
= gp/\R/}nu/VU

= RyouV’
= RV, . (7.6)

We will see later that the Riemann tensor is antisymmetric in its first two indices. Hence

we can also write

[V, Vi]Vy = —R%,, Vo (7.7)

The extension to arbitrary (p, q)-tensors now follows the usual pattern, with one Rie-
mann curvature tensor, contracted as for vectors, appearing for each of the p upper
indices, and one Riemann curvature tensor, contracted as for covectors, for each of the
q lower indices. Thus, e.g. for a (1,1)-tensor A);) one would find

[V, VUAY, = R, A% — R, A% (7.8)

I will give two other versions of the fundamental formula (7.2) which are occasionally

useful and used.

1. Instead of looking at the commutator [V, V,] of two derivatives in the coordinate
directions z# and z”, we can look at the commutator [V x, Vy] of two directional
covariant derivatives. Evidently, in calculating this commutator one will pick up
new terms involving VxY*# — Vy X#. Comparing with (6.13), we see that this is
just [X,Y]#. The correct formula for the curvature tensor in this case is

(Vx,Vy] = Vixy)V* = R}, XYV (7.9)

opuv

Note that, in this sense, the curvature measures the failure of the covariant deriva-

tive to provide a representation of the Lie algebra of vector fields.

2. Secondly, one can consider a net of curves x*(o,7) parmetrizing, say, a two-
dimensional surface, and look at the commutators of the covariant derivatives
along the o- and 7-curves. The formula one obtains in this case (it can be ob-

tained from (7.9) by noting that X and Y commute in this case) is

2 2 u v
( D D )VA:R’\ del de o (7.10)

DoDr DrtDo Wy dr

SYMMETRIES AND ALGEBRAIC PROPERTIES OF THE RIEMANN TENSOR
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A priori, the Riemann tensor has 256 = 4* components in 4 dimensions. However,
because of a large number of symmetries, the actual number of independent components

is much smaller.

In general, to read off all the symmetries from the formula (7.5) is difficult. One way
to simplify things is to look at the Riemann curvature tensor at the origin xg of a
Riemann normal coordinate system (or some other inertial coordinate system). In that
case, all the first derivatives of the metric disappear and only the first two terms of (7.5)

contribute. One finds

Roprs(20) = gar(04T7%5 — 05T7,) (20)
= (94 L'aps — %sLapy) (w0)
= 2(9a0:87 T98y206 —Jar86 —9pssary ) (T0) (7.11)
In principle, this expression is sufficiently simple to allow one to read off all the symme-
tries of the Riemann tensor. However, it is more insightful to derive these symmetries

in a different way, one which will also make clear why the Riemann tensor has these

symmetries.

1. Rapgye = —Ragoy

This is obviously true from the definition or by construction.

2. Ra,g»y(; = —R,gow(;
This is a consequence of the fact that the metric is covariantly constant. In fact,

we can calculate

0 = [V’Y’ Vﬁ]gaﬂ
= _R)\a'yég)\ﬂ - R/\ﬂ'yéga)\
= —(Rﬂ,m(s + Raﬂ'y&) . (7.12)

3. Rojpye =0
This Bianchi identity is a consequence of the fact that there is no torsion. In fact,
applying [V, V;] to the covector V¢, ¢ a scalar, one has
Vi VsVgo = 0= Rig nVad =0 . (7.13)

As this has to be true for all scalars ¢, this implies Ry(5,5 = 0 (to see this

you could e.g. choose the (locally defined) coordinate functions ¢(z) = z* with
Vg = o).

4. Ropys = Rysap
This identity, stating that the Riemann tensor is symmetric in its two pairs of

indices, is not an independent symmetry but can be deduced from the three other

symmetries by some not particularly interesting algebraic manipulations.
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We can now count how many independent components the Riemann tensor really has.
(1) implies that the second pair of indices can only take (4 x 3)/2 = 6 independent
values. (2) implies the same for the first pair of indices. (4) thus says that the Riemann
curvature tensor behaves like a symmetric (6 X 6) matrix and therefore has (6 x7)/2 = 21
components. (3) then provides one and only one more additional constraint so that the

total number of independent components is 20.

Note that this agrees precisely with our previous counting of how many of the second
derivatives of the metric cannot be set to zero by a coordinate transformation: the
second derivative of the metric has 100 independent components, to be compared with
the 4 x (4 x5 x 6)/(2 x 3) = 80 components of the matrix of third derivatives of the
coordinates. This also leaves 20 components. We thus see very explicitly that the
Riemann curvature tensor contains all the coordinate independent information about
the geometry up to second derivatives of the metric. In fact, it can be shown that in a

Riemann normal coordinate system one has

9w (T) = v + 0+ FRynaw (z0) 22 + O(2?) . (7.14)

Just for the record, I note here that in general dimension n the Riemann tensor has
n?(n?—1)/12 independent components. This is easy to see for n = 2, where this formula
predicts one independent component. Indeed, rather obviously the only independent

non-vanishing component of the Riemann tensor in this case is R1219.

Finally, a word of warning: there are a large number of sign conventions involved
in the definition of the Riemann tensor (and its contractions we will discuss below),
so whenever reading a book or article, in particular when you want to use results or
equations presented there, make sure what conventions are being used and either adopt
those or translate the results into some other convention. As a check: the conventions
used here are such that Ryggp as well as the curvature scalar (to be introduced below)

are positive for the standard metric on the two-sphere.
THE Ricct TENSOR AND THE RICCI SCALAR

The Riemann tensor, as we have seen, is a four-index tensor. For many purposes this
is not the most useful object. But we can create new tensors by contractions of the
Riemann tensor. Due to the symmetries of the Riemann tensor, there is essentially only

one possibility, namely the Ricci tensor
Ry =Ry, = 0" Roprs - (7.15)
It follows from the symmetries of the Riemann tensor that R, is symmetric. Indeed

RV# = g)\aRaw\u — g’\"RAuau — R(Lau = RNV . (7_16)
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Thus, for n = 4, the Ricci tensor has 10 independent components, for n = 3 it has 6,
while for n = 2 there is only 1 because there is only one independent component of the

Riemann curvature tensor to start off with.

There is one more contraction we can perform, namely on the Ricci tensor itself, to

obtain what is called the Ricci scalar or curvature scalar
R:=g¢g"R,, . (7.17)

One might have thought that in four dimensions there is another way of constructing a

scalar, by contracting the Riemann tensor with the Levi-Civita tensor, but
P Rype =0 (7.18)

because of the Bianchi identity.

Note that for n = 2 the Riemann curvature tensor has as many independent components
as the Ricci scalar, namely one, and that in three dimensions the Ricci tensor has as
many components as the Riemann tensor, whereas in four dimensions there are strictly
less components of the Ricci tensor than of the Riemann tensor. This has profound
implications for the dynamics of gravity in these dimensions. In fact, we will see that it
is only in dimensions n > 3 that gravity becomes truly dynamical, where empty space

can be curved, where gravitational waves can exist etc.
AN ExamMpPLE: THE CURVATURE TENSOR OF THE TWO-SPHERE

To see how all of this can be done in practice, let us work out the example of the

two-sphere of unit radius. We already know the Christoffel symbols,
Fq;e =cotf |, F0¢¢ = —sinfcosf |, (7.19)

and we know that the Riemann curvature tensor has only one independent component.

Let us therefore work out R‘9¢€ o From the definition we find
0 0 0 0 0
The second and third terms are manifestly zero, and we are left with
R€¢€¢ = Jp(—sinfcos §) + sinf cos f cot § = sin® 6 . (7.21)
Thus we have

R0¢9¢ = Rg¢9¢ = sin2 0
Ryp=1. (7.22)
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Therefore the Ricci tensor R, has components

Royg = 1
Ryy = 0
Ryy = sin® , (7.23)

and the Ricci scalar is

= 2. (7.24)

In particular, we have here our first concrete example of a space with non-trivial, in fact

positive, curvature.
Question: what is the curvature scalar of a sphere of radius a?

Rather than redoing the calculation in that case, let us observe first of all that the
Christoffel symbols are invariant under constant rescalings of the metric because they
are schematically of the form g~'0g. Therefore the Riemann curvature tensor, which
only involves derivatives and products of Christoffel symbols, is also invariant. Hence
the Ricci tensor, which is just a contraction of the Riemann tensor, is also invariant.
However, to construct the Ricci scalar, one needs the inverse metric. This introduces an
explicit a-dependence and the result is that the curvature scalar of a sphere of radius a
is R = 2/a?. In particular, the curvature scalar of a large sphere is smaller than that of

a small sphere.

This result could also have been obtained on purely dimensional grounds. The curva-
ture scalar is constructed from second derivatives of the metric. Hence it has length-
dimension (-2). Therefore for a sphere of radius a, R has to be proportional to 1/a.

Comparing with the known result for ¢ = 1 determines R = 2/a?, as before.
BIANCHI IDENTITIES

So far, we have discussed algebraic properties of the Riemann tensor. But the Riemann
tensor also satisfies some differential identities which, in particular in their contracted

form, will be of fundamental importance in the following.

The first identity is easy to derive. As a (differential) operator the covariant derivative
clearly satisfies the Jacobi identity

[V[w [Vl/a V)\}]] =0 (7'25)
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If you do not believe this, just write out the twelve relevant terms explicitly to see that
this identity is true:

Vi [V, Vall ~ VuVoVa = VuVaV, = V,VaV, + VAV, V,
+ VaAVLV, = VaV,V, + V,V,Vs = V,V,V,
+ VWAV, = V,V,VA = VAV,Y, + V, V)V,
0. (7.26)

Hence, recalling the definition of the curvature tensor in terms of commutators of co-

variant derivatives, we obtain
Jacobi Identity = Bianchi identity: Rqgji =0 . (7.27)

Because of the antisymmetry of the Riemann tensor in the last two indices, this can
also be written more explicitly as

V)\Raﬂ;w + VI/Raﬂ)\u + VuRa,BV)\ =0 . (728)
By contracting this with g®* we obtain
V)\Rg,, — V,,Rﬂ)\ + VuRﬂﬁy/\ =0 . (7.29)

To also turn the last term into a Ricci tensor we contract once more, with g% to obtain
the contracted Bianchi identity

VAR, ~V,R+V,R\ =0, (7.30)

or

VAR — 39w R) =0 (7.31)

The tensor appearing in this equation is the so-called Einstein tensor G,
Guw =R — 39 R . (7.32)

It is the unique divergence-free tensor that can be built from the metric and its first
and second derivatives (apart from g, itself, of course), and this is why it will play the

central role in the Einstein equations for the gravitational field.
ANOTHER LOOK AT THE PRINCIPLE OF GENERAL COVARIANCE

In the section on the principle of minimal coupling, I mentioned that this algorithm
or the principle of general covariance do not necessarily fix the equations uniquely. In
other words, there could be more than one generally covariant equation which reduces
to a given equation in Minkowski space. Having the curvature tensor at our disposal

now, we can construct an example of this kind. Consider a massive particle with spin,
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characterized by a spin vector S#. We could imagine the possibility that in a gravitia-
tional field there is a coupling between the spin and the curvature, so that the particle

does not follow a geodesic, but rather obeys an equation of the type
B4 Th i it 4 aR,) 37357 (7.33)

This equation is clearly tensorial (generally covariant) and reduces to the equation for a
straight line in Minkowski space, but differs from the geodeisc equation (which has the
same properties) for a # 0. But, since the Riemann tensor is second order in derivatives,
a has to be a dimensionful quantity (of length dimension 1) for this equation to make
sense. Thus the rationale for usually not considering such additional terms is that they
are irrelevant at scales large compared to some characteristic size of the particle, say its

Compton wave length.

We will mostly be dealing with weak gravitational fields and other low-energy phenom-
ena and under those circumstances the minimal coupling rule can be trusted. However,
it is not ruled out that under extreme conditions (very strong or strongly fluctuating

gravitational fields) such terms are actually present and relevant.

8 CURVATURE II: GEOMETRY AND CURVATURE

INTRINSIC GEOMETRY, CURVATURE AND PARALLEL TRANSPORT

The Riemann curvature tensor and its relatives, introduced above, measure the intrinsic
geometry and curvature of a space or space-time. This means that they can be calculated
by making experiments and measurements on the space itself. Such experiments might

involve things like checking if the interior angles of a triangle add up to 7 or not.

An even better method, the subject of this section, is to check the properties of parallel
transport. The tell-tale sign (or smoking gun) of the presence of curvature is the fact
that parallel transport is path dependent, i.e. that parallel transporting a vector V from
a point A to a point B along two different paths will in general produce two different
vectors at B. Another way of saying this is that parallel transporting a vector around a
closed loop at A will in general produce a new vector at A which differs from the initial

vector.

This is easy to see in the case of the two-sphere (see Figure 7). Since all the great
circles on a two-sphere are geodesics, in particular the segments N-C, N-E, and E-C in
the figure, we know that in order to parallel transport a vector along such a line we just
need to make sure that its length and the angle between the vector and the geodesic
line are constant. Thus imagine a vector 1 at the north pole N, pointing downwards
along the line N-C-S. First parallel transport this along N-C to the point C. There we

will obtain the vector 2, pointing downwards along C-S. Alternatively imagine parallel
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Figure 7: Figure illustrating the path dependence of parallel transport on a curved
space: Vector 1 at N can be parallel transported along the geodesic N-S to C, giving
rise to Vector 2. Alternatively, it can first be transported along the geodesic N-E (Vector
3) and then along E-C to give the Vector 4. Clearly these two are different. The angle
between them reflects the curvature of the two-sphere.
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transporting the vector 1 first to the point E. Since the vector has to remain at a
constant (right) angle to the line N-E, at the point E parallel transport will produce
the vector 3 pointing westwards along E-C. Now parallel transporting this vector along
E-C to C will produce the vector 4 at C. This vector clearly differs from the vector 2
that was obtained by parallel transporting along N-C instead of N-E-C.

To illustrate the claim about closed loops above, imagine parallel transporting vector 1
along the closed loop N-E-C-N from N to N. In order to complete this loop, we still have
to parallel transport vector 4 back up to N. Clearly this will give a vector, not indicated
in the figure, different from (and pointing roughly at a right angle to) the vector 1 we
started off with.

This intrinsic geometry and curvature described above should be contrasted with the
extrinsic geometry which depends on how the space may be embedded in some larger

space.

For example, a cylinder can be obtained by ‘rolling up’ R?. It clearly inherits the flat
metric from R? and if you calculate its curvature tensor you will find that it is zero.
Thus, the intrinsic curvature of the cylinder is zero, and the fact that it looks curved to
an outside observer is not something that can be detected by somebody living on the

cylinder. For example, parallel transport is rather obviously path independent.

As we have no intention of embedding space-time into something higher dimensional,
we will only be concerned with intrinsic geometry in the following. However, if you
would for example be interested in the properties of space-like hypersurfaces in space-
time, then aspects of both intrinsic and extrinsic geometry of that hypersurface would

be relevant.

The precise statement regarding the relation between the path dependence of parallel
transport and the presence of curvature is the following. If one parallel transports a
vector V# along a closed infinitesimal loop x#(7) with, say, (7)) = z(71) = =, then
one has

VHE(T) — VHE(19) ~ (7{ xadxﬂ)R’f\aﬂ(xo)V)‘(To) . (8.1)

Thus an arbitrary vector V# will not change under parallel transport around an arbitrary
small loop at xg only if the curvature tensor at xg is zero. This can of course be extended
to finite loops, but the important point is that in order to detect curvature at a given

point one only requires parallel transport along infinitesimal loops.

I will not prove the above equation here. I just want to note that intuitively it can be
understood directly from the definition of the curvature tensor (7.2). lmagine that the
infinitesimal loop is actually a tiny parallelogram made up of the coordinate lines z'!
and 2. Parallel transport along z! is governed by the equation VV# = 0, that along
2?2 by VoV# = 0. The fact that parallel transporting first along z! and then along z?

can be different from doing it the other way around is precisely the statement that Vi
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and V2 do not commute, i.e. that some of the components R, 12 of the curvature tensor

are non-zero.
VANISHING RIEMANN TENSOR AND EXISTENCE OF FLAT COORDINATES

We are now finally in a position to prove the converse to the statement that a flat space
has vanishing Riemann tensor. Namely, we will see that when the Riemann tensor of
a metric vanishes, there are coordinates in which the metric is the standard Minkowski

metric.

So let us assume that we are given a metric with vanishing Riemann tensor. Then, by
the above, parallel transport is path independent and we can, in particular, extend a
vector V#(z¢) to a vector field everywhere in space-time: to define V#(z;) we choose any
path from zg to 21 and use parallel transport along that path. In particular, the vector
field V'#, defined in this way, will be covariantly constant or parallel, V, V" = 0. We can
also do this for four linearly independent vectors V}* at z¢ and obtain four covariantly

constant (parallel) vector fields which are linearly independent at every point.

An alternative way of saying or seeing this is the following: The integrability condition
for the equation V#V’\ =0is

VVA=0 = [V, V,JV}=R},V7=0. (8.2)

This means that the (4 x 4) matrices M (u,v) with coefficients M (u,v), = R’\UW have
a zero eigenvalue. If this integrability condition is satisfied, a solution to VHV)‘ can be
found. If one wants four linearly independent parallel vector fields, then the matrices
M (p,v) must have four zero eigenvalues, i.e. they are zero and therefore R)},W = 0.
If this condition is satisfied, all the integrability conditions are satisfied and there will
be four linearly independent covariantly constant vector fields - the same conclusion as

above.

We will now use this result in the proof, but for covectors instead of vectors. Clearly
this makes no difference: if V'# is a parallel vector field, then g,, V" is a parallel covector
field.

Fix some point zg. At x¢, there will be an invertible matrix e}, such that

g“’/(mg)eZeg =2 . (8.3)
Now we solve the equations

V,El =0 0,E =1, ES (8.4)

a

with the initial condition Ejj(z¢) = ef;. This gives rise to four linearly independent

parallel covectors Ej.
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Now it follows from (8.4) that
OuEL = 0,E . (8.5)

Therefore locally there are four scalars £* such that

Lo
B Oxk

These are already the flat coordinates we have been looking for. To see this, consider

(8.6)

the expression g"” EZES This is clearly constant because the metric and the Ej are
covariantly constant,

ONg" BLEy) = V(9" BLE,) =0 . (8.7)
But at xg, this is just the flat metric and thus
(9" ELE) (x) = (9" ELE]) (w0) = 0 . (8.8)

Summing this up, we have seen that, starting from the assumption that the Riemann

curvature tensor of a metric g, is zero, we have proven the existence of coordinates £*

in which the metric takes the Minkowski form,
B 8{“ 8§b

Juv = Ok wnab .

(8.9)
THE GEODESIC DEVIATION EQUATION

In a certain sense the main effect of curvature (or gravity) is that initially parallel
trajectories of freely falling non-interacting particles (dust, pebbles,...) do not remain
parallel, i.e. that gravity has the tendency to focus (or defocus) matter. This statement

find its mathematically precise formulation in the geodesic deviation equation.

Let us, as we will need this later anyway, recall first the situation in the Newtonian
theory. One particle moving under the influence of a gravitational field is governed by
the equation
Lol = —9ip(a) | (8.10)
where ¢ is the potential. Now consider a family of particles, or just two nearby particles,
one at z*(t) and the other at x(t) + dz'(t). The other particle will of course obey the
equation
L (' 4 d2t) = ' p(a + dx) . (8.11)

From these two equations one can deduce an equation for dx itself, namely
L 53t = 59 p(x)da . (8.12)

It is the counterpart of this equation that we will be seeking in the context of General
Relativity. The starting point is of course the geodesic equation for x# and for its nearby
partner x# + dxt,

Lot T (1) o La* =0, (8.13)
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and
L (@ 4 2") + T (2 + d2) L (¥ + 6a”) L(a + 02 = 0 . (8.14)

As above, from these one can deduce an equation for dx, namely
2
dd?&v“ + 2T’f,)\(x)%x”%5x)‘ + (%T’f,)\(x)éxp%x”%x)‘ =0 . (8.15)
Now this does not look particularly covariant. Thus instead of in terms of d/dr we

would like to rewrite this in terms of covariant operator D /DT, with

D d dz¥
—bxt = —fat +TH
DTt * dr TEE L dr

ozt . (8.16)

Calculating (D/D7)?dz", replacing i appearing in that expression by —F“V/\:i:”a'cA (be-
cause z* satisfies the geodesic equation) and using (8.15), one finds the nice covariant
geodesic deviation equation

D2

oot = Rh\ i7iA6xl (8.17)

Note that for flat space(-time), this equation reduces to

2

d

which has the solution
ozt = A¥r 4+ B | (8.19)

In particular, one recovers Euclid’s parallel axiom that two straight lines intersect at
most once and that when they are initially parallel they never intersect. This shows
very clearly that intrinsic curvature leads to non-Euclidean geometry in which e.g. the

parallel axiom is not necessarily satisifed.

9 TOWARDS THE EINSTEIN EQUATIONS
HEURISTICS

We expect the gravitational field equations to be non-linear second order partial dif-
ferential equations for the metric. If we knew more about the weak field equations of
gravity (which should thus be valid near the origin of an inertial coordinate system) we
could use the Einstein equivalence principle (or the principle of general covariance) to
deduce the equations for strong fields.

However, we do not know a lot about gravity beyond the Newtonian limit of weak time-
independent fields and low velocities, simply because gravity is so ‘weak’. Hence, we
cannot find the gravitational field equations in a completely systematic way and some
guesswork will be required.
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Nevertheless we will see that with some very few natural assumptions we will arrive at
an essentially unique set of equations. Further theoretical (and aesthetical) confirmation
for these equations will then come from the fact that they turn out to be the Euler-

Lagrange equations of the absolutely simplest action principle for the metric imaginable.

To see at least roughly what we expect the gravitational field equations to look like, we
begin with an analogy, a comparison of the geodesic deviation equations in Newton’s

theory and in General Relativity.
Recall that in Newton’s theory we have

. S
(2 _ (2

K, = 9'0;¢ , (9.1)

whereas in General Relativity we have

%;6.T” = —KH{ox"
K = R, i (9.2)
Now Newton’s field equation is
TrK = A¢p =4nGp (9.3)
while in General Relativity we have
TrK = R, a"'s" . (9.4)

This suggests that somehow in the gravitational field equations of General Relativity,
A¢ should be replaced by the Ricci tensor Ry, .

Note that, at least roughly, the tensorial structure of this identification is compatible
with the relation between ¢ and gg¢ in the Newtonian limit, the relation between p and
the 0-0 component Tyg of the energy momentum tensor, and the fact that for small

velocities Ry, z#z" ~ Ryg.

Indeed, recall that the weak static field produced by a non-relativistic mass density p is

goo = —(1 +2¢) . (9.5)

Moreover, for non-relativistic matter we have

Too=p , (9.6)
so that the Newtonian field equation can also be written as

Aggo == —87TGT00 . (97)
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This suggests that the weak-field equations for a general energy-momentum tensor take
the form
E,, = —-8rGT1,, , (9.8)

where E,, is constructed from the metric and its first and second derivatives. But by the
Einstein equivalence principle, if this equation is valid for weak fields (i.e. near the origin
of an inertial coordinate system) then also the equations which govern gravitational
fields of arbitrary strength must be of this form, with E,, a tensor constructed from
the metric and its first and second derivatives. We will now turn to a somewhat more

precise argument along these lines which will enable us to determine £,,.
A MORE SYSTEMATIC APPROACH

Let us take stock of what we know about E,, .

1. E,y is a tensor

2. E,, has the dimensions of a second derivative. If we assume that no new dimen-
sionful constants enter in £, then it has to be a linear combination of terms which
are either second derivatives of the metric or quadratic in the first derivatives of
the metric. (Later on, we will see that there is the possibility of a zero derivative
term, but this requires a new dimensionful constant, the cosmological constant A.
Higher derivative terms could in principle appear but would only be relevant at

very high energies.)
3. E,, is symmetric since T}, is symmetric.
4. Since T}, is covariantly conserved, the same has to be true for £,
V" =0=V,E" =0 . (9.9)
5. Finally, for a weak stationary gravitational field and non-relativistic matter we

should find
FEoo = Agoo - (9.10)

Now it turns out that these conditions (1)-(5) determine E,, uniquely! First of all, (1)

and (2) tell us that F,, has to be a linear combination
E;w = aRuu + bguuR ’ (9'11)

where R, is the Ricci tensor and R the Ricci scalar. Then condition (3) is automatically
satisfied.

To implement (4), we recall the contracted Bianchi identity (7.30,7.31),

VIR, =V, R . (9.12)

70



Hence
VIE,, = (g L O)V,R . (9.13)

We therefore have to require either V, R = 0 or a = —2b. That the first possibility is

ruled out (inconsistent) can be seen by taking the trace of (9.8),

B, = (a+4b)R = —87GT', . (9.14)

Thus, R is proportional to T, and since this quantity need certainly not be constant

for a general matter configuration, we are led to the conclusion that « = —2b. Thus we
find

Eu =a(R,, — %gl“,R) =aG,, , (9.15)

where G, is the Einstein tensor (7.32). We can now use the condition (5) to determine

the constant a.
THE WEAK-FIELD LiMIT

By the above considerations we have determined the field equations to be of the form
aGy = —=8rGTy, |, (9.16)

with a some, as yet undetermined, constant. We will now consider the weak-field limit
of this equation. We need to find that Gyg is proportional to Aggyp and we can then
use the condition (5) to fix the value of a. The following manipulations are somewhat
analogous to those we performed when considering the Newtonian limit of the geodesic
equation. The main difference is that now we are dealing with second derivatives of the

metric rather than with just its first derivatives entering in the geodesic equation.

First of all, for a non-relativistic system we have |T;;| < Ty and hence |G| < [Goo.
Therefore we conclude
|T;j| < Tho => Rij ~ 395 R . (9.17)

Next, for a weak field we have g,, ~ 7)., and, in particular,
R ~n" Ry, = RY — Ry (9.18)
which, together with (9.17), translates into
R~32R— Ry . (9.19)

or

R~ 2Ry . (9.20)

In the weak field limit, Rgg in turn is given by
Rog = Ry = 0™ Rioko - (9.21)
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Moreover, in this limit only the linear (second derivative) part of Ry, s will contribute,
not the terms quadratic in first derivatives. Thus we can use the expression (7.11) for
the curvature tensor. Additionally, in the static case we can ignore all time derivatives.
Then only one term (the third) of (7.11) contributes and we find

Rioko = —%9005ik (9.22)

and therefore
ROO == —%Agog . (923)

Thus, putting everything together, we get

EUOZGG(]O = a

= —aAgog . (924)

Thus we obtain the correct functional form of Eyy and comparison with condition (5)

determines a = —1 and therefore E,, = -G,
THE EINSTEIN EQUATIONS

We have finally arrived at the Einstein equations for the gravitational field (metric) of

a matter-energy configuration described by the energy-momentum tensor Tj,,. It is

| Ry — S9uR =8nGT,, | (9.25)

In cgs units, the factor 87G should be replaced by

_8rG

K== g = 1,865 x 1027g tem . (9.26)

Another common way of writing the Einstein equations is obtained by taking the trace
of (9.25), which yields
R —2R = 87GTY, , (9.27)

and substituting this back into (9.25) to obtain

Ry = 87G(Ty — 29, TH) - (9.28)

In particular, for the vacuum, 7}, = 0, the Einstein equations are simply

Ry =0 . (9.29)
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A space-time metric satisfying this equation is, for obvious reasons, said to be Ricci-
flat. And I should probably not have said ‘simply’ in the above because even the
vacuum Einstein equations still constitute a complicated set of non-linear coupled partial
differential equations whose general solution is not, and probably will never be, known.
Usually, one makes some assumptions, in particular regarding the symmetries of the
metric, which simplify the equations to the extent that they can be analyzed explicitly,

either analytically, or at least qualitatively or numerically.

