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Preface

In the beginning there was a two quarter course in General Relativity
(GR) here at UC Santa Cruz. As time passed I kept expanding the
mathematical preliminaries, adding examples from electrodynamics,
mechanics, thermodynamics, and so on. After a while I realized that
it was no longer a General Relativity course. I split the first quarter off
into the course that became the book Applied Differential Geometry.

I tried to repackage the second quarter so that it would be possible
to take it without having the mathematical preliminaries, provided one
was willing to take the mathematics without derivations or examples.
Few students try this, and I am not sure how successful that is.

It has been useful, nonetheless, to carve out the essential ideas of
GR and to present them in a ten week package. These are my class
notes for such a course. I have no intention for them to evolve into a
book, but do intend for them to evolve into a better and better set of
notes to supplement the class.

Some short, pregnant remarks in class require a careful and pre-
cise statement. The harried notetaker may scramble these or miss
them all together. There are a lot of two liners in here that you can
fruitfully expand into a term paper.

I am grateful for all the help that students in the class have given
to me. Particular thanks to Tan Walker, Kathleen Wu, and David
Reitzel.

I prefaced the 1992 version of these notes with the disclaimer that
”These are my rough class notes, only lightly proofread. In the 1994
version I have filled a number of the logical and calculational potholes,
and [ have added many new figures.



Introduction

These notes present GR as a mature theory, much as electrodynamics
is presented in Jackson, say. We are just going to leap in and do a
bunch of interesting calculations.

Critical study

Of course GR is by no means as well tested as electrodynamics. We are
going to neglect the critial analysis of how well GR has been verified,
mainly because this class is constrained to just ten weeks duration.

Look at ClLiff Will, Was FEinstein Right? for a discussion of the tests,
so called, of Einstein’s theory.

Philosophy

My ideas on the philosophical basis of gravitation come mainly from
Hans Reichenbach, The Philosophy of Space and Time. Even though
it is quite old and out dated, this is well worth reading. His discussion
of the black hole is quite intelligent and completely wrong. A good way
to appreciate the achievement of Eddington, Finkelstein, Kruskal, and
Wheeler in straightening all this out is to see what the conventional
wisdom was before their work. A later Reichenbachian treatment can
be found in Lawrence Sklar, Space, Time, and Spacetime.

History

Here is a synopsis of the lineage of this course. I learned relativity
from reading J. L. Synge, and from a course taught by Frank Es-
tabrook after the untimely death of H. P. Robertson. Frank was a
retreaded nuclear physicist who taught himself relativity also from
Synge’s books. Later I studied with Kip Thorne and wrote a thesis on
gravitational radiation damping, but I have never considered myself in
the John Wheeler school of relativity. Coming to UCSC with its good
mathematics department, I proceeded to remedy my deficient math
background, and this led to the present situation.



1. Gravity as a Classical Field

We will start from the idea of a classical field and its associated field
energy.* To be positive definite, this field energy will be quadratic (or
worse) in the fields. Were it not positive definite, then the stability of
the vacuum (ground state) would be seriously in question. Classical
field theories with a vector potential look like electromagnetism, and
have like particles repelling each other. Theories with scalar or second
rank tensor potentials have like particles attracting each other.

The sources of the fields will be the same geometrical objects as
the potentials. In electrodynamics the source of the field is the 4-
current. In a scalar theory it would be a scalar quantity; the trace of
the stress energy tensor is the most likely quantity. In a tensor theory,
the source of gravity would be the entire stress energy tensor. Since
the stress tensor for a light signal is traceless, the observation that
gravity bends light suggests that all (or at least most) of gravity is
caused by a tensor field theory.

Now there is a paradox for theories with likes attracting. When
two particles move together, the fields increase, ultimately doubling.
The field energy is thus twice what the field energy was when the
particles were separated. In electrodynamics, one has to do work to
push the like particles together, and this can (and does) all balance.
In an attractive theory, we get work out of the particles as they come
together. How does this all work out?

The trouble is with the force law in the theory, which cannot be
chosen arbitrarily, but must be consistent with the field equations and
the expression for the energy in the field. It is not possible to choose
this force law so that the force preserves the rest mass. That is, you
cannot make the 4-force Lorentz perpendicular to the 4-velocity. Thus
as you move the particles together they lose rest mass, and at a rate
to make the energy balance work out. Now when particles lose mass,
they change their sizes. So presto, despite your best intentions to be a
classical physicist, you are stuck with a theory with measurements that
do not follow Euclidean geometry. The two themes of this short course

* Our picture is that energy and momentum is sloshing around in
the field, and coming out where there is a particular “twist” in the field
lines indicating a source. Thus does the field exert forces on charges.
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will be the failure of GR to behave as our Euclidean intuition expects,
and the similar failure to act as our Newtonian intuition expects. The
calculation of a consistent field energy and force law for a hypothetical
scalar field is done in section 41 of Applied Differential Geometry
(ADG).

This rescaling of masses will not mess up atomic theory only
if it is universal. This shows up experimentally in the Eotvos ex-
periment, and theoretically in the equivalence of active gravitational
mass (what causes gravitational fields) and passive gravitational mass
( what causes inertia). It is this universality that is the salient feature
of gravitation. It results in its being an unshieldable force. Thus you
cannot measure the gravitational force locally, because there are no un-
forced particles for comparison. This universality is what legitimizes

the construction of a geometric theory.

Geometric Gravity

Clifford in the late nineteenth century was the first to really try to
explain gravity by geometry. This failed. After special relativity, with
space and time married into spacetime, it became possible.

General Relativity is a theory which maps some part of the uni-
verse, perhaps all of it, into the geometric structure of a differentiable
manifold with a Lorentz metric and other fields (electic, magnetic,
etc.) defined on it. The metric in classical GR gives you a geomet-
ric structure that you use to model the physical behavior of clocks,
measuring rods, and particles moving freely, under the influence of no
forces except for gravity. Since the gravitational force is universal,
we modify the notion of free particle to mean free except for possibly
gravitational forces.

We cannot go into the fundamentals; we lack both the time and
the mathematical skills. We should provide a detailed clock treatment
based on quantum mechanics, and the matter should satisfy quantum
field equations.

The interpretation of a situation in GR is fundamentally different
from the usual interpretation of a classical field. The field itself alters
the meaning of the solution. Until you know what the metric is, you
do not know how to interpret the coordinates. This is very hard to
make instinctive.

[That section is in error, how-
ever, and you can in fact do
that calculation easily with
forms.]

[ There is an interesting heuris-
tic development of gravitation as
a classical field in some dittoed
but unpublished lecture notes
of Feynman from a class in GR
that he taught once in 1963.]
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Field Equations

When starting Jackson, you are given the field equations. You might
get some historical discussion. So too here. The field equations of
GR relate the curvature tensor to the matter distribution. Nothing
invariant can be formed from the first derivatives of the metric ten-
sor. Coordinates, called Gaussian coordinates, can always be chosen
so that the first derivatives vanish at any particular point. The curva-
ture tensor is the only invariant that can be formed from the second
derivatives. This is not obvious. The sources of the fields must be the
matter, and the only invariant matter field is the stress energy tensor.

The stress energy tensor is a symmetric, two index tensor that
generates conserved fluxes from symmetries. If we have a Killing
vector (metric symmetry generator) k¥, then we can form a vector
from the stress energy tensor

=Tk,

and using the metric, turn this into a 1-form, and then using the
star operator, turn this into a twisted 3—form. This twisted 3—form
represents the flux of the conserved stuff associated with the symmetry.
There is a balance law for this stuff; its exterior derivative is either
zero, or the stuff disappears into known sinks.

There are ten symmetries of Lorentz spacetime, and so there are
ten conserved quantities. In GR these are only locally conserved,
because in general there are no Killing vectors. This local conservation
is important to us because we cannot arbitrarily prescribe the motion
of the sources of gravity. In the end, everything must be self consistent.
For example, we cannot calculate the gravitational radiation caused by
a particle that starts moving at some time, because that motion does
not conserve linear momentum. The source that kicked the particle
must be included. Because this conservation law is expressed in terms
of the covariant derivative with respect to the metric, and the metric
is what we are solving for, you can see the vicious, nonlinear circle
that the field equations present to us.

We will proceed in this course to first study given symmetrical
situations. We will introduce test particles into these solutions and
pretend that they do not break the symmetry. This will allow us to
develop a geometric, as opposed to a Newtonian, intuition. Then we
will consider the general weak field situation, where the vicious circle
does not arise. Out will go more Euclidean and Newtonian intuition.
Then we go on to cosmology and gravitational collapse; replacing weak
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fields with symmetry. Without some falling from virtue, one can make
little progress in GR.

You should also read the introduction to Chapter IX in ADG, and
Section 59.

Stress—Energy Tensors

The geometric object called the stress—energy tensor, T"”, plays as
important a role in GR as the charge and current vector in electrody-
namics. Here there are two ways to look at the stress—energy tensor,
beyond its role as the source of the gravitational field. It is the ar-
ray of local energy, momentum, and stress. These three concepts are
related in that the flux of energy is momentum, and the flux of mo-
mentum is stress. The other way to look at the stress—energy tensor is
that it is the generator that takes symmetries and produces conserved
quantities. The stress—energy tensor is a two index symmetric tensor.

The basis for mechanics in flat spacetime are the ten conserva-
tion laws: for energy, momentum, angular momentum, and center—
of-mass. These come from ten symmetries that we can describe by
Killing vectors. These Killing vectors k* satisfy

L6 =0,
in components (ADG pg 143)

guu,aka + guaka,u + gua'ka = 0.

1

For a metric—derived covariant derivative we have

Juvio = 0,

and this leads to
ku;u + ku;u = 0.

The expression with partial derivatives is more useful for actual calcu-
lation, while the expression with covariant derivatives is more useful
in formal derivations. The flat spacetime Killing vectors are

a 0 0 0 0 0
— e, —Y—, ..., e— +—, ...
ot oz Ay ox ot ox

The conservation laws constrain the stress—energy tensor

" ., = 0.

)
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This contains total mechanical truth, more comprehensive than just
F = ma. This correct treatment of mechanics is due to Cauchy (al-
though not in this language, he lived before Killing, for example). We
use the same constraint on the divergence of the stress—energy tensor

in general relativity.

Example: Pressure-free matter, often called dust, is de-
scribed by a 4—velocity A" and a local, comoving density p.
In the old days this was called proper density. The stress—

energy tensor for dust is
TH = p AFAY.
Its covariant divergence gives us

™., = /\N(P/\V);V + pA A"
The derivative of the 4—velocity along the path is the 4-
acceleration, and it is Lorentz orthogonal to the 4—velocity
because the 4-velocity is normalized. Thus we can extract in-
formation from this by dotting a 4—velocity through it. This
gives us

(10/\”);'/ =0,

which is the law of conservation of matter (as opposed to
energy), and then we must also have the 4-acceleration van-
ishing. Pressure—free matter streams along geodesics.

Electrodynamics as a classical field

Let us develop the general properties of a spin—1 classical field, i.e. one
described by a potential which is a vector, and having a field quantity

Fuy = Awu - Auw-

Every classical field must have a stress—energy tensor, and to keep the
energy positive definite (necessary for stability) it should be quadratic.
The only two quadratic terms possible are

Frepy = FYFre = Fro g

and
F*PFo5 g™,
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both symmetric.
What are their divergences?

(FreFyy), = FrOFy,, + Fr, Fy

Note the danger that results if you leave out the little dots. These
placeholders are important when dealing with antisymmetric tensors.
You don’t know the sign of Fig. We have also

(FaﬁFaﬁ);ng = 2Faﬁ;uFaﬁ-
Because of the potential, we have
PLVW‘+_ELU”L+_P}MW ::07

and we want to use this to kill off the garbage in the divergence of
the stress—energy tensor. By garbage I mean those terms that are not
local, i.e. that involve derivatives.

Looking over the terms with one free index contracted with an
external F', we see that there will be two terms with the free index
inside, and one with it outside the differentiation. This leads us to

write one term
av 1 aff 1 aff
FlowF*" = §Fua;ﬁF + §Fﬁu;aF

and so we take i of the other term to find

1
(FFF 4 {FPFoy )y = FFEY,,
Our only hope for a balance law that is local is to have a field
equation
FY., =4n5°.

This fixes the force law, and tells us the rate that momentum, for
example, comes out of the electromagnetic field and onto its sources

with a local density
Freg,.
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2. Orbit Problem

We start with a study of the properties of a given gravitational sit-
uation. Later we will see how the gravitational field is itself generated
by the matter. This section is the equivalent of studying the motion
of charged particles in electric and magnetic fields, with charges so
small that they do not significantly modify the fields. The gravita-
tional problem is considerably more complicated than the electrody-
namic one. While a given electric field can be described as a function
of space, the gravitational field contains within itself the definition of
the space. Thus we must find simultaneously both the motion of the
particles and the structure of the spacetime.

Geodesics

The motion of uncharged test particles in a given gravitational field is
along the geodesics of the Riemannian metric of the spacetime. This
is not an assumption, but rather an extremely delicate theorem. It
is easy to prove for bodies whose mass goes to zero faster than their
size, but it is also true in more extreme cases, so that even tiny black
holes follow geodesics in the background spacetime.