As we saw before, in two and three dimensions, vanishing of the Ricci tensor implies the
vanishing of the Riemann tensor. Thus in these cases, the space-times are necessarily
flat away from where there is matter, i.e. at points at which 7}, () = 0. Thus there are

no gravitational fields and no gravitational waves.

In four dimensions, however, the situation is completely different. As we saw, the Ricci
tensor has 10 independent components whereas the Riemann tensor has 20. Thus there
are 10 components of the Riemann tensor which can curve the vacuum, as e.g. in the
field around the sun, and a lot of interesting physics is already contained in the vacuum

Einstein equations.
SIGNIFICANCE OF THE BIANCHI IDENTITIES

Because the Ricci tensor is symmetric, the Einstein equations consitute a set of ten
algebraically independent second order differential equations for the metric g,,. At

first, this looks exactly right as a set of equations for the ten components of the metric.

But at second sight, this cannot be right. After all, the Einstein equations are generally
covariant, so that they can at best determine the metric up to coordinate transforma-
tions. Therefore we should only expect six independent generally covariant equations
for the metric. Here we should recall the contracted Bianchi identities. They tell us
that

VEG,, =0, (9.30)

and hence, even though the ten Einstein equations are algebraically independent, there

are four differential relations among them, so this is just right.

It is no coincidence, by the way, that the Bianchi identities come to the rescue of general
covariance. We will see later that the Bianchi identities can in fact be understood as a
consequence of the general covariance of the Einstein equations (and of the corresopnd-

ing action principle).
* COMMENTS ON THE INITIAL VALUE PROBLEM AND THE CANONICAL FORMALISM

The general covariance of the Einstein equations is reflected in the fact that only six of

the ten equations are truly dynamical equations, namely (for the vacuum equations for
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simplicity)
Gij =0, (9.31)

where i, 5 = 1,2, 3. The other four, namely
Gu =0, (9.32)

are constraints that have to be satisfied by the initial data g;; and, say, dg;;/dt on some

initial space-like hypersurface (Cauchy surface).

These constraints are analogues of the Gauss law constraint of Maxwell theory (which
is a consequence of the U(1l) gauge invariance of the theory), but significantly more
complicated. Over the years, a lot of effort has gone into developing a formalism and
framework for the initial value and canonical (phase space) description of General Rela-
tivity. The most well known and useful of these is the so-called ADM (Arnowitt, Deser,

Misner) formalism.

The canonical formalism has been developed in particular with an eye towards canon-
ical quantization of gravity. Most of these approaches have not met with much suc-
cess beyond certain toy-models (so-called mini-superspace models), partially because
of technical problems with implementing the constraints as operator constraints in the
quantum theory, but more fundamentally because of the non-renormalizability of per-
turbative quantum gravity. Recently, a new canonical formalism for gravity has been
developed by Ashtekar and collaborators. This new formalism is much closer to that of
non-Abelian gauge theories than the ADM formalism. In particular, the constraints in
these new variables simplify quite drastically, and a lot of work has gone into developing
a non-perturbative approach to quantum gravity on the basis of the Ashtekar variables.
At present, this approach appears to be the only promising alternative to string theory

as a way towards a quantum theory of gravity.
THE COSMOLOGICAL CONSTANT

As mentioned before, there is one more term that can be added to the Einstein equations
provided that one relaxes conditions (2) that only terms quadratic in derivatives should
appear. This term takes the form Ag,, and is conserved provided that A is a constant,

the cosmological constant. The Einstein equations with a cosmological constant read
Ry — 9w R+ Agyy = 87GT),, (9.33)

To be compatible with condition (5) ((1), (3) and (4) are obviously satisfied), A has to

be quite small (and observationally it is very small indeed).

A plays the role of a vacuum energy density, as can be seen by writing the vacuum
Einstein equations as
R, — %gw,R =—Agu - (9.34)

74



Comparing this with the energy-momentum tensor of, say, a perfect fluid (see the section

on Cosmology),
T;w = (p +p)uuuu + P9 (9'35)

we see that A corresponds to the energy-density and pressure values

A

The cosmological constant was originally introduced by Einstein because he was unable
to find static cosmological solutions without it. After Hubble’s discovery of the expan-
sion of the universe, a static universe fell out of fashion, the cosmological constant was
no longer required and Einstein rejected it (supposedly calling the introduction of A in
the first place his biggest blunder because he could have predicted the expansion of the

universe if he had simply believed in his equations without the cosmological constant).

However, things are not as simple as that. In fact, one of the biggest puzzles in theoret-
ical physics today is why the cosmological constant is so small. According to standard
quantum field theory lore, the vacuum energy density should be many many orders
of magnitude larger than astrophysical observations allow. Now usually in quantum
field theory one does not worry too much about the vacuum energy as one can normal-
order it away. However, as we know, gravity is unlike any other theory in that not
only energy-differences but absolute energies matter (and cannot just be dropped). The
question why the observed cosmological constant is so small (it may be exactly zero,
but recent astrophysical observations appear to favour a tiny non-zero value) is known
as the Cosmological Constant Problem. We will consider the possibility that A # 0 only

in the section on Cosmology (in all other applications, A can indeed be neglected).
THE WEYL TENSOR

The Einstein equations
Gu = kT (9.37)

can, taken at face value, be regarded as ten algebraic equations for certain traces of the
Riemann tensor R, ,,. But R, ,; has, as we know, twenty independent components,
so how are the other ten determined? The obvious answer, already given above, is of
course that we solve the Einstein equations for the metric g,, and then calculate the

Riemann curvature tensor of that metric.

However, this answer leaves something to be desired because it does not really provide
an explanation of how the information about these other components is encoded in the
Einstein equations. It is interesting to understand this because it is precisely these
components of the Riemann tensor wich represent the effects of gravity in vacuum, i.e.

where T),, = 0, like tidal forces and gravitational waves.
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The more insightful answer is that the information is encoded in the Bianchi identities
which serve as propagation equations for the trace-free parts of the Riemann tensor

away from the regions where T}, # 0.

Let us see how this works. First of all, we need to decompose the Riemann tensor
into its trace parts R,, and R (determined directly by the Einstein equations) and its

traceless part C,, s, the Weyl tensor.

In any n > 4 dimensions, the Weyl tensor is defined by

C#VPG = Ruupa
1
- m(gﬂpr + RyupGve — 9vpRuo — Rupgpo)
1
t o) ) s = Gvpue) (9.38)

This definition is such that C},,, has all the symmetries of the Riemann tensor (this is

manifest) and that all of its traces are zero, i.e.

ch =0 . (9.39)

vuo

In the vacuum, R, = 0, and therefore
T#V(x) =0 = R#Vpa(x) = Cuupa(x) > (9-40)

and, as anticipated, the Weyl tensor encodes the information about the gravitational
field in vacuum. The question thus is how C}, s is determined everywhere in space-
time by an energy-momentum tensor which may be localized in some finite region of

space-time.

Countracting the Bianchi identity, which we write as
VinBujpe =0, (9.41)
over A and p and making use of the symmetries of the Riemann tensor, one obtains
V*Ryouw = VuRyo — VuRy, (9.42)

Expressing the Riemann tensor in terms of its contractions and the Weyl tensor, and
using the Einstein equations to replace the Ricci tensor and Ricci scalar by the energy-
momentum tensor, one now obtains a propagation equation for the Weyl tensor of the
form

VECupe = Jupo (9.43)
where J,,, depends only on the energy-momentum tensor and its derivatives. Deter-

mining J, ), in this way is straightforward and one finds

n—3

n —

1
Type = K VolTvs = Vol = —= [Vpngwvangyp]] . (9.44)
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The equation (9.43) is reminscent of the Maxwell equation
VEF, =J, (9.45)

and this is the starting point for a very fruitful analogy between the two subjects.
Indeed it turns out that in many other respects as well C},,, behaves very much like
an electro-magnetic field: one can define electric and magnetic components £ and B,

these satisty |E| = |B| for a gravitational wave, etc.

Finally, the Weyl tensor is also useful in other contexts as it is conformally invariant,

Le. O, is invariant under conformal rescalings of the metric

gu(@) > ef @ g () | (9.46)

In particular, the Weyl tensor is zero if the metric is conformally flat, i.e. related by a
conformal transformation to the flat metric, and conversely vanishing of the Weyl tensor

is also a sufficient condition for a metric to be conformal to the flat metric.

10 THE EINSTEIN EQUATIONS FROM A VARIATIONAL PRINCIPLE
THE EINSTEIN-HILBERT ACTION

To increase our confidence that the Einstein equations we have derived above are in fact
reasonable and almost certainly correct, we can adopt a more modern point of view.
We can ask if the Einstein equations follow from an action principle or, alternatively,

what would be a natural action principle for the metric.

After all, for example in the construction of the Standard Model, one also does not start
with the equations of motion but one writes down the simplest possible Lagrangian with

the desired field content and symmetries.

We will start with the gravitational part, i.e. the Einstein tensor G, of the Einstein

equations, and deal with the matter part, the energy-momentum tensor 7),,, later.

By general covariance, an action for the metric g,, will have to take the form

S = /\/§d4x ®(guw) (10.1)

where @ is a scalar constructed from the metric. So what is ® going to be? Clearly,
the simplest choice is the Ricci scalar R, and this is also the unique choice if one is
looking for a scalar constructed from not higher than second derivatives of the metric.

Therefore we postulate the beautifully simple and elegant Lagrangian

| Sen = [ ygd'a R|| (10.2)
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known as the Einstein-Hilbert Lagrangian. It was presented by Hilbert practically on
the same day that Einstein presented his final form (9.25) of the gravitational field
equations. Discussions regarding who did what first and who deserves credit for what
have been a favourite occupation of historians of science ever since. But Hilbert’s
work would certainly not have been possible without Einstein’s realization that gravity
should be regarded not as a force but as a property of space-time and that Riemannian

geometry provides the correct framework for embodying the equivalence principle.

We will now prove that the Euler-Lagrange equations following from the Einstein-Hilbert
Lagrangian indeed give rise to the Einstein tensor and the vacuum Einstein equations.
It is truly remarkable, that such a simple Lagrangian is capable of explaining practically
all known gravitational, astrophysical and cosmological phenomena (contrast this with

the complexity of the Lagrangian of the Standard Model or any of its generalizations).

Since the Ricci scalar is R = g"” Ry, it is simpler to consider variations dg"” of the

inverse metric instead of 6g,,,. Thus, as a first step we write

5Spn = 6 / Jad'c g™ R,
= [ 63" R + V3" R + 59" R) (103
Now we recall (from the assignments) that

5g' /% = Lg'2g*6g5, = — L9125, 00 . (10.4)

Hence,
5Spn = / Vad e [(—LguwR + Ryu)og™ + g" o R,
- / VId'z (R — L9, R)Og™ + / Jid's ¢"oR,, . (10.5)

The first term all by itself would already give the Einstein tensor. Thus we need to
show that the second term is identically zero. I do not know of any particularly elegant

argument to establish this, so this will require a little bit of work, but it is not difficult.
First of all, we need the explicit expression for the Ricci tensor in terms of the Christoffel
symbols, whch can be obtained by contraction of (7.5),

Ry = 017, — 0,170, + TA, I, — 1, 17, . (10.6)

Now we need to calculate the variation of R,,,. We will not require the explicit expression
in terms of the variations of the metric, but only in terms of the variations I, induced
by the variations of the metric. This simplifies things considerably. Obviously, R,
will then be a sum of six terms,

0Ruy = Ox0T7), — 0,617\ + 6TA I, + T, 01, — 619, T% —T7,,6T7% . (10.7)
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Now the crucial observation is that 6, is a tensor. This follows from the arguments
given at the end of section 4, under the heading ‘Generalizations’, but I will repeat it
here in the present context. Of course, we know that the Christoffel symbols themselves
are not tensors, because of the inhomogeneous (second derivative) term appearing in
the transformation rule under coordinate transformations. But this term is independent
of the metric. Thus the metric variation of the Christoffel symbols indeed transforms
as a tensor, and it turns out that dR,, can be written rather compactly in terms of

covariant derivatives of 6I'7, |, namely as
SRy, = V017, — V0%, . (10.8)

As a first check on this, note that the first term on the right hand side is manifestly
symmetric and that the second term is also symmetric because of (4.31) and (5.18). To
establish (10.8), one simply has to use the definition of the covariant derivative. The
first term is

Va6l = 0x01Y,, +T,01%,, — T* 617, — T 6T

o (10.9)

which takes care of the first, fourth, fifth and sixth terms of (10.7). The remaining
terms are
—0,0T%,, + 0T T%,, = =V, , (10.10)

which establishes (10.8). Now what we really need is ¢"*dR,,,,
g" Ry = VA(g"0T%,,) — V(9" TH,) - (10.11)

Since both of these terms are covariant divergences of vector fields,

g"OR,, = VaJ?
JA = g"or),, — gMheT,, (10.12)

we can use Gauss’ theorem to conclude that
/ Jad'z g" 6R,, = / Vad'z Vg =0 (10.13)

(since J* is constructed from the variations of the metric which, by assumption, vanish

at infinity) as we wanted to show.

To sum this up, we have established that the variation of the Einstein-Hilbert action

gives the gravitational part (left hand side) of the Einstein equations,

5 / Jgd's R = / Vid'a (R — L R)og™ (10.14)

We can also write this as

1 0

— _ 1
s = T~ ha (10.15
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If one wants to include the cosmological constant A, then the action gets modified to
Spia = / Jad'z (R —24) . (10.16)

Of course, once one is working at the level of the action, it is easy to come up with

covariant generalizations of the Einstein-Hilbert action, such as
S = /\/§d4x (R+c1R? + coRyy R" + c3ROR + ... (10.17)

but these invariably involve higher-derivative terms and are therefore irrelevant for low-
energy physics and thus the word we live in. Such terms could be relevant for the early
universe, however, and are also typically predicted by quantum theories of gravity like

string theory.
THE MATTER LAGRANGIAN

In order to obtain the non-vacuum Einstein equations, we need to decide what the matter
Lagrangian should be. Now there is an obvious choice for this. If we have matter, then in
addition to the Einstein equations we also want the equations of motion for the matter
fields. Thus we should add to the Einstein-Hilbert Lagrangian the standard matter
Lagrangian L), of course suitably covariantized via the principle of minimal coupling.
Thus the matter action for Maxwell theory would be (5.9), and for a scalar field ¢ we
would choose

Sy = / Vad e (6" 8,0+ ...
= /\/§d4x (—g" ¢V, Vb +...) . (10.18)

Of course, the variation of the matter action with respect to the matter fields will give
rise to the covariant equations of motion of the matter fields. But if we want to add
the matter action to the Einstein-Hilbert action and treat the metric as an additional
dynamical variable, then we have to ask what the variation of the matter action with
respect to the metric is. The short answer is: the energy-momentum tensor. Indeed,
even though there are other definitions of the energy-momentum tensor you may know
(defined via Noether’s theorem applied to translations in flat space, for example), this
is the modern, and by far the most useful, definition of the energy-momentum tensor,

namely as the response of the matter action to a variation of the metric,

OmetricOM = —/\/§d4x Ty 69", (10.19)

or

1§
T i= =5

(10.20)
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One of the many advantages of this definition is that it automatically gives a symmetric
tensor (no improvement terms required) which is also automatically covariantly con-
served. We will establish this fact below - it is simply a consequence of the general

covariance of Sy,.

Therefore, the complete gravity-matter action for General Relativity is

1
S =

= . 10.21
87rGSEH+SM (10.21)

If one were to try to deduce the gravitational field equations by starting from a vari-
ational principle, i.e. by constructing the simplest generally covariant action for the
metric and the matter fields, then one would also invariably be led to the above action.
The relative numerical factor 871G between the two terms would of course not be fixed
a priori (but could once again be determined by looking at the Newtonian limit of the

resulting equations of motion).

Typically, the above action principle will lead to a very complicated coupled system of
equations for the metric and the matter fields beacuse the metric also appears in the

energy-momentum tensor and in the equations of motion for the matter fields.
CONSEQUENCES OF THE VARIATIONAL PRINCIPLE

I mentioned before that it is no accident that the Bianchi identities come to the rescue
of the general covariance of the Einstein equations in the sense that they reduce the
number of independent equations from six to ten. We will now see that indeed the
Bianchi identities are a consequence of the general covariance of the Einstein-Hilbert
action. Virtually the same calculation will show that the energy-momentum tensor, as
defined above, is automatically conserved (on shell) by virtue of the general covariance

of the matter action.

Let us start with the Einstein-Hilbert action. We already know that

5SpH = / Jid'e G 89" (10.22)

for any metric variation. We also know that the Einstein-Hilbert action is invariant
under coordinate transformations. In particular, therefore, the above variation should
be identically zero for variations of the metric induced by an infinitesimal coordinate
transformation. But we know from the discussion of the Lie derivative that such a

variation is of the form
(5vg,w = nglﬂ/ = V’UVV + V,/VH y (1023)

or
Sy g = Lyg"’ = —(VFVY + V'VH) | (10.24)
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where the vector field V' is the infinitesimal generator of the coordinate transformation.
Thus, 0y Spm should be identically zero. Calculating this we find

0 = dvSen
=~ [ Vad'e Gu (VY + V)
= -2 [ ad'a GV
_ 9 / VG,V (10.25)
Since this has to hold for all V' we deduce
ovSgp =0 VV = VIG, =0, (10.26)

and, as promised, the Bianchi identities are a consequence of the general covariance of
the Einstein-Hilbert action.

Now let us play the same game with the matter action Sy;. Let us denote the matter
fields generically by @ so that Ly = La(®,9u ). Once again, the variation dv.Sy,
expressed in terms of the Lie derivatives Ly g,, and dy® = Ly® of the matter fields
should be identically zero, by general covariance of the matter action. Proceeding as
before, we find

0 = &Sy
4 v (5LM
= /\/gd x (=Tuwovg" + deé)
L
— —2/\/§d4x (V”TNV)V”+/\/§d4x %5@ . (10.27)

Now once again this has to hold for all V| and as the second term is identically zero

‘on-shell’, i.e. for @ satisfying the matter equations of motion, we deduce that
oySu=0 VvV = V'T,,=0 on-shel . (10.28)

This should be contrasted with the Bianchi identities which are valid ‘off-shell’.
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PART II: SELECTED APPLICATIONS OF GENERAL RELATIVITY

Until now, our treatment of the basic structures and properties of Riemannian geometry
and General Relativity has been rather systematic. In the second half of the course, we
will instead discuss some selected applications of General Relativity. These will include,
of course, a discussion of the classical predictions and tests of General Relativity (the
deflection of light by the sun and the perihelion shift of Mercury). Then we will go
on to discuss various other things, like the causal structure of the Schwarzschild metric
(and the relation to black holes), the so-called standard (Friedman-Robertson-Walker)
model of Cosmology, issues related to the linearized theory of gravity and gravitational
waves, as well as, time permitting, a brief outline of Kaluza-Klein theory (about which

I will not reveal anything at present).

11 THE SCHWARZSCHILD METRIC
INTRODUCTION

Einstein himself suggested three tests of General Relativity, namely

1. the gravitational redshift
2. the deflection of light by the sun

3. the anomalous precession of the perihelion of the orbits of Mercury and Venus,

and calculated the theoretical predictions for these effects. In the meantime, other tests
have also been suggested and performed, for example the time delay of radar echos
passing the sun (the Shapiro effect).

All these tests have in common that they are carried out in empty space, with gravita-
tional fields that are to an excellent aproximation static (time independent) and isotropic
(spherically symmetric). Thus our first aim will have to be to solve the vacuum Einstein
equations under the simplifying assumptions of isotropy and time-independence. This,

as we will see, is indeed not too difficult.
STATIC ISOTROPIC METRICS

Even though we have decided that we are interested in static isotropic metrics, we still
have to determine what we actually mean by this statement. After all, a metric which
looks time-independent in one coordinate system may not do so in another coordinate

system. There are two ways of approaching this issue:
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1. One can try to look for a covariant characterization of such metrics, in terms of
Killing vectors etc. In the present context, this would amount to considering met-
rics which admit four Killing vectors, one of which is time-like, with the remaining

three representing the Lie algebra of the rotation group SO(3).

2. Or one works with ‘preferred’ coordinates from the outset, in which these symme-

tries are manifest.

While the former approach may be conceptually more satisfactory, the latter is much
easier to work with and is hence the one we will adopt. We will implement the con-
dition of time-independence by choosing all the components of the metric to be time-
independent, and we will express the condition of isotropy by the requirement that, in

terms of spatial polar coordinates (1,0, ¢) the metric can be written as

ds* = —A(r)dt* + B(r)dr? + 2rC(r)dr dt + D(r)r*(d6? + sin® 0d¢?) . (11.1)
This ansatz, depending on the four functions A(r), B(r),C(r), D(r), can still be simpli-
fied a lot by choosing appropriate new time and radial coordinates.

First of all, let us introduce a new time coordinate ¢’ by
t=t+(r) . (11.2)

Then
dt” = dt? + "dr? + 2¢/dr dt . (11.3)

Thus we can eliminate the off-diagonal term in the metric by choosing v to satisfy the

differential equation

dp(r)  C(r)
S (11.4)

We can also eliminate D(r) by introducing a new radial coordinate > = D(r)r?. Thus

we can assume that the line element of a static isotropic metric is of the form
ds® = —A(r)dt* + B(r)dr? + r*(d6? + sin” 0d¢?) . (11.5)

This is known as the standard form of a static isotropic metric. Another useful presen-

tation, related to the above by a coordinate transformation, is
ds* = —E(r)dt* + F(r)(dr* + r2dQ?) . (11.6)

This is the static isotropic metric in isotropic form. We will mostly be using the metric

in the standard form (11.5). Let us note some immediate properties of this metric:

1. By our ansatz, the components of the metric are time-independent. Because we
have been able to eliminate the dtdr-term, the metric is also invariant under time-

reversal t — —t.
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2. The surfaces of constant ¢ and r have the metric
d52|r:const.,t:const. = 72d)? ) (117)
and hence have the geometry of two-spheres.

3. Because B(r) # 1, we cannot identify r with the proper radial distance. However,
r has the clear geometrical meaning that the two-sphere of constant r has the area
A(S?) = 4nr.

4. Also, even though the coordinate time t is not directly measurable, it can be

invariantly characterized by the fact that 0/0t is a time-like Killing vector.
5. The functions A and B are now to be found by solving the Einstein field equations.

6. If we want the solution to be asymptotically flat (i.e. that it approaches Minkowski
space for r — 00), we need to impose the boundary conditions
Tlggo A(r) = Tlggo B(r)=1 . (11.8)

We will come back to other aspects of measurements of space and time in such a geom-

etry after we have solved the Einstein equations.

We have assumed from the outset that the metric is static. However, it can be shown
with little effort (even though I will not do this here) that the vacuum Einstein equations
imply that a spherically symmetric metric is static (for those who want to check this:

this follows primarily from the rt-component R,; = 0 of the Einstein equations).

This result is known as Birkhoff’s theorem. It is the General Relativity analogue of
the Newtonian result that a spherically symmetric body behaves as if all the mass were
concentrated in its center. In the present context it means that the gravitational field
not only of a static spherically symmetric body is static and spherically symmetric (as
we have assumed), but that the same is true for a radially oscillating/pulsating object.
This is a bit surprising because one would expect such a body to emit gravitational
radiation. What Birkhoff’s theorem shows is that this radiation cannot escape into

empty space (because otherwise it would destroy the time-independence of the metric).
SOLVING THE EINSTEIN EQUATIONS FOR A STATIC ISOTROPIC METRIC

We will now solve the vacuum FEinstein equations for the static isotropic metric in
standard form, i.e. we look for solutions of R, = 0. You have already calculated all the
Christoffel symbols of this metric, using the Euler-Lagrange equations for the geodesic
equation, and should have found that they are given by (a prime denotes an r-derivative)

B Al
M =— I' =
tt 28
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T rsin? 6

Vw=-5 lVw=-—"%3
1 A
0 _ 1o _ t
PBT_Fqu_; Ftr_ﬂ
T0¢¢ = —sinf cosf I‘q;a = cot 6 (11.9)

Now we need to calculate the Ricci tensor of this metric. A silly way of doing this
would be to blindly calculate all the components of the Riemann tensor and to then
perform all the relevant contractions to obtain the Ricci tensor. A more intelligent and

less time-consuming strategy is the following:

1. Instead of using the explicit formula for the Riemann tensor in terms of Christoffel

symbols, one should use directly its contracted version

Ry = R,
= O\, — 0,1, + T, 1%, — 13,1 | (11.10)

and use the formula for F)L)\ derived previously.

2. The high degree of symmetry of the Schwarzschild metric implies that many com-
ponents of the Ricci tensor are automatically zero. For example, invariance of the
Schwarzschild metric under ¢ — —t implies that R,; = 0. The argument for this
is simple. Since the metric is invariant under t — —t, the Ricci tensor should also
be invariant. But under the coordinate transformation ¢ — —¢, R,; transforms as
R,y — —R,;. Hence, invariance requires R,; = 0, and no further calculations for

this component of the Ricci tensor are required.
3. Analogous arguments, now involving 0 or ¢ instead of ¢, imply that

Ryp=Rys =Ry = Riy = Ry =0 . (11.11)

4. Since the Schwarzschild metric is spherically symmetric, its Ricci tensor is also
spherically symmetric. It is easy to prove, by considering the effect of a coordinate
transformation that is a rotation of the two-sphere defined by 6 and ¢ (leaving

the metric invariant), that this implies that
Ryp = sin® ORyy . (11.12)
One possible proof (there may be a shorter argument): Consider a coordinate

transformation (0, ¢) — (¢',¢'). Then

0
06

)% + sin? 9@)2 do”? + ... (11.13)

2 20742
dO” + sin” 0d¢” = |( 50

Thus, a necessary condition for the metric to be invariant is

00

(o) +sin? 6502 =1 . (11.14)

06’
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Now consider the tranformation behaviour of Ryy under such a transformation.
Using Ryy = 0, one has
a0

Rg/g/ — (w)QRGG + (_)2R¢¢ . (].].].5)

Demanding that this be equal to Ryy (because we are considering a coordinate
transformation which does not change the metric) and using the condition derived
above, one obtains

99 99

Rgp = Ryp(1 — Sin29(w)2) + (89,)2R¢¢ ; (11.16)

which implies (11.12).

. Thus the only components of the Ricci tensor that we need to compute are R,,,
Rtt and Rgg.

Now some unenlightning calculations lead to the result that these components of the

Ricci tensor are given by

AII AI AI BI AI

Ry = @_E(Z+B)+T_B
A/I A/ A/ B/ B/
R, = _ﬂ_'_ﬂ(j_'_ﬁ)—i_@
1 r A" B

Inspection of these formulae reveals that there is a linear combination which is partic-

ularly simple, namely BRy + AR,,, which can be written as

BRy + AR,, = 5(A'B+ B'A) . (11.18)

Demanding that this be equal to zero, one obtains

A'B+B'A=0 = A(r)B(r) = const. (11.19)

Asymptotic flatness fixes this constant to be = 1, so that

(r) = A0 (11.20)
Plugging this result into the expression for Ryg, one obtains
Rygy=0 = A—-1+7A'=0 & (Ar) =1, (11.21)
which has the solution Ar =+ C or
A(r)y =1+ ¢ . (11.22)

r
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To fix C, we compare with the Newtonian limit which tells us that asymptotically
A(r) = —goo should approach (1 + 2®), where & = —GM /r is the Newtonian potential
for a static spherically symmetric star of mass M. Thus C = —2M G, and the final form

of the metric is

ds? = —(1 — MGy g? 4 (1 — 2MG) =12 4 42402 | | (11.23)

This is the famous Schwarzschild metric, obtained by the astronomer Schwarzschild
in 1916, the very same year that Einstein published his field equations, while he was

serving as a soldier in World War 1.

We have seen that, by imposing appropriate symmetry conditions on the metric, and
making judicious use of them in the course of the calculation, the complicated Einstein

equations become rather simple and manageable.

Before discussing some of the remarkable properties of the solution we have just found,

I want to mention that the coordinate transformation
r=p(l+——)* (11.24)

puts the Schwarzschild metric into isotropic form,

(1257 MG
ds? = _ﬁ +(1+ %)4(@2 + p%d9?) . (11.25)
2p

The advantage of this istropic form of the metric is that one can replace dp? + p?dQ?
by e.g. the standard metric on R? in Cartesian coordinates, or any other metric on R3.
This is useful when one likes to think of the solar system as being essentially described

by flat space, with some choice of coordinates.

BASIC PROPERTIES OF THE SCHWARZSCHILD METRIC - THE SCHWARZSCHILD
RADIUS

The metric we have obtained is quite remarkable in several respects. As mentioned
before, the vacuum Einstein equations imply that an isotropic metric is static. Fur-
thermore, the metric contains only a single constant of integration, the mass M. This
implies that the metric in the exterior of a spherical body is completely independent of
the composition of that body. Whatever the energy-momentum tensor for a star may
be, the field in the exterior of the star has always got the form (11.23). This consid-
erably simplifies the physical interpretation of General Relativity. In particular, in the
subsequent discussion of tests of General Relativity, which only involve the exterior of
stars like the sun, we do not have to worry about solutions for the interior of the star

and how those could be patched to the exterior solutions.
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Let us take a look at the range of coordinates in the Schwarzschild metric. Clearly, ¢
is unrestricted, —oco < t < 00, and the polar coordinates 6 and ¢ have their standard
range. However, the issue regarding r is more interesting. First of all, the metric is a
vacuum metric. Thus, if the star has radius 7, then the solution is only valid for r > rq.
However, (11.23) also shows that the metric has a singularity at the Schwarzschild radius

rs, given by (reintroducing c)
2GM

2

r (11.26)

Thus, we also have to require r > rg. Since one frequently works in units in which

G = ¢ =1, the Schwarzschild radius is often just written as rg = 2m.

Now, in practice the radius of a physical object is almost always much larger than its

Schwarzschild radius. For example, for a proton, for the earth and for the sun one has

approximately
Mproton ~ 1072 g =15 ~2,5x 107 cm < rg ~ 10~ em
Mgapip ~ 6 x 10" g = rg ~1cm < rg ~ 6000km
Mgun ~2x 108 g =rg~3km < rg ~ 7 x 10°km . (11.27)

However, for more compact objects, their radius can approach that of their Schwarzschild
radius. For example, for neutron stars one can have rg ~ 0.17g, and it is an interesting
question (we will take up again later on) what happens to an object whose size is equal

to or smaller than its Schwarzschild radius.

One thing that does not occur at rg, however, in spite of what (11.23) may suggest,
is a singularity. The singularity in (11.23) is a pure coordinate singularity, an artefact
of having chosen a poor coordinate system. One can already see from the metric in
isotropic form that in these new coordinates there is no singularity at the Schwarzschild
radius, given by p = MG/2 in the new coordinates. It is true that goo vanishes at
that point, but we will later on construct coordinates in which the metric is completely
regular at rg. The only true singularity of the Schwarzschild metric is at » = 0, but there
the solution was not meant to be valid anyway, so this is not a problem. Nevertheless, as
we will see later, something interesting does happen at r = rg, even though there is no
singularity and e.g. geodesics are perfectly well behaved there: rg is an event-horizon,
in a sense a point of no return. Once one has passed the Schwarzschild radius of an
object with rqg < rg, there is no turning back, not on geodesics, but also not with any

amount of acceleration.

MEASURING LENGTH AND TIME IN THE SCHWARZSCHILD METRIC

In order to learn how to visualize the Schwarzschild metric (for r > rg > rg), we will

discuss some basic properties of length and time in the Schwarzschild geometry.
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Let us first consider proper time for a sationary observer, i.e. an observer at rest at fixed

values of (r,0, ¢). Proper time is related to coordinate time by
dr = (1 —2m/r)?dt < dt . (11.28)

Thus clocks go slower in a gravitational field - something we already saw in the discussion
of the gravitational redshift, and also in the discussion of the so-called ‘twin-paradox’:
it is this fact that makes the accelerating twin younger than his unaccelerating brother
whose proper time would be dt. This formula again suggests that something interesting

is happening at the Schwarzschild radius = 2m - we will come back to this below.

As regards spatial length measurements, thus dt = 0, we have already seen above that
the slices = const. have the standard two-sphere geometry. However, as r varies, these
two-spheres vary in a way different to the way concentric two-spheres vary in R®. To see
this, note that the proper radius R, obtained from the spatial line element by setting

0 = const., ¢ = const, is
dR = (1 —2m/r)"Y2dr > dr . (11.29)

In other words, the (proper) distance between spheres of radius r and radius 7 + dr is
dR > dr and hence larger than in flat space. Note that dR — dr for r — oo so that, as
expected, far away from the origin the space approximately looks like R?. One way to

visualize this geometry is as a sort of throat or sink, as in Figure 8.

To get some more quantitative feeling for the distortion of the geometry produced by
the gravitational field of a star, consider a long stick lying radially in this gravitational
field, with its endpoints at the coordinate values r1 > 9. To compute its length L, we
have to evaluate "
L :/ dr(1 —2m/r)~Y? | (11.30)
T2

It is possible to evaluate this integral in closed form (by changing variables from 7 to
u = 1/r), but for the present purposes it will be enough to treat 2m/r as a small
perturbation and to only retain the term linear in m in the Taylor expansion. Then we
find

1
L~ / dr(14+m/r) = (r1 —r9) + mlog :—1 > (rp—rg) . (11.31)
T2 2

We see that the corrections to the Euclidean result are suppressed by powers of the
Schwarzschild radius rg = 2m so that for most astronomical purposes one can simply
work with coordinate distances!

12 PARTICLE AND PHOTON ORBITS IN THE SCHWARZSCHILD GEOMETRY

We now come to the heart of the matter, the study of planetary orbits and light rays

in the gravitational field of the sun, i.e. the properties of time-like and null geodesics of
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Sphere of radius r+dr

/

/

Sphere of radius r

Figure 8: Figure illustrating the geometry of the Schwarzschild metric. In R?, concentric
spheres of radii r and r + dr are a distance dr apart. In the Schwarzschild geometry,
such spheres are a distance dR > dr apart. This departure from Euclidean geometry
becomes more and more pronounced for smaller values of r, i.e. as one travels down the

throat towards the Schwarzschild radius r = 2m.
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the Schwarzschild geometry. We shall see that, by once again making good use of the
symmetries of the problem, we can reduce the geodesic equations to a single first order
differential equation in one variable, analogous to that for a one-dimensional particle
moving in a particular potential. Solutions to this equation can then readily be discussed

qualitatively and also quantitatively (analytically).
FroM CONSERVED QUANTITIES TO THE EFFECTIVE POTENTIAL

A convenient starting point in general for discussing geodesics is, as I stressed before,

the Lagrangian £ = g,,2"%". For the Schwarzschild metric this is
L=—1=2m/r)i®+ (1 —2m/r) Y% +r2(6? + sin? 0¢?) | (12.1)

where 2m = 2M G /c?. Rather than writing down and solving the (second order) geodesic
equations, we will make use of the conserved quantities K,# associated with Killing
vectors. After all, conserved quantities correspond to first integrals of the equations of
motion and if there are a sufficient number of them (there are) we can directly reduce

the second order differential equations to first order equations.

So, how many Killing vectors does the Schwarzschild metric have? Well, since the
metric is static, there is one time-like Killing vector, namely 0/0¢t, and since the metric
is spherically symmetric, there are spatial Killing vectors generating the Lie algebra of

S0O(3), hence there are three of those, and therefore all in all four Killing vectors.

Now, since the gravitational field is isotropic (and hence there is conservation of angular
momentum), the orbits of the particles or planets are planar. Without loss of generality,
we can choose our coordinates in such a way that this plane is the equatorial plane

0 = m/2, so in particular 6 = 0, and the residual Lagrangian to deal with is
L= —(1—2m/r)i* + (1 —2m/r) 2 + %% . (12.2)

This choice fixes the direction of the angular momentum (to be orthogonal to the plane)
and leaves two conserved quantities, the energy (per unit rest mass) E and the mag-
nitude L (per unit rest mass) of the angular momentum, corresponding to the cyclic
variables ¢t and ¢, (or: corresponding to the Killing vectors /0t and 9/0¢),

oL doc

o T war !

%:0 %g—gzo : (12.3)
namely

E = (1—2m/r)t (12.4)

L = r%sin?0¢=1%p . (12.5)
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There is also one more integral of the geodesic equation (corresponding to parametriza-
tion invariance of the Lagrangian), namely £ itself,

d D
—L =2g,,3"—z" =0 . 12.
dT/: I ® Dt 0 (12.6)
Thus we set
L=¢€, (12.7)
where € = —1 for time-like geodesics and € = 0 for null geodesics. Thus we have
—(1=2m/r)i®+ (1 —2m/r) "t +r2p? =€, (12.8)

and we can now express ¢ and ¢> in terms of the conserved quantities £ and L to obtain
a first order differential equation for r alone, namely

L2

—(1—=2m/r) ' E? + (1 = 2m/r)" 42 + F=c (12.9)

Multiplying by (1 — 2m/r)/2 and rearranging the terms, one obtains

E’+e¢ 2 m L?* mL?

Now this equation is of the familiar Newtonian form

-2

£ =5 +Veys(r) . (12.11)
with
e — E22+6
Vop(r) = e%+%—mr—f , (12.12)

describing the energy conservation in an effective potential. Except for ¢ — 7, this is

exactly the same as the Newtonian equation of motion in a potential

V(r) =e——

12.13
T r3 7 ( )

the effective angular momentum term L?/r? = r2¢? arising, as usual, from the change
to polar coordinates.

In particular, for e = —1, the general relativistic motion (as a function of 7) is exactly

the same as the Newtonian motion (as a function of ¢) in the potential

L2
e=-1 = V(r)=-2-"2
T T

(12.14)

The first term is just the ordinary Newtonian potential, so the second term is apparently

a general relativistic correction. We will later on treat this as a perturbation but note
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that the above is an exact result, not an approximation (so, for example, there are
no higher order corrections proportional to higher inverse powers of ). We expect
observable consequences of this general relativistic correction because many properties of
the Newtonian orbits (Kepler’s laws) depend sensitively on the fact that the Newtonian

potential is precisely ~ 1/r.

For null geodesics, on the other hand, the Newtonian part of the potential is zero, as one
might expect for massless particles, but in General Relativity a photon feels a non-trivial

potential
mL?
3

e=0 = V(r)=—- (12.15)

r

In particular, in either case, if one is primarily interested in the shape of the trajectories
(and this is what is astronomically observable), this means that one wants to know r
as a function of ¢. In that case, the difference between ¢ and 7 is irrelevant: In the
Newtonian theory one uses L = r2d¢/dt to express t as a function of ¢, t = t(¢) to obtain
r(¢) from r(t). In General Relativity, one uses the analogous equation L = r2d¢/dr
to express 7 as a function of ¢, 7 = 7(¢). But then obviously ¢(¢) and 7(¢) are the
same functions of ¢. Hence the shapes of the General Relativity orbits are precisely the
shapes of the Newtonian orbits in the potential (12.13). Thus we can use the standard
methods of Classical Mechanics to discuss these general relativistic orbits and of course

this simplifies matters considerably.
TIMELIKE GEODESICS

In that case, we need to understand the orbits in the effective potential

m L? mL?

Vepp(r) = ——+

_—— 12.1
r o 2r2 r3 ( 6)

and the standard way to do this is to plot this potential as a function of r for various

values of the parameters L and . The basic properties of Vs (r) are the following:

1. Asymptotically, i.e. for r — oo, the potential tends to the Newtonian potential,

Vop(r) =2 =2 (12.17)
T
2. At the Schwarzschild radius rs = 2m, nothing special happens and the potential

is completely regular there,

1
Vers(r=2m) = 3 . (12.18)

Of course, for the discussion of planetary orbits in the solar system we can safely
assume that the radius of the sun is much larger than its Schwarzschild radius,

ro > rg, but the above shows that even for these highly compact objects with
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Figure 9: Effective potential for a massive particle with L/m < +/12. The extrapolation

to values of r < 2m has been indicated by a dashed line.

ro < rg geodesics are perfectly regular as one approaches rg. Of course the

particular numerical value of V.sf(r = 2m) has no special significance because
V(r) can always be shifted by a constant.

3. The extrema of the potential, i.e. the points at which dVss/dr =0, are at
ry = (L?/2m)[1 £4/1 — 12(m/L)?] , (12.19)

and the potential has a maximum at r_ and a local minimum at 7.

Thus there are qualitative differences in the shapes of the orbits between L/m < /12

and L/m > +/12. Let us discuss these two cases in turn.

When L/m < /12, then there are no real turning points and the potential looks ap-
proximately like that in Figure 9. Note that we should be careful with extrapolating to
values of r with r < 2m because we know that the Schwarzschild metric has a coordinate

singularity there. However, qualitatively the picture is also correct for r < 2m.

From this picture we can read off that there are no orbits for these values of the parame-

ters. Any inward bound particle with L < v/12m will continue to fall inwards (provided
that it moves on a geodesic). This should be contrasted with the Newtonian situation in
which for any L # 0 there is always the centrifugal barrier reflecting incoming particles
since the repulsive term L?/2r? will dominate over the attractive —m/r for small values
of 7. In General Relativity, on the other hand, it is the attractive term —mZL?/r3 that

dominates for small r.
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Figure 10: Effective potential for a massive particle with L/m > 1/12. Shown are the
maximum of the potential at r_ (an unstable circular orbit), the minimum at r; (a
stable circular orbit), and the orbit of a particle with & < 0 with turning points 7 and

9.

Fortunately for the stability of the solar system, the situation is qualitatively quite
different for sufficiently large values of the angular momentum, namely L > v/12m (see

Figure 10).

In that case, there is a minimum and a maximum of the potential. The critical radii
correspond to exactly circular orbits, unstable at r_ (on top of the potential) and stable
at r, (the minimum of the potential). For L — v/12m these two orbits approach each
other, the critical radius tending to 74 — 6m. Thus there are no stable circular orbits
for r < 6m. On the other hand, for very large values of L the critical radii are (expand

the square root to first order) to be found at

(ry,r_) "23° (L% /m,3m) . (12.20)
For given L, for sufficiently large values of £ a particle will fall all the way down the
potential. For £ < 0, there are bound orbits which are not circular and which range

between the radii r; and 72, the turning points at which 7 = 0 and therefore £ = Vs (r).
These orbits will not be closed (elliptical) because of the non-Newtonian term ~ 1/r3.
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THE ANOMALOUS PRECESSION OF THE PERIHELIA OF THE PLANETARY ORBITS

In particular, therefore, the perihelion, the point of closest approach of the planet to the
sun where the planet has distance r{, will not remain constant. However, because ry is
constant, and the planetary orbit is planar, this point will move on a circle of radius r;
around the sun. In order to calculate this perihelion shift, one needs to express ¢ as a
function of r using (12.5) and (12.12),

dp  d¢ dr._,
= ala
= 5—2(25—2‘/610]0(7“))71/2 (12.21)

One can then calculate the total angle A¢ swept out by the planet during one revolution

by integrating this from r; to o and back again to 7, or
T2 d
A¢ = 2/ 9 4 (12.22)
r dr

In the Newtonian theory, one would have A¢ = 27w. The anomalous perihelion shift due
to the effects of General Relativity is thus

§p=Ap—2m . (12.23)

Unfortunately, the above differential equation cannot be integrated in closed form (it
leads to elliptic integrals) but can be calculated to first order in the perturbation, and

the result is that
0¢p = 6m(—— 2 12.24
6 ( cL ) ( )

In terms of the eccentricity e and the semi-major axis a of an elliptical orbit, this can

be written as

6nG M
09 = 2 a(l—e?)

As these paremters are known for the planetary orbits, d¢ can be evaluated. For ex-

(12.25)

ample, for Mercury, where this effect is largest (because it has the largest eccentricity)
one finds d¢ = 0,1” per revolution. This is of course a tiny effect (1 second, 1”, is one
degree divided by 3600) and not per se detectable. However,

1. this effect is cumulative, i.e. after N revolutions one has an anomalous perihelion
shift Ndg;

2. Mercury has a very short solar year, with about 415 revolutions per century;

3. and accurate observations of the orbit of Mercury go back over 200 years.

Thus the cumulative effect is approximately 850d¢ and this s sufficiently large to be
observable. The prediction of General Relativity for this effect is

dpar = 43,03" /century . (12.26)
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And indeed such an effect is observed (and had for a long time presented a puzzle,
an anomaly, for astronomers). In actual fact, the perihelion of Mercury’s orbit shows a
precession rate of 5601” per century, so this does not yet look like a brilliant confirmation
of General Relativity. However, of this effect about 5025” are due to fact that one is
using a non-inertial geocentric coordinate system (precession of the equinoxes). 532"
are due to perturbations of Mercury’s orbit caused by the (Newtonian) gravitational
attraction of the other planets of the solar system (chiefly Venus, earth and Jupiter).
This much was known prior to General Relativity and left an unexplained anomalous
perihelion shift of

SPanomatous = 43, 11" £0,45" /century . (12.27)

Now the agreement with the result of General Relativity is truly impressive and this
is one of the most important experimental verifications of General Relativity. Other
observations, involving e.g. the mini-planet Icarus, discovered in 1949, with a huge
eccentricity e ~ 0,827, or binary pulsar systems, have provided further confirmation of

the agreement between General Relativity and experiment.
NuLL GEODESICS

To study the behaviour of massless particles (photons) in the Schwarzschild geometry,
we need to study the effective potential
L*  mL? L? 2m
Vers(r) =53 = =52(1-="). (12.28)

72 3 T

The following properties are immediate:

1. When L = 0, photons feel no potential at all.
2. Veff(r = 2m) =0.

3. There is one critical point of the potential, at » = 3m, with V.s;(r = 3m) =

L?/54m?. So there is one unstable circular orbit for photons at r = 3rm.

Thus the potential has the form sketched in Figure 11.

For energies E2 > L?/27m?, photons are captured by the star and will spiral into it.
For energies E? < L?/27m?, on the other hand, there will be a turning point, and light
rays will be deflected by the star. As this may sound a bit counterintuitive (shouldn’t
a photon with higher energy be more likely to zoom by the star without being forced
to spiral into it?), think about this in the following way. L = 0 corresponds to a
photon falling radially towards the star, L small corresponds to a slight deviation from
radial motion, while L large (thus qb large) means that the photon is travelling along a

trajectory that will not bring it very close to the star at all. It is then not surprising
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Figure 11: Effective potential for a massless particle. Displayed is the location of the
unstable circular orbit at » = 3m. A photon with an energy E? < L?/27m? will be
deflected (lower arrow), photons with E? > L?/27m? will be captured by the star.
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that photons with small L are more likely to be captured by the star (this happens for
L? < 27m?E?) than photons with large L which will only be deflected in their path.

We will study this in more detail below. But let us first also consider the opposite
situation, that of light from or near the star (and we are of course assuming that
ro > rg). Then for rg < 3m and E? < L2/27m2, the light cannot escape to infinity
but falls back to the star, whereas for E2 > L?/27m? light will escape. Thus for a path
sufficiently close to radial (L small, because ¢> is then small) light can always escape as

long as r > 2m.
THE BENDING OF LIGHT BY A STAR

To study the binding of light by a star, we consider an incoming photon (or light ray)
with impact parameter b (see Figure 12) and we need to calculate ¢(r) for a trajectory
with turning point at » = r;. At that point we have 7 = 0 (the dot now indicates
differentiation with respect to the affine parameter o of the null geodesic, we can but
need not choose this to be the coordinate time t) and therefore

> _ L* (1 2m, (12.29)

r -——) . :

L= E2 T
The first thing we need to establish is the relation between b and the other parameters
E and L. Counsider the ratio

L r2d>
- 12.30
E  (1-2m/r)t ( )
For large values of r, r > 2m, this reduces to
L »d¢
= =r"— 12.31
E- " at (12.31)

On the other hand, for large 7 we can approximate b/r = sin ¢ by ¢. Since we also have

dr/dt = —1 (for an incoming light ray), we deduce

L .2 db
— =b . 12.32
E dir ( )
Now just as before, the shape of the curve is described by
de L ., L? 2. 19
el § . i (it | bt V)
dr 7“2[ r2( r )
1.1 1 2m .19
= Sl 501-"7) 2 (12.33)
The angle A¢ is now given by
o d
Ad— 2/ 49 4 (12.34)
and the deflection angle (which would be zero in the Newtonian theory) is
0p=Ap—7 . (12.35)
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Figure 12: Bending of light by a star. Indicated are the definitions of the impact
parameter b, the perihelion r1, and of the angles A¢ and d¢.

With the substitution z = b/r, this becomes
Tl 2
Ap = 2/ de [1—2? + 7m$3]_1/2 . (12.36)
0

This is once again an elliptic integral that cannot be solved in closed form. But since
we evidently have 2m = rg < 79 and ry < b, also A = m/b < 1. Thus we can try to
expand the integral to first order in A. To zero’th order, one has 71 = b (no deflection

of light in the Newtonian theory) and thus x; = 1 and
1
AOp = 2/ dz(l —2*) Y2 = 2arcsinl = 7 | (12.37)
0

which is just the expected Newtonian result d¢ = 0.
The calculation to the next order in A is a bit subtle because both the integrand and

the range of integration depend on A but one way to proceed is the following;:

1. First of all, it follows from the defining equation (12.29) for ; that, to first order
in A, the perihelion r; is shifted from its Newtonian value b (no attraction) to
r1 = b — m. Therefore

1 =b/ri~1+AX . (12.38)

2. Thus we are interested in the first order term C' in X of the integral

14+
I\ =A¢ = 2/ da [1— 22 + 220 1/2
0
T+ CA+ 0O\ . (12.39)
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3. C can be obtained as the first order term in the Taylor series expansion of I(\),

I\
C= 8()\)|A_0 . (12.40)

4. Therefore C is given by
1 0
C = {2[1 —a?+ 2371 2P=21) o + 2/ dz {1 - 2?2 + 222372 2o
0

1
= 2(1—a?)" 2=t - 2/ de 23(1 — 22)73/2 . (12.41)

0
5. Now obviously the first term is divergent, but it will be cancelled by exactly the

same divergence arising from the second term (the integral). In fact, that integral

is fortunately elementary. One has
/dx B —2?) ™32 = (1= 222 4 (1—22)/2 (12.42)
and therefore

C =201 —a%)~127=1 — 201 — 2?)~ V222 — 2(1 — 22)V/2125) . (12.43)

Tr=

We see that the divergent first term is cancelled exactly by the upper contribution

(at = 1) from the second term, and we are left with

C=2-0+2=4. (12.44)

6. Hence, the leading term in the general relativistic correction of the Newtonian

result is 4\ = 4m /b and one has

4
Ap =+ Tm + O | (12.45)
o Am  AMG
m
b~ 2 _ 12.4
o 2 2 (12.46)

This effect is physically measurable and was one of the first true tests of Einstein’s new

theory of gravity. For light just passing the sun the predicted value is
dp ~1,75" . (12.47)

Experimentally this is a bit tricky to observe because one needs to look at light from
distant stars passing close to the sun. Under ordinary circumstances this would not
be observable, but in 1919 a test of this was performed during a total solar eclipse, by
observing the effect of the sun on the apparent position of stars in the direction of the
sun. The observed value was rather imprecise, yielding 1,5"” < d¢ < 2,2" which is, if

not a confirmation of, at least consistent with General Relativity.
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More recently, it has also been possible to measure the deflection of radio waves by the
gravitational field of the sun. These measurements rely on the fact that a particular
Quasar, known as 3C275, is obscured annually by the sun on October 8th, and the
observed result (after correcting for diffraction effects by the corona of the sun) in this
case is 0 = 1, 76" £0,02".

The value predicted by General Relativity is, interestingly enough, exactly twice the
value that would have been predicted by the Newtonian approximation of the geodesic
equation alone (but the Newtonian approximation is not valid anyway because it applies
to slowly moving objects, and light certainly fails to satisfy this condition). A calculation
leading to this wrong value had first been performed by Soldner in 1801 (!) (by cancelling
the mass m out of the Newtonian equations of motion before setting m = 0) and also
Einstein predicted this wrong result in 1908 (his equivalence principle days, long before
he came close to discovering the field equations of General Relativity now carrying his

name).