A curve is a geodesic with special affine parameter u if the curve

w = y(u),

satisfies

V4 =0.

The most effective way to generate the geodesic equations for a
given spacetime is to use the Lagrangian

to generate the Euler-Lagrange equations. This variational principle
generates the curves with special affine parametrization. The vari-
ational principle with a square root in it (least time) would allow
all possible parametrizations. These are more complicated equations,

[This follows sections 60 to 63
in ADG.]

[See Appendix Al on tensor
notation if this is not familiar.]
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and have difficulty with light signals, whose tangent vectors cannot be

normalized.

Symmetries and Conserved Quantities

A Killing vector k* satisfies
kij + kji = 0.

This is manifestly covariant, but computationally involves a lot of
cancellation. More useful for computations is the form

guu,aka + gauka,u + gauka,u-

Here comma denotes partial derivative.
Such a Killing vector generates a conserved quantity L

L=Fk-7.

Schwarzschild orbit problem

The simplest nontrivial gravitational field is the spherically symmetric
solution outside of a spherial mass. You might have expected us to
start with a plane gravitational field, which you would expect to be
even simpler. Alas, there is no such thing as a plane gravitational
field. It would be of infinite extent, involve infinite mass, and not be
self consistent. The closest we can come to a plane solution will be
to look at the outer regions of the spherical solution. The simplest
part of the solution there can be recognized as just flat spacetime in
accelerating coordinates; this is the Principle of Equivalence.
For the present we just take the following spacetime as a given:

2m
1 2

2
G=—( Yt 4+ dr? /(1 — =) 4 2 (d6® + sin? 6 do?).
r r
This representation is only valid for r > 2m.
This spacetime has three Killing vectors representing spherical
symmetry. The orbits can be studied in the equatorial plane, 8 = 7/2.
There we have a Killing vector

96’
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and if we use A\* for the tangent to the curve, normalized so that
AAd=-1
for particles with rest mass and
A-A=0
for light signals, then we have that
L=MX\g

is a constant of the motion, which we will call angular momentum
(really angular momentum per unit mass).
There is also a time symmetry, and so we have another conserved
quantity
E =)\

We have a third algebraic relation
G\ A) = =&,

where k = 1 for particles with rest mass and zero for light signals.

Because we have three algebraic relations for the three compo-
nents of the velocity, we will be able to find most of the interesting
features without even writing down the Euler-Lagrange equations. If
we collect up the above three equations and discard a positive term
involving the square of the radial velocity, we find that the orbit must
satisfy an inequality

2mL?

L? - 7“2(E2 —R) = 2mrk < )
r

Light rays

For light rays the angular momentum and the energy are not indepen-
dent, and only their ratio matters. The inequality is

2
12 2E? < 2mL
r
or, better
"> w/Ey
(r—2m) — '
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(L/M)?

Figure 2-1. Light rays in the Schwarzschild
metric.

27m? —

From a sketch of this you can see that an incoming light ray turns
when A" = 0, when the inequality is in fact an equality.

Light rays with (L/E) < 27m? will not have any turning point in
the region that we can discuss and in fact, go down the “black hole”.

For large values of r the spacetime is nearly Euclidean. There the
tangent vector to the critical light ray, with

2

L
E == 27m2
is given by
)= 9 V27 0 d

a7 e o

The angle between this vector and the radial vector is given by
6 =+V2Tm/r,

and this says that the cross section for this spacetime to swallow up
incoming light is 277m?.

Particles with nonzero rest mass

We discuss this case by looking separately at the two functions of r

L? — 7“2(E2 —1)—2mr

r3/(r — 2m)
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and

2mL* /r.

A turning point occurs when these curves intersect.

If the intersection is a double point, a point of tangency, then this
is a circular orbit (inner and outer turning points coincident). For
circular orbits we have

(r —2m)
\/r(r —3m)’
L =av/m/(a—3m).

These circular orbits are stable for large r. When there is a triple

F =

contact, at r = 6m, the circular orbits go unstable. Looking at the
light ray orbits, you can see that they have an unstable circular orbit
at r = 3m.
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3. Light Deflection

[This follows sections 64 and
65 in ADG. Go there for more
information.]

One of the earliest confirmations of GR was the observation that
light was deflected by a body. For a mass m and impact parameter
b>m

6 =4m/b,

This was an important confirmation of GR because the Newtonian
“back of the envelope” argument gives a deflection which is half that
amount.

You cannot derive this deflection angle from the conservation laws
that we gave earlier, you need the actual orbital shape in space. One
way to derive this would be to start from the equation

d _ N

dr - AT . [The straightforward calculation
can be found in Weinberg, and
a clever treatment in Robertson
and Noonan.]

Here I want to pursue an approach that is more involved, not any
easier computationally, but which conveys some physical insight into
the general properties of spin-2 classical field theories. It will shed
some light on why the deflection is twice what you would expect.

Spacetime with two metrics

Instead of getting the correct equation and then solving it approxi-
mately, we will set up an approximate situation right from the start,
considering the far out reaches of the Schwarzschild spacetime as a
perturbation away from flat Minkowski spacetime.

We start with the general machinery for talking about a spacetime
with two metrics defined on it. One is the true metric, and one will be
a simpler metric that we will consider to be the unperturbed metric.
For our problem here this simpler metric will be flat spacetime.

Write the curved spacetime metric as

*Juv = Guv + hp,l/7

. . X . [This is not the Hodge star
where *g,, is the exact metric, and g,, is the background metric. operator.]

Each of these metric tensors leads to a connection and a covariant
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derivative. Recall that the difference between two connections is a
tensor. This tensor here plays the role of the gravitational field tensor.
The geodesic equation for a light ray can be written

O'i;]‘O'j + Aijk olo® =0,
where the semicolon denotes the covariant derivative in the background
spacetime, and the field tensor is given approximately (linear approx-
imation) by

Aji = 59" (hmjsk + Panksj = Pijim)-

This is the gravitational analog of the electromagnetic Lorentz force

law

O'i;]‘O'j + (e/m)Fij ol = 0.

Light deflection

The approximate form of the Schwarzscild spacetime metric is
hyy = (2m/r)(dt2 + drz).
In rectangular coordinates the unperturbed light ray is the curve
u (ta,y,z) = (u,u,b,0).

Two components of the gravitational force contribute here. The
AY; term, which is the analog of the Coulomb force, and couples with
the t component of the particles 4-velocity, and the AY,, term, which
couples to the square of the & component of the particles velocity.
This is like a magnetism-magnetism force, with no analog in ordinary
electrodynamics. For a light ray, this double magnetic force is com-
parable with the Coulomb force, and this changes the answer from
the Newtonian expectation. This double magnetism does not have the
handed-symmetry that we associate with ordinary magnetism. It has
the symmetry of the other velocity squared forces, thus it acts like
pressure forces rather than like gyroscopic forces.

The path is an approximation of a simple path in rectangular
coordinates, and the coordinate basis vectors there are orthonormal,
so we choose to work in rectangular coordinates. The easiest way to

transform h,v is to use
r2::1;2—|—y2—|—22,
xdr +ydy + zdz

7

dr =
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Thus

7

2 da? dvdy + dyd
I = (2m)7) (dt2—|—xr2x 4 oy ldwdy +dy “’)+...>,

and the nonzero components can be easily read off from the expansion
of this.
The field components needed are
Ay = my/rS,
Aytx — 0,
AY oy = 2my/r® — 3ma? y/r°.

The velocity vector has unit components, approximately, so the
deflection angle (for small angles) is

< /3mb  3max?b 4m
9:/_Oo<r3 S )dx:T'

It is important to realize here that the incoming and outgoing light

signal vectors are being compared at large r where spacetime is nearly
Euclidean.

Gravitational mirage

The gravitational deflection of light is well observed and an important
astrophysical effect. It allows us to estimate the total mass of a distant
object. This is sometimes called a “gravitational lens”, although this
is quite a misnomer. The optics of the situation do not resemble those
of any lens you are familiar with. The most familiar situation is the
mirage. We have very little experience with light deflectors with little
or no symimetry.

One interesting result is that the 1/r deflection law lets us use
two dimensional potential theory. From this we can conclude that
light passing through a ring of material is not deflected at all, and
that light passing outside will be deflected as if all the mass were in a
point at the center.
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”There is no way to be virtuous and still do things in the real world.”

4. Weak Gravity

The preceeding section gave us the approximate gravitational field
around a point mass. The gravitational force was radial, and given in

polar coordinates by
(m/rz) (—dt2 + 2dr? — 2r%d#? — 2r? sin® qubz) (A® /\)g
-

where A* is the particle 4-velocity, and the centered dot is tensor-
product evaluation. The term

—(m/r?) dt?

is the Newtonian force. The other terms are needed to describe fast
moving particles. What do I mean by fast? Since this is a linear
approximation, there are unknown corrections to the Newtonian term
of order (m/r), and so if

v? > m/r

then these velocity dependent corrections will dominate the nonlinear
corrections. This means that the velocities must be greater than the
escape velocity. You can’t use this method to calculate the magnetic

analog of the gravitational force on a planet, for example.

Linear Gravity

We develop this using two metrics. Similar material can be found in
MTW Chapter 18.

We seek solutions in the form

*Guv ™~ Guv + Ghl“, +... [I have explicitly included the
small parameter here since there
are many terms of different
orders.]

the same as we did in the light deflection calculation. Here g, is
a known solution. The solution *¢,, 1s a perturbation of that known
solution. The known solution might be flat space, a Robertson—Walker
universe, Schwarzschild spacetime, etc. The parameter € will probably
come from some of the terms in the stress energy tensor T#”. For this
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section, we perturb flat space, although not necessarily in rectilinear
coordinates.

The first step is to calculate the Riemann tensor. For the moment,
go to coordinates where I'2 | = 0, and work only to first order in e. We
have no symmetries for the perturbed space, and there are really no
tricks that will help us shortcut this calculation. We use the longhand
tensor formula to calculate these.

«TH ~ %gua [havio + haoiw — huoia]

*sRFE = «TH %" 4+ 0(62)

voT vT,0 vo,T

€
a
*Rﬁar ~ §gﬂ [hall;ra' ‘I’ har;l/a' - hl/r;aa’ - hal/;a'r - haa';l/r ‘I’ hl/a’;ar]

The first and fourth terms above cancel. The Ricci tensor

— pb
Rl“’ - R.uﬂl/

€ (0%
*RW ~ 59 ’ [_huu;aﬁ - haﬁ;lw + hau;uﬂ + hcw;uﬁ]

#R ~ eg"% g™ [~hapiys + havyips]

The Einstein tensor associated with this is a big mess. It is simplified

by introducing the new variable h

1 (0]
Puw = huy — =Pap 67 guu.

2
This is similar to the operation in which you remove the trace, but
with a factor of a half rather than a quarter (four dimensions!) means
that instead it reverses the trace. Because it reverses the trace, the
same operation restores h from h.
With this definition, the Einstein tensor simplifies to

€

- [_huu;aa + hozu;l/a + hou/;ua — Guv haﬁ;aﬂ] .

*Gl“’ = 5

Here I am using the shorthand which leaves out the obvious factors of
g7 needed to make the repeated indices at the same level make sense.

Thus

hapva = hap,vp gaﬁ-

The Einstein Field Equations are then

*¥Gy =81 Ty,
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This should look familiar to you. We are at the point in electrody-
namics just before Lorentz gauge is introduced. Maxwell’s Equations
in terms of a potential are

Au;aa - Aa;au - 47T.ju'

Actually this is half of them, the other half are satisfied identically
by the potential. Thus we are making gravity look like just another
classical field.

The next step, then, is to choose a gauge condition. We can do
this only if there is a gauge invariance. The above system of equations
(these are ten coupled p.d.e.’s) has the invariance

huw = hyy + Vo + Vi

where V), is any vector field. This transformation takes solutions into
other solutions. It reflects the coordinate invariance of the field equa-
tions. A more extensive treatment of this can be found in MTW, Box
18.2. Note that this invariance is on h, not h

We can use the gauge invariance to impose the condition
hpasea = 0.

This is usually called "Lorentz Gauge” in analogy with the situation

in electrodynamics. This gives us a wave equation
hpviaa = =167 Ty .

If we take the above wave equation and take the divergence of both
sides, and recall that we are in flat space (but possibly in curvilinear
coordinates), so that covariant derivatives commute, then the Lorentz
gauge condition gives us the consistency condition on the stress—energy
tensor

Thaa =0.

Raising indices with the unperturbed metric, remember, we can write
this in the better form

with no funny conventions to possibly mislead.

Linearization Paradox

This leads to a consistency problem. It is common to all lineariza-
tions. The linear perturbations have no way to interact. Thus our
gravitational test masses will not attract one another.
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The resolution of this paradox requires a more sophisticated un-
derstanding of perturbation theory than you have been exposed to.
The straightforward linearization present above may not be valid for
long times, particularly, for times as long as t ~ 1/epsilon. This inva-
lidity occurs because terms like et will appear in the solution. These
terms ruin the long time validity of the expansion.

The resolution of the paradox lies in the elimination of these
terms, called secular terms. You may have come across these ideas
in mechanics under the name method of averaging. The only way to
secure long time validity for the linearization is to let the test masses
interact, even though there is no formal need for it.
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5. Gravitational Waves

We use the linear theory developed in the preceeding section to study
homogeneous solutions, free gravitational fields without sources in the
region of study. These are the simplest solutions to study, and yet
many of the general problems, in particular coordinate covariance ap-
pear here.

The approximate calculation of the last section produced a class
of spacetimes. Now we study those spacetimes using exactly the same
techniques as we used in the orbit problem: symmetries, light signals,
and particle orbits.

Let us start by getting a geometric grasp on the objects that we
are going to talk about. The next two diagrams show two dimensional
slices through two different spacetimes. One of these has a gravita-
tional wave passing through it, perpendicular to the paper and the
other is just flat spacetime in wavy coordinates. You might glance at
the figures to see if you can spot the difference. The most significant

feature of the two spacetimes is their spatial symmetry.

In these figures the vertical lines would be world lines of geodesics.
You can see this from Huyghen’s construction, which was covered in
some detail in my book Spacetime Geometry Cosmology. You can
think of the vertical lines, then, as the worldlines of a family of dust
motes, and it is natural to ask what it would be like for people on the
dust motes to be doing astronomy.

To do astronomy from these dust motes, one wants to trace out
the trajectories of light signals. These lines must be everywhere tan-
gent to the light cones of the metric figures. Since these spacetimes
are symmetric, the light signal worldlines are also invariant under spa-
tial translations (horizontal). To measure the doppler shift between
observers on different dust motes, it is sufficient to look at the verti-
cal intervals between two of these horizontally translated world lines.
Why vertical? Because that is the world line of the clock used to
measure the doppler shift.

You can see that there is a doppler shift that can be measured in
the first spacetime. There is not one in the second spacetime. The first
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Figure 5-1. A two dimensional spacetime possibly containing a gravita-
tional wave.

spacetime is a real gravitational wave; the second is just flat spacetime
in coordinates that have been squashed vertically in the middle of the
diagram.

The doppler shift observable in the first spacetime is an example
of the non—-Newtonian behavior of general relativity. Here we have
two observers which never accelerate (they would feel it if they did).
For a while they are not moving apart (no doppler shift). Then, with-
out any acceleration, there is suddenly a doppler shift. This cannot
happen in Newtonian physics. This gives us an operational means for
distinguishing this spacetime from flat Minkowski spacetime.

Plane Waves

Here is an analytic treatment of the four dimensional version of the
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Figure 5-2. Another candidate spacetime for a gravitational wave.

above geometric situation. We are going to find the plane—wave homo-
geneous solutions to the linearized equations. The exact metric will

be flat spacetime plus the perturbation
*Juv = Guv + hp,l/7

1
hyw = hpuw — §hg,“,,

writing h for the trace, with the wave equation
Ohyy =0
and the gauge condition

hua;ﬁgaﬁ = 0.

[No sources.]
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We use the shorthand for the gauge condition
hpasa = 0.
These solutions have a gauge invariance
Fyw ~ by + Vo + Vi,

for any vector V. This is an equivalence relation on the solutions.
All directions are equivalent; we will take our waves to be going

in the z—direction. The wave equation has solutions
huy = ey Fz —1).

Here e,, is a constant tensor, and F' is an arbitrary function of one
variable giving the wave amplitude profile. So far we have ten degrees
of freedom in the polarization. Now we have to reduce these to those
that are consistent with the gauge condition, and distinct under gauge
transformations. Both of these are miserably hard questions in the
full nonlinear theory. It is good to meet them on simple ground first.

First we go through the cases for the gauge condition. Note that
both of these are linear relations.

Suppose hyy # 0. The gauge condition gives us two non—trivial
equations

—hr s+ Ry =0
_hzt,t + hzz,z =0

The only solution for arbitrary F' is the polarization tensor with non—

zero zz, zt and tt components:

0 0 0 0 z

o 0 0 0 0 Yy

W=1to 0 1 —1 2
0 0 -1 1 t

If Ay = 0, then the bottom block all has to vanish.

The off diagonal two—by—two blocks give us two more candidates

0 0 0 0 00 1 -1
o 01 41 | oo0oo0 o
‘DTlo 10 0o]"™T| 100 o0

0 -1 0 0 100 0
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Finally, the fully transverse polarizations all satisfy the gauge

condition.

1 000 00 0 0 01 0 0
o000} ~_fo1o0oo0} ~_f1000
W=Y0o 00 0" o o0 o0 0] 1o 0o 0 0

0 0 0 0 00 0 0 0 0 0 0

Now we use the equivalence relation to discard duplicate solutions
from this list of six. Suppose we pick the vector V in the gauge
transformation so that we have

Ve = G(z —t),
G'(u) = F(u).

all other components zero. This leads to an h, field

0
0
hyy = )
-1

o O oo

-1
0
0
0

o OO

This is traceless, and so it is the same expression for 4. Thus two of
our polarizations, e(2) and e(3) are gauge equivalent to zero. The last
two possibilities for V' lead to

€(1) ~ €(4) T €(5)

€(1) ~ TE1) T E(5)s

that is,
6(1) ~ 0

€(4) + €(5) ~ 0.

The only two polarizations for gravitational waves are thus

o O OO

0 01 0 O
0 1 0 00
01’ 0 0 0 O
0 0 0 0 O

These two are called the transverse, traceless representation. One
could expect that there are just two independent polarizations; the
spin of a massless particle (graviton) can only be aligned with or
against the motion.

5.9



6. THE Linearly Polarized Gravitational Wave

The previous section showed that there are only two distinct polariza-
tions for a gravitational wave. If you rotate coordinates by 45°, you
will transform these into each other. Furthermore, any linear combi-
nation of them is just a rotation by some angle. Thus there is a unique

linearly polarized wave. The spacetime is
g = —dt2+d22—|—[1—|—F(z—t)]d:1;2 +[1—F(Z—t)]dy2.

where F' is an arbitrary function giving the dimensionless amplitude
of the wave. We now proceed to study this like any other spacetime.
The effects of gravity show up in the measurement of lengths as well
as in forces. This is how gravitation differs from other classical fields.

Symmetries

The above spacetime has three Killing vectors

d d d L d
oxr’ oy 9z Ot
Only at this point are we justified in calling it a plane wave. We
have just discovered that it has the symmetry of a plane: two Killing
vectors that commute. From these symmetries we find three conserved

quantities:

P=),,
Q:/\yv

and

U=\ + .

Together with the normalization condition, this gives us four equations
for the four components of the 4-velocity. We can thus argue in a

manner similar to the black—hole orbit calculation.

A Cloud of Dust

Suppose that we have a test particle at rest at some initial time. Then

the invariants are
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The components of the 4-velocity must satisfy
Ae =2y =0, Ao+ X =-1,

and

(A:)? = (M) = -1

From this it follows that for all time

A= —.
ot
In these coordinates, a particle at rest stays at rest.

Does this tell us that a gravitational wave does not exert any
forces on particles? NO. It only tells you what these coordinates mean.
In this representation, the coordinates are the Lagrangian coordinates
for a cloud of free particles, a dust cloud.

Astronomy from Dust Motes

Suppose there are observers on two of these dust motes with world

lines

I:sw—(t,z,y,z) =(s,0,0,0),
Il:sw (t,2,y,2z) = (s,L,0,0),

where L is some constant length. Let I send a photon to II. These
photons are subject to the same conservation laws. Their 4-velocities

are normalized not to —1 but to 0.

For this photon o, will be constant. This is related to the wave
number k£ observed for the photon

k=\g*%o,.

This “half~way raised index” is called the physical component of ¢ in
MTW. It really only makes sense with a diagonal metric. Because F

is small, we have

F

where the amplitude F' is evaluated at the point where the photon is
being measured. Thus the ratio

k 1
krecEIVE 2

6.2

IT




Figure 6-1. Pulse shape
for our wave.

Example: Suppose F(u) looks like Figure 6-2, with a con-
stant value of A before u = 0, and a smooth drop to zero for
times after. The fall time of the amplitude will be assumed
to be small compared with the spacing L between the dust
motes.

Let T continually send out photons of constant wave-
length. This observer need be no more than an atom. What
does II measure? The geometry is sketched in Figure 6-1.
The wave edge hits I at time ¢; and hits II at the later time
trr =tr+ L.

Well, before t; there is no frequency shift because the
wave edge hasn’t arrived. During the time that the pulse
edge has hit T but not II, the observer sees a wave—number

ratio

k A
pvrr g A
krecEIVE 2

After the wave has passed over both dust motes, the fre-
quency ratio is again unity.

A good astronomer would interpret the frequency shift
as a velocity

kp —kr A
k 2’

with positive velocity being recession. Since the shift is ob-

v

served for a time L, this velocity would be interpreted as a
change in the distance of an amount

AL~ At
2

Observer [ would not consider it amiss to send a message
to II saying something like “I say you move”. But the situ-
ation is completely symmetric. EACH FREELY FALLING
OBSERVER SEES THE OTHER MOVE. This observation
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is inconsistent with the idea of a Galilean reference frame.
It shows one way in which GR violates our usual intuition.
Note that we cannot answer the question as to whether this
frequency shift is caused by actual motion. There is no in-
trinsic frame to measure motion against. There could be an
arbitrary number of these observers in a line transverse to
the wave. Each would feel at rest, and observe the others
move. So you might be tempted to say that none move, but
that space is created in between all of them. While comfort-
ing, that too, goes beyond what is actually there. What is
there is just g,, and its consequences.

Polarization

One can look at dust motes in other directions. There is no effect if
you look in the z—direction. From our conservation law

0, + o4 = const.

and because the 4—velocity is a null vector, the metric is diagonal, and
the zz and tt components of the metric are unaffected by the wave

g, = 0¢.

Thus o, must be constant.

In the reverse x—direction one sees the same effect. In both y—
directions one would see the opposite effect. This double sign change
is the behavior of quadrupole symmetry. This is why one says that the
graviton is a spin—2 particle. Contrast this with the spin—1 behavior
of an electromagnetic wave.

FElastic Bodies

Suppose there is an elastic bar floating out in our dust cloud. What
happens as the wave goes by?

If the bar is soft, then inertial forces dominate. The bar has
natural frequencies below the wave frequencies. This bar behaves just
like a dust cloud.

If the bar is stiff, that is, its natural frequencies are all higher
than the frequencies found in the wave, then it keeps its proper length
constant. For a stiff bar inertial forces can be ignored. The bar
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will move relative to the local dust cloud. Two such bars close to
one another could collide as the wave goes by, since their centers will
follow the local dust cloud. An observer riding on the end of a stiff bar
would measure an acceleration as the wave hit. His worldline would
be curved relative to a geodesic worldline.

Figure 6-2. Two stiff bars as a grav-
itational wave hits them.

Bars collide.

If the bar is soft, then inertial forces dominate. The bar has
natural frequencies below the wave frequencies. This behaves just like
a dust cloud.

For the intermediate cases we can write a low—velocity Lagrangian
for the bar as follows. This would be useful if you were designing
an antenna to measure gravitational waves. If we have two masses
connected by a spring, the potential energy will be in the spring

k
2
where [ is the proper length of the spring, not the coordinate length.

P.E. = (I —ly)?

Because there are no inertial forces in these dust-mote coordinates,
the kinetic term in the Lagrangian is just

KE = 212,
2

Note that the system remains at constant z as the wave passes by.
Verify this by considering the total momentum and other invariants of
the system.

Expanding and using the smallness of the wave amplitude F', we

find L s
i — Fog 4 F

The generalized coordinate ¢ is such that the dust mote coordinates of
the particles are

l
%yziw+§)
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What about a very long bar? After the wave hits, the bar finds it-
self strained, and thus starts to transfer momentum. This momentum
collects at the ends or anywhere else that there are changes in the elas-
tic properties. The ends start to move, and an elastic wave propagates
inward from the two ends of the bar. These elastic discontinuities have

converted a gravitational wave into an elastic wave.

Strain—Free Coordinates

Dust mote coordinates have several good features: simple spatial de-
pendence, well-behaved at large distances, manifestly planar symme-
try, and a ready physical interpretation. On the other hand, laboratory
sized objects (aluminum bars, the moon, and so on) are elastic bod-
ies, and these care more about strains than accelerations. To simplify
the study of such objects we can go go a different representation of
the plane wave. This is also useful for developing a covariant intu-
ition. It is the same plane wave. That different effects appear to be
there shows you how little you can trust the usual decomposition of
effects into inertial and elastic. All that separates them is a coordinate
transformation.