13 APPROACHING AND CROSSING THE SCHWARZSCHILD RADIUS

So far, we have been considering objects of a size larger (in practice much larger) than
their Schwarzschild radius, ry > rg. We also noted that the effective potential V() is
perfectly well behaved at rs. We now consider objects with rg < rg and try to unravel
some of the bizzarre physics that nevertheless occurs when one aproaches or crosses

rs = 2m.
INFINITE GRAVITATIONAL REDSHIFT

One dramatic aspect of what is happening at (or, better, near) the Schwarzschild radius
for very (very!) compact objects with rg > r¢ is the following. Recall the formula for
the gravitational red-shift, which gave us the ratio between the frequency of light v4
emitted at the radius 4 and the frequency vp received at the radius rp > r4 in a static

spherically symmetric gravitational field. The result was

1/2
VB _ 7900(”‘)1 ; (13.1)
VA 900(7‘3) /
In the case of the Schwarzschild metric, this is
1-29 1/2
ve _ (1= 2m/ra) (13.2)

va  (1—2m/rp)l/?

Now cousider a fixed observer at rg > rg, and the emitter at r4 who is gradually
approaching the Schwarzschild radius, 74 — rg. In this limit one finds

VB

0, (13.3)
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i.e. there is an infinite gravitational red-shift! Note that the far-away observer will never
actually see the unfortunate emitter A crossing the Schwarzschild radius: he will see
A’s signals becoming dimmer and dimmer and arriving at greater and greater intervals,
and A will completely disappear from B’s sight when A gets very close to rg. A, on the

other hand, does not immediately notice anything special happening as he approaches

rs.
VERTICAL FREE FALL

Our next calculation will show that even though B never sees A crossing the Schwarzschild
radius, A reaches rg in finite proper time. To that end, consider a vertical free fall to-
wards the object with 7o < rg. ‘Vertical’ means that qS = 0, and therefore there is no

angular momentum, L = 0. Hence the energy conservation equation (12.12) becomes

2
B2 -1=¢2-"" (13.4)
T

In particular, if 7o, is the point at which the particle (observer) A was initially at rest,

dr
grlr=re =0, (13.5)
we have 5
g?o1=-" (13.6)
T

Then we obtain
7= — — — (13.7)

and upon differentiation
m
P+ —=0 . 13.8
7+ 2 (13.8)

This is just like the Newtonian equation (which should not come as a surprise as Ve
coincides with the Newtonian potential for L = 0), apart from the fact that r is not
vertical distance and the familiar 7 # t. Nevertheless, calculation of the time 7 along
the path proceeds exactly as in the Newtonian theory. For the proper time required to

reach the point with coordinate value r = r; we obtain

1 1/2
T:(2m)_1/2/ dr < fooT ) . (13.9)

Too — T

In particular, this is finite as r; — 2m. Coordinate time, on the other hand, becomes
infinite there. This can be understood by looking at the coordinate velocity as a function

of r,
dr dr dt

o(r)=—=—— .
() dt drdt
Let us choose 7o, = oo for simplicity - other choices will not change our conclusions as

(13.10)

we are interested in the behaviour of v(r) as r — rg. Then we know that

dr
- = (2m/n)'? (13.11)
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and we know from the definition of E that

d
d—; = E7Y1 - 2m/r) . (13.12)
For roo = oc we have E = 1, and therefore
-2
o(r) = (2771)1/2’“73/2m . (13.13)

As a function of 7, v(r) reaches a maximum at r = 6m = 3rg, where the velocity is

(restoring the velocity of light ¢)
2
3V

Beyond that point, v(r) decreases again and clearly goes to zero as r — 2m. The

Umaz = v(r = 6m)

(13.14)

fact that the coordinate velocity goes to zero explains why the coordinate time goes
to infinity. Somehow, the Schwarzschild coordinates are not suitable for describing the
physics at or beyond the Schwarzschild radius because the time coordinate one has
chosen is running too fast. This is the crucial insight that will allow us to construct

‘better’ coordinates in the subsequent sections which are also valid at r» < rg.
TORTOISE COORDINATES

We have now seen in two different ways why the Schwarzschild coordinates are not
suitable for exploring the physics in the region r < 2m: in these coordinates the metric
becomes singular at 7 = 2m and the coordinate time becomes infinite. On the other
hand, we have seen no indication that the local physics, expressed in terms of covariant
quantities like proper time or the geodesic equation, becomes singular as well. So we
have good reasons to suspect that the singular behaviour we have found is really just

an artefact of a bad choice of coordinates.

To improve our understanding of the Schwarzschild geometry, it is important to study

its causal structure, i.e. the light cones. Radial null curves satisfy

(1 —2m/r)dt* = (1 —2m/r) tdr* . (13.15)
Thus J
d—i =+(1—2m/r)" ", (13.16)

In the (r,t)-diagram of Figure 13, dt/dr represents the slope of the light-cones at a given
value of . Now, as r — 2m, one has

2 4o (13.17)

TS

so the light clones ‘close up’ as one approaches the Schwarzschild radius. This is the
same statement as before regarding the fact that the coordinate velocity goes to zero at

r = 2m, but this time for null rather than time-like geodesics.
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Figure 13: The causal structure of the Schwarzschild geometry in the Schwarzschild
coordinates (r,t). As one approaches r = 2m, the light cones become narrower and

narrower and eventually fold up completely.
As our first step towards introducing coordinates that are more suitable for describing
the region around rg, let us solve equation (13.16). The solution is
t=+r"+0C , (13.18)
where the tortoise coordinate r* is
r* =r+2mlog(r/2m —1) . (13.19)
Using the tortoise coordinate r* instead of r, the Schwarzschild metric reads
ds® = (1 — 2m/r)(—dt* + dr*?) + r2dQ?* | (13.20)
where 7 is to be thought of as a function of r*.
We see immediately that we have made some progress. Now the light cones, defined by
dt* = dr** | (13.21)

do not seem to fold up as the light cones have the constant slope dt/dr* = £1 (see

Figure 14), and there is no singularity at » = 2m. However, 7* is still only defined for

r > 2m and the surface r = 2m has been pushed infinitely far away (r = 2m is now at
*

r* = —o0). Moreover, even though non-singular, the metric components gy and gy«

vanish at r = 2m.
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r=2m
—_——————

r* =-infinity

Figure 14: The causal structure of the Schwarzschild geometry in the tortoise coordi-
nates (r*,t). The light cones look like the light cones in Minkowski space and no longer

fold up as r — 2m (which now sits at r* = —o0).

107



EDDINGTON-FINKELSTEIN COORDINATES, BLACK HOLES AND EVENT HORIZONS

Let us introduce coordinates that are naturally adapted to null geodesics, namely

u = t+r*
v o= t—r". (13.22)
Then infalling radial null geodesics (dr*/dt = —1) are characterized by u = const. and

outgoing radial null geodesics by v = const.

Now we pass to the Eddington-Finkelstein coordinates (u,r, 6, ¢) or (v,r,60,¢), in terms

of which the Schwarzschild metric reads

ds* = —(1—=2m/r)du® + 2du dr + r*dQ?
= —(1—2m/r)dv® — 2dv dr + rdQ?* . (13.23)

Even though the metric coefficent g,, or g¢,, vanishes at r = 2m, there is no real

degeneracy. The determinant of the metric is

g =rtsin?0 , (13.24)

which is completely regular at » = 2m, and the metric is invertible.

The only real singularity is at » = 0. That this is indeed a real singularity can be
shown by calculating some invariant of the curvature tensor, like R, ,,R**?? which is
proportional to 7% (actually, on dimensional grounds, proportional to m? /7). Also, the
geodesic deviation equation shows that the force needed to keep neighbouring particles

apart is proportional to 3.

Thus the tidal forces within arbitrary objects (solids,
atoms, elementary particles) eventually become infinitely big so that these objects will

be crushed completely.

In some sense, however, not even the singularity at r = 0 is real because the Schwarzschild
metric was never meant to be valid there anyway. If there is a very compact star in the
interior, then the Schwarzschild metric is not a solution for r < rg, i.e. the interior of
the star, and if there is no star (m=0), and one could reach r = 0, the solution to the

Einstein equations is just Minkowski space.

Thus, even though (for now) the singularity at » = 0 is not really worrysome, just
being close enough to r = 0, without actually reaching that point, is usually more than
sufficient to crush any known kind of matter. In that sense again, the physics becomes
hopelessly singular even before one reaches r = 0 and there seems to be nothing to
prevent a collapse of such an object to = 0 and infinite density. Certainly classical
mechanics and even current-day quantum field theory are inadequate to describe this
situation. If or how a theory of quantum gravity can deal with these matters remains
to be seen.

108



To determine the light cones in the Eddington-Finkelstein coordinates we again look at

radial null geodesics which this time are solutions to

(1 —2m/r)du® = 2du dr . (13.25)
Thus either du/dr = 0 which, as we have seen, describes incoming null geodesics,
u = const., or
d
ﬁ =2(1—2m/r)"" | (13.26)

which then describes outgoing null geodesics. Thus the lightcones remain well-behaved
(do not fold up) at = 2m, the surface r = 2m is at a finite coordinate distance, namely
(to reiterate the obvious) at = 2m, and there is no problem with following geodesics

beyond r = 2m.

But even though the light cones do not fold up at » = 2m, something interesting is
certainly hapening there. Whereas, in a (u, r)-diagram (see Figure 15), one side of the
light cone always remains horizontal (at u = const.), the other side becomes vertical
at ¥ = 2m (du/dr = oo) and then tilts over to the other side. In particular, beyond
r = 2m all future-directed paths, those within the forward light cone, now have to move
in the direction of decreasing r. There is no way to turn back to larger values of r, not
on a geodesic but also not on any other path (i.e. not even with a powerful rocket) once

one has gone past 7 = 2m.

Thus, even though locally the physics at » = 2m is well behaved, globally the surface
r = 2m is very significant as it is a point of no return. Once one has passed the
Schwarzschild radius, there is no turning back. Such a surface is known as an event
horizon. Note that this is a null surface so, in particular, once one has reached the
event horizon one has to travel at the speed of light to stay there and not be forced

further towards r = 0.

In any case, we now encounter no difficulties when entering the region r < 2m, e.g. along
lines of constant « and this region should be included as part of the physical space-time.
Note that because v = ¢ + r* and * — —oc for r — 2m, we see that decreasing r
along lines of constant « amounts to ¢ — oc. Thus the new region at » < 2m we have

discovered is in some sense a future extension of the original Schwarzschild space-time.

Note also that nothing, absolutely nothing, no information, no light ray, no particle,
can escape from the region behind the horizon. Thus we have a Black Hole, an object

that is (classically) completely invisible.

The seeming time-asymmetry we encounter here also shows up in the fact that in the
(u,r) coordinate system we can cross the event horizon only on future directed paths,
not on past directed ones. The situation is reversed when one uses the coordinates (v, r)
instead of (u,r). In that case, the light cones in Figure 15 are flipped (either up-down

or left-right), and one can pass through the horizon on past directed curves. The new
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r=0 r=2m
Figure 15: The behaviour of light cones in Eddington-Finkelstein coordinates. Light

cones do not fold up at r = 2m but tilt over so that for r < 2m only movement in the

direction of decreasing r towards the singularity at r = 0 is allowed.
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r=2m

Figure 16: The Schwarzschild patch in the Kruskal metric: the half-plane r > 2m is
mapped to the quadrant between the lines U = £V in the Kruskal metric.

region of space-time covered by the coordinates (v, r) is definitely different from the new
region we uncovered using (u,r) even though both of them lie ‘behind’ = 2m. In fact,
this one is a past extension (beyond ¢ = —oc0) of the original Schwarzschild ‘patch’ of
space-time. In this patch, the region behind r = 2m acts like the opposite of a black

hole (a white hole) which cannot be entered on any future-directed path.
THE KRUSKAL METRIC

Are there still other regions of space-time to be discovered? The answer is yes, and one
way to find them would be to study space-like rather than null geodesics. Alternatively,
let us try to guess how one might be able to describe the maximal extension of space-
time. The first guess might be to use the coordinates u and v simultaneously, instead

of r and ¢. In these coordinates, the metric takes the form
ds* = —(1 — 2m/r)du dv + r2dQ? . (13.27)

But while this is a good idea, the problem is that in these coordinates the horizon is once
again infinitely far away, at u = —oc or v = +00. We can rectify this by introducing

coordinates v’ and v’ with
o = eu/4m

o = emv/4m (13.28)

so that the horizon is now at either ' = 0 or v/ = 0. And indeed in these coordinates

the metric is completely non-singular and regular everywhere except at r = 0. In fact,
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one has 5
2

B2 =12 gt g+ 2402 (13.29)
,

ds® =

Finally, we pass from the null coordinates (u’,v') (meaning that 9, and d, are null

vectors) to more familiar time-like and space-like coordinates (V,U) defined by

(W + ') = (r/2m — 1)Y2eT/4M cosh t/am
(W — ') = (r/2m — 1)Y2e"/4M sinh tJ4m (13.30)

U =
vV =

NI= N

in terms of which the metric is

32m3 _
ds? — Tme TI2M(_qv? 4 qu?) + 12402 (13.31)

Here 72 is implicitly given by
U2 - V2= (r/2m —1)e"/2m (13.32)

As in Minkowski space, null lines are given by U = £V + const.. The horizon is now at
the null surfaces U = £V. Surfaces of constant r are given by U2 — V2 = const. and

the singularity at r = 0 corresponds to the two sheets of the hyperboloid
Vi _U*=1. (13.33)

We can now let the coordinates (U, V') range over all the values for which the metric is
non-singular. This corresponds to V2 — U? < 1 with the region between V? — U? = 0
and V2 — U? =1 corresponding to 0 < r < 2m.

It can be shown that the above represents the maximal analytical extension of the
Schwarzschild metric in the sense that every affinely parametrized geodesic can either
be continued to infinite values of its parameter or runs into the singularity at » = 0
at some finite value of the affine parameter. It was discovered by Kruskal in 1960 and
presents us with an amazingly rich and complex picture of what originally appeared to

be a rather innocent (and very simple) solution to the Einstein equations.

As Figure 16 shows, the original ‘Schwarzschild patch’ of the Schwarzschild solution, i.e.
the half-plane r > 2m which was the regime of validity of the Schwarzschild coordinates,
is mapped to the first quadrant of the Kruskal metric, bounded by the lines U = £V
which correspond to r = 2m. But now that we have the coordinates U and V, and
the metric (and thus the physics) is non-singular for all values of (U, V') subject to the
constraint > 0 or V? — U? < 1, there is no physical reason to exclude the regions in

the other quadrants also satisfying this condition.

By including them, we obtain the Kruskal diagram Figure 17. In addition to the

Schwarzschild patch, quadrant I, we have three other regions, living in the quadrants
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Figure 17: The complete Kruskal universe. Diagonal lines are null, lines of constant

\

r=0

r are hyperbolas. Region I is the Schwarzschild patch, seperated by the horizon from
regions II and IV. The Eddington-Finkelstein coordinates (u,r) cover regions I and II,
(v,1) cover regions I and IV. Regions I and III are filled with lines of constant r > 2m.
They are causally disconnected. Observers in regions I and III can receive signals from
region IV and send signals to region II. An observer in region IV can send signals into
both regions I and III (and therefore also to region 1I) and must have emerged from the
singularity at » = 0 at a finite proper time in the past. Any observer entering region II
will be able to receive signals from regions I and III (and therefore also from IV) and
will reach the singularity at » = 0 in finite time. Events occuring in region 1T cannot be

observed in any of the other regions.
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II, III, and IV, each of them having its own peculiarities. Note that obviously the con-
version formulae from (r,¢) — (U, V) in the quadrants II, IIT and IV differ from those

given above for quadrant I. E.g. in region II one has

U = (1-r/2m) 2"/ 4Msinht/am
V = (1—r/2m)1/26r/4mcosht/4m. (13.34)

To get acquainted with the Kruskal diagram, let us note the following basic facts:

1. Null lines are diagonals U = £V +-const., just as in Minkowski space. This greatly

facilitates the exploration of the causal structure of the Kruskal metric.
2. In particular, the horizon corresponds to the two lines U = +V.

3. Lines of constant r are hyperbolas. For r > 2m they fill the quadrants I and III,
for 7 < 2m the other regions II and IV.

4. In particular, the singularity at » = 0 is given by the two sheets of the hyperbola
VE-U?=1.

5. Notice in particular also that in regions Il and IV worldlines with r = const. are

no longer time-like but space-like.

6. The Eddington-Finkelstein coordinates (u,r) cover the regions I and 11, the coor-

dinates (v, r) the regions I and IV.

7. Quadrant IIT is completely new and is seperated from region I by a space-like

distance. That is, regions I and III are causally disconnected.

Now let us see what all this tells us about the physics of the Kruskal metric. An observer
in region I (the familiar patch) can send signals into region II and receive signals from
region IV. The same is true for an observer in the causally disconnected region I11. Once
an observer enters region II from, say, region I, he cannot escape from it anymore and
he will run into the catastrophic region r = 0 in finite proper time. As a reward for his
or her foolishness, between having crossed the horizon and being crushed to death, our
observer will for the first time be able to receive signals and meet observers emerging
from the mirror world in region III. Events occurring in region II cannot be observed
anywhere outside that region (black hole). Finally, an observer in region IV must have
emerged from the (past) singularity at » = 0 a finite proper time ago and can send

signals and enter into either of the regions I or III.

Another interesting aspect of the Kruskal geometry, but one I wil not go into here, is its
dynamical character. This may appear to be a strange thing to say since we explicitly
started off with a static metric. But this statement applies only to region I (and its

mirror IIT). An investigation of the behaviour of space-like slices analogous to that we
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performed at the end of section 11 for region I (see Figure 8) reveals a dynamical picture
of continuing gravitational collapse in region II. In simple terms, the loss of staticity
can be understood by noting that the time-like Killing vector field d; of region I, when
expressed in terms of Kruskal coordinates, becomes null on the horizon and space-like

in region II. Indeed it is easy to check that in terms of Kruskal coordinates one has
O = (Udy +Voy)/4m (13.35)

and that this vector field has norm proportional to V2 — U?. Hence 0; is time-like in
region I, null on the horizon and space-like in region II. Thus region II has no time-like
Killing vector field, therefore cannot possibly be static, but has instead an additional

space-like Killing vector field.
* VARIA ON BLACK HOLES AND GRAVITATIONAL COLLAPSE

Now you may well wonder if all this is for real or just science fiction. Clearly, if an
object with ry < 2m exists and is described by the Schwarzschild solution, then we
will have to accept the conclusions of the previous section. However, this requires the
existence of an eternal black hole (in particlar, eternal in the past) in an asymptotically
flat space-time, and this is not very realistic. While black holes are believed to exist,
they are believed to form as a consequence of the gravitational collapse of a star whose
nuclear fuel has been exhausted (and which is so massive that it cannot settle into a

less singular final state like a White Dwarf or Neutron Star).

To see how we could picture the situation of gravitational collapse (without trying to
understand why this collapse occurs in the first place), let us estimate the average
density p of a star whose radius rg is equal to its Schwarzschild radius. For a star with

mass M we have

2MG
TS =03 (13.36)
and approximately
4 3

M= 7;7“0 (13.37)

Therefore, setting ry = rg, we find that

= " = —_— ]. .

P = 35802 2 x 10*° g/cm < 7 > (13.38)

For stars of a few solar masses, this density is huge, roughly that of nuclear matter.
In that case, there will be strong non-gravitational forces and hydrodynamic processes,
singificantly complicating the description of the situation. The situation is quite simple,
however, when an object of the mass and size of a galaxy (M ~ 10 Mgyn) collapses.
Then the critical density (13.38) is approximately that of air, p ~ 1073 g/cm?®, non-
gravitational forces can be neglected completely, and the collapse of the object can be

approximated by a free fall.
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Under these circumstances, a more realistic Kruskal-like space-time diagram of a black
hole would be the one depicted in Figure 18. We assume that at time t = 0 (V = 0)
we have a momentarily static mass configuration with radius R > 2m and mass M
which then starts to collapse in free fall. Neglecting radiation-effects, the mass M of
the star (galaxy) remains constant so that the exterior of the star is described by the
corresponding subset of region I of the Kruskal metric. Note that regions IIT and IV no
longer exist. Region IV has disappeared because there is no singularity in the past, and

region III cannot be reached even on space-like curves because the star is in the way.

The surface of the star can be represented by a time-like geodesic going from r = R
at t = 0 to r = 0. It will reach = 0 after the finite proper time 7 = 7(R3/8M)/?
(Exercise). For an object the size of the sun this is approximately one hour! Note that,
even if the free fall (geodesic) approximation is no longer justified at some point, once
the surface of the star has crossed the Schwarzschild horizon, nothing, no amount of
pressure, can stop the catastrophic collapse to = 0 because, whatever happens, points
on the surface of the star will have to move within their forward light-cone and will

therefore inevitably end up at » = 0.

For an observer remaining outside, say at the constant value r = R, the situation
presents itself in a rather different way. Up to a constant factor (1 —2m/R), his proper
time equals the coordinate time ¢. As the surface of the collapsing galaxy crosses the
horizon at t = oo, strictly speaking the outside observer will never see the black hole

form.

We had already encountered a similar phenomenon in our discussion of the infinite
gravitational red-shift. However, the gravitational red-shift grows exponentially with
time, ~ expt/4m for radially emitted photons. The luminosity L of the star decreases
expounentially, as a consequence of the gravitational red-shift and the fact that photons
emitted at equal time intervals from the surface of the star reach the observer at greater

and greater time intervals. It can be shown that
L~e t/3V3m (13.39)

so that the star becomes very dark very quickly, the characteristic time being of the

order of

t~3V3m ~2,5x10 5 < ) : (13.40)
MSUII

Thus, even though for an outside observer the collapsing star never disappears com-
pletely, for all practical intents and purposes the star is black and the name ‘black hole’

is justified.

It is fair to wonder at this point if the above conclusions regarding the collapse to r =0
are only a consequence of the fact that we assumed exact spherical symmetry. Would the
singularity be avoided under more general conditions? The answer to this is, somewhat

surprisingly and schockingly, a clear ‘no’.
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Figure 18: The Kruskal diagram of a gravitational collapse. The surface of the star
is represented by a time-like geodesic, modelling a star (or galaxy) in free fall under
its own gravitational force. The surface will reach the singularity at r = 0 in finite
proper time whereas an outside observer will never even see the star collapse beyond
its Schwarzschild radius. Howeer, as discussed in the text, even for an outside observer
the resulting object is practically ‘black’.
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On the one hand, there are very general singularity theorems, due to Penrose, Hawking
and others, which all state in one way or another that if Einstein’s equations hold,
the energy-momentum tensor satisfies some kind of positivity condition, and there is a
regular event horizon, then a singularity will appear. These theorems do not rely on

any symmetry assumptions.

On the other hand, it has also been shown that the gravitational field of a static black
hole, even without further symmetry assumptions, is necessarily given by the spherically

symmetric Schwarzschild metric and is thus characterized by the single parameter M.

Of course, other exact solutions describing isolated systems like a star, meaning that the

solution is asymptotically flat, are known. Two important examples are the following:

1. The Reissner-Nordstrgm Metric

The Reissner-Nordstrgm metric is a solution to the coupled Einstein-Maxwell
equations describing the gravitational field of a spherically symmetric electrically
charged star. It is characterized by two parameters, its mass M and its charge @),
with Fy, = —Q/r?, and the metric is

oM 2 oM 2
ds? = —1-=+ Q—2)dt2 +(1—-=—+ Q_2)71dr2 +72dQ0?% . (13.41)
T T T T

Note that this can be obtained from the Schwarzschild metric by substituting

QQ

13.42
2r (3 )

The structure of the singularities and event horizons is more complicated now
than in the case of the Schwarzschild metric and also depends on the relative size
of () and M.

If Q? > M? (this is not a very realistic situation), then the metric is non-singular
everywhere except, of course, at = 0. In particular, the coordinate ¢ is always
time-like and the coordinate r is always space-like. While this may sound quite
pleasing, much less insane than what happens for the Schwarzschild metric, this
is actually a disaster. The singularity at » = 0 is now time-like, and it is not
protected by an event-horizon. Such a singularity is known as a naked singular-
ity. An observer could travel to the singularity and come back again. Worse,
whatever happens at the singularity can influence the future physics away from
the singularity, but as there is a singularity this means that the future cannot
be predicted/calculated in such a space-time because the laws of physics break
down at r = 0. There is a famous conjecture, known as the Cosmic Censorship
Conjecture, which roughly speaking states that the collpase of physically realistic
matter configurations will never lead to a naked singularity. In spite of a lot of
partial results and circumstantial evidence in favour of this conjecture, it is not

known if it holds in General Relativity.
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The situation is even more interesting in the somewhat more realistic case M? >

Q?. In that case, there are two radii

ry =M £ \/M2 — Q2 (13.43)

at which the metric becomes singular. The outer one is just like the event horizon
of the Schwarzschild metric, the inner one reverses the role of radius and time
once more so that the singularity is time-like and can be avoided by returning to
larger values of . There is much more that can and should be said about this

solution butl will not do this here.

2. The Kerr Metric

The Kerr metric describes a rotating black hole and is characterized by its mass M
and its angular momentum .J. Now one no longer has spherical symmetry (because
the axis of rotation picks out a particular direction) but only axial symmetry. The
situation is thus a priori much more complicated. A stationary solution (i.e. one
with a time-like Killing vector, ‘static’ is a slightly stronger condition) was found
by Kerr only in 1963, almost fifty years after the Schwarzschild and Reissner-
Nordstrgm solutions. Its singularity and horizon structure is much more intricate
and intriguing than that of the solutions discussed before. One can pass from one
universe into a different asymptotically flat universe. The singularity at 7 = 0 has
been spread out into a ring; if one enters into the ring, one can not only emerge
into a different asymptotically flat space-time but one can also turn back in time
(there are closed time-like curves), one can dip into the black hole and emerge
with more energy than one had before (at the expense of the angular momentum
of the black hole), etc. etc. All this is fun but also rather technical and I will not

go into any of this here.

Of course there are also solutions describing a combination of the two above solutions,
namely charged rotating black holes (the Kerr-Newman metric). One of the reasons
why I mention these solutions is that it can be shown that the most general stationary
electrically charged black hole is characterized by just three parameters, namely M,
Q@ and J. This is generally referred to as the fact that black holes have no hair, or
as the no-hair theorem. It roughly states that the only characteristics of a black hole
which are not somehow radiated away during the phase of collapse via multipole mo-
ments of the gravitational, electro-magnetic, ... fields are those which are protected by
some conservation laws, something that in simple cases can be confirmed by an explicit

calculation.
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14 CosMOLOGY [: MAXIMALLY SYMMETRIC SPACES
PRELIMINARY REMARKS

We now turn away from considering isolated systems (stars) to some (admittedly very
idealized) description of the universe as a whole. This subject is known as Cosmology.
It is certainly one of the most fascinating subjects of theoretical physics, dealing with

such issues as the origin and ultimate fate and the large-scale structure of the universe.

Due to the difficulty of performing cosmological experiments and making precise mea-
surements at large distances, many of the most basic questions about the universe are

still unanswered today:

1. Is our universe open or closed?

2. WIill it keep expanding forever or will it recollapse?

3. Why is the Cosmic Microwave Background radiation so isotropic?

4. What is the mechanism responsible for structure formation in the universe?
5. Where is the ‘missing mass’?

6. Why is the cosmological constant so small and what is its value?

Of course, we cannot study any of these questions in detail, in particular because an
important role in studying these questions is played by the interaction of cosmology
with astronomy, astrophysics and elementary particle physics, each of these subjects

deserving at least a course of its own.

Fortunately, however, many of the important features any realistic cosmological model
should display are already present in some very simple models, the so-called Friedmann-
Robertson- Walker Models already studied in the 20’s and 30’s of this century. They are
based on the simplest possible ansatz for the metric compatible with the assumption
that on large scales the universe is roughly homogeneous and isotropic (cf. the next
section for a more detailed discussion of this Cosmological Principle) and have become

the ‘standard model’” of cosmology.

We will see that they already display all the essential features such as
1. a Big Bang
2. expanding universes (Hubble expansion)

3. different long-term behaviour (eternal expansion versus recollapse)

4. and the cosmological red-shift.
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Our first aim will be to make maximal use of the symmetries that simple cosmological
models should have to find a simple ansatz for the metric. Our guiding principle will
be ...

THE COSMOLOGICAL PRINCIPLE

At first, it may sound impossibly difficult to find solutions of the Einstein equations
describing the universe as a whole. But: If one looks at the universe at large (very
large) scales, in that process averaging over galaxies and even clusters of galaxies, then

the situation simplifies a lot in several respects;

1. First of all, at those scales non-gravitational interactions can be completely ignored
because they are either short-range (the nuclear forces) or compensate each other

at large distances (electro-magnetism).

2. The earth, and our solar system, or even our galaxy, have no privileged position
in the universe. This means that at large scales the universe should look the same
from any point in the universe. Mathematically this means that there should be
translational symimetries from any point of space to any other, in other words,

space should be homogeneous.

3. Also, we assume that, at large scales, the universe looks the same in all directions.

Thus there should be rotational symmetries and hence space should be isotropic.

It is almost evident from what we already know about Killing vectors, that this implies
that the n-dimensional space (of course n = 3 for us) has n translational and n(n—1)/2
rotational Killing vectors, i.e. the maximal possible number of Killing vectors. Such a
space is called mazimally symmetric. For n = 3, we will thus have six Killing vectors,
two more than for the Schwarzschild metric, and the ansatz for the metric will simplify

accordingly.

Note that since we know from observation that the universe expands, we do not require
a maximally symmetric space-time as this would imply that there is also a time-like

Killing vector and the resulting model for the universe would be static.

What simplifies life considerably is the fact, we will establish below, that there are essen-
tially only three kinds of maximally symmetric spaces (for any n), namely flat space R",
the sphere S™, and its negatively curved counterpart, the n-dimensional pseudosphere

or hyperboloid we will call H™.

Thus, for a space-time metric with maximally symmetric space-like ‘slices’, the only
unknown is the time-dependence of the metric. More concretely, we will see that under
the assumptions of maximal symmetry the metric can be chosen to be

dr?

2 2 2
ds” = —di* + (1) (=5

+r2dQ?) | (14.1)
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where £k = 0,+1 corresponds to the three possibilities mentioned above. Thus the
metric contains only one unknown function, the ‘radius’ or cosmic scale factor a(t).
This function will be determined by the Einstein equations via the matter content of
the universe (we will of couse be dealing with a non-vanishing energy-momentum tensor)

and the equation of state for the matter.
HOMOGENEOUS, ISOTROPIC AND MAXIMALLY SYMMETRIC SPACES

We have seen that Killing vectors K#(z) are determined by the values K*(xy) and
VK, (z¢) at asingle point z9. We will now see how these data are related to translations

and rotations.

We define a homogeneous space to be such that it has infinitesimal isometries that carry
any given point zg into any other point in its immediate neighbourhood (this could be
stated in more fancy terms!). Thus the metric must admit Killing vectors that, at any
given point, can take all possible values. Thus we require the existence of Killing vectors

for arbitrary K, (zo).

We define a space to be isotropic at a point xg if it has isometries that leave the given
point xg fixed and such that they can rotate any vector at xp into any other vector at
x9. Therefore the metric must admit Killing vectors such that K,(zo) = 0 but such
that VK, (x¢) is an arbitrary antisymmetric matrix (for instance to be thought of as
an element of the Lie algebra of SO(n)).

Finally, we define a mazimally symmetric space to be a space with a metric with the

maximal number n(n + 1)/2 of Killing vectors.

Some simple and fairly obvious consequences of these definitions are the following;:

1. A homogeneous and isotropic space is maximally symmetric.

2. A space that is isotropic for all x is also homogeneous. (This follows because
linear combinations of Killing vectors are again Killing vectors and the difference
between two rotational Killing vectors at x and x + dxr can be shown to be a

translational Killing vector.)

3. (1) and (2) now imply that a space which is isotropic around every point is max-

imally symmetric.

4. Finally one also has the converse, namely that a maximally symmetric space is

homogeneous and isotropic.

In practice the characterization of a maximally symmetric space which is easiest to use is
(3) because it only requires consideration of one type of symmetries, namaly rotational

symmetries.
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THE CURVATURE TENSOR OF A MAXIMALLY SYMMETRIC SPACE

Oun the basis of these simple considerations we can already determine the form of the
Riemann curvature tensor of a maximally symmetric space. We will see that maximally

syminetric spaces are spaces of constant curvature in the sense that
Rijr = k(9ikgji — 9a9jk) (14.2)

for some constant k.

This result could be obtained by making systematic use of the higher order integrability
conditions for the existence of a maximal number of Killing vectors. The argument

given below is less covariant but more elementary.

Assume for starters that the space is isotropic at xy and choose a Riemann normal
coordinate system centered at . Thus the metric at x¢ is g;j(x0) = 7;; where we may

just as well be completely general and assume that

i = diag(—1,...,—1+1,...,41) , (14.3)

p times q times

where p + ¢ = n and we only assume n > 2.

If the metric is supposed to be isotropic at xg then, in particular, the curvature tensor
at the origin must be invariant under Lorentz rotations. Now we know that the only
invariants of the Lorentz group are the Minkowski metric and products thereof, and the
totally antisymuimetric epsilon-symbol. Thus the Riemann curvature tensor has to be of

the form
Rijri(zo) = anijnr + bnagnji + cnamnjx + degpg (14.4)

where the last term is only possible for n = 4. The symmetries of the Riemann tensor

imply that a = d = b+ ¢ = 0, and hence we are left with

Rijri(zo) = b(mixnjt — namjk) (14.5)

Thus in an arbitrary coordinate system we will have

Rijri(20) = b(gik(w0)gji(xo) — gir(xo)gjk(xo)) (14.6)

If we now assume that the space is isotropic around every point, then we can deduce
that

Rijri(z) = b(z)(gik(2)gj1(x) — ga(2) gk () (14.7)

for some function b(z). Therefore the Ricci tensor and the Ricci scalar are

Rij(z) = (n—1)b(z)gi
n(n —1)b(z) . (14.8)

3
a2
[
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and the Riemann curvature tensor can also be written as
R
Riji = m(ﬂikgﬂ — GiYjk) (14.9)
while the Einstein tensor is
Gij = b[(n—1)(1 —n/2)]gy (14.10)

The contracted Bianchi identity V’GU = 0 now implies that b(x) has to be a constant,
and we have thus established (14.2). Note that we also have

Rij = k(n —1)gij , (14.11)

so that a maximally symmetric space(-time) is automatically a solution to the vacuum
Einstein equations with a cosmological constant. In the physically relevant case p =1
these are known as de Sitter or anti de Sitter space-times. We will come back to them
later on. In general, solutions to the equation R;; = cg;; for some constant ¢ are known

as FEinstein manifolds in the mathematics literature.
THE METRIC OF A MAXIMALLY SYMMETRIC SPACE I

We are interested not just in the curvature tensor of a maximally symmetric space but in
the metric itself. 1 will give you two derivations of the metric of a maximally symmetric

space, one by directly solving the differential equation
Rij = k(n —1)gij (14.12)

for the metric g;;, the other by a direct geometrical construction of the metric which

makes the isometries of the metric manifest.

As a maximally symmetric space is in particular spherically symmetric, we already know

that we can write its metric in the form
ds* = B(r)dr? + r°dQ, _,y (14.13)

where dQ%n_l) = df? + ... is the volume-element for the (n — 1)-dimensional sphere or
its counterpart in other signatures. For concreteness, we now fix on n = 3, but the

argument given below goes through in general.

We have already calculated all the Christoffel symbols for such a metric (set A(r) =0
in the calculations leading to the Schwarzschild metric in section 11), and we also know
that R;; = 0 for ¢ # j and that all the diagonal angular components of the Ricci tensor
are determined by Rgy by spherical symmetry. Hence we only need R,, and Rygy, which

are
1B
B = 05
1 rB’
= ——+4+14+—= 14.14
Ry 5 tltam ( )
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and we want to solve the equations

R, = 2kg, =2kB(r)
Ryy = 2kgag=2k‘r2 . (14.15)

From the first equation we obtain
B' =2krB* | (14.16)

and from the second equation we deduce

2kr* = —=+1+

= ——+1+k? . (14.17)

This is an algebraic equation for B solved by

1

(and this also solves the first equation). Therefore we have determined the metric of a

a maximally symmetric space to be
2

ds* = ———
y 1— kr2

+ 207, ) (14.19)
Let us pass back from polar coordinates to Cartesian coordinates, with % = #? =
nijz’a?. Then we have rdr = #.d% and dr? = (Z.dZ)?/7?. Hence this metric can also be

written as

k(#.d%)?
1—ka?
Clearly, for £k = 0 this is just the flat metric on RP¢. For k = 1, this should also

look familiar as the standard metric on the sphere. We will discuss the k& # 0 metrics

ds® = di* + (14.20)

from this point of view in the next section. This will make the isometries of the metric
manifest and will also exclude the possibility, not logically ruled out by the arguments
given so far, that the metrics we have found here for k # 0 are spherically symmetric

and have constant Ricci curvature but are not actually maximally symmetric.
THE METRIC OF A MAXIMALLY SYMMETRIC SPACE 11

Recall that the standard metric on the n-sphere can be obtained by restricting the flat
metric on an ambient R”*! to the sphere. We will generalize this construction a bit to

allow for k < 0 and other signatures as well.
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Consider a flat auxiliary vector space V' of dimension (n + 1) with metric
1
ds? = di? + Ed% : (14.21)

whre # = (2,...,2") and d7? = nijdxidxj. Thus the metric on V has signature

(p,q + 1) for k positive and (p + 1,q) for k negative. The group G = SO(p,q + 1) or
G = SO(p + 1, q) has a natural action on V' by isometries of the metric.

Now consider in V' the hypersurface X defined by
ki + 22 =1 . (14.22)

The group G leaves X invariant and therefore G' will be the group of isometries of the
induced metric on ¥. But dim G = n(n+1)/2. Hence the n-dimensional space has n(n+
1)/2 Killing vectors and is therefore maximally symmetric. In fact, G acts transitively
on ¥ (thus X is homogeneous) and the stabilizer at a given point is isomorphic to H =
SO(p,q) (so X is isotropic), and therefore X can also be described as the homogeneous

space

Z:k>0 - SO(p,q+1)/SO(p,Q)
Yo = SO(+1,9)/S0(,q) - (14.23)

The Killing vectors of the induced metric are simply the restriction to X of the standard

generators of G on the vector space V.

It just remains to determine explicitly this induced metric. For this we start with the

defining relation of ¥ and differentiate it to find that on ¥ one has

kZ.dz
dr = -2 (14.24)
z
so that K2(2 i)’
9 Z.dz
= —F 14.2
dz T (14.25)
Thus the metric (14.21) restricted to X is
1
ds’ly = di? + Ed22|g
k(z.dz)?

This is precisely the same metric as we obtained in the previous section.

For Euclidean signature, these spaces are spheres and hyperspheres (hyperboloids), and
in other signatures they are the corresponding generalizations. In particular, for (p, q) =
(I,n — 1) we obtain de Sitter space-time for k = 1 and anti de Sitter space-time for
k = —1. They have the topology of S"~! x R and R*~! x S! respectively and, as
mentioned before, they solve the vacuum Einstein equations with a positive (negative)

cosmological constant.
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THE METRIC OF A MAXIMALLY SYMMETRIC SPACE III

Finally, it will be useful to see the maximally symmetric metrics in some other coordinate
systems. For k£ = 0, there is nothing new to say since this is just the flat metric. Thus

we focus on k # 0.

First of all, let us note that essentially only the sign of k¥ matters as |k| only effects the
overall size of the space and nothing else (and can therefore be absorbed in the scale
factor a(t) of the metric (14.1)). To see this note that by rescaling of 7, v’ = |k|'/?r, the
metric (14.19) can be put into the form

1 12
a2 (14.27)

2 __
ds” = m(l I 2 (n—1)

Thus we will just need to consider the cases k = %1.
For k = +1, we have

_ dr?
1 -2

Thus, obviously the range of r is restricted to 7 < 1 and by the change of variables

ds?

+r2dQ07, ) (14.28)

r = sin, the metric can be put into the standard form of the metric on S™ in polar
coordinates,
ds® = dy? + sin® pdSX,, (14.29)

This makes it clear that the singularity at » = 1 is just a coordinate singularity. It would

also appear if one wrote the metric on the two-sphere in terms of the radial coordinate

r = sin6,
2 2 o2 2 dr? 27,92
d€Q)* = df” + sin” 0d¢” = 12 +rede” . (14.30)
—r
For k£ = —1, on the other hand, we have
ast = 20
ST = m +r (nfl) . (1431)

Thus the range of r is 0 < r < 00, and we can use the change of variables r = sinh ¢ to
write the metric as

ds* = dip? + sinh® pdQF, _,, . (14.32)
This is the standard metric of a hyperboloid H™ in polar coordinates.

Finally, by making the change of variables
r =71+ kr?/4)7 (14.33)
one can put the metric in the form

ds* = (1 + ki [4) 2(dF? + 7dQ,_y)) - (14.34)

127



Note that this differs by the conformal factor (1 + k7*/4)~2 > 0 from the flat metric.
One says that such a metric is conformally flat. Thus what we have shown is that every
maximally symmetric space is conformally flat. Note that conformally flat, on the other
hand, does not imply maximally symmetric as the conformal factor could also be any

function of the radial and angular variables.
THE ROBERTSON-WALKER METRIC

Having determined that the metric of a maximally symmetric space is of the simple
form (14.1), we can now deduce that a space-time metric satisfying the Cosmological
Principle can be chosen to be of the form

2

1— kr?

ds® = —dt* + a*(t) [ + r2dQ2] : (14.35)
Here we have used the fact that (as in the ansatz for a spherically symmetric metric) non-
trival g;; and g4 can be removed by a coordinate transformation. This metric is known
as the Friedmann-Robertson- Walker metric or just the Robertson-Walker metric, and
spatial coordinates in which the metric takes this form are called comoving coordinates,

for reasons that will become apparent below.

First of all, note that, since g4 = —1 is a constant, one has
1
F,utt - 5(28,59“15 — augtt) =0 . (1436)
Therefore the vector field 9, is geodesic, which can be expressed as the statement that
Vtat = Pl;taﬂ =0 . (1437)
In simpler terms this means that the curves ¥ = const.,
7 = (Z(7), (1)) = (Zo.7) (14.38)

are geodesics. Hence, in this coordinate system, observers remaining at fixed values of
the spatial coordinates are in free fall. In other words, the coordinate system is falling
with them or comoving, and the proper time along such geodesics coincides with the
coordinate time, d7 = dt. It is these observers of constant & or constant (r,6,¢) who

all see the same isotropic universe at a given value of t.

This may sound a bit strange but a good way to visualize such a coordinate system is,
as in Figure 19, as a mesh of coordinate lines drawn on a balloon that is being inflated
or deflated (according to the behaviour of a(t)). Draw some dots on that balloon (that
will eventually represent galaxies or clusters of galaxies). As the ballon is being inflated
or deflated, the dots will move but the coordinate lines will move with them and the

dots remain at fixed spatial coordinate values. Thus, as we now know, regardless of the
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Figure 19: Tllustration of a comoving coordinate system: Even though the sphere (uni-

verse) expands, the X’s (galaxies) remain at the same spatial coordinates. These tra-
jectories are geodesics and hence the X’s (galaxies) can be considered to be in free fall.
The figure also shows that it is the number density per unit coordinate volume that is

conserved, not the density per unit proper volume.

behaviour of a(t), these dots follow a geodesic, and we will thus think of galaxies in this

description as being in free fall.

Another advantage of this coordinate system is that the six-parameter family of isome-
tries just acts on the spatial part of the metric. Indeed, let K'9; be a Killing vector
of the maximally symmetric spatial metric. Then K°0; is also a Killing vector of the
Robertson-Walker metric. This would not be the case if one had e.g. made an z-
dependent coordinate transformation of ¢ or a t-dependent coordinate transformation
of the z?. In those cases there would of course still be six Killing vectors, but they would

have a more complicated form.

The metric of the three-space at constant £ is
9ij = a*(t)Jij » (14.39)

where g;; is the maximally symmetric spatial metric. Thus for k£ = +1, a(t) directly gives
the size (radius) of the universe. For k = —1, space is infinite, so no such interpretation
is possible, but nevertheless a(t) still sets the scale for the geometry of the universe, e.g.
in the sense that the curvature scalar R of the metric gij is related to the curvature

scalar R®) of gij by
1

a?(t)

R®)(t) = R®) . (14.40)
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Finally, for k = 0, three-space is flat and also infinite, but one could replace R? by
a three-torus 7 (still maximally symmetric and flat but now compact) and then a(t)
would once again be related directly to the size of the universe at constant ¢. Anyway,

in all cases, a(t) plays the role of a (and is known as the) cosmic scale factor.

Note that the case k = +1 opened up for the very first time the possibility of consider-
ing, even conceiving, an unbounded but finite universe! These and other generalizations
made possible by a general relativistic approach to cosmology are important as more
naive (Newtonian) models of the universe immediately lead to paradoxes or contradic-

tions. One of them we will examine briefly below.

15 CosMOLOGY II: BASICS
OLBERS’ PARADOX

One paradox, popularized by Olbers (1826) but noticed before by others is the following.
He asked the seemingly innocuous question “Why is the sky dark at night?”. According
to his calculation, reproduced below, the sky should instead be infinitely bright.

The simplest assumption one could make in cosmology (prior to the discovery of the
Hubble expansion) is that the universe is static, infinite and homogeneously filled with
stars. In fact, this is probably the naive picture one has in mind when looking at
the stars at night, and certainly for a long time astronomers had no reason to believe

otherwise.

However, these simple assumptions immediately lead to a paradox, namely the conclu-
sion that the night-sky should be infinitely bright (or at least very bright) whereas, as
we know, the sky is actually quite dark at night. This is a nice example of how very
simple observations can actually tell us something deep about nature (in this case, the

nature of the universe). The argument runs as follows.

1. Assume that there is a star of brightness (luminosity) L at distance r. Then, since
the star sends out light into all directions, the apparent luminosity A (neglecting
absorption) will be

A(r) = L/4wr? . (15.1)

2. If the number density v of stars is constant, then the number of stars at distances
between r and r 4 dr is
dN(r) = dnvridr . (15.2)

Hence the total energy density due to the radiation of all the stars is

B= /Ooo A(r)dN(r) = Lv /Ooo dr = oo . (15.3)
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3. Therefore the sky should be infinitely bright.

Now what is one to make of this? Clearly some of the assumptions in the above are
much too naive. The way out suggested by Olbers is to take into account absorption
effects and to postulate some absorbing interstellar medium. But this is also too naive
because in an eternal universe we should now be in a stage of thermal equilibrium.
Hence the postulated interstellar medium should emit as much energy as it absorbs, so

this will not reduce the radiant energy deusity either.

Of course, the stars themselves are not transparent, so they could block out light com-
pletely from distant sources. But if this is to rescue the situation, one would need to
postulate so many stars that every line of sight ends on a star, but then the night sky
would be bright (though not infinitely bright) and not dark.

Modern cosmological models can resolve this problem in a variety of ways. For instance,
the universe could be static but finite (there are such solutions, but this is nevertheless
an unlikely scenario) or the universe is not eternal since there was a ‘Big Bang’ (and

this is a more likely scenario).
THE HUBBLE EXPANSION

We have already discussed one of the fundamental inputs of simple cosmological models,
namely the cosmological principle. This led us to consider space-times with maximally-
symmetric space-like slices. One of the few other things that is definitely known about
the universe, and that tells us something about the time-dependence of the universe, is

that it expands or, at least that it appears to be expanding.

In fact, in the 1920’s and 1930’s, the astronomer Edwin Hubble made a remarkable
discovery regarding the motion of galaxies. He found that light from distant galaxies is
systematically red-shifted (increased in wave-length \), the increase being proportional

to the distance d of the galaxy,

A
z = T)\ xd . (15.4)

Hubble interpreted this red-shift as due to a Doppler effect and therefore ascribed a
recesstonal velocity v = cz to the galaxy. While, as we will see, this pure Doppler shift
explanation is not tenable, the terminology has stuck, and Hubble’s law can be written
in the form

v=Hd |, (15.5)

where H is Hubble’s constant. We will see later that in most cosmological models H is
actually a function of time, so the H in the above equation should then be interpreted

as the value of H today.

Actually, not only in cosmological toy-models but also in experiments, H is a function

of time, with current estimates fluctuating rather wildly. It is one of the main goals of
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observational cosmology to determine H as precisely as possible, and the main problem

here is naturally a precise determination of the distances of distant galaxies.

Galactic distances are frequently measured in mega-parsecs (Mpc). A parsec is the
distance from which a star subtends an angle of 2 arc-seconds at the two diametrically
opposite ends of the earth’s orbit. This unit arose because of the old trigonometric
method of measuring stellar distances (a triangle is determined by the length of one

side and the two adjacent angles). 1 parsec is approximately 3 x 10'® c¢m, a little over

3 light-years. The Hubble constant is therefore often expressed in units of km s~ !

(Mpc) !, We will usually prefer to express it just in terms of inverse umits of time.

Current estimates for H are in the order of magnitude range of
H™ '~ x10% years (15.6)

(whereas Hubble’s original estimate was more in the 10 year range).
* AREA MEASUREMENTS IN A ROBERTSON-WALKER METRIC AND NUMBER COUNTS

The aim of this and the subsequent sections is to learn as much as possible about the
general properties of Robertson-Walker geometries (without using the Einstein equa-
tions) with the aim of looking for observational means of distinguishing e.g. among the
models with k£ = 0, £1.

To get a feeling for the geometry of the Schwarzschild metric, we studied the properties
of areas and lengths in the Schwarzschild geometry. Length measurements are rather

obvious in the Robertson-Walker geometry, so here we focus on the properties of areas.

We write the spatial part of the Robertson-Walker metric in polar coordinates as
ds* = a*[dyp® + f*()d¥] (15.7)

where f(¢) = 1,sin,sinh1p for kK = 0,+1,—1. Now the radius of a surface 1) = 1)
around the point ¢ = 0 (or any other point, our space is isotropic and homogeneous) is

given by
%o
p= a/ dip = arhy . (15.8)
0

On the other hand, the area of this surface is determined by the induced metric
a? f2(1pg)dQ? and is

2 ™
A(p) = a2f2(¢0)/ d¢/ d0sin 0 = dra?f2(pja) . (15.9)
0 0
For k = 0, this is just the standard behaviour
A(p) = 4np? (15.10)

but for £k = £1 the geometry looks quite different.
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- Circle of Radius psil

— Circle of Radius psi2

psi=psi2

- Circle of Radius psi3

psi=psi3

Figure 20: Visualization of the £k = +1 Robertson-Walker geometry via a two-sphere
of unit radius: Circles of radius ¢, measured along the two-sphere, have an area which
grows at first, reaches a maximum at ¢ = /2 and goes to zero when ¢y — 7. E.g.
the maximum value of the circumference, at ¢y = 7/2, namely 27, is much smaller
than the circumference of a circle with the same radius 7/2 in a flat geometry, namely
271 x 7/2 = 2. Only for ¢ very small does one approximately see a standard Euclidean
geometry.

For k£ = 41, we have
A(p) = 4ma® sin®(p/a) . (15.11)

Thus the area reaches a maximum for p = 7a/2 (or ¢ = 7/2), then decreases again for
larger values of p and goes to zero as p — ma. Already the maximal area, A,,q; = 4ma?
is much smaller than the area of a sphere of the same radius in Euclidean space, which

would be 47p? = 73a’.

This behaviour is best visualized by replacing the three-sphere by the two-sphere and
looking at the circumference of circles as a function of their distance from the origin
(see Figure 20).

For k = —1, we have
A(p) = 4ma® sinh?(p/a) , (15.12)

so in this case the area grows much more rapidly with the radius than in flat space.
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In principle, this distinct behaviour of areas in the models with k£ = 0, +1 might allow
for an empirical determination of k. For instance, one might make the assumption that
there is a homogeneous distribution of the number and brightness of galaxies, and one
could try to determine observationally the number of galaxies as a function of their
apparent luminosity. As in the discussion of Olbers’ paradox, the radiation flux would
be proportional to F o« 1/p?. In Euclidean space (k = 0), one would expect the number
N(F) of galaxies with flux greater than F, i.e. distances less than p to behave like p,

so that the expected Euclidean behaviour would be
N(F) o F73/2 . (15.13)

Any empirical departure from this behaviour could thus be an indication of a universe
with & # 0, but clearly, to decide this, many other factors (red-shift, evolution of stars,
etc.) have to be taken into account and so far it has been impossible to determine the

value of k in this way.
THE COSMOLOGICAL RED-SHIFT

The most important information about the cosmic scale factor a(¢) comes from the
observation of shifts in the frequency of light emitted by distant sources. To calculate
the expected shift in a Robertson-Walker geometry, let us ego- or geocentrically place
ourselves at the origin 7 = 0 (remember that because of maximal symmetry this point
is as good as any other and in no way privileged). We consider a radially travelling
electro-magnetic wave (a light ray) and consider the equation dr? = 0 or

2
9 dr

Let us assume that the wave leaves a galaxy located at » = r; at the time ¢;. Then it

will reach us at a time ¢y given by
1 dr o dt
) = - — . 15.15
te= ), A=mr =), 119
As typical galaxies will have constant coordinates, f(r) (which can of course be given

explicitly, but this is not needed for the present analysis) is time-independent. If the

next wave crest leaves the galaxy at 1 at time ¢ + dt;, it will arrive at a time ¢y + Jtg

to+dlo  t
J‘?(v“l)z/tlm1 ol (15.16)

Subtracting these two equations and making the (eminently reasonable) assumption

determined by

that the cosmic scale factor a(t) does not vary significantly over the period dt¢ given by

the frequency of light, we obtain

Sty _ oty (15.17)




Indeed, say that b(t) is the integral of 1/a(t). Then we have
b(to + dto) — b(t1 + dt1) = b(te) — b(t1) (15.18)
and Taylor expanding to first order, we obtain
b (to)dto = b'(t1)dty (15.19)

which is the same as (15.17). Therefore the observed frequency vy is related to the

emitted frequency v, by
17 a(t
v _ alh) (15.20)
141 a(to)

Astronomers like to express this in terms of the red-shift parameter (see the discussion

of Hubble’s law above)

A — A

15.21
el (15.21)
which in view of the above result we can write as
t
_alle) (15.22)
a(tl)

If z > 0 (and thus the universe expands), there is a red-shift, in a contracting universe
with a(tyg) < a(t1) the light of distant glaxies would be blue-shifted.