The goal of the following calculation is to push the metric per-
turbation from the x — y block of the metric to the z — ¢ block. One
finds the correct coordinate transformation by inspired and lucky fid-
dling, preferably with a large blackboard. The new coordinates will
be denoted by overbars, with

r=x(l— §F(2— t))
1
y=y(l+5F(z~-1)
cm o L PP )
T T E)
Thus we have the differentials
F v F’
de = dz(1 — =) — = (dz — df)
2 2
— 1!
dy = dy(1 — g) + %(dz — dt)
F/ B F//
dz = dz — (y dy — :fdf)7 —(y* —z*)(dz — dt)T
F/ 9 F//

dt = dt — (yfdyf—fdf)? —(y —fz)(dg—dt‘)Z
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Now square these up and plug them into the expression for G given at
the beginning of this section. It was in anticipation of this substitution

that we solved for the x’s in terms of the z’s. We cancel a mess of

terms, and use the smallness of F, as in
F(z—1t)~F(z —1),

justified by a Taylor’s Series Expansion. We also assume that the
derivatives of F' are no larger than F' itself. We find

F//
G = —dt* +dz* +dy* + dz* — (y* — z°)(dz — dN?.

This is clearly not valid for large = or y.
The equations of motion follow from the Lagrangian condition for

5/d3:0,

s fa-#—p-2rw -

geodesics

"

<)

=

dt = 0.
Assume small velocities to expand the radical (f = 1, & < 1, ...

J‘/,Z y'2 2"2 F
S l1—" - - 4 (2 —2?)=—)dt = 0.
ﬂ 5 "y 5 T ) )dt=0

The Euler-Lagrange equations are

F"
T=r—
2
. F//
=y
z2=0

where we have also specialized to the case of a detector small compared
with a wavelength. This allowed us to discard terms like (y* —2%)F"".
Over a region with size smaller than a wavelength around the origin,
there are no strains at all.

The diagram was drawn in Mathematica by
PlotGradientField[x"2-y~2, {x, -1, 1},{y, -1, 1}]

These forces are often called “pseudoforces”. Like centrifugal
force, they can be changed or even eliminated by working in a dif-
ferent coordinate system. The worldlines of free particles are always

geodesics of the true metric, and there are never any true gravitational

[Multiplication here is by the
tensor product.]

6.7



SIS
SO0
VA A A A A A
PV A A S
VA A AR A | Voo
Figure 6-3. Gravitational-wave force e W
field.
A U N N N R B B
NN NN N U T e
NNNNXNANY Y
NN N N U U S A
NANANANANAY YA

forces. This leads ultimately to the paradox that there really isn’t any
way to define gravitational energy.

Reconcile the Two Representations

Look at a free particle (dust mote) a distance L away from the origin,
in the z—direction, say. We have

F'L
i = :

2
y=0,
£=0.

The solution is

L
$:L+§F(Z—t).

The particle moves relative to these coordinates. Since these are strain
free coordinates, this is an actual fluctuation in proper length. This is
the length change that was inferred from the Doppler measurements.

The figure in Section 5 was drawn in nearly these strain—free
coordinates.
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General Polarization

Rotate coordinates by 45° to new coordinates

rT+y
V2
r—Yy

7

The equations of motion in the new coordinates are

F//
Uu=v—,
2
F//
v =uU—.
2

If we just relabel the v and v back to x and y, we will have the correct
equations for a rotated wave. The correct equations of motion for
waves of both polarizations will clearly be

i = SF{ + SFL,
. Y
y= §FQ—§FJZ,
z = 0.

The above force field can be derived from a potential, and be
represented by field lines just like electrostatics. See MTW Box 37.2
and Figure 37.2.

Gravitational wave antennae

The physical effects of gravitational waves have only been seen indi-
rectly. The energy lost in the waves has made noticable changes in the
orbits of binary stars. To observe the waves in the laboratory is being
attempted, but so far eludes us. Still, it is important to appreciate the
measurement ideas since this is where the theory contacts reality.

All measurements of the gravitational field are differential mea-
surements. This is because all particles have the same ratio of inertial
to gravitational mass. The differential gravitational field is responsi-
ble for the tides, and is represented by the Riemann tensor. In the
following figures I sketch the pattern of tidal forces and the differential
forces found in gravitational waves.

For laboratory size apparatus, including even the entire planet,
the detecting system will be much smaller than the wavelength of the
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Figure 6-4. The tidal force field.

Figure 6-5. The differential forces -

in a gravitational wave.

radiation. For such systems the force is just a quasi-static force field.
Thus for a circularly polarized gravitational wave, the force field pic-
tured in figure 6-2 rotates at twice the frequency of the wave, in the
transverse plane to the waves motion.
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7. Sources of Gravitational Waves

To connect these waves to their sources, we need to solve the inhomo-
geneous wave equations that were given in Chapter 4. It is easiest to
think about things in the space-time decomposition of the h,, field
into scalar, vector, and tensor parts. The source of the scalar part
is the local energy density. This energy includes rest—mass energy.
The source of the vector part is the local momentum density, and the
source of the tensor part is the local stress density.

V2H — & H = —167SS,
V?IE — &1E = —1671P,
Vi) — 07 = —16mp,
V- H — o,IE = 0,
V-1IE — ;¢ = 0.

Because energy is conserved, the local energy density can only
change by flow; it cannot just disappear. Thus there cannot be a
monopole wave solution. Because of the symmetry of a monopole,
there is no direction for the energy to flow. In addition, momentum is
conserved, and there are no solutions with monopole spatial symmetry
for the vector perturbation either.

The solution with the simplest angular dependence is a quadru-
pole wave. The three parts achieve this overall symmetry in three
different ways. If you know about angular momentum, you will rec-
ognize the three ways to get J = 2: spin 0 and L = 2, spin 1 and
L=1, and spin 2 with L = 0. The energy density leads to a wave with
quadrupole spatial behavior. The momentum density leads to a wave
with dipole spatial behavior. The stress density leads to a wave with
monopole spatial behavior. See Figure 1.

Rather than develop a fancy series and integral representation of
the general solution, I am going to give a detailed treatment of the
simplest quadrupole solution, the line quadrupole. This is simpler
because it has axial symmetry. It has almost all of the typical charac-
teristics of a gravitational wave source, however. Also, we will be able
to use it as a building block for the general quadrupole source. Before

[If you want a derivation from

I derive this solution, let me present the answer so you will appreciate general principles, look at Lan-
dau and Lifshitz, Classical The-

where we are heading. ory of Fields.]
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uniform stress

m m
Figure 7-1. Symmetries of the quad- € >
rupole source. momentum
L=1,5=1
+ +
mass
L=25=0

The far field metric perturbation due to an axisymmetric quad-
rupole source is
H = Lain? 990 =g
2 r
The metric perturbation is only in the transverse direction. I am using
a double-barred notation for dyadics (tensor product of two spatial
vectors). The IIE dyadic is the polarization

IE=a®a—bob

where the vectors a and b are orthonormal vectors in the trans-
verse plane, with a in the plane containing the axis of symmetry. Here
r is the distance from the source, and @), is the quadrupole moment,

defined by
Qup = /(3:1;a:1;b —1284)p dV.

Complete Line Quadrupole Solution

Recall the general solution of the ordinary one dimensional wave equa-
tion

fla, ) =Wt —a)+ V(t+ ).

Here W and V are functions of a single variable evaluated at (¢t — )
and (t + ). They correspond to right—going and left—going waves re-
spectively. There is a corresponding solution for spherically symmetric

[Be careful, there are many
different normalizations for quad-
rupole moments.]
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General Relativity

\

Weak Fields

\

Source < wavelength

\

Axisymmetry

Figure 7-2. The slippery slope of approximations.

f(rit) = Wi(t—r) N V(t—l—r)‘

r r

Now the two functions represent outgoing and incoming waves. For
sources of radiation we are only interested in the outgoing waves.
There are solutions similar to this for all of the multipoles. Combining

them we can find a complete quadrupole solution for the linearized , ,
[Note the obvious spinology

gravity equations here.]
222 —a? —y* W"(t—r) W't —r) Wi(t—r)
V= 72 ( r 3 72 3 r3 )

222 —xk —yy

W't —r) . W't —r)

E 5 )

(

r r r

HI =

(W7(t =)
with outgoing waves. This is valid for all radii outside of the sources,
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not just in the wave zone. The function W is related to the changing
quadrupole moment of the source.

We are thinking here about a source that is small compared with
the wavelength of the radiation. The next step is to match the near—
zone field of the wave to the near—zone field of the quadrupole. For

small r we have
227 — 2% — g2 ) 3W(t)

r2 r3

P = (

and solving the simplest Newtonian gravity approximation
V% = —167p

relates this to the quadrupole moment.

Finally, we take the wave-zone fields, the 1/r fields, and make
a gauge transformation to remove the longitudinal part of the wave.
This eliminates the ¢» and E parts of the perturbation.

Idealized Line Quadrupole

As an example of the use of this expression, consider two masses
connected with a spring, a la freshman physics. Further, suppose that
they execute only small oscillations about an equilibrium separation.
The positions of the two masses along the z—axis will be given by a
small function ((t)

2= +(Z + ).

Let us try to solve for the motion with initial conditions

SN SN
Il
\’O

I
R

The mechanical motion of the system will be little affected by the
radiation. This back reaction of the waves on the mechanical system
will be the subject of a later chapter. Thus we have the solution

((t)=a cos(\/%t)

[A complete derivation of this
can be found in an appendix to
my paper: J. Math. Phys. 12,
401-418 (1971).]

C(t)

L/2

L/2

[Thus we layer two more ap-

proximations on top of every-
thing: point masses and small
oscillations.]

[We are even ignoring regular
damping here.]
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We now compute the quadrupole moment.

Q.. = /(322 — rz)pdV

— 2M(2(§ +¢)%)
= ML* + 4AML((t) + O(CY)

The ML? part of the quadrupole moment is constant in time and so
does not lead to any radiation. Thus it looks for all the world like the
changing quadrupole moment is 4M L{(t).

Why is 4ML((t) not the quadrupole moment that we want to
stick into our expression? While it is the quadrupole moment of the
two masses, and we are ignoring the mass of the spring as is usual in
Freshman physics, we are making a mistake that we cannot ignore. To
work with General Relativity, we must make sure that we have con-
served energy and momentum. How have we gone wrong? Everything
is fine after the system starts. The problem is with the time interval
containing the initial conditions. The assumption is that before that
time the system was not oscillating, but held at ( = a. Unlikely as it
sounds, the latch that holds the system must be considered.

We will put in an idealized latch and compute its effects. We
assume that it has a small mass ¢ and a spring constant k. We cannot
make the spring constant too small or it will not be strong enough to
hold the system. We use a variable n to represent the latch degree of
freedom. Of course we need a latch on each side. Balancing the forces
gives us

Ck=nk

in equilibrium. When the latch is released, the upper mass moves
downward, starting its oscillation, and the latch springs upward, doing
its own oscillations. The latch motion will be (ignoring damping for

k \/?
n(t) = —acos, | —t.
K o

This has a quadrupole moment

the moment)

Quatca = —4uLn(t).

The factor of L appears here because the latch must be located at the
position of the mass it is holding. No action at a distance allowed. The

latch



total quadrupole moment, which is what must appear in the radiation

|k
Qrortar, = 4MLacos \| —t — 4uLa cos \/Et.
M I

Now you can see what will happen. For small (i, there is a vanishingly

formula, is

small contribution to the quadrupole moment. However, the frequency
of the latch goes up as the mass of the latch decreases. What counts
is the second derivative of the quadrupole moment

k
Totar, = 4Lka (cos \/%t — cos \/§t>

The radiation amplitude goes like the stress, ak, and does not depend
on the frequency. Since the stress in the latch must equal the stress
in the oscillator in order for the latch to hold it open, we have equal
radiation amplitude from the latch and from the rest of the oscillator.
This despite the disparity in masses. A well designed latch will be
heavily damped, and so the radiation from the latch will only cancel
the radiation from oscillator until they get out of phase, or the latch
amplitude decays.

Figure 7-3. Radiation from the quad-
rupole and the latch.

General Quadrupole
Any quadrupole can be written as the sum of line quadrupoles.

Example: If we write the z—axis line quadrupole in axes
rotated by 45° in the z—z plane:

P (24 3)/V2

&>
S
N>
|
&>
S—’
~~—
=
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then we have
422 — 233 — 29y — 323 + 382 — (299 — 22 — 22).

This allows us to write the off diagonal terms in the quadru-
pole moment tensor in terms of line quadrupoles inclined at

45°.

Example: A rotating pair of masses held together by a rod
with stress in it is equivalent to four line quadrupoles in the
plane of the orbit with a 90° phase shift between them, plus
a static quadrupole perpendicular to the plane of the orbit.

You can use this decomposition to see that pole on you
will get circularly polarized gravitational waves from the or-
biting pair, while in the plane you will get linear polarization.
The polar amplitude is larger since the amplitudes of two of
them add, and then the intensities of the two out of phase
add, so the final amplitude is larger than the in plane ampli-
tude by a factor of 2v/2.

Transverse Traceless Representation

Here is a useful representation of the general quadrupole solution.
Start with the quadrupole moment of a line quadrupole along the z—
axis .

Q1) = Qs (122 — 528 — 330).

This Q is traceless; this follows from the definition of the quadrupole [The trace of a matrix forms a
representation of spin zero, not

moments. If we project this transverse to the direction of motion in  spin two.]

N —

the far field, we replace (signs unimportant)
z —sinfa
&b
y — cosfa.

If we apply this projection operation to the line quadrupole polariza-
tion tensor above we find

1 3 1 1.~

1
(22 — 54— §yfyf) — (5 sin® 6 — 5)&& — 5bb.
Now remove the trace which this acquired by the projection operation

3
trace = 3 sin® 6 — 1,
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to find the transverse, traceless projection

We will denote the result of this operation on Q by Q7. The operation
depends on the direction of observation (propagation) but not on the
direction of the coordinates. Thus we have

2 d?

= gﬁ(QTT)-

All of the angular dependence has been absorbed in the transverse
traceless projection operation.

Since the transverse traceless projection is a linear operator, the
above expression applies to any quadrupole moment, not just the line
quadrupole we started with. The operator is given by

Z}T - (5(10 - nanc)ch((sdb - ndnb)

where n is a vector in the direction of propagation. Seen in this form
it is manifestly linear. Therefore the above expression applies to any

quadrupole moment distribution whatsoever.
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8. The Newtonian Approximation

The weak-field theory presented in the last few chapters was valid for
weak fields with the space and time derivatives treated equally. This
was appropriate for gravitational waves, which move at the speed of
light. In a self—gravitating situation, however, the motions take place
at a speed less than the speed of light. If we call the typical speed e,
then this will be caused by gravitational potentials of size €. Time

derivatives will be smaller than spatial derivatives by a factor of e.

The source of the perturbation will have an expansion with the
potential ) going like €2, and hence generated by matter with density
scaling like this. The momentum will scale like €3, since momentum is
mass moving with this slow velocity. What about the stresses? If the
motions are only influenced by self—gravity, then there are no stresses

at all. If there were other stresses, small enough to keep the motions

4 [That a theory valid for motions

. The missing as fast as light is not valid
for slower speeds should seem
paradoxical. If not you are

terms quadratic in ¢ are of size e*, exactly what is needed. Thus either very sophisticated or
haven’t thought very hard about

we need to extend our theory to include terms quadratic in ¢ in the this)

sources of the dyH field.

on the correct timescale, then they would be of size €
stress in the self—gravitating case is provided by the non-linearity:

Weak—Field Slow—Motion Expansion

To calculate the gravitational stress follow the program: take a space-
time metric with the expansion

gttN—1—|—%€277Z)—|—...
Gta ™~ _€3Ea
Gab ~ Nap(1 + L€%9) + €* Hyp.

[The 77/) term in the spatial part

) ) ) ) ) reflects the trick of using h
Now one calculates the Einstein tensor for this metric. The efficient instead of h]

way to do this is to either use a computer algebra package, or to use the
method of moving frames. We will cover the method of moving frames
when we do the Robertson—Walker spacetimes needed in cosmology,
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so for now you can just take the Einstein tensor as a gift.

G ~ —%€2v2¢7
o

Gia ~ —3€° [V2Ea — (V- E+ E)ﬂ},

Gap ~ €* {—%Wﬂab

1 1 3 1 2
+ 5%.a b + 70U .ab — Gas(75 VU - Vb + 70V)
1 1
+ §(Hac,c - Va,t),b + §(Hbc,c - Vb,t),a
1 [The first equation is just the
- §gab V- (v - HI + atIE) + at(v -1E + 8t¢) . Poisson equation. The nonlin-
ear stuff becomes the gravita-
tional stress tensor, and the last
. . . bracket is flattened by the gauge
Again we want to impose the Lorentz gauge condition condition.]

® _

V-IE 0
OIE

V- -H+ — =0.
+8t

With this gauge condition we have Poisson equations for the pertur-

bations unlike linearized theory, where we had wave equations:

Vip = —167p,
VZE = —1671P,
V?H = —167(S + Sq).

Here IP is the momentum density, and S are the non—gravitational
stresses, and Sqg are the gravitational stresses. These come from

non—linearity and are given by

_Z ¢,a¢,b ¢¢,ab

— 3 1 2
Sa = + — Jab(75 VY - VYo + 3 V7)
8 8 4
[The calculation of the fraction
. . . . 2 here involves over twenty
From this we recover Einstein’s relation hours of hard calculation.]
dp
v-P+ZL
ot

That is really the equivalent of E = mc? and a bit more. We also get
the Newtonian force law, with the above expression for the gravita-

tional stress

V-Sg = —1pVe.
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This is F' = ma, and a bit more. From the Poisson equation above we
see that v is i of the usual Newtonian potential.

Non—Uniformities in these expansions

This need to keep the sizes of derivatives under control means that the
remarks [ made in the discussion about detecting gravitational waves
using elastic bodies need to be more carefully discussed. The approx-
imations need to be rethought whereever there are discontinuities in
the matter density. At such points the spatial derivatives are much
larger than the temporal derivatives. Unfortunately a rediscussion of
this is very complex, and would involve a careful discussion of the
junction conditions for General Relativity. These are non—trivial and

unfortunately non—obvious.
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9. Gravitational Radiation Damping

A system with a time—dependent quadrupole moment will radiate grav-
itational waves. These waves then interact with systems in the wave—
zone which could lead to their detection. These forward couplings are
well separated from the back couplings by the extreme weakness of
gravitation. The antenna will scatter waves, and an array of scatterers
might have an index of refraction. The radiation emission will act
back on the source, causing damping.

Radiation damping is a common phenomenon in the real world.
The motion of a racing sailboat is severely affected by the energy lost
in the waves. Ships designed to sail at a single speed, like oil tankers,
are designed to minimize this radiation drag. At the present time the
only evidence we have for the physical reality of gravitational radiation
is the damping effect of the radiation on astronomical systems. This
is circumstantial evidence at best, we have to be sure that we have
properly accounted for all other damping mechanisms.

In ordinary physics one calculates damping by finding the energy
that appears at infinity. This is tricky in General Relativity because
there is no global energy conservation. In addition, one may want
more information about the damping than just the total energy. The
radiation may cause energy redistribution in a system with several
degrees of freedom. The way to deal with this is to find the damping
forces directly. Either way leads to the expression for the radiated
energy

1/ .o ..
Law = £<Qab Qab>'
Here L is the gravitational energy loss rate due to quadrupole gravita-
tional radiation. Energy loss rate is dimensionless. L = 1 corresponds
to 3.63 x 10°Y ergs/sec. The luminosity of the sun is 1.075 x 10726,

The quadrupole moment () is related to the familiar moment of inertia
tensor by

1
Qar = 3(Lap — §5ab tr ).
Finally, the angle brackets denote a time average over many cycles.
The size of this result is found from the scaling

(mass of moving part) (size of system)?
Qab (time scale)3

[Note the third time derivative
in the expression.]
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If the system has motions on the scale of its size, for example a binary

star, but not our system with small oscillations, then

(mass) (typical velocity)?

Qab ™~ (timescale) ’
N (kinetic energy)
(time) ’

~ (internal power).

Thus we see that the radiated power goes as the square of the internal
power. This power is dimensionless and much smaller than one, so the

radiated power is small.

Example: The gravitational wave luminosity for a teacher
waving his hands can be estimated

m~ kg =2 x10"*%sec

T ~ 1sec

valm/sec =3 x 1077
Linternal & 2 x 10774

Law ~ 4 x 1071% = 1.5 x 10~ *%erg/sec.

Acoustics Example

To see the general run of such a calculation, let me work a scalar ex-
ample. Consider the emission of sound waves from a vibrating sphere.
We assume small amplitudes, and work in a linearized theory. Acous-
tics is a code word that means irrotational in fluid mechanics. Thus

there exists a velocity potential ¢ such that
v =Vo,

and the pressure differences are given by

_ 99
P Po—/)oat-

This velocity potential satisfies the wave equation

&6 _

2
Vi~ =0.
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We have taken units where the sound speed is unity.
The boundary condition at the surface of the vibrating sphere,
taken to have a small radius e, will be given by

0 _ d

= at r = e.
or dt

where ((t) describes the radial oscillation of the sphere. The dynamics
of the sphere for small oscillations is given by the linear equation

2
a6 +( = li%.
dt? ot
Here & is a coupling constant which determines how stiff the sphere is
relative to the impedance of the air. We have picked a timescale using
the unloaded frequency of the shell. We are going to consider only the
case of a heavy shell, with k very small, even compared with e.

Now in this problem there are two length scales, and this is a
warning that the problem will be singular. One length is the wave-
length of the radiation, and the other is the size of the shell. We work
here the case where the body is much smaller than a wavelength, e < 1.
The coordinates that we have been using to describe the problem have
time and space derivatives of the same size, and are appropriate for a
description of the sound waves. We need a different coordinate sys-
tem to describe the sound field in the immediate neighborhood of the
sphere. Call this near—zone coordinate R

R=r/e
For an inner expansion, valid near the body, we take
¢~ eA(R,t) + €B(R,t) + -+
and the terms will satisfy

VIA =0,
V2B = 0.

with boundary conditions at R = 1

04 _d¢
OR  dt’
OB
— =0.
OR
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We do not yet have the outer boundary condition for these. They have
solutions

1 d¢

A:—Ea+0é(t),

B = 3(1).
With arbitrary functions of time «, 3.

An expansion valid in the wave zone will have the form
¢~ e*a(r,t) + -,

and the general solution of this which represents only an outgoing
wave will be

a(r,t) =W(t —r)/r,

. . . [Matching is a technical term
with W another arbitrary function. for the precise way of fitting

To match these two solutions together, we ensure that the small-r these two asymptotic expansions
X R i K together using the methods of
behavior of this outer solution matches the large—r behavior of the  singular perturbations.]
near—zone solution. We look at intermediate values of r, smaller than
a wavelength but still larger than the sphere. In these nondimensional

units, r ~ /e would do. For intermediate r we have

2 Wi(t—r) _ ET/V(t —€r) R ET/V(t)

T R R

— EW'(#).

For these to match we must have

a(t) =0,
511 = T

Notice how the near—zone motion ((¢) determines the function W (t),

which then determines the homogeneous solution [(3(¢) carrying the

direction of time in from the out-going waves boundary condition.
The near—zone field is thus

1d¢  ,d*C

~ —E— —— _—

R dt dt?’

and this leads to a force on the shell, and an equation of motion

e , d3¢C
(1+€H)ﬁ+c_€ li%:

9.4



The radiation shifts the frequency by adding a term to the inertial
of the shell. This accounts for the air that is moved back and forth
by the shell as it oscillates. In fluid mechanics it is called entrained
mass. There is also a term which is in quadrature with this which
can extract energy from the oscillator. One calculates the radiation
resistance by including this term as as small correction. That this
small parameter multiplies the highest derivative in the equation leads
also to spurious solutions of the approximate equations. In electro-
dynamics these spurious solutions are called runaway solutions, and
have generated much confusion among those unfamiliar with singular
perturbation techniques.

A similar calculation in General Relativity leads to a similar re-
sistive force
d5

—(877\/10/75)erle%

Q2m

Binary Star System

A crude estimate of the radiation from a binary star system can be
made from Keppler’s Law

aw? =m
which gives a velocity
v = aw
and a kinetic energy
2 92 5 2
ma‘w® =m3w3

The internal energy flow will be the flux of this kinetic energy, so the
internal luminosity is

celot

Linternal - (mw)

and the gravitational wave luminosity

w|5

Low = (mw)

A more careful calculation gives the energy loss from two masses
in a circular orbit via quadrupole gravitational waves to be

2,2, 322
Low = (1.2Lg or 4.7 x 10%? erg/sec)w

2
3

(my + may)
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where the masses should be in solar masses and the rotation frequency
in hz. The radiation will be at frequency 2w.

Non—circular orbits tends to radiate more, radiate at higher har-
monics of the orbital frequency, and tend to become circular with time.
For circular orbits, the orbits will spiral into one another with

ajag = (1—t/7)1,

with timescale
o

5 0
256

T = :
mimsg(my + ms)

Ordinary stars undergoing this spiral process would suffer tidal distor-
tions which would absorb energy and drastically affect this rate. Such
processes must be fully understood before such tests can be used to
validate General Relativity.

Wave Energy

While we have expressions for the energy lost, it would be nice to an
expression for the energy in the wave. In general such an expression
does not exist. In the limit that the waves are high—frequency ripples
on a slowly changing background spacetime, the tensor

GW _ 1 TT $TT
Tuu _m<haﬁ,uhaﬁw>

can be used to represent the energy of the wave. Again the angle
brackets denote averages over several waves, and the T'T stands for
transverse and traceless.

This tensor gives the correct energy loss rates and also the effects
of the gravitational waves on the background curvature of the universe
as a whole. It cannot be used to localize the wave energy, and cannot
be used to predict the non-linear evolution of the wave.

Falling Charges

In the General Relativity paradigm, an object sitting on my desk is
being accelerated. If is electrically charged, does it then radiate elec-
trodynamic waves? This is an ancient and honorable paradox.

We might first inquire what the wavelength of the radiation in-
volved will be. The only timescale is given by ¢, and so the radiation
will have a wavelength of around a light year. Already we are in

[This is another singular pertur-
bation problem.]
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trouble with our naive thinking, because the wave zone is much larger
than the size of the earth, and we certainly can’t use the Principle of
Equivalence here, which presupposes a uniform gravitational field.