A few remarks on this result:

1. This cosmological red-shift has nothing to do with the star’s own gravitational
field - that contribution to the red-shift is completely negligible compared to the
effect of the cosmological red-shift.

2. Unlike the gravitational red-shift we discussed before, this cosmological red-shift
is symmetric between receiver and emitter, i.e. light sent from the earth to the
distant galaxy would likewise be red-shifted if we observe a red-shift of the distant

galaxy.

3. This red-shift is a combined effect of gravitational and Doppler red-shifts and it
is not very meaningful to interpret this only in terms of, say, a Doppler shift.
Nevertheless, as mentioned before, astronomers like to do just that, calling v = zc¢

the recessional velocity.
THE RED-SHIFT DISTANCE RELATION (HUBBLE’S LAW)

We have seen that there is a cosmological red-shift in Robertson-Walker geometries. Our
aim will now be to see if and how these geometries are capable of explaining Hubble’s
law that the red-shift is approximately proportional to the distance and how the Hubble

constant is related to the cosmic scale factor a(t).
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Reliable data for cosmological red-shifts as well as for distance measurements are only
available for small values of z, and thus we will consider the case where ¢ty — t; and 7
are small, i.e. small at cosmic scales. First of all, this allows us to expand a(t) in a
Taylor series,

a(t) = alto) + (t — to)alto) + 5 (t — to)*alto) + - .. (15.23)

Let us introduce the Hubble parameter H (t) and the deceleration parameter q(t) by

_a(i)
q(t) = —ag()g(f) ; (15.24)

and denote their present day values by a subscript zero, i.e. Hy = H(t9) and qo = ¢(to).
H (t) measures the expansion velocity as a function of time while ¢(¢) measures whether
the expansion velocity is increasing or decreasing. We will also denote ag = a(tg) and

a(tl) = aj.

In terms of these parameters, the Taylor expansion can be written as
a(t) = ag(1 + Ho(t — to) — 2qoH(t —to)* +...) . (15.25)

This gives us the red-shift parameter z as a power series in the time of flight, namely

1 al 1 2 2
=— =14 (t1 —to)Hy — 590 Hj(t1 —19)" + ... 15.26
112 . (t1 0)Ho 540 o(t1 0) ( )

or
z=(ty—t1)Ho+ (1 + 3q0) Hi(to —t1)* + ... (15.27)

For small Hy(to — t1) this can be inverted,

1
to—t1 = Fﬂ[z —(1+3q)”+..] . (15.28)

We can also use (15.15) to express (tp — ¢1) in terms of ;. On the one hand we have

to dt
/t1 o =" + 03, (15.29)

while expanding a(t) in the denominator we get

/to dt 1/t0 dt
4 a(t) ag Jy, (L+(t—to)Ho+...)

1 [t
= — [ dt[1+ (to—t)Ho+...]
ag Jit,

1
= %[(to — 1) + to(to — t1)Ho — 2 (t§ — t1) Ho + .. ]

_ al_o[(to )+ Lt — ) Ho+ .. ] (15.30)
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Therefore we obtain

1
ry = %[(tg — tl) + %(to — t1)2H0 + .. ] . (1531)
Using (15.28), we obtain
S R R (15.32)
agHy 2

This clearly indicates to first order a linear dependence of the red-shift on the distance
of the galaxy and identifies Hy, the present day value of the Hubble parameter, as being
at least proportional to the Hubble constant introduced in (15.5).

However, this is not yet a very useful way of expressing Hubble’s law. First of all, the
distance agry that appears in this expression is not the proper distance (unless k = 0),
but is at least equal to it in our approximation. Note that agr; is the present distance

to the galaxy, not the distance at the time the light was emitted.

However, even proper distance is not directly measurable and thus, to compare this
formula with experiment, one needs to relate r1 to the measures of distance used by as-
tronomers. One practical way of doing this is the so-called luminosity distance dr,. If for
some reasons one knows the absolute luminosity of a distant star (for instance because it
shows a certain characteristic behaviour known from other stars nearby whose distances
can be measured by direct means), then one can compare this absolute luminosity L

with the apparent luminosity . Then one can define the luminosity distance dy, by (cf.

(15.1))
d? L

=—. 15.33
L= (15.33)
We thus need to relate d;, to the coordinate distance r1. The key relation is
A 1 1 1
a (15.34)

L~ 4rar?l+zay And2ri(1+2)?

Here the first factor arises from dividing by the area of the sphere at distance agr; and
would be the only term in a flat geometry (see the discssion of Olbers’ paradox). In
a Robertson-Walker geometry, however, the photon flux will be diluted. The second
factor is due to the fact that each individual photon is being red-shifted. And the third
factor (identical to the second) is due to the fact that as a consequence of the expansion

of the universe, photons emitted a time 0t apart will be measured a time (1+ z)dt apart.

Hence the relation between r; and dj, is
dp = (L[4 A)Y? = ria(te)(1 + 2) . (15.35)

Intuitively, the fact that for z positive dy, is larger than the actual (proper) distance of
the galaxy can be understood by noting that the gravitational red-shift makes an object
look darker (further away) than it actually is.
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This can be inserted into (15.32) to give an expression for the red-shift in terms of dj,,
Hubble’s law

d,=Hy'[z+ 5(1 —qo)z2+..]| . (15.36)

The program would then be to collect as much astronomical information as possible
on the relation between d;, and z in order to determine the parameters ¢y and Hy.
But this is quite difficult in practice because many other effects need to be taken into
account, and as a consequence there are great uncertainties regarding the values for

these parameters. For the Hubble ‘constant” Hy one has approximately
7,5 x 10% years < Hy' <2 x 10'? years (15.37)

(and currently the larger values appear to be favoured). Even less is known about g
and (as far as I know) its value is believed to lie somewhere in the range 0 < ¢o < 2,
perhaps ¢p = 1. As we will see below, in the Friedmann-Robertson-Walker models the
value of qq is strictly correlated with the value of £ = 0, &1, so it would be very desirable

to have more precise information about g.

16 CosMmoLoGY I1I: Basics OF FRIEDMAN-ROBERTSON-WALKER COSMOL-
OGY

So far, we have only used the kinematical framework provided by the Robertson-Walker
metrics and we never used the Einstein equations. The benefit of this is that it allows one
to deduce relations betweens observed quantities and assumptions about the universe
which are valid even if the Einstein equations are not entirely correct, perhaps because

of higher derivative or other quantum corrections in the early universe.

Now, on the other hand we will have to be more specific, specify the matter content and
solve the Einstein equations for a(t). We will see that a lot about the solutions of the
Einstein equations can already be deduced from a purely qualitative analysis of these
equations, without having to resort to explicit solutions (Chapter 17). Exact solutions
will then be the subject of Chapter 18.

THE Riccl TENSOR OF THE ROBERTSON-WALKER METRIC

Of course, the first thing we need to discuss solutions of the Einstein equations is
the Ricci tensor of the Robertson-Walker (RW) metric. Since we already know the
curvature tensor of the maximally symmetric spatial metric entering the RW metric
(and its contractions), this is not difficult.

1. First of all, we write the RW metric as

ds? = —dt* + a*(t)gijdz'dx’ . (16.1)
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From now on, all objects with a tilde, ", will refer to three-dimensional quantities
calculated with the metric g;;.

2. One can then calculate the Christoffel symbols in terms of a(t) and f‘ijk. The

non-vanishing components are (we had already established that ', = 0)

D = T
4 a
Fljo = E(SJ
% = aagy
(16.2)
3. The relevant components of the Riemann tensor are
: i
RZOjO — —56‘;
Roi(]j = aagij
Rf, = Riyj+24d%Gi; . (16.3)

4. Now we can use R,-j = 2kg;; (i.e. the maximal symmetry of g;;) to calculate R, .

The non-zero components are

Ry = —3%
a
Rij = (ai+24d° + 2k)g;
a .a*> 2k
= (42— + —=)gi; - 16.4
(a + a2 + a2 )gw ( )
5. Thus the Ricci scalar is 6
R= ?(ad—i-('ﬂ + k), (16.5)
and
6. the Einstein tensor has the components
a> ok
Gow = 3(=+—=
00 (az - a2)
Goi = 0
26 a®  k
Gij = —(; tat a_Q)g’ij : (16.6)

THE MATTER CONTENT: A PERFECT FLUID

Next we need to specify the matter content. On physical grounds one might like to argue
that in the approximation underlying the cosmological principle galaxies (or clusters)

should be treated as non-interacting particles or a perfect fluid. As it turns out, we do
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not need to do this as the symmetries of the metric fix the energy-momentum tensor to

be that of a perfect fluid anyway.

Below, I will give a formal argument for this using Killing vectors. But informally we can
already deduce this from the structure of the Einstein tensor obtained above. Comparing
(16.6) with the Einstein equation G, = 87GT),,, we deduce that the Einstein equations
can only have a solution with a Robertson-Walker metric if the energy-momentum tensor

is of the form

Too = p(1)
Ty, = 0
Ty = p(t)gij (16.7)

where p(t) and p(t) are some functions of time.

Here is the formal argument. It is of course a consequence of the Einstein equations
that any symmetries of the Ricci (or Einstein) tensor also have to be symmetries of the
energy-momentum tensor. Now we know that the metric g;; has six Killing vectors K ()
and that (in the comoving coordinate system) these are also Killing vectors of the RW
metric,

Ly9i;j =0 = Ligwguw =0 . (16.8)

Therefore also the Ricci and Einstein tensors have these symmetries,

Lywguw =0 = LgwGu =0 . (16.9)
Hence the Einstein equations imply that T}, should have these symmetries,

LywGu =0 = LygwT,=0. (16.10)

Moreover, since the L () act like three-dimensional coordinate transformations, in order
to see what these conditions mean we can make a (3 + 1)-decomposition of the energy-
momentum tensor. From the three-dimensional point of view, Ty transforms like a
scalar under coordinate transformations (and Lie derivatives), Ty; like a vector, and Tj;
like a symmetric tensor. Thus we need to determine what are the three-dimensional
scalars, vectors and symmetric tensors that are invariant under the full six-parameter

group of the three-dimensional isometries.

For scalars ¢ we thus require (calling K now any one of the Killing vectors of g;;),
Lxp=K'0p=0 . (16.11)

But since K*(z) can take any value in a maximally symmetric space (homogeneity), this
implies that ¢ has to be constant (as a function on the three-dimensional space) and

therefore Tyo can only be a function of time,

TO(] = p(t) . (1612)
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For vectors, it is almost obvious that no invariant vectors can exist because any vector
would single out a particular direction and therefore spoil isotropy. The formal argument

(as a warm up for the argument for tensors) is the following. We have
LgV'=KIV;V' +VIV,;K" . (16.13)

We now choose the Killing vectors such that K*(x) = 0 but @in = Kjj is an arbitrary

antisymmetric matrix. Then the first term disappears and we have
LgVi=0 = K Vi=0. (16.14)
To make the antisymmetry manifest, we rewrite this as
KijVi = K;okvi=0 . (16.15)
If this is to hold for all antisymmetric matrices, we must have
VI =g vE (16.16)

and by contraction one obtains nVJ = VJ, and hence V; = 0. Therefore, as expected,

there is no invariant vector field and

Toi =0 . (16.17)

We now come to symmetric tensors. Once again we choose our Killing vectors to vanish
at a given point x and such that Kj; is an arbitrary antisymmetric matrix. Then the
condition

LxTij = K*V Ty + ViK*T + VKT = 0 (16.18)

reduces to
Ko (§7* 8% Ty + G767 ) = 0 (16.19)

If this is to hold for all antisymmetric matrices K,,,, the antisymmetric part of the term
in brackets must be zero or, in other words, it must be symmetric in the indices m and
n, i.e.

G T + G Ty = G T + G T (16.20)

Contracting over the indices n and ¢, one obtains
§"* i + G Ty = G Ty + 6T 16.21
ng kit 9 jk =9 kit 054 . (16.21)
Therefore

Ty = %T’; . (16.22)

But we already know that the scalar T'fC has to be a constant. Thus we conclude that

the only invariant tensor is the metric itself, and therefore the Tj;-components of the
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energy-momentum tensor can only be a function of ¢ times g;;. Writing this function as
p(t)a?(t), we arrive at
Ty = p(t)gij - (16.23)

We thus see that the energy-momentum tensor is determined by two functions, p(t) and

p(t). A covariant way of writing this tensor is as

Tl“’ = (p + ,O)U#UV + P9 (16.24)

where u# = (1,0,0,0) in a comoving coordinate system. This is precisely the energy-
momentum tensor of a perfect fluid. wu, is known as the velocity field of the fluid, and
the comoving coordinates are those with respect to which the fluid is at rest. p is the
energy-density of the perfect fluid and p is the pressure. In the particular case where

there is no pressure, p(t) = 0, the matter is referred to as dust.
The trace of the energy-momentum tensor is
T, =—-p+3p . (16.25)

For radiation, for example, the energy-momentum tensor is (like that of Maxwell theory)

traceless, and hence radiation has the equation of state

p=p/3, (16.26)

while the equation of state for dust is just p = 0.
CONSERVATION LAWS

The same arguments as above show that a current J# in a Robertson-Walker metric

has to be of the form J* = (n(t),0,0,0) in comoving coordinates, or
JH = n(t)ut (16.27)

in covariant form. Here n(t) could be a number density like a galaxy number density.
It gives the number density per unit proper volume. The conservation law V,J# =0 is
equivalent to

V=0 & 0i(y/gn(t)) =0 . (16.28)

Thus we see that n(t) is not constant, but the number density per unit coordinate
volume is (as we had already anticipated in the picture of the balloon, Figure 19). For a

RW metric, the time-dependent part of /g is a(t)?, and thus the conservation law says

n(t)a(t)® = const. (16.29)

Let us now turn to the conservation laws associated with the energy-momentum tensor,

vV, T =0 . (16.30)
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The spatial components of this conservation law,
vV, TH =0, (16.31)

turn out to be identically satisfied, by virtue of the fact that the u* are geodesic and
that the functions p and p are only functions of time. This could hardly be otherwise
because VT 1 would have to be an invariant vector, and we know that there are none

(nevertheless it is instructive to check this explicitly).
The only interesting conservation law is thus the zero-component

VI = 9,7 + T4, 7" + 10, T" =0 | (16.32)
which for a perfect fluid becomes

Op(t) + I op(t) + Thop(t) + T%TY =0 . (16.33)

Inserting the explicit expressions (16.2) for the Christoffel symbols, this becomes

b= —3(p+p)g . (16.34)

For instance, when the pressure of the cosmic matter is negligible, like in the universe

today, and we can treat the galaxies (without disrespect) as dust, then one has

g = —3% , (16.35)

and this equation can trivially be integrated to
p(t)a(t)® = const. (16.36)

On the other hand, if the universe is dominated by, say, radiation, then one has the

equation of state p = p/3, and the conservation equation reduces to

Lo 42, (16.37)
p a
and therefore
p(t)a(t)* = const. (16.38)

The reason why the energy density of photons decreases faster with a(t) than that of

dust is of course ... the red-shift.
THE EINSTEIN AND FRIEDMANN EQUATIONS

After these preliminaries, we are now prepared to tackle the Einstein equations. We

allow for the presence of a cosmological cosntant and thus consider the equations

Gy + Mgy = 87G T, . (16.39)
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It will be convenient to rewrite these equations in the form

Ry = 817G (T — 29, T) + Mg - (16.40)

Because of isotropy, there are only two independent equations, namely the 00-component

and any one of the non-zero ij-components. Using (16.4), we find

—33 = 47G(p+3p) — A

i _a?

k
5-1-2?-1-2? = 4nG(p—p)+A . (16.41)
We supplement this by the conservation equation
) a
p= —3(p+p)g . (16.42)

Using the first equation to eliminate @ from the second, one obtains the set of equations

(F1) L+ = Hp+s
(F2) =34 = 47rG(p+3p) — A (16.43)
(£3) p = 3Blp+p)g -

Together, this set of equation is known as the Friedmann equations. They govern every
aspect of Friedmann-Robertson-Walker cosmology. From now on I will simply refer to
them as equations (F1), (F2), (F3) respectively. In terms of the Hubble parameter H ()

and the deceleration parameter ¢(t), these equations can also be written as

N TR
(F2) q sz [47G(p + 3p) — A] (16.44)
(F3") 4 (pa®) —3Hpa® .

Note that because of the Bianchi identities, the Einstein equations and the conservation
equations should not be independent, and indeed they are not. It is easy to see that
(F1) and (F3) imply the second order equation (F2) so that, a pleasant simplification,
in practice one only has to deal with the two first order equations (F1) and (F3).
Sometimes, however, (F2) is easier to solve than (F1), because it is linear in a(t), and

then (F1) is just used to fix one constant of integration.

17  CosMOLOGY IV: QUALITATIVE ANALYSIS

A lot can be deduced about the solutions of the Friedmann equations, i.e. the evolu-
tion of the universe in the Friedmann-Robertson-Walker cosmologies, without solving
the equations directly and even without specifying an equation of state, i.e. a relation
between p and p. In the following we will, in turn, discuss the critical density, Big Bang,

age of the universe, and its long term behaviour, from this qualitative point of view.
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THE CRITICAL DENSITY

For starters, let us consider the case A = 0. (F1’) can be read as

81Gp k
— —1l= == . 17.1
3H? a’H? (17.1)
If one defines the critical density pe by
3H?
e =— 17.2
Pe=g (17.2)
and the density parameter €2 by
p
Q== 17.3
Pe ( )
then (F1’) becomes
k

Thus the sign of k is determined by whether the actual energy density p in the universe

is greater than, equal to, or less than the critical density,

p<p. & k=-1 & open
p=p. < k=0 <& flat (17.5)
p>pe & k=41 & closed

Therefore the determination of p (and p. via the Hubble constant) is very important. As
regards €2, there are good reasons to believe that €2 is at least 0.1, and very little direct
observational evidence for the value {2 = 1 which might perhaps have been favoured on
grounds of naturalness (and thus theoretical prejudices about how the universe should
behave).

THE B1G BANG

One amazing thing about the FRW models is that all of them (provided that the matter
content is physical) predict an initial singularity, commonly known as a Big Bang. This

is very easy to see.

(F2) shows that, as long as p+3p is positive (and this is the case for all physical matter),
one has ¢ > 0, i.e. @ < 0 so that the universe is decelerating due to gravitational
attraction. Since a > 0 by definition, a(¢g) > 0 because we observe a red-shift, and
a < 0 because p + 3p > 0, it follows that there cannot have been a turning point in the
past and a(t) must be concave downwards. Therefore a(t) must have reached a = 0 at
some finite time in the past. We will call this time ¢ = 0, a(0) = 0.

As pa* is constant for radiation (an appropriate description of earlier periods of the
universe), this shows that the energy density grows like 1/a* as a — 0 so this leads to
quite a singular situation.
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THE AGE OF THE UNIVERSE

With the normalization a(0) = 0, it is fair to call ¢y the age of the universe. If @ had

been zero in the past for all ¢ < ¢y, then we would have

a=0 = a(t) = aot/t(] s (17.6)
and
a(t) == ao/t(] == do . (177)
This would determine the age of the universe to be
to= 20 = gyt (17.8)
ao

where Ho_l is the Hubble time. However, as a < 0 for t < tg, the actual age of the

universe must be smaller than this,
i<0 = ty<Hy' . (17.9)

Thus the Hubble time sets an upper bound on the age of the universe. See Figure 21
for an illustration of this.

LoNG TERM BEHAVIOUR

Let us now try to take a look into the future of the universe. Again we will see that
it is remarkably simple to extract relevant information from the Friedmann equations

without ever having to solve an equation.

For k = —1 or k =0, (F1) can be written as

871G
o = %pcﬂ + k| (17.10)

The right hand side of this equation is strictly positive. Therefore a is never zero and
since ag > 0, we must have

a(t) >0 vt . (17.11)

Thus we can immediately conclude that open and flat universes must expand forever,

i.e. they are open in space and time.
By taking into account the equation (F3’) we can even be somewhat more precise about
the long term behaviour. (F3’) shows that for non-negative pressure, p > 0 one has

d

E(pa3) <0 . (17.12)

Thus p must decrease with increasing a at least as fast as a = (we have seen the behaviour
a3 for dust and a* for radiation). In particular,

lim pa® =0 . (17.13)

a— 00
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a(t)

Figure 21: Qualitative behaviour of the Friedmann-Robertson-Walker models for A = 0.
All models start with a Big Bang. For £ = 41 the universe reaches a maximum radius
and recollapses after a finite time. For k = 0, the universe keeps expanding but the
expansion velocity tends to zero for t — oo or a — oo. For k = —1, the expansion
velocity approaches a non-zero constant value. Also shown is the significance of the
Hubble time for the £ = +1 universe showing clearly that H; ! gives an upper bound

on the age of the universe.

Now let us take another look at (F1),

8rG
% = 7; pa®—k . (17.14)
For k£ = 0, we learn that
E=0: lima?=0. (17.15)
a—r o0
Thus the universe keeps expanding but more and more slowly as time goes on.
By the same reasoning we see that for £ = —1 we have
k=—-1: lima*=1. (17.16)
a—00

Thus the universe keeps expanding, reaching a constant limiting velocity.

For k = +1, we would conclude @> — —1, but this is obviously a contradiction. There-

fore we learn that the k¥ = +1 universes never reach a — oo and that there is therefore
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a maximal radius a,q;. This maximal radius occurs for @ = 0 and therefore

3
_ . 2 _
k=l e = oo (17.17)

Note that intuitively this makes sense. For larger p or larger G the gravitational attrac-
tion is stronger, and therefore the maximal radius of the universe will be smaller. Since
we have a < 0 also at a4z, again there is no turning point and the universe recontracts
back to zero size leading to a Big Crunch. Therefore, spatially closed universes (k = +1)

are also closed in time. All of these findings are summarized in Figure 21.

DENSITY AND PRESSURE OF THE PRESENT UNIVERSE

In order to compare the Friedmann-Robertson-Walker models with astronomical obser-
vations, we would like to relate the fundamental paramaters Hy and gy to the observed
matter content of the universe. The actual numerical values of Hy and gy I use in this
and the following sections to illustrate the results should not necessarily be trusted (e.g.

the latest observations even seem to suggest a small negative qp).

Let us recall the equations (F1’) and (F2’),

881G k
H? = —p— —
3 p a?
4nG(p + 3p)
_ 17.1
q Ve ; (17.18)
which we can write as
P _ k
Pe ~ H2a?
g = P (17.19)
2p¢

From this we can deduce that the present energy-density py and pressure py are given
by

k
e ]_ _—
= —L[E+H2(1—2 ] (17.20)
po = 871G a% 0 Q) - '

Since py K po, we set pg = 0. Then one obtains a relation between the spatial curvature
k/a3 and the observables Hy and g, namely

k
— = (2q0 — 1)H{ . (17.21)
g
Together with
LU, P (17.22)
Pe
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this allows us to refine our previous statements regarding open versus closed universes

(17.5), which gave us a correlation between pg/p. and the value of k. Now we learn that

Q0 >1/2 = k=+1, po>pc
w0<1/2 = k=-1, po<pe . (17.23)

If one believes the value gy ~ 1 obtained from the red-shift distance relation, then one
would deduce py = 2p.. Using the approximate value for Hy quoted there, one finds
that

pe ~107% g/em? | (17.24)

On the other hand, other observations suggest that the visible matter content of the
universe only accounts for about pg = 0.1p., so something is wrong here. Where is all
the mass predicted by the analysis of red-shifts? This is known as the missing mass
problem. Note also that if one accepts the value py = 0.1p,, this would predict gg = 0.05
which is almost certainly ruled out by other observations. It could be that a small non-
zero cosmological constant is needed to reconcile these (and some other) observations,
but this is still a matter of (rather heated) debate.

18 CosMOLOGY V: EXACT SOLUTIONS
PRELIMINARIES

We have seen that a lot can be learnt about the Friedmann-Robertson-Walker models
without ever having to solve a differential equation. On the other hand, more precise
information can be obtained by specifying an equation of state for the matter content
and solving the Friedmann equations. We will now also reinclude the cosmological

constant in our discussion.

In addition to the vacuum energy (and pressure) provided by A, there are typically
two other kinds of matter which are relevant in our approximation, namely dust and
radiation. If we assume that these two do not interact, then one can just add up
their contributions in the Friedmann equations. To keep track of these two kinds of
matter (and their different qualitative behaviour), it will be convenient to introduce

the constants C,,, and C, related to the conserved quantities for matter and radiation

respectively,
8t 8tG
Cm = TPm(t)a(t)3 = Tpm(to)ag
871G 81G
CT = TIOT(t)a(t)4 = TpT(tg)a% . (181)
In terms of these, the Friedmann equation (F1) takes the more transparent form
C C A
n -2 Ym ~r a2
(F17) a* = . +a2 k+3a , (18.2)
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illustrating the qualitatively different conntributions to the time-evolution. One can

then characterize the different eras in the evolution of the universe by which of the

above terms dominates, i.e. gives the leading contribution to the equation of motion for

a. This already gives some insight into the physics of the situation.

We will call a universe

N

. matter dominated if Cy,/a dominates

radiation dominated if C, /a? dominates
curvature dominated if k dominates

vacuum dominated if Aa? dominates

Our present universe appears to be in the matter dominated era. Certain other things

can immediately be deduced from the Friedmann equations:

. No matter how small C, is, for sufficiently small values of a that term will dominate

and one is in the radiation dominated era. In that case, one finds the characteristic

behaviour o
a2="2 = a(t) = (4C,)Y42 (18.3)

a2

. On the other hand, if C,, dominates, one has

=S L) = (90, ja) R (18.4)

a

. For sufficiently large a, A, if not identically zero, will always dominate, no matter

how small the cosmological constant may be, as all the other energy-content of

the universe gets more and more diluted.

. Only for A = 0 does k& dominate for large a and one obtains, as we saw before, a

constant expansion velocity.