A careful calculation carried out with the matching ideas of this
section shows that the correct thinking is not that “accelerated charges
radiate”, but the changing field strengths propagate as waves. A charge
placed midway between two orbiting masses will be unmoved, but the
fields will be affected by the masses and there will be electrodynamic
radiation from this system.
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10. Cosmology and General Relativity

While General Relativity is a minor correction to most of everyday
physical situations, it is absolutely necessary for an understanding of
cosmology. While one can treat an infinite flat universe as a conve-
nient local approximation, an argument similar to that used in Ol-
ber’s paradox shows that Newtonian theory cannot treat an infinite
universe. The nonlinearities in General Relativity allow the infinite
universe to be described without any divergences.

When do we need General Relativity? In our units where G = 1,
GR will be important when we have

M/R ~ 1, that is R~ 1/\/p.

The universe contains at least the galaxies that we see, with a mass
of around 10! M. The spacing between galaxies is roughly a mega-
parsec, so the smoothed out density of just the galaxies is pgar ~
5 x 10737sec.72. This says that GR will be important for length
scales of 2 x 10'® sec. Since the ages of rocks, nuclei, and the planets
is around 3 x 10'7 sec, any study of the universe must involve GR in
its structure, dynamics, and interpretation.

Symmetric Spaces

Not looking for trouble, we start with the simplest non—trivial ideal-
ization. We try to find a model of the universe which has no preferred
direction, is isotropic, and has no preferred location, is homogeneous.
In the old days, one added to this list the requirement that there be
no preferred time, that the universe be stationary. Now we think that
the redshift of galaxies can only be explained by an evolving universe,
and we drop the requirement that all times be equivalent.

The above used the subjunctive, a necessary mode in cosmology.
Very little is known for certain. One must always keep an open mind.
General Relativity has been only mildly confirmed, and could go out
tomorrow. For all we know, next decade we will again be believing
in a tired light explanation for the redshift, and a stationary universe
might again be preferred. It is points for General Relativity as a theory
that it cannot explain a static universe, and that we don’t observe one
either.
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Example: In 1917 Einstein proposed that the universe be
modeled by the spacetime

G = —dt* + R? [dxz + sin® b% (d92 +sin%6 dqbz)]

with R a constant. This is a fully symmetric model of the

universe.

Example: The spatial metric in the above example is the
3—sphere. It is one of the three distinct homogeneous and
isotropic 3—spaces with a positive definite metric. Its topol-
ogy 1is carefully discussed in SGC.

The matter in the universe must not single out a preferred direc-
tion, and so in these symmetric models must have a 4—velocity given
by (on average) 2.

The spacetime in the above example has an unreasonable TH”
if you expect it to satisfy Einstein’s equations. If you try to repair
this by messing with the equations, then you end up with an unstable
model. We will discuss this later. This is the basis for the statement

that General Relativity is only compatible with an expanding universe.

It is easy to visualize the symmetric two spaces. Look at spaces
formed by pasting together quadrilaterals, with different numbers of
them meeting at every vertex. If four meet at every vertex, then we
generate an infinite checkerboard. If three meet at every vertex, we
generate the closed space which is the surface of the cube. If five
or more meet, then we generate an infinite space that resembles the
familiar Escher drawings.

An interesting question that you can pose is whether the knight’s
tour sketched above closes or not. Take two steps forward, then turn
left. Repeat indefinitely.

The symmetries of this tiling are best represented not by finding
translations and rotations, but by taking the reflections in the sides of
the fundamental scalene triangle. One of these fundamental triangles
is sketched inside each of the squares.

Another picture of this tiling with five squares meeting at every
point is interleaved at the end of this section. It shows how five of
these squares can be put together into an X-shape, and then the tiling
of space with these.
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Figure 10-1. A sketch of five squares
meeting at every vertex, and a pos-
sible knight’s move.

M
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7

Figure 10-2. The Poincare disk representation of the preceeding sketch.
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Robertson—Walker Spacetimes

A spacetime model for cosmology is a spacetime plus matter world-
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lines. In some cosmologies the matter is an insignificant addition, and
does not show up in the T#¥. The spacetimes that satisfy our symme-
try requirements can be made up by using a symmetric 3—space for
the spatial part, and adding that to a dynamic time variable.

One can make a complete catalog of the symmetric 3—spaces:

G = dy? + sin® y dQ? 0<x<m,
G =dr* +r?dQ? 0<r <,
G = dy? + sinh? y dQ? 0 <y < o

These are called the 3—sphere, Euclidean 3—space, and the 3—
pseudo- sphere. Here y is dimensionless, while r has dimensions of
length. We will write these generically as

G = dx* + S*(y) dQ*.

A Robertson—-Walker spacetime takes one of these symmetic 3—

spaces and bolts on a time axis:
G = —dt* + R*(t)(dx® + S*(x) dQ?).

These are useful in any geometric theories of the universe, not just
the models used in General Relativity.

Curvature Computation

We describe the Robertson—-Walker spacetime with the orthonormal

frame
wh = dt,
wX = Rdy,
w? = RS db,

w? = RSsinf do.

This list of four orthonormal 1-forms contains all of the metric
information.

The connection forms satisfy

dw; + wij Aw! = 0,

Wij + Wy = 0.

[Here dQ? is the metric on the
surface of the 2—sphere. ]

[Note that the indices here are
labels for different one-forms,
not the components of a single
one-form.]
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and we want to solve this by inspection. The indices on the forms are

just labels, and when we lower an index, nothing happens except that , , ,
[This was done with more detail

the sign changes for the t—index. The connection forms are in the last chapter of ADG.]
wiy, = —R'dy,
wig = —R'S db,
wip = —R'Ssin 0 do,
wys = —S"d6,

Wy = —S'sinf do,
wpp = — cos B do.

The symmetry of the spacetime is not apparent when these are ex-

pressed in terms of a coordinate basis. We can write these

Wix = _(R//R) wxv

wip = —(R'/R)w?,
wig = —(R'/R)w?,
wye = —(S"/RS)w?,
wyo = —(S'/RS)w?,

wpp = —(cos /RS sinf)w?.
Now for the curvature forms. These satisfy
Qij = dwi]‘ + wi A wl]‘.

It is sufficient to calculate €24, and 2,4, a time-space one and a space-
space one. The rest follow from symmetry. The symmetry must be
apparent in the 2;; because they are measureable, while the w;; are

not.
Qpy = dwiy +wig A wex + wig A w¢X,

= —R"dt Ady
= —(R"/R)w' AwX.

Qyo = dwyg + wyr A wio + Wyg N w%,
=—-S"dyANdf+ (R dy)NR'Sdf
= (=S"+ SR'R')dx N\ df
We can handle the three separate symmetric spaces if we define the

index & to be plus one for the 3—sphere, minus one for the 3—pseudo-

sphere, and zero for Euclidean space. Then we have

S" = —kS
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and
(R')? + 5
R2

The Riemann tensor in orthonormal frame components is given

WX A W

Q9 =

by
Q” = Rz]|kl| wk A wl.

This is really the equivalent of a generating function for the Riemann
tensor components; i.e. it is an expansion whose terms given the
components. Here it is a finite expansion. This is useful in situations
where many of the components are zero.

The final shortcut to the computation of the Riemann tensor is
an identity that is totally unmotivated. By some miracle we have the

Einstein tensor
)
G, = _55;ﬁ Rmml%l'

This is useful because the right—hand side is so easy to compute. This
is easy to prove, but wicked to motivate. The 6-index tensor is called a
Kronecker—delta. It has a value of one if the top and bottom indices are
an even permutation of one another, minus one if an odd permutation,
and zero otherwise.

The Einstein tensor is another physical object, and must have the
same symmetry as the curvature tensor. We compute the components
in the orthonormal frame, denoted here by the hat over the kernal.

At gtvd plaf|
Gt - _5taﬁ R RY

_ _pxt X I
=—RY R Ry,
To find the needed Riemann tensor components, look at
R/ 2
Qyg = (;# WX AW,
this implies that
~ (R')? +
Rxexe — T?
and the same for the others. Thus
R (R/)Z _I_ K

A similar computation gives us
A 2 2
G%z—(ZR"/R—I—(R'/R) —I-/%/R>

All other components of the Einstein tensor are zero or related to these
by symmetry.

[The vertical bars stand for
the ordered summation. This
elimanates duplicate terms and
extraneous factors.]

[See section 27 in ADG.]
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11. Friedmann Models

The Friedmann models are generated by taking a Robertson—Walker
spacetime, imposing the Einstein field equations, and using an equa-
tion of state appropriate to either dust or radiation. The last section
showed that the Robertson—Walker spacetime, given by the moving

frame
wh = dt,
wX = Rdy,
w? = RS db,

w? = RS sinf do.

has an Einstein tensor given by

R'R + & . .

" !/
_[Q%Jr(%)er%] (WX @ WX 4+ w? @wl +w? ®w?).

We now invoke the Einstein equations. T*"” will have to have
the same symmetry. Therefore we must be studying what is called a
perfect fluid, and one which is at rest in the orthonormal frame. We

write
T:pwt®wt—|—p(wx®wx—|—w9®w9—|—w¢®w¢).

Here p is what is often called the proper energy density, and p is the
local pressure, i.e. the local momentum flux density. We need to add
to this a constitutive equation relating the density and the pressure.

Typical equations of state are

dust p =0,
radiation p= %p,
stiff matter p=p.

7dressed” vacuum p=—p=—A.

[Note the advantages of the ex-
plicit notation here: we need no
remark about all other compo-
nents zero, plus the expansion in
an orthonormal frame is explic-
itly indicated.]

[Stiff matter is not known to
exist. It has a sound speed
equal to the speed of light.]
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The Einstein equations written for the Robertson—-Walker space-
time are usually called the Friedmann equations. They are

R R’ K
2— + (=) + =5 +8p=0
R+(R)+R2+7Tp ,
R’2 K
(E) ‘|’ﬁ—877,0/3:0.

Critical Dust Universe

To see the structure of the system, let us look at nearly the simplest
case, the critical dust universe, with

p=0, k=0.

. . [Here K is the curvature indica-
Now one cannot freely specify p, that would give us too many tor]

equations. Look at the amount of matter in a comoving volume pR?
d d
sx & 3y _ ¢ I/
7 S(0RY) = S (RR'R),
— (R/)3 + QRR/RH,
=0.
This should have been expected. The equation T*",, = 0 implies that

matter must be conserved. We showed this earlier.

Since we have a conserved quantity, we should give it a name.

Define

Reducing the order of our system from two to one. The remaining
equation is

easily solved

R(t) = (%F)5 5.

4

This spacetime is called the Einstein—deSitter spacetime.
G = —dtt + (52) e (4 o+ d92).

In this spacetime dust motes follow lines v, 8, ¢ all constant. We have
t measuring proper time along their world lines. Do we need to check
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that these curves are geodesics? No. That is guaranteed by the self—
consistency of the field equations, which guarantees that T#"., = 0.
Because this universe has a singularity with infinite density a
finite amount of time in its past, it has a big bang in it.
We can play with this spacetime fruitfully. The space part looks
like a form of spherical polars, so try the coordinate transformation

Z = y cosb,
X =y siné cos o,
Y = y sinf sin ¢.

Then the metric is

G = —dt* + (22)5¢3 (dX? 4 dY? + dZ?).

4
Now introduce a new time variable 1" such that

dt = 13 dT (223
3% = (3F)° T,

then
G = (Z)TH—dT* + dX* +dY* + dZ?).

The metric differs from the Minkowski metric by a simple factor. Such
a metric is said to be conformal to the Minkowski metric, or confor-
mally flat.

Conformal Maps

A spacetime map

C: (M. G) = (MG
is called a conformal map if we have a function €2 such that
G=0"g.

If G’ is flat, then (M, G) is called conformally flat.
A spacetime with electromagnetic field should satisfy Maxwell’s
equations as well. In index notation these can be written

[V=gF"] =0,
F;uz,a' ‘I’ Fua’,mu ‘I’ Fa-,hy — 0
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There is an important identity useful in the index notation needed

e _ D
AT

where /—¢ uses ¢, the determinant of the covariant components of

here

the metric tensor. The useful extension of our conformal map is

Fr
2 94 )

C(M,G,F") = (M, 026

which preserves solutions of Maxwell’s Equations.

Since the Einstein—deSitter spacetime is conformally flat we can
use all of our flat-space electrodynamics. In particular, in flat space-
time light propagates without changing its wavelength. This implies

[Only partial derivatives! That
these can be written without
using the connection reflects the
simplicity possible when these
are written using differential
forms.]

[C doesn’t preserve solutions
of the Einstein equations or we
would be knee deep in exact
solutions.]

that in the conformally flat coordinates (X, Y, Z) the wavelength doesn’t|j

change. In physical coordinates this says that the wavelength goes like
R(t). This spacetime has a systematic redshift.

Closed Matter Universes

We have disposed of the k = 0 case, which is pathological because of
this extra symmetry. The more typical behavior is given by the open
and closed universes. When we have k = 1, the Friedmann equations
reduce to

so that here the constant @ is the maximum size of the universe. If
we introduce a dimensionless time 7 from

dt
an R(1)

then we can find a parametric solution of the Friedmann equations.
This alone would justify introducing this dimensionless time, which
I call arctime. But note that it is also physically natural, measuring
time in terms of the angular distance around the universe travelled by
a photon since the beginning.

(1 —cosn),
(n — sinn).
Looking at the parametric equations we see that all of these uni-

verses are similar. They differ only in their size, measured by the
parameter co.
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Example: To verify our interpretation of arctime, look at
the worldline of a radial light signal. Since it must be null,
we must have

—dt* + R* dy* =0,

dx _ 1
dt R
d
A
dn

While it is theoretically useful to work things out in terms of the
size of the universe w and the current arctime n, neither of these is
easily observed. The observable parameters are the current value of
the local expansion rate, H, the Hubble parameter

R/
E.

H

Its relation to the theoretical quantities is given by

2sinn

H— 291
“ (1 —cosn)?

where I have written this so that both sides of the equation are man-
ifestly dimensionless. Since the Hubble parameter has dimensions, it
must involve .

The local acceleration of the expansion is also observable in prin-
ciple:

R"R
q=— R
It is dimensionless and so cannot involve w
1 —cosn
T ein? n o

A final observable is the local matter density. This involves dimen-
sions, and thus w. A related dimensionless variable uses the Hubble
constant to remove the dimensions from the density

Q= 8rp @
T 3H? R3H?’
and in terms of arctime
O _ 2(1 .—Zcosn)‘
sin”n
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Any one of the dimensionless variables 7, ¢, {2 can be used to tell time
in the expanding universe.

In addition to being observable, the quantitites H and ¢ are useful
because expessions involving them are often identical in the open and
closed universes, while expressions involving n usually require sinn —
sinhn shifts.
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12. The Redshift

Our first little bit of applied geometry will be to calculate the red-
shift in these models. One method would be to exploit the conformal
symmetry, but this only works for the x = 0 model. A more general
approach is to use the arc—time parameter.

Recall that we took the metric in the form

G = —dt* + R%(t)(dx* + S*(x) dQ?).

and defined a new time parameter n by

dt
— = R(t).
dn
. . . [Really it transforms only the
This transforms the metric into the form chart representing the metric.]

G = R*(t)(—dn* + dx* + §*(x) dQ?).

A
In these coordinates light signals which stay at constant 6 and
¢, call these radial, travel along 45° lines. The coordinate interval A P
An between two of these worldlines is constant. This translate into a ///
proper—time interval ’ ]
At it ’
— = constant. / 4
R ’ ’
’ ’
Thus we have the wavelength going like the radius: i 7
Rs ///
Ax R
. An it
Rs
In terms of the usual redshift parameter z we have
R >
14 = oW >
Rruen Y

Example: A QSO photon sent out from z = 3 was sent from
a universe which was one quarter of the present size. The cos-
mic microwave background radiation temperature was then
12°. If we had some sort of remote thermometer applicable to
material in thermal equilibrium with that radiation, then we
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would be able to verify that the redshift observed in the QSO
was indeed the same as the redshift that we have calculated
here.

Example: Consider the Hubble constant, defined earlier by

R/
HO = —,

R [In cosmology the subscript

0 usually refers to the
X present time, not the origin
For small redshift we have of time.]
AN R'At
A R

This gives us another interpretation of the Hubble parameter:
it 1s the dimensioned constant that converts the dimensionless
measure of distance z to proper distance. In the same way,
we can think of R as the dimensioned parameter that converts
the dimensionless distance parameter y to proper distance.

Thus
(2/x) = HoRo.

Conformal Symmetry

These expanding universes are always similar. As they expand, only
the scale of length changes. We don’t expect an ordinary Killing vector
in the time direction, but there is an analog which describes conformal
symmetry as opposed to isometry. A conformal Killing vector satisfies

Euw + kv = & guw

where ¢ is any scalar function.
For a particle moving with 4—velocity A* we defined the conformal
quantity
W =E% \,.

Then it is easy to calculate that

dw o o
% = kaa + %Qb(/\a A )

Here a* is the proper acceleration, and s is proper time.
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Do the Friedmann universes have a conformal Killing vector? To
calculate this we convert the equation into non—covariant form

Guv,a kY + Jua ka,u + Gra ka,u = ng,“,.

Let us try the vector k = %. Because the components are constant,
it 1s easy to plug this into the above equation. We need only consider

Juv,a kY = ng;uz-
For any component of g,, we have

0 dt g
— =2RR'— (=L~
on dn( R? )

so the answer is yes, this is a conformal Killing vector with

— =2R'.
R dn

[The prime here is derivative
with respect to t.]

Using this conformal Killing vector, we compute the photon red-
shift seen by an observer at rest in the universe. For a photon, A-A =0
and so W is constant. An observer with 4—velocity u# will see a fre-

quency
2ty = u - A
and u is proportional to k
0 k
Uy = — = —
gt R
so that
5 k- A
TV = ——
R

again reproducing our result, with

Ry = constant.

Radial Geodesics
The Lagrangian for geodesics is just the metric “divided” by ds?:

L= R[S0 (V).
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The Euler-Lagrange equations are

d .
%(—2771%2) = 2RR(—1* + X*)
d

—(—2YR*) =0
7. (Z2XRY)
For these radial geodesics, the y—momentum is conserved

Ay = constant.

If in addition it is a massless particle, then

For particles with mass we have the orthonormal frame

0
d d —
Rdn an Ron
0
Rd d —_—
X an ROx

So we write the velocity in terms of the usual speed and ~ factors:

0
ROy

A=~ + vy
n

RO

and we have the component
M =vv/R,
and lowering the index gives

Rv~ = constant.

This shows how the proper motion of a galaxy, say, with respect to

the cosmic rest frame redshifts.
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13. Dust Universes

For practice we do some sample calculations in dust, that is, p = 0,
universes. In all of these, T#”., = 0 leads to conservation of mass

%71',0]%3 = constant = w.

[Verify this by differentiation
and using the Friedmann equa-

Thus it is sufficient to solve only the first—order equation tions.]
R K w
Byt -2
R R R

Again we introduce arc—time
dt = Rdn

and this converts the equation to

le—]; = +/R(w — kR).

This can be integrated

R(n) = wsin®(n/2) = 1=(1 — cosn)
R(n) = wsinh?(n/2) = tw@(coshn — 1)

We can then solve for proper time in terms of arc—time

dat = R = wsin®(n/2)
dn

SO
t(n) = 3=(n — sinn)
t(n) = 3=(sinhn —n)

All of the models are similar; the parameter w only determines the
scale.
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In terms of these parameters we have the relations

Parameter Closed Critical Open
R 1@(1 — cosn) Lan? Tw(coshn — 1)
t tw@(n —sinn) Son® sw@(sinhn — )
I 2sinn S 2sinhn
w S — —_— R ——
(1 — cosn)? n’ (coshn — 1)?
1 2 1 8 1
3P (1 —cosn)? n® (coshn — 1)*
2 2
{ (1 + cosn) 1 (1 + coshn)

The early stages of all of these universes resemble the critical
case. You can see this by an expansion for small 7.

Example: How far away are objects at z = 2 in an 2 = 2,
Hoy = 50 dust universe? Here 50 means 50 km/sec/mpec.
1/(50 km/sec/mpc) is 6.18 x 10'7 sec. Since > 1 we need
a closed model for the universe. From the table we have

1+ cosn =1, n=m/2

[These numbers have been
chosen just to make the
math easy, not because

For an object at z = 2, it emitted it’s light at an arc—time they are realistic.]
n given by
1 — cos
1o =14+z=
1 —cosn

and thus the light was emitted at a time n = 0.84 radians.
This places the object at an arc—distance of 0.73 radians.

Example: Continuing the above example. If two such ob-
jects were separated on the sky by a small angle e, what is
their separation d in light—seconds? This is a little exercise
in spherical trig. From the law for spherical triangles

cosa = cosb cosc+ sinbd sin ¢ cos A,
we find the law for long skinny spherical triangles
a = Asinb,
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and so we have the arc-distance § between the objects given
by
0 =esiny

This distance § is converted into proper distance using the
scale factor R(n), not R(no).

d = R(no)esin x = 3 R(n)esin x.

Finally we convert the parameter R into the somewhat better
known here given parameter H using

sinm

HR— >0
= (1 —cosn)

=1

So finally

5
d= ge(ms x 10" sec).

For an angular separation of ¢ = 5 x 107° radians, the unit
used in astronomy, the arc-second, we have a distance of
7 x 101 light seconds, about 7 kpc in astronomical units.

Figure 13-1. The two photon paths 5
inay— gb(& = 77/2) diagram.

Example: The above example was done using what one
would call synthetic spherical geometry. You could also take
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a super—careful approach and use analytical spherical trig.
You could write the worldlines in our coordinate system. The
most sensible location for us is at the pole, y = 0. This would

give us a worldline given by
x =0.

The angles 6 and ¢ for this worldline are undetermined, since
it is a singularity of the coordinate system.
Worldlines for the two objects can be taken to be

X:a7 9:77/27 qb:()?

X:a7 9:77/27 qb:e?

1

— cos—12
Q = COS 3

To see that this is correct, you would have to find the world-
lines of the light signals, and see what angle they make with
the observer. Unfortunately, the coordinate system is singu-
lar right at the observer’s location. So this approach is really
a lot of trouble and inferior to the direct synthetic approach.

Causality in the Early Universe

It is surprising that the early universe expands with a speed greater
than the speed of light, R" > 1. Locally this is not observable, and
entails no violence to Special Relativity. Spacetime is everywhere lo-
cally Minkowski, except at the singularity itself. Still it is disturbing.
Look at a slice in the radial direction through any of these Friedmann
universes.

In the figure the light signals follow dotted lines. If we pick a time,
then there is a minimum separation beyond which the points have had
time to exchange influences. Let us calculate this for the case of the
cosmic microwave radiation. We take it to be formed at a redshift
z = 1000, based solely on temperature arguments.

If we stay with our closed universe then we have the arc—time of
decoupling
7(1 " eost) 1001
and this gives an arc—time of about 2.5°. The spherical trig is now
easy. The spherical triangle is again a long skinny triangle, and so the
angle on the sky is also 5°.

[This closed universe would
require an enormous amount of
missing mass, and it doesn’t
really live long enough. It is
just for fun.]

[Unified theory anyone?]
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Figure 13-2. Points in the universe
that have never had causal contact.

14. Inverse Square Law

Given a cosmological model, one must then decide what observable
phenomena are explained by the model. Things like R(#) are not
directly observable. In this section I look at the basic relation between
the luminosity of a source and the energy flux received. Were sources
of known luminosity available, then we would be able to fix our epoch
in a given cosmological model. In the idiom: to measure ¢q.

Source Properties

We describe the source of radiation by its spectral energy density. In
old books on relativity they only discussed the total energy flux from
a source, in accord with measurement technology of the time. This
spectral energy density we call L,, and it has units of energy per
second per hertz.

There are a number of reasons, not all compelling, to prefer spec-
tral energy density to energy per unit wavelength interval. In any
event, it is easy to modify these results.
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Geometric Description

We are going to describe this situation using analytic geometry in a
Robertson—-Walker cosmological model. Since the model is homoge-
neous we can put the source anywhere. The easiest calculation results
if we put it at the North pole, y = 0.

We are going to follow the fate of the radiation that is emitted by
the source in a time interval At and in a band of frequencies Av. Both
of these bands are to be small in the calculus sense. This corresponds
to a number n of photons

L, AtAv
- hv '

n

We make the assumption that the number of photons is conserved.
This is the adiabatic invariant for the electromagnetic problem, as well
as many mechanical problems. We are neglecting absorbtion. The
frequency of the photons decreases according to

14 Ro
7/_0 =(1+z2)= =

At their reception, the photons which cross a standard area in a
standard time within a specified spectral band are counted. This is
the flux density F),, with units of energy per sec per area per hertz.
Let us collect ng photons over a time Atg, over a spectral band Avg
over an area Ag. This corresponds to a flux

nohl/o

F,=—
¢ AtoAl/vo

Let us think about collecting all of the photons over a full 2—
sphere. Then we have n = ng. Also, we have

Av B JANZ

14 140
because the redshift is linear, and

Aty
At

This is the redshift of the integration time.
For the area of the collection sphere, we have

=(1+=2).

Ag = 47RE S*(Y)
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where y is the arc-distance to the source.
Putting all of this together gives us

B L, At Av hyg
N hv AI/O Ato AO

E,.

and this simplifies to
L, = (14 2)47R3 S*(x) F,, .

Now y, remember, comes from

R(Uo)

(1+2)= R(no — x

where we need to know the epoch rg of reception.

Hubble Diagram

This is a generic name for the observed flux, corrected to constant
emitted luminosity, plotted against redshift. Let me present my own
unorthodox way of plotting this data.

The data should be presented in such a way as to make the effects
of the uncertainties as clear as possible. The intrinsic luminosity L,
of the sources is not well known; we may be able to correct individual
sources to a “standard candle”, but the absolute level will be poorly
known, as is Rg. All of this leads to a multiplicative uncertainty in
the observed flux. To display this, we plot the log of the flux. This
converts the uncertainty to a ridgid translation, something the eye
does quite naturally.