. Finally, for A = 0 the Friedmann equation can be integrated in terms of elementary

functions whereas for A # 0 one typically encounters elliptic integrals (unless

p=p=0).

THE EINSTEIN UNIVERSE

This particular solution is only of historical interest. Einstein was looking for a static

cosmological solution and for this he was forced to introduce the cosmological constant.

Static means that @ = 0. Thus (F3) tells us that p = 0. (F2) tells us that 47G(p+3p) =
A, where p = pp, + pr. Therefore p(t) also has to be time-independent, p = 0, and
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moreover A has to be positive. We see that with A = 0 we would already not be able to
satisfy this equation for physical matter content p + 3p > 0. From (F17) one deduces
that A

k:c;—m+%+§a2 . (18.5)
As all the terms on the right hand side are positive, this means that necessarily k = +1.
Using the definitions of C), and C,, and substituting A by 47G(p + 3p), this becomes a

simple algebraic equation for a(t) = ag, namely

a2 = (81Gp/3+4nG(p+ 3p)/3) "
4rGp+p) " . (18.6)

This is thus a static universe, with topology Rx S in which the gravitational attraction

is precisely balanced by the cosmological constant.
THE MATTER DOMINATED ERA

This is somewhat more realistic. In this case we have to solve

2= m (18.7)

a

For k = 0, this is the equation we already discussed above, leading to the solution (18.4).

This solution is also known as the Einstein - de Sitter universe.

For k = +1, the equation is

a? = C;—m —1. (18.8)

We recall that in this case we will have a recollapsing universe with a,,q; = Cp,, which
is attained for @ = 0. This can be solved in closed form for ¢ as a function of a, and the
solution to

ey (18.9)

da Amaz — @

18

t(a) = a";ax arccos(l — 2a/amaz) — V@maz — a* (18.10)
as can easily be verified.

The universe starts at ¢ = 0 with a(0) = 0, reaches its maximum a = a4, at
timaz = Qmaz arccos(—1)/2 = apaem/2 (18.11)

and ends in a Big Crunch at t = 2t,,,4,. The curve a(t) is a cycloid, as is most readily
seen by writing the solution in parametrized form. For this it is convenient to introduce
the time-coordinate u via

du 1

Frir (18.12)
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As an aside, note that with this time-coordinate the Robertson-Walker metric (for any
k) takes the simple form

ds® = a*(u)(—du® + d5?%) , (18.13)
where again a tilde refers to the maximally symmetric spatial metric. In polar coordi-

nates, this becomes
ds? = a*(u)(—du® + dy* + f2(1)dQ?) . (18.14)

Thus radial null lines are determined by du = £di, as in flat space, and this coordi-
nate system is very convenient for discussing the causal structure of the Friedmann-

Robertson-Walker universes.

Anyway, in terms of the parameter u, the solution to the Friedmann equation for k = +1

can be written as

Amazx

a(u) = 5 (1 — cosu)

tu) = am%(u —sinu) (18.15)
which makes it transparent that the curve is indeed a cycloid, roughly as indicated in
Figure 21.
Analogously, for £ = —1, the Friedmann equation can be solved in parametrised form,

with the trignometric functions replaced by hyperbolic functions,
C
a(u) = 7m(coshu -1)

C
t(u) = Tm(sinhu —u) . (18.16)
AGE AND LIFE-TIME OF THE UNIVERSE

It is instructive to express the above solutions in terms of the parameters Hy and qq
rather than C,, to see what concrete predictions these models make regarding the age
of the universe. Recall that we had derived the relations (17.21,17.22) for p = 0 (or the
matter dominated era in our new terminology). From these equations it follows that

Cm = 87Gpoai /3 can be written as

2qoaok
= —— . 18.17
"2 -1 ( )
For k = +1, this expresses a,,q; in terms of gy and ag, and one finds for t,,q;
qoaopm
t = . 18.1
To eliminate ag from this, we substitute (once more from (17.21))
1
= — (299 — 1)'/? 18.19
ag Ho( q—1)"/" (18.19)
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and obtain
™qo

t = . 18.20
The same substitution in (18.17) leads to
2
Cpp= — B0 (18.21)

© Ho(2go — 1)3/2

The total life-time of the £k = 41 universe is 2¢,,4,, and with gy = 1 and H(jl ~ 1.3x1010
years, this is
tmax = 2mHy ' ~ 8 x 100 years . (18.22)

To calculate the age tg of the universe, we recall the parametrised form of the solution
(18.15). We will determine u(tp) from a(u) and then plug this into ¢(u) to obtain t.

We have
v 2a(t)  2q0 — 1aft)

1 —cosu(t) = C p—
m

(18.23)

Thus for t = ¢ty we obtain

2(]0 —1
q0 '

With ¢ = 1, this becomes cosu(tg) ~ 0 or u(ty) ~ m/2. Therefore, from the equation

1 —cosu(ty) = (18.24)

for t(u) we get

C C
to = =" (ulto) — sinu(to)) = 7’"(% —1) . (18.25)
Using (18.21), we obtain
to = Ho_l(g — 1) ~ 7.5 x 109 years . (18.26)

This value is too small, but then we have already seen that there is very little other
observational evidence for a closed k£ = +1 universe anyway. The same calculations for
a k =0 or k = —1 universe yield more acceptable values for the age of the universe, in

the order of ten to twelve billion years.
THE RADIATION DOMINATED ERA

In this case we need to solve
a’a® = C, — ka? . (18.27)

Because a appears only quadratically, it is convenient to make the change of variables
b = . Then one obtains )

b
T +kb=0C, . (18.28)
For k = 0 we had already seen the solution in (18.3). For k = %1, one necessarily has

b(t) = by + bit + bat?. Fixing b(0) = 0, one easily finds the solution
at) = 2012 — kt?)V/? (18.29)
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so that for k£ = +1
a(0) = a(2C}/?) =0 . (18.30)

Thus already electro-magnetic radiation is sufficient to shrink the universe again and
make it recollapse. For kK = —1, on the other hand, the universe expands forever. All

this is of course in agreement with the results of the qualitative discussion given earlier.
THE VACUUM DOMINATED ERA

Even though not very realistic, this is of some interest for two reasons. On the one hand,
as we know, A is the dominant driving force for a very large. On the other hand, recent
cosmological models trying to solve the so-called horizon problem use a mechanicsm
called inflation and postulate a vacuum dominated era during some time in the early

universe.

Thus the equation to solve is

A
a’ = —k+ §a2 . (18.31)

We see immediately that A has to be positive for k = +1 or k = 0, whereas for &k = —1

both positive and negative A are possible.

This is one instance where the solution to the second order equation (F2),

i=>a, (18.32)

is more immediate, namely trigonometric functions for A < 0 (only possible for k = —1)
and hyperbolic functions for A > 0. The first order equation then fixes the constants of

integration according to the value of k.

For k = 0, the solution is obviously
as(t) = /3/Ae TVA/SL (18.33)

and for kK = +1, thus A > 0, one has

a(t) = MCosh \/Ai/?)t . (18.34)

This is also known as the de Sitter universe. It is a maximally symmetric (in space-time)
solution of the Einstein equations with a cosmological constant and thus has a metric
of constant curvature (cf. the discussion in section 14). But we know that such a metric
is unique. Hence the three solutions with A > 0, for £ = 0, £1 must all represent the
same space-time metric, only in different coordinate systems (and it is a good exercise
to check this explicitly). This is interesting because it shows that de Sitter space is so
symmetric that it has space-like slicings by three-spheres, by three-hyperboloids and by
three-planes.
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The solution for £ = —1 involves sin/|A|/3t for A < 0 and sinh \/A/3t for A > 0, as is

easily checked. The former is known as the anti de Sitter universe.

This ends our survey of exact cosmological solutions. Once again it is natural to wonder
at this point if the singularities predicted by General Relativity in the case of cosmo-
logical models are generic or only artefacts of the highly symmetric situations we were
considering. And again there are singularity theorems applicable to these situations
which state that, under reasonable assumptions about the matter content, singularities

will occur independently of assumptions about symmetries.
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19 LINEARIZED GRAVITY AND GRAVITATIONAL WAVES
PRELIMINARY REMARKS

In previous sections we have dealt with situations in General Relativity in which the
gravitational field is strong and the full non-linearity of the Einstein equations comes into
play (Black Holes, Cosmology). In most ordinary siutations, however, the gravitational
field is weak, very weak, and then it is legitimate to work with a linearization of the
Einstein equations. Our first aim will be to derive these linearized equations. As we will
see, these turn out to be wave equations and we are thus naturally led to the subject of
gravitational waves. These are an important prediction of General Relativity (there are
no gravitational waves in Newton’s theory). It is therefore important to understand how
or under which circumstances they are created and how they can be detected. These,
unfortunately, are rather complicated questions in general and I will not enter into this.
The things I will cover in the following are much more elementary, both technically and

conceptually, than anything else we have done recently.
THE LINEARIZED EINSTEIN EQUATIONS

When we first derived the Einstein equations we checked that we were doing the right

thing by deriving the Newtonian theory in the limit where

1. the gravitational field is weak
2. the gravitational field is static

3. test particles move slowly

We will now analyze a less restrictive situation in which we only impose the first con-
dition. This is sufficient to deal with issues like gravitational waves and relativistic

test-particles.

We express the weakness of the gravitational field by the condition that the metric be
‘close’ to that of Minkowski space, i.e. that

Juv = g;(}u) = N + h;w (19.1)

with |h,,| < 1. This means that we will drop terms which are quadratic or of higher
power in hy,. Here and in the following the superscript (1) indicates that we keep only

up to linear (first order) terms in hy,,. In particular, the inverse metric is

g M — v (19.2)
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where indices are raised with n*¥. As one has thus essentially chosen a backgroudn
metric, the Minkowski metric, one can think of the linearized version of the Einstein
equations (which are field equations for ) as a Lorentz-invariant theory of a symmetric
tensor field propagating in Minkowski space-time. 1 won’t dwell on this but it is good
to keep this in mind. It gives rise to the field theorist’s picture of gravity as the theory
of an interacting spin-2 field (which I do not subscribe to unconditionally because it is

an inherently perturbative and background dependent picture).

It is straightforward to work out the Christoffel symbols and curvature tensors in this
approximation. The terms quadratic in the Christoffel symbols do not contribute to the

Riemann curvature tensor and one finds

F(B\H - nup%(aAhPV + 8I/hp)\ - 8ph1/)\)
RY,y = 200uhyo + 0u0shpy — 0p0uhve — 0,05hpy) - (19.3)

Hence the linearized Ricci tensor is

'Rl(,L]I-/) = %(aval/hau + 808;1}7)‘71/ - auauh - Dh;u/) ) (194)

where h = h/), is the trace of hy, and O = 0"0,,. Thus the Ricci scalar is

RY = 9,0,n —Oh | (19.5)
and the Einstein tensor is
G = 2(050,h%, + 050uh, — 0u0yh — Ohyy — 0y 0p0sh*° + 0y Oh) (19.6)

Therefore the linearized Einstein equations are

G =8rGT) . (19.7)

pr =

Note that only the zero’th order term in the h-expansion appears on the right hand side
of this equation. This is due to the fact that 7}, must itself already be small in order for
the linearized approximation to be valid, i.e. Tlﬁﬂ) should be of order hy,,. Therefore, any

terms in 7}, depending on h,, would already be of order (hW)2 and can be dropped.

Therefore the conservation law for the energy-momentum tensor is just

T O = | (19.8)
and this is indeed compatible with the linearized Bianchi identity

9,GI = | (19.9)
which can easily be verified. In fact, one has the stronger statement that

G = g, (19.10)

with QP = —Q*P¥, and this obviously implies the Bianchi identity.
3
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GAUGE FREEDOM AND COORDINATE CHOICES

To simplify life, it is now useful to employ the freedom we have in the choice of coordi-
nates. What remains of general coordinate invariance in the linearized approximation

are, naturally, linearized general coordinate transformations. Indeed, h,, and
h:u/ = h/u/ + LVU;W (19.11)

represent the same physical perturbation because 7, + Ly, is just an infinitesimal
coordinate transform of the Minkowski metric 7),,,. Therefore linearized gravity has the
gauge freedom

hyw = by +0,V, + 0,V . (19.12)

For example, the linearized Riemann tensor RLV)W is, rather obviously, invariant under

this transformation (and hence so are the Einstein tensor etc.).

In general, a very useful gauge condition is
grh, =0 . (19.13)

It is called the harmonic gauge condition (or Fock, or de Donder gauge condition), and
the name harmonic derives from the fact that in this gauge the coordinate fuctions =
are harmonic:
Ozt = ¢’V , 0,2t = —g"*1"},, | (19.14)
and thus
Ozt =0 & ¢"I't,=0 . (19.15)

It is the analogue of the Lorentz gauge 0,A" = 0 in Maxwell theory. Moreover, in
flat space Cartesian coordinates are obviously harmonic, and in general harmonic co-
ordinates are (like geodesic coordinates) a nice and useful curved space counterpart of

Cartesian coordinates.

In the linearized theory, this gauge condition becomes
bty —20\h =0 . (19.16)
The gauge parameter V,, which will achieve this is the solution to the equation
OVy = — (91" — Lo\h) . (19.17)
Indeed, with this choice one has
Ou(By + O*Vy 4+ O3 VH#) — $(9ah +20"V,) =0 . (19.18)

Note for later that, as in Maxwell theory, this gauge choice does not necessarily fix
the gauge completely. Any transformation z# — z# + £# with O&# = 0 will leave the

harmonic gauge condition invariant.
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THE WAVE EQUATION

Now let us use this gauge condition in the linearized Einstein equations. In this gauge

they simplify somewhat to
Ohyy — $10h = —167GT) . (19.19)
In particular, the vacuum equations are just

T;Eg) =0 = Dhul/ =0, (19.20)

which is the standarad relativistic wave equation. Together, the equations
Ohy = 0
bty — 300k = 0 (19.21)
determine the evolution of a disturbance in a gravitational field in vacuum in the har-
monic gauge.

It is often convenient to define the trace reversed perturbation

huu = h;w - %nuuh ) (19'22)
with
h, = —hH, . (19.23)

Note, as an aside, that with this notation and terminology the Einstein tensor is the

trace reversed Ricci tensor,

Ruu = G;w . (1924)

In terms of B;w’ the Einstein equations and gauge conditions are just

Ohy = —167GTY
Ouht, = 0 . (19.25)

In this equation, the iij are now decoupled. One solution is, of course, the retarded

potential
_ T(O) _'/t_ 72 5
By (T,) = 4G/d3:1:’ w (1= |2 = Z)) (19.26)
|7 — |
Note that, as a consequence of 0,T Omy — 0, this solution is automatically in the

harmonic gauge.

THE POLARIZATION TENSOR
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The linearized vacuum Einstein equation in the harmonic gauge,
Ohyy =0, (19.27)

is clearly solved by
hyw = Cuve , (19.28)

where C,, is a constant, symmetric polarization tensor and k is a constant wave vector,
provided that k¢ is null, k%k, = 0. (In order to obtain real metrics one should of course
use real solutions.)

Thus plane waves are solutions to the linearized equations of motion and the Einstein
equations predict the existence of gravitational waves travelling along null geodesics (at
the speed of light). The timelike component of the wave vector is often referred to as
the frequency w of the wave, and we can write k* = (w, k*). Plane waves are of course
not the most general solutions to the wave equations but any solution can be written

as a superposition of plane wave solutions (wave packets).

So far, we have ten parameters €, and four parameters k* to specify the wave, but
many of these are spurious, i.e. can be eliminated by using the freedom to perform

linearized coordinate transformations and Lorentz rotations.

First of all, the harmonic gauge condition implies that
bk, =0 = Kk'C, =0 . (19.29)

Now we can make use of the residual gauge freedom z# — z# + &# with O&* = 0 to
impose further conditions on the polarization tensor. Since this is a wave equation for
&F, once we have specified a solution for ¢€* we will have fixed the gauge completely.
Taking this solution to be of the form

¢t = Byetkal® (19.30)
one can choose the B, in such a way that the new polarization tensor satisfies k#C,, =0
(as before) as well as

Cuo=C" =0 . (19.31)

All in all, we appear to have nine conditions on the polarization tensor Cy, but as both
(19.29) and the first of (19.31) imply k#Cyo = 0, only eight of these are independent.
Therefore, there are two independent polarizations for a gravitational wave.

For example, we can choose the wave to travel in the z3-direction. Then
' = (0,0,0,k%) = (w,0,0,k%) , (19.32)

and k#*C), = 0 and Cp, = 0 imply C3, = 0, so that the only independent components
are Cyp with a,b = 1,2. As Cyp is symmetric and traceless, this wave is completely
characterized by C1; = —Cag, C19 = (o1 and the frequency w.
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In other words, the metric describing a gravitational wave travelling in the 23-direction

can always be put into the form
ds? = —dt® + (04 + hap)dz®da® + (da?)? | (19.33)

with the hg, describing travelling waves in the ¢ — z3-directions (e.g. hap = hay(t — 23)).
PHYSICAL EFFECTS OF GRAVITATIONAL WAVES

To determine the physical effect of a gravitational wave racing by, we consider its influ-
ence on the relative motion of nearby particles. In other words, we look at the geodesic
deviation equation. Cousider a family of nearby particles described by the wvelocity field
u*(x) and seperation vector S*(z),

D2

msﬂ = Rﬁ‘,pau”upsa . (1934)

Now let us take the test particles to move slowly,
u' =(1,0,0,0) + O(h) . (19.35)

Then, because the Riemann tensor is already of order h, the right hand side of the

geodesic deviation equation reduces to

ey

1000 — %8080}%0 (19.36)

(because hg, = 0). On the other hand, to lowest order the left hand side is just the
ordinary time derivative. Thus the geodesic deviation equation becomes

0? ok

—_Qgh _— lgo = pp

81525 =355 8t2h” . (19.37)
In particular, we see immediately that the gravitational wave is transversally polarized,
i.e. the component S of S* in the longitudinal direction of the wave is unaffected and
the particles are only disturbed in directions perpendicular to the wave. This gives rise

to characteristic oscillating movements of the test particles in the 1-2 plane.

For example, with C19 = 0 one has

0 1 1 182 kox®
525 = 25 gp(Cue™®)
82 82 . a
5550 = 3875 (Cue™et) (19.38)

St = (1+Cnetkat™)51(0)
§? = (1—1Cnee)s2(0)
(19.39)
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X2

X1

Figure 22: Effect of a gravitational wave with polarization C;; moving in the x3-

direction, on a ring of test particles in the 2! — z?-plane.

Recalling the interpretation of S* as a seperation vector, this means that particles
originally seperated in the z'-direction will oscillate back and forth in the z!-direction
and likewise for 2. A nice (and classical) way to visualize this (see Figure 22) is to
start off with a ring of particles in the 1 — 2 plane. As the wave passes by the particles
will start bouncing in such a way that the ring bounces in the shape of a cross +. For

this reason, C7; is also frequently written as Cy.

If, on the other hand, Cj; = 0 but Ci2 # 0, then S will be displaced in the direction
of S? and vice versa,

S' o= §Y(0) + LCipetkat® 52(0)
S2 = 5%(0) 4 $Cipe Rt gL(0) (19.40)

and the ring of particles will bounce in the shape of a x (C12 = C) - see Figure 23.

Of course, one can also construct circularly polarized waves by using
1

ﬁ(cn +iC2) . (19.41)

CrL =
These solutions display the characteristic behaviour of quadrupole radiation, and this
is something that we might have anticipated on general grounds. First of all, we know
from Birkhoff’s theorem that there can be no monopole (s-wave) radiation. Moreover,
dipole radiation is due to oscillations of the center of charge. While this is certainly
possible for electric charges, an oscillation of the center of mass would violate momentum
conservation and is therefore ruled out. Thus the lowest possible mode of gravitational

radiation is quadrupole radiation, just as we have found.

DETECTION OF GRAVITATIONAL WAVES
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Figure 23: Effect of a gravitational wave with polarization Cj» moving in the x3-

direction, on a ring of test particles in the 2! — z?-plane.

In principle, now that we have solutions to the vacuum equations, we should include
sources and study the production of gravitational waves, characterize the type of radi-
ation that is emitted, estimate the energy etc. 1 will not do this but just make some

general comments on the detection of gravitational waves.

In principle, this ought to be straightforward. For example, one might like to simply try
to track the separation of two freely suspended masses. Alternatively, the particles need
not be free but could be connected by a solid piece of material. Then gravitational tidal
forces will stress the material. If the resonant frequency of this ‘antenna’ equals the
frequency of the gravitational wave, this should lead to a detectable oscillation. This is
the principle of the so-called Weber detectors (1966-. . .), but these have not yet, as far
as I know, produced completely conclusive results. In a sense this is not surprising as
gravitational waves are extremely weak, so weak in fact that the quantum theory of the
detectors (huge garbage can size aluminium cylinders, for example) needs to be taken

nto account.

However, there is indirect (and very compelling) evidence for gravitational waves. Ac-
cording to the theory (we have not developed), a binary system of stars rotating
around its common center of mass should radiate gravitational waves (much like electro-
magnetic synchroton radiation). For two stars of equal mass M at distance 2r from each
other, the prediction of General Relativity is that the power radiated by the binary sys-
tem is o N5
pP==

5 1

This energy loss has actually been observed. In 1974, Hulse and Taylor discovered a

(19.42)

binary system, affectionately known as PSR1913+416, in which both stars are very small

and one of them is a pulsar, a rapidly spinning neutron star. The period of the orbit is
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only eight hours, and the fact that one of the stars is a pulsar provides a highly accurate
clock with respect to which a change in the period as the binary loses energy can be
measured. The observed value is in good agreement with the theoretical prediction for
loss of energy by gravitational radiation and Hulse and Taylor were rewarded for these
discoveries with the 1993 Nobel Prize.

Other situations in which gravitational waves might be either detected directly or in-
ferred indirectly are extreme situations like gravitational collapse (supernovae) or matter

orbiting black holes.

20 KALUZA-KLEIN THEORY I

MOTIVATION

Looking at the Einstein equations and the variational principle, we see that gravity is
nicely geometrized while the matter part has to be added by hand and is completely
non-geometric. This may be perfectly acceptable for phenomenological Lagrangians
(like that for a perfect fluid in Cosmology), but it would clearly be desirable to have a

unified description of all the fundamental forces of nature.

Today, the fundamental forces of nature are described by two very different concepts.
Oun the one hand, we have - as we have seen - gravity, in which forces are replaced by
geometry, and on the other hand there are the gauge theories of the electroweak and

strong interactions (the standard model) or their (grand unified, ...) generalizations.

Thus, if one wants to unify these forces with gravity, there are two possibilities:

1. One can try to realize gravity as a gauge theory (and thus geometry as a conse-

quence of the gauge principle).

2. Or one can try to realize gauge theories as gravity (and hence make them purely

geometric).

The first is certainly an attractive idea and has attracted a lot of attention. It is also
quite natural since, in a broad sense, gravity is already a gauge theory in the sense
that it has a local invariance (under general coordinate transformations or, actively,
diffeomorphisms). Also, the behaviour of Christoffel symbols under general coordinate
transformations is analogous to the transformation behaviour of non-Abelian gauge
fields under gauge transformations, and the whole formalism of covariant derivatives

and curvatures is reminiscent of that of non-Abelian gauge theories.

At first sight, equating the Christoffel symbols with gauge fields (potentials) may ap-

pear to be a bit puzzling because we originally introduced the metric as the potential
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of the gravitational field and the Christoffel symbol as the corresponding field strength
(representing the gravitational force). However, as we know, the concept of ‘force’ is
itself a gauge (coordinate) dependent concept in General Relativity, and therefore these
‘field strengths’ behave more like gauge potentials themselves, with their curvature, the
Riemann curvature tensor, encoding the gauge covariant information about the gravi-
tational field. This fact, which reflects deep properties of gravity not shared by other
forces, is just one of many which suggest that an honest gauge theory interpretation of
gravity may be hard to come by. But let us proceed in this direction for a little while

anyway.

Clearly, the gauge group should now not be some ‘internal’ symmetry group like U(1)
or SU(3), but rather a space-time symmetry group itself. Among the gauge groups that

have been suggested in this context, one finds

1. the translation group (this is natural because, as we have seen, the generators of

coordinate transformations are infinitesimal translations)

2. the Lorentz group (this is natural if one wants to view the Christoffel symbols as

the analogues of the gauge fields of gravity)

3. and the Poincaré group (a combination of the two).

However, what - by and large - these investigations have shown is that the more one
tries to make a gauge theory look like Einstein gravity the less it looks like a standard

gauge theory and vice versa.

The main source of difference between gauge theory and gravity is the fact that in the

case of Yang-Mills theory the internal indices bear no relation to the space-time indices

A
ouv*

whereas in gravity these are the same - contrast Fjj, with (F, ) w =R
In particular, in gravity one can contract the ‘internal’ with the space-time indices to
obtain a scalar Lagrangian, R, linear in the curvature tensor. This is fortunate because,

from the point of view of the metric, this is already a two-derivative object.

For Yang-Mills theory, on the other hand, this is not possible, and in order to construct
a Lagrangian which is a singlet under the gauge group one needs to contract the space-
time and internal indices separately, i.e. one has a Lagrangian quadratic in the field

stregths. This gives the usual two-derivative action for the gauge potentials.

In spite of these and other differences and difficulties, this approach has not been com-
pletely abandoned and the gauge theory point of view is still very fruitful and useful
provided that one appreciates the crucial features that set gravity apart from standard

gauge theories.

The second possibility alluded to above, to realize gauge theories as gravity, is much

more radical. But how on earth is one supposed to achieve this? The crucial idea
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has been known since 1919/20 (T. Kaluza), with important contributions by O. Klein
(1926). So what is this idea?

THE BAsIC IDEA: HISTORY AND OVERVIEW

In the early parts of this century, the only other fundamental force that was known,
in addition to gravity, was electro-magnetism, In 1919, Kaluza submitted a paper (to

Einstein) in which he made a number of remarkable observations.

First of all, he stressed the similarity between Christoffel symbols and the Maxwell field

strength tensor,

Fuu/\ = %(augu/\ - augu/\ + a)\guu)
F, = 0,A,—- 0,4, . (20.1)
He then noted that F),, looks like a truncated Christoffel symbol and proposed, in order

to make this more manifest, to introduce a fifth dimension with a metric such that

I'yws ~ F,,. This is inded possible. If one makes the identification
Ap=9u5 (20.2)

and the assumption that g,s is independent of the fifth coordinate z°, then one finds,
using the standard formula for the Christoffel symbols, now extended to five dimensions,
that

(359;w + augu5 - auguf))
(0, A, — 04A)) = 3F,, . (20.3)

Fuu5

N|—= N

But much more than this is true. Kaluza went on to show that when one postulates
a five-dimensional metric of the form (hatted quantities will from now on refer to five

dimensional quantities)
ds? = gy datda” + (da® + Audat)? | (20.4)

and calculates the five-dimensional Einstein-Hilbert Lagrangian R, one finds precisely

the four-dimensional Einstein-Mazwell Lagrangian
R=R-1iF,F" . (20.5)

This fact is affectionately known as the Kaluza-Klein Miracle! Moreover, the five-
dimensional geodesic equation turns into the four-dimensional Lorentz force equation
for a charged particle, and in this sense gravity and Maxwell theory have really been

unified in five-dimensional gravity.

However, although this is very nice, rather amazing in fact, and is clearly trying to tell
us something deep, there are numerous problems with this and it is not really clear

what has been achieved:
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1. Should the fifth direction be treated as real or as a mere mathematical device?

2. If it is to be treated as real, why should one make the assumption that the fields
are independent of 2°? But if one does not make this assumption, one will not

get Einstein-Maxwell theory.

3. Moreover, if the fifth dimension is to be taken seriously, why are we justified in

setting gs5 = 17 If we do not do this, we will not get Einstein-Maxwell theory.

4. If the fifth dimension is real, why have we not discovered it yet?

In spite of all this and other questions, related to non-Abelian gauge symmetries or the
quantum behaviour of these theories, Kaluza’s idea has remained popular ever since or,
rather, has periodically created psychological epidemics of frantic activity, interrupted
by dormant phases. Today, Kaluza’s idea, with its many reincarnations and variations,
is an indispensable and fundamental ingredient in the modern theories of theoretical high
energy physics (supergravity and string theories) and many of the questions/problems

mentioned above have been addressed, understood and overcome.
THE KALUZA-KLEIN MIRACLE

We now consider a five-dimensional space-time with coordinates 74 = (2#,2°) and a
metric of the form (20.4). For later convenience, we will introduce a parameter X into

the metric (even though we will set A = 1 for the time being) and write it as
ds? = gdatda” + (da® + NA,da)? . (20.6)

More explictly, we therefore have

auu = Gu + AMAV
§u5 = Au
gss = 1. (20.7)

The determinant of the metric is § = g, and the inverse metric has components

g o= g™
§u5 — _AH
g% = 1+A4,4" . (20.8)

We will (for now) assume that nothing depends on z° (in the old Kaluza-Klein literature

this assumption is known as the cylindricity condition).
Introducing the notation
F., = 0,A,—0A,
B, = 90,A,+0,A, , (20.9)
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the Christoffel symbols are readily found to be

Iy, = I, — 5(FLAN+ FRA,)

I3, = 1B — SAM(FuAy + FuA)) — APT 0

f%)\ = _%Flj\

1q55u - _%FWAV

M = I%=0. (20.10)

This does not look particularly encouraging, in particular because of the presence of
the B, term, but Kaluza was not discouraged and proceeded to calculate the Riemann

tensor. I will spare you all the components of the Riemann tensor, but the Ricci tensor

we need:
Ry = Ry +3iFfF, + 1F¥Fy\,AL A, + 5(A N, FP + ANV ,FP)
Rsy = +iV,E/+1A4,F,F"
Rss = 1F,FM . (20.11)

This looks a bit more attractive and covariant but still not very promising. But now
the miracle happens. Calculating the curvature scalar, all the annoying terms drop out

and one finds
R=R-1F, F" | (20.12)

i.e. the Lagrangian of Einstein-Maxwell theory. For A # 1, the second term would have
been multiplied by A%, We now consider the five-dimensional pure gravity Einstein-

Hilbert action 1
S = —A/\/Edf’x R . (20.13)
871G
In order for the integral over z° to converge we assume that the x°-direction is a circle

with radius L and we obtain

2nL

S=="=
87G

/ Vod'z (R — 1N°F,, F") . (20.14)

Therefore, if we make the identifications

G = G/2rL
M = 8nG (20.15)
we obtain . .
o _ 4 - 4 1%
S=55 /\/gd xR 4/\/§d x F, F" (20.16)

i.e. precisely the four-dimensional Einstein-Maxwell Lagrangian! This amazing fact, that
coupled gravity gauge theory systems can arise from higher-dimensional pure gravity,

is certainly trying to tell us something.
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THE ORIGIN OF GAUGE INVARIANCE

In physics, at least, miracles require a rational explanation. So let us try to understand
on a priori grounds why the Kaluza-Klein miracle occurs. For this, let us recall Kaluza’s

ansatz for the line element (20.4),
d5% i = g (V) datda” + (da® + A, (x)da")? (20.17)

and contrast this with the most general form of the line element in five dimensions,

namely

ds> = gun(D)dzMdz

= Gu (@, 2%)datda” + 2G5 (2, 2°)datda® + Gss (2, %) (da®)? . (20.18)

Clearly, the form of the general five-dimensional line element (20.18) is invariant under
arbitrary five-dimensional general coordinate transformations 2z — ¢ (V). This
is not true, however, for the Kaluza-Klein ansatz (20.17), as a general z°-dependent
coordinate transformation would destroy the z°-independence of g, = g and Gus =

A, and would also not leave gs5 = 1 invariant.

The form of the Kaluza-Klein line element is, however, invariant under the following

two classes of coordinate transformations:
1. There are four-dimensional coordinate transformations
2 = 2P
= & () (20.19)

Under these transformations, as we know , transforms in such a way that
, y Gu y
g dztdx” is invariant, A, = g,5 transforms as a four-dimensional covector, thus

Aydz* is invariant, and the whole metric is invariant.

2. There is also another remnant of five-dimensional general covariance, namely

o = &t 2%) =a® + f(a¥)

ah o M aY) = ot (20.20)

Under this transformation, g,, and gs5 are invariant, but A, = g,5 changes as

U _BxMaxNA
n = o =g g I
oM
R
_ of
= 9us5 — @955
= A, —0.f . (20.21)
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In other words, the Kaluza-Klein line element is invariant under the shift x> —
2° + f(z") accompanied by A, — A, — 9,f (and this can of course also be read

off directly from the metric).

But this is precisely a gauge transformation of the vector potential A, and we see that in
the present context gauge transformations arise as remnants of five-dimensional general

covariance!

But now it is clear that we are guaranteed to get Einstein-Maxwell theory in four

5 is irrelevant and

dimensions: First of all, upon integration over z°, the shift in z
starting with the five-dimensional Einstein-Hilbert action we are bound to end up with
an action in four dimensions, depending on g,,, and A, which is (a) generally covariant
(in the four-dimensional sense), (b) second order in derivatives, and (c¢) invariant under
gauge transformations of A,. But then the only possibility is the Einstein-Maxwell

action.

A fruitful way of looking at the origin of this gauge invariance is as a consequence of
the fact that constant shifts in z° are isometries of the metric, i.e. that 9/9x° is a
Killing vector of the metric (20.17). Then the isometry group of the ‘internal’ circle
in the z°-direction, namely SO(2), becomes the gauge group U(1) = SO(2) of the

four-dimensional theory.

From this point of view, the gauge transformation of the vector potential arises from
the Lie derivative of g,5 along the vector field f(«*)0s:

Y = f(a")ds = YF=0

YP=f
= Y, =A,f
Ys=1 . (20.22)
(Ly@)us = V,Y5+VsY,

= 9,Ys— 20k, v M
= Ouf+FUY, + F,A"Y;

= 8uf
& A, =—0.f . (20.23)

This point of view becomes particularly useful when one wants to obtain non-Abelian
gauge symmetries in this way (via a Kaluza-Klein reduction): One starts with a higher-
dimensional internal space with isometry group G and makes an analogous ansatz for the
metric. Then among the remnants of the higher-dimensional general coordinate trans-
formations there are, in particular, x#-dependent ‘isometries’ of the internal metric.
These act like non-Abelian gauge transformations on the off-block-diagonal compone-

nents of the metric and, upon integration over the internal space, one is guaranteed to
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get, perhaps among other things, the four-dimensional Einstein-Hilbert and Yang-Mills

actions.
(GEODESICS

There is something else that works very beautifully in this context, namely the descrip-
tion of the motion of charged particles in four dimensions moving under the combined
influence of a gravitational and an electro-magnetic field. As we will see, also these two

effects are unfied from a five-dimensional Kaluza-Klein point of view.

Let us consider the five-dimensional geodesic equation
M4 TM Vil =0 . (20.24)

Either because the metric (and hence the Lagrangian) does not depend on z°, or because
we know that V' = 05 is a Killing vector of the metric, we know that we have a conserved
quantity

M .5 .
along the geodesic world lines. We will see in a moment what this quantity corresponds
to. The remaining x#-component of the geodesic equation is

Vit = @t 4T 80
T sv:5 H 255
+ 2IM ga"a” + 215510
it 4+ TH @7t — FE AN e — FRY 3P

G TH N — PRV (Azat + i°) . (20.26)

at + T, @

Therefore this component of the geodesic equation is equivalent to
i+ TH 373t = (A + 2°)Fra” . (20.27)

This is precisely the Lorentz law if one identifies the constant of motion with the ratio

of the charge and the mass of the particle,
.5 . €
¥’ + Ayat = g (20.28)

Hence electro-magnetic and gravitational forces are indeed unified. The fact that
charged particles take a different trajectory from neutral ones is not a violation of
the equivalence principle but only reflects the fact that they started out with a different

velocity in the z°-direction!

FIRST PROBLEMS: THE EQUATIONS OF MOTION
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The equations of motion of the four-dimensional Einstein-Hilbert-Maxwell action will

of course give us the coupled Einstein-Maxwell equations

Ry — s9uwR = 8nGT),
V" = 0 . (20.29)

But now let us take a look at the equations of motion following from the five-dimensional
Einstein-Hilbert action. These are, as we are looking at the vacuum equations, just the
Ricci-flatness equations Run = 0. But looking back at (20.11) we see that these are
clearly not equivalent to the Einstein-Maxwell equations. In particular, §55 = (0 imposes
the constraint

Rss=0 = F,F*" =0, (20.30)

and only then do the remaining equations ﬁ,“, =0, }A?#5 = 0 become equivalent to the

Einstein-Maxwell equations (20.29).

What happened? Well, for one, taking variations and making a particular ansatz for
the field configurations in the variational principle are two operations that in general do
not commute. In particular, the Kaluza-Klein ansatz is special because it imposes the
condition gs5 = 1. Thus in four dimensions there is no equation of motion corresponding
to gss whereas R55 = 0, the additional constraint, is just that, the equation arising
from varying gs5. Thus Einstein-Maxwell theory is not a consistent truncation of five-

dimensional General Relativity.

But now we really have to ask ourselves what we have actually achieved. We would like
to claim that the five-dimensional Einstein-Hilbert action unifies the four-dimensional
Einstein-Hilbert and Maxwell actions, but on the other hand we want to reject the
five-dimensional Einstein equations? But then we are not ascribing any dynamics to
the fifth dimension and are treating the Kaluza-Klein miracle as a mere kinematical,
or mathematical, or bookkeeping device for the four-dimensional fields. This is clearly

rather artificial and unsatisfactory.

There are some other unsatisfactory features as well in the theory we have developed so
far. For instance we demanded that there be no dependence on z°, which again makes
the five-dimensional point of view look rather artificial. If one wants to take the fifth
dimension seriously, one has to allow for an z°-dependence of all the fields (and then
explain later, perhaps, why we have not yet discovered the fifth dimension in every-day

or high energy experiments).

21 KALuzA-KLEIN THEORY II

With these issues in mind, we will now revisit the Kaluza-Klein ansatz, regarding the

fifth dimension as real and exploring the consequences of this. Instead of considering
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directly the effect of a full (i.e. not restricted by any special ansatz for the metric) five-
dimensional metric on four-dimensional physics, we will start with the simpler case of

a free massless scalar field in five dimensions.
MASSES FROM SCALAR FIELDS IN FIVE DIMENIONS

Let us assume that we have a five-dimensional space-time of the form Ms = My x S!

where we will at first assume that M, is Minkowski space and the metric is simply
ds? = —dt* + di* + (d2”)? (21.1)

with 2° a coordinate on a circle with radius L. Now consider a massless scalar field ¢

on M5, satisfying the five-dimensional massless Klein-Gordon equation
Op(z*, 2°) = N0y 0y p(a*, 2°) =0 . (21.2)

As 2% is periodic with period 2L, we can make a Fourier expansion of qg to make the

x°-dependence more explicit,
~ 5
dat,a®) = 3 gn(a)e /L (21.3)
n

Plugging this expansion into the five-dimensional Klein-Gordon equation, we find that
this turns into an infinite number of decoupled equations, one for each Fourier mode of
¢p, of QAS, namely

(O —m2)p, =0 . (21.4)

n

Here O of course now refers to the four-dimensional d’Alembertian, and the mass term
my = — (21.5)

arises from the z5-derivative 92 in 0.

Thus we see that, from a four-dimensional perspective, a massless scalar field in five
dimensions give rise to one massless scalar field in four dimensions (the harmonic or
constant mode on the internal space) and an infinite number of massive fields. The
masses of these fields, known as the Kaluza-Klein modes, have the behaviour m,, ~ n/L.
In general, this behaviour mass ~ 1/ length scale is characteristic of massive fields arising

from dimensional reduction from some higher dimensional space.
CHARGES FROM SCALAR FI1ELDS IN FIVE DIMENIONS

Now, instead of looking at a scalar field on Minkowski space times a circle with the

product metric, let us consider the Kaluza-Klein metric,

3% = —dt? + di® + (da® + \A, dz")? (21.6)
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and the corresponding Klein-Gordon equation
Og(at, 2°) = MV pond(a*, %) =0 . (21.7)

Rather than spelling this out in terms of Christoffel symbols, it is more convenient to
use (4.33) and recall that /g = /g =1 to write this as

0 = du@""oy)
= 0,9"0, + 85@5“3# + 3N§“535 + 055705
= 00,0, + O5(—AARD,) + D(—AAPDs) + (1 + N2A,AP)D505
= "9 — AALD5) (0, — AALDs) + (35)% (21.8)

Acting with this operator on the Fourier decomposition of (}5, we evidently again get an

infinte number of decoupled equations, one for each Fourier mode ¢,, of (}5, namely

n" (0, — iA—;AH)(a,, — i)\an,,) —m2| ¢, =0 . (21.9)

This shows that the non-constant (n # 0) modes are not only massive but also charged

under the gauge field A,,. Comparing the operator

A
0, — ian# (21.10)

with the standard form of the minimal coupling,
h
Zau —eA, , (21.11)

we learn that the electric charge e, of the n’th mode is given by

en N
—=—. 21.12
h L ( )

In particular, these charges are all integer multiples of a basic charge, e, = ne, with

o @ _ V8nGh

21.1
7 T (21.13)
Thus we get a formula for L, the radius of the fifth dimension,
8tGh*  8nGh
L2 = = 21.14
e? e2/h ( )

Restoring the velocity of light in this formula, and identifying the present U(1) gauge

symmetry with the standard gauge symmetry, we recognize here the fine structure

constant
a = ée?/drhe = 1/137 | (21.15)
and the Planck length
h
lp = G—3 ~ 10" %cm . (21.16)
C



Thus
» 203 2
L* = — =~ 27405 . (21.17)
@
This is very small indeed, and it is therefore no surprise that this fifth dimension, if it

is the origin of the U (1) gauge invariance of the world we live in, has not yet been seen.

Another way of saying this is that the fact that L is so tiny implies that the masses m,,
are huge, not far from the Planck mass

h
mp = 60 ~ 1075 ~ 10°GeV . (21.18)

These would never have been spotted in present-day accelerators. Thus the massive
modes are completely irrelevant for low-energy physics, the non-constant modes can be
dropped, and this provides a justification for neglecting the z°-dependence. However,
this also means that the charged particles we know (electrons, protons, ...) cannot
possibly be identified with these Kaluza-Klein modes.

The way modern Kaluza-Klein theories address this problem is by identifying the light
charged particles we observe with the massless Kaluza-Klein modes. One then requires
the standard spontaenous symmetry breaking mechanism to equip them with the small
masses required by observation. This still leaves the question of how these particles
should pick up a charge (as the zero modes are not only masless but also not charged).
This is solved by going to higher dimensions, with non-Abelian gauge groups, for which
masless particles are no longer necessarily singlets of the gauge group (they could e.g.
live in the adjoint).

KINEMATICS OF DIMENSIONAL REDUCTION

We have seen above that a massless scalar field in five dimensions gives rise to a massless
scalar field plus an infinite tower of massive scalar fields in four dimensions. What
happens for other fields (after all, we are ultimately interested in what happens to the

five-dimensional metric)?

Consider, for example, a five-dimensional vector potential (covector field) By (z™).
From a four-dimensional vantage point this looks like a four-dimensional vector field
B, (2", 2°) and a scalar ¢(z#,2°) = Bs(2#,2°). Fourier expanding, one will then obtain

in four dimensions:

1. one massless Abelian gauge field B, (z")
2. an infinite tower of massive charged vector fields
3. one massless scalar field ¢(z#) = Bs(z*)

4. an infinite tower of massive charged scalar fields
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Retaining, for the same reasons as before, only the massless, i.e. °-independent, modes
we therefore obtain a theory involving one scalar field and one Abelian vector field
from pure Maxwell theory in five dimensions. The Lagrangian for these fields would be

(dropping all z°-derivatives)

FynFYN = F FM 4 2F, s F*
= FuF" +2(0,9)(0"¢) . (21.19)

This procedure of obtaining Lagrangians in lower dimensions from Lagrangians in higher
dimensions by simply dropping the dependence on the ‘internal’ coordinates is known as
dimensional reduction or Kaluza-Klein reduction. But the terminology is not uniform
here - sometimes the latter term is used to indicate the reduction including all the
massive modes. Also, in general ‘massless’ is not the same as ‘z’-independent’, and
then Kaluza-Klein reduction may refer to keeping the massless modes rather than the

z’-independent modes one retains in dimensional reduction.

Likewise, we can now consider what happens to the five-dimensional metric gasn (z1).
From a four-dimensional perspective, this splits into three different kinds of fields,
namely a symmetric tensor g,,, a covector A, = g,5 and a scalar ¢ = gs5. As be-
fore, these will each give rise to a massless field in four dimensions (which we interpret
as the metric, a vector potential and a scalar field) as well as an infinite number of

massive fields.

We see that, in addition to the massless fields we considered before, in the old Kaluza-
Klein ansatz, we obtain one more massless field, namely the scalar field ¢. Thus, even
if we may be justified in dropping all the massive modes, we should keep this massless
field in the ansatz for the metric and the action. With this in mind we now return to
the Kaluza-Klein ansatz.

THE KALUZA-KLEIN ANSATZ REVISITED

Let us once again consider pure gravity in five dimensions, i.e. the Einstein-Hilbert

action .
S = —A/ g’z R . 21.20
ol (21.20)
Let us now parametrize the full five-dimensional metric as

ds? = ¢~ 3(gudat da? + p(dz® + NA,dat)?] (21.21)

where all the fields depend on all the coordinates z*,2°. Any five-dimensional metric

can be written in this way and we can simply think of this as a change of variables

g = (Guvs Aps @) - (21.22)
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In matrix form, this metric reads

(21.23)

(G = 61/ < Guw + N20AL A, APA, >

APAy ¢

For a variety of reasons, this particular parametrization is useful. In particular, it
reduces to the Kaluza-Klein ansatz when ¢ = 1 and all the fields are independent of z°
and the ¢’s in the off-diagonal component ensure that the determinant of the metric is
independent of the A,.

The only thing that may require some explanation is the strange overall power of ¢. To

see why this is a good choice, assume that the overall power is ¢® for some a. Then for
/g one finds

\/'/g_\: ¢5a/2¢1/2\/§: ¢(5a+1)/2\/§ ) (2124)
Oun the other hand, for the Ricci tensor one has, schematically,

~

Ry, =Ry +... , (21.25)
and therefore

R = §"Ru +...
- ¢_ag#VRIJy + e
= ¢"R+... . (21.26)

Hence the five-dimensional Einstein-Hilbert action reduces to

\/_/g\j% ~ ¢(5a+1)/2¢7a\/§R 4.
B2 GR L (21.27)

Thus, if one wants the five-dimensional Einstein-Hilbert action to reduce to the standard
four-dimensional Einstein-Hilbert action (plus other things), without any non-minimal
coupling of the scalar field ¢ to the metric, one needs to choose a = —1/3 which is the
choice made in (21.21,21.23).

Making a Fourier-mode expansion of all the fields, plugging this into the Einstein-Hilbert

action )
—— [ Vgdz R 21.28
— [ Vi (21.28)

integrating over 2° and retaining only the constant modes 9y Ayu and ¢y, one
obtains the action

1 1 1

4 v - v

S = /\/gd x [%R(Q(o)w) - Z¢(0)F(0)WF(%) - m%gf‘mam(o)m(m
(21.29)

Here we have once again made the identifications (20.15). This action may not look as

nice as before, but it is what it is. It is at least generally covariant and gauge invariant,
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as expected. We also see very clearly that it is inconsistenst with the equations of
motion for ¢,

3 14
Dlog ¢(0) = Z87TG¢(U)F(0)NVF(%) , (21_30)
to set ¢y = 1 as this would imply F(O)NVF(%I; = 0, in agreement with our earlier

observations regarding Rss = 0.

However, the configuration (o), = Muvs A)u = 0, $0) = 1 is a solution to the equations
of motion and defines the ‘vacuum’ or ground state of the theory. From this point of
view the zero mode metric, (21.23) with the fields replaced by their zero modes, i.e. the
Kaluza-Klein ansatz with the inclusion of ¢, has the following interpretation: as usual
in quantum theory, once one has chosen a vacuum, one can consider fluctuations around

that vacuum. The fields g().u, A(0)u> P(0) are then the massless fluctuations around the

ns
vacuum and are the fields of the low-energy action. The full classical or quantum theory

will also contain all the massive and charged Kaluza-Klein modes.
NON-ABELIAN GENERALIZATION AND OUTLOOK

Even though in certain respects the Abelian theory we have discussed above is atypi-
cal, it is rather straightforward to generalize the previous considerations from Maxwell
theory to Yang-Mills theory for an arbitrary non-Abelian gauge group. Of course, to
achieve that, one needs to counsider higher-dimensional internal spaces, i.e. gravity in
4 + d dimensions, with a space-time of the form My x My. The crucial observation is
that gauge symmetries in four dimensions arise from isometries (Killing vectors) of the

metric on M.

Let the coordinates on My be z%, denote by g, the metric on My, and let K¢, i =

79

1,...,n denote the n linearly independent Killing vectors of the metric g,. These

generate the Lie algebra of the isometry group G via the Lie bracket
[Ki, Kj)* = K)oy K{ — K20,K{ = fiK}: . (21.31)

My could for example be the group manifold of the Lie group G itself, or a homogeneous
space G /H for some subgroup H C G.

Now consider the following Kaluza-Klein ansatz for the metric,
3 = gy datda” + gop(da® + K[ Al da)(dz’ + KV Al dz”) (21.32)

Note the appearance of fields with the correct index structure to act as non-Abelian
gauge fields for the gauge group G, namely the AL. Again these should be thought of

as fluctuations of the metric around its ‘ground state’, My x My with its product metric

(guua gab)-
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Now consider an infinitesimal coordinate transformation generated by the vector field
Ve(at,at) = f(a") K2 (") | (21.33)
ie.
6z = fi(z*) K& (a?) . (21.34)
This leaves the form of the metric invariant, and
5§ua = LV/g\ua (21.35)
can be seen to imply
SAL =Duf' = 0uf" — fRALf* (21.36)

i.e. precisely an infinitesimal non-Abelian gauge transformation. The easiest way to see

this is to use the form of the Lie derivative not in its covariant form,
Ly Gua =V uVa+ VaVi (21.37)
(which requires knowledge of the Christoffel symbols) but in the form
Lvgua = VOcGua + 0V Gea + 90V Gpc - (21.38)

Inserting the definitions of g,, and V%, using the fact that the K} are Killing vectors
of the metric g, and the relation (21.31), one finds

ngpa = gaszbDufi ’ (21'39)

and hence (21.36).

One is then assured to find a Yang-Mills like term
Lyn ~ Fj, FTW KK gy (21.40)

in the reduction of the Lagrangian from 4 + d to 4 dimensions.

The problem with this scenario (already prior to worrying about the inclusion of scalar
fields, of which there will be plenty in this case, one for each component of gq) is
that the four-dimensional space-time cannot be chosen to be flat. Rather, it must
have a huge cosmological constant. This arises because the dimensional reduction of
the (4 + d)-dimensional Einstein-Hilbert Lagrangian R will also include a contribution
from the scalar curvature R, of the metric on My. For a compact internal space with
non-Abelian isometries this scalar curvature is non-zero and will therefore lead to an
effective cosmological constant in the four-dimensional action. This cosmological con-
stant could be cancelled ‘by hand’ by introducing an appropriate cosmological constant
of the opposite sign into the (d + 4)-dimensional Einstein-Hilbert action, but this looks
rather contrived and artificial.
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Nevertheless, this and other problems have not stopped people from looking for ‘realistic’
Kaluza-Klein theories giving rise to the standard model gauge group in four dimension.
Of course, in order to get the standard model action or something resembling it, fermions
need to be added to the (d + 4)-dimensional action.

An interesting observation in this regard is that the lowest possible dimension for a
homogenous space with isometry group G = SU(3) x SU(2) x U(1) is seven, so that the
dimension of space-time is eleven. This arises because the maximal compact subgroup H
of G, giving rise to the smallest dimensional homogeneous space G/H of G, is SU(2) x
U(1) xU(1). As the dimension of G is 8 +3+1 = 12 and that of H is 34+ 141 =5, the
dimension of G/H is 12 — 5 = 7. This is intriguing because eleven is also the highest
dimension in which supergravity exists (in higher dimensions, supersymmetry would
require the existence of spin > 2 particles). That, plus the hope that supergravity
would have a better quantum behaviour than ordinary gravity, led to an enourmous

amount of activity on Kaluza-Klein supergravity in the early 80’s.

Unfortunately, it turned out that not only was supergravity sick at the quantum level
as well but also that it is impossible to get a chiral fermion spectrum in four dimensions
from pure gravity plus spinors in (4+d) dimensions. One way around the latter problem
is to include explicit Yang-Mills fields already in (d + 4)-dimensions, but that appeared
to defy the purpose of the whole Kaluza-Klein idea.

Today, the picture has changed and supergravity is regarded as a low-energy approxi-
mation to string theory which is believed to give a consistent description of quantum
gravity. These string theories typically live in ten dimensions, and thus one needs
to ‘compactify’ the theory on a small internal six-dimensional space, much as in the
Kaluza-Klein idea. Even though non-Abelian gauge fields now typically do not arise
from Kaluza-Klein reduction but rather from explicit gauge fields in ten dimensions, in
all other respects Kaluza’s old idea is alive, doing very well, and an indispensable part

of the toolkit of modern theoretical high energy physics.

THE END
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