A prominent part of the Hubble diagram is just the inverse square
law. Many workers have published diagrams of log z against log d to
see this as a linear effect. My approach to this is that believing in the
inverse square law of optics for small distances, to remove it from the
data and look at the residual. You could call this the inverse square
law anomaly.

At the other end of the distance scale, there is a redshift singular-
ity at z = 0 that can also be removed. Thus we are led to the anomaly
parameter defined by

2
F,
, =11 = v
qb Qoglo(l_l_z)v
with
L (1+42)
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This ¢, is an observational parameter sensitive to the geometrical
effects of the universe that appear in the departure from the inverse
square law of optics.

The function ¢, can be computed from observational data. How
is its theoretical shape predicted? For any Robertson—Walker model

we have
F,, = Ly
(14 2)47R2S2(y)
and so 2
v = %bg[(l + 2)247TR(2)52(X)]
that is

Qbu = log(

z

m) 4+  constant.

The constant contains the multiplicative uncertainty referred to earlier.
As z — oo we have z/(1 +z) — 1 and y — 1o so ¢, goes to

some constant. Because of this the curves for large z contain little

information, and so we plot ¢ against the variable z/(1 + z), which

plots the entire universe between zero and one.

Example: In a gy = 1 dust universe, we have

no =7/2
and this leads to ;
1+ 7) = siny.

Thus the plot of ¢ is a horizontal line for this model.
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15. Lemaitre Universes

Einstein thought that the idea of a closed, no—boundary universe was
so appealling that he was willing to modify his field equations to ac-
comodate it. Of course at that time the universe was thought to be
time—translation invariant, and so he tried to make a static model of
the universe. Had he troubled to check the stability of his proposed
model, he would have discovered that it was unstable, and would have
avoided what has achieved notoriety as his “most famous mistake”.

In fact Einstein had two chances to “predict” the expanding uni-
verse ahead of time. The first came when there were no static solutions
to his field equations. The second came when he failed to notice that
the solution with the cosmological constant was unstable. Either of
these predictions would have increased his fame even further, and in-
creased even further the damage the he and Dirac did to the style of
theoretical physics.

Finstein Static Universe
Let us take the Robertson—Walker metric with k = 1
G = —dt* + R*(dx*® + sin® y dQ?),

and now R is a constant. Solving for T"" we find

1
SFp:—ﬁ,
8rp 1
3  R¥

Apparently to persist in this state requires a negative pressure. This
disturbed him, and he arbitrarily put the change into the field equa-
tions instead, in what came to be called the cosmological constant
term. Today we view these terms as a form of matter with a Lorentz—
invariant equation of state, and consider a “dressed” form of the vac-
uum as a candidate for such matter.

The Friedmann equations now read, in either case,

R" R, &

QE—I_(E) —I-ﬁ—l-Sﬁp—A—l-Swp:O,
R'? k  8rp A
_ __—__:0
(R )+R2 3 3

[In any event, once considered,
hard to disconsider.]
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Consistency demands that A be constant. Now, and as intended, there

1s now a dust solution

R = constant,
8rp 1 n A4
3 R* 3 3RY

p=0.

and this leads to the cosmological model called the Einstein static

universe.

Stability of the Einstein Static Universe

To show the instability of this solution, it suffices to show any growing
perturbation. To show stability is much harder, then you have to
show that every perturbation is bounded. Using divine inspiration, we

consider the perturbation
G'= —dt* + (R+ 5(t))2(dX2 + sin® XdQZ)

The Friedmann equations linearize to

)

5//_@

—0,
and as advertised, this has a growing exponential solution, which im-
plies instability. We haven’t considered modes with angular assym-

metry, these could be even more unstable.

Lemaitre Universes

What about non-static solutions of the equations with cosmological
constant? In the ordinary Friedmann equations we had one dimen-
sioned constant and one dimensionless constant. The dimensionless
constant determined the “time”. We could use either ¢g, or g, or ng
to represent the evolution in scale—free form. While n was convenient
in terms of light propagation, it suffers from the singular behavior as
you change types in the universe. For many purposes the parame-
ter ) is the most convenient measure of “time”. In these Lemaitre
universes we pick up one more dimensionless parameter. There is
still only one scale to the spacetime. Now the state of the universe is
two—dimensional in scale—free coordinates.

[Might be mistakes in thesel]
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A useful second parameter relates to the energy density of the
energy described by the cosmological constant
A
3H?
The model evolves in a two—dimensional state space. The relative

sizes of {2 and A allow you to judge the importance of the cosmological
constant effects.

The evolution of the universe in this state space is given by the
vector field

K 0 k 0

(Q—2)\— 1)R—Hﬂa—Q +(2+0Q - 2/\)R—H/\a/\.
This gives the rate of evolution with respect to arc—time. If you only
want to trace out the curves without regard to the time, then you can
drop the common factor of x/RH.

shown in the following figure.

Evolution in the state space is
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Figure 15-1. The Lemalitre universe evolution.

[Note that this is the Hubble
parameter, not the Hubble con-
stant. It is a function of time.]

[See Ehlers and Rindler, Ann.
NY Acad. Sci. volume un-
known, for the extension of this
to include radiation.]
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The parameter RH is given by

2 K

(R)? = (RH)* = ;5

and you will have to be careful about the square root in a computer
algorithm. The other Friedmann equation gives us

20 —Q

2 //:
RR Ki/\—l—ﬂ—l

These two equations let you compute all other quantities of interest.

The deceleration parameter is given by

B RR// B g
1= "RR ~ 2

All solutions crossing the line 2 = 2\ have an inflection point.

The k£ = 0 models lie along the line
Q4+ A=1.

Thus closed models are outside of the triangle and open models are
inside. Both have inflection points.

Where are the zeroes of this vector field. points. These are the
points (1,0) and (0,1). The latter point is a sink of the flow, with the
universe expanding forever with finite speed and vanishing density.
The former point is a parabolic Einstein—de Sitter model which is a
neutral point of the flow. The Einstein static universe is nowhere to
be seen. Why? It is off at infinity. Static means zero H, and we have
normalized all of our variables with H? in the denominator.

The Dynamics

A useful model also needs the age parameter HT and the redshift. To
find these we must integrate differential equations. If we define the

dimensionless radius a by

a = R/Ro
then we have q R 4R
a
—_ = —— = H
a - Roar Bt

and we have an expression for RH on terms of our state variables
above. The redshift is given by

l+z=1/a
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since we have defined ag = 1. The above equation must be integrated
from the present time backward.

Similarly, we can find the time since the big bang, if there was
one, by integrating backward

d
d—(HoT) = RHO = y(HoRo)
n
and then setting the constant of integration so that the initial time is
zero. You could cover state space with a plot of the dimensionless
variable HT in this way.

Radiation Universes

You can also add radiation into the model. This is not complicated
as long as the radiation does not couple with the matter. Unlike the
matter, the energy density of this radiation goes like

pyR* = constant

This means that even a small amount of radiation today, if it came
from the distant past, had a more significant contribution to the dy-
namics of the universe then. Said forwards, even a significant amount
of radiation in the past would be redshifted into insignificance today.
We can describe the energy density of the radiation by a similar pa-

rameter

Our state space is now three dimensional, and the dynamics is
given, up to a normalization, by the vector field

0 0 0
(—1+Q+2w—2A)Qa—Q+(—2+Q+2w—2A)wa—w+(2+9+2w—2A)Aa—A.

[See Ehlers and Rindler.]
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16. Gravitational Collapse

As an example of this physical situation, we work out the collapse of
a cloud of dust. We will do this by patching together a uniform dust
interior and an empty outside solution.

The interior solution will be a piece of one of our closed, dust—
filled cosmological models

G = —dt’? + R? (t)(dX2 + sin® Xdﬂz).

We will cut a piece out of this, of radius yg. The cut will be a 3—
surface, the 2-sphere crossed with a time axis.

The exterior solution will be the Schwarzschild solution that we
studied earlier for the orbit problem.

I T
Ty

+ r2 dO2.

This is not in coordinates that have any simple relation to those used
in the cosmological model. Those were comoving coordinates; here we
have instead % being the generator of time shift symmetry.

To patch pieces of these two solutions together we require that the
acceleration of the surface points be the same in the two spacetimes,
and that the curvature of the surface be the same as seen from the
two sides. Here the surface will be a geodesic, and the curvature will
require that r as a measure of the area of the spherical surfaces be
continuous.

Interior Solution

We take a piece of our cosmological solution, given in parametric form

by
(o)

Rin) = S(1 - cosy),

and the actual radius of curvature of the edge at an arc—distance of y

will be
w .
r(n) = Bl sin xo(1 — cosn).
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Along the line where we want to join the two solutions the proper time
is given by
w .
t(n) = < (n = sin).
We are only considering matter with no pressure, so this surface will
be a geodesic, even when we remove the surrounding material.

Exterior Solution

Can we find a geodesic in the Schwarzschild geometry with these prop-
erties. One way would be to just plug in the above and check, except
we would not know what time parameter to use. If we just proceed
systematically, the radial geodesics are constrained by two equations:

A¢ = constant,

A-A=—1.

If we call the radial and temporal components of A 7 and T, then we

must have

(1—2m/r)T:E, constant,
-2
B Y A L |
= 2mI T+ 5

and these can be combined to give an equation that looks just like the

Friedmann equation

r, (1—FE*) 2m

e
These will have the same solution provided we choose the constants
so that

r = Rsin o,
that is,
1 - E?
—— =1,
sin” xo
sinyo = V1 — E2.
and
2m
. 3 = w,
sin® Yo
w

m= sin® yo.
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This provides us with a solution for the collapse of a dust cloud.
Unfortunately for our logical development, the dust cloud collapses
right through the radius r = 2m, beyond which we have not yet, in
this class, found the correct solution. We defer this to a later section.
Everything seems to be ok outside of r = 2m, and we don’t seem to
be able to avoid the difficulty of passing through r = 2m. A galaxy of
stars behaves pretty much like dust. This cloud collapsing under its
self—gravity, we would need to remove all of its angular momentum for
this to happen, would pass through r = 2m before the stars started to
overlap.

Must everything collapse? Of course not, we are surrounded by
examples of objects which hold themselves up with pressure gradients.

Eddington—Finkelstein Coordinates

The first step toward straightening out the final details of gravitational
collapse was the coordinate system developed by Eddington and in-
dependently by David Finkelstein. Roughly speaking, the idea is to
straighten out at least one set of null geodesics so they travel along
45° lines. When we study the full solution of this problem, Kruskal
coordinates, we will see that what he did was to straighten out both
sets of null geodesics, incoming and outgoing, at the same time.

The idea is to introduce an advanced time parameter, like ¢ 4+ r
in flat spacetime. If we look at the equation for radial null geodesics

rdr
= —dt
r—2m ’ \ dv

this is easy to integrate
(r —2m) +2m log(r —2m) = —t + v,
and this integration constant v is our advanced time: N\
v="t+r—2m+ 2m log(r — 2m).

This leads to a metric \
r—2m

g=— dv? 4+ 2dv dr + r? dQ2.

K
/

7

This is best represented in oblique coordinates.

The metric is now well behaved at r = 2m, showing that it was
indeed just a coordinate singularity. This now leads to a physically
reasonable picture of the gravitational collapse of our dust cloud.
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event horizon light ray

Figure 16-1. Eddington—Finkelstein coordinates.

17. Relativistic Stellar Structure

We start by discussing Birkhoff’s theorem (1923). Any spherically
symmetric, empty Einstein spacetime has one other translational Kill-
ing vector. The spacetime is either

2
G=—(1-2"? ¢ LZm 2402,
" (1—55)
with
r > 2m, r(u,v) = u,

r=constant

}ght cone

v=constant
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or the spacetime

dv? 2m

g:—Q_T+(T—1)du2+r2d92,
(r - )
with
r < 2m, r(u,v) = wv.

What this means, roughly, is that spherical symmetry is enough
to ensure that the spacetime is static, without separately requiring it.
Another way to appreciate the content of the theorem is to consider any
spherical object. If you go inside it and do anything you wish that does
not disturb the spherical symmetry, then the external gravitational
field cannot change. This is consistent with our earlier result that
there is no monopole gravitational radiation. Yet another meaning for
the theorem is than inside of a spherically symmetric distribution of
mass there are no gravitational effects, just as in Newtonian theory,
despite the nonlinearities.

Proof of Birkhoff’s Theorem

We assume that the metric can be written in the form
G = —e¥dv? + e du’® +r? d02.

Here as before the three functions «, =, and r are all functions of u
and v. There are three types of regions, not mutually exclusive. We
might have r be a suitable substitute for the spacelike coordinate u,
or the timelike coordinate v, or finally, r might be constant, and not
useful for a coordinate at all. This third case does not arise here,
but does arise when one considers the electrically charged solution. A
great deal of confusion is avoided by the systematic choice here that
keeps u a spacelike coordinate no matter what.

It is routine, but tedious, to calculate the Einstein tensor for the
above metric. A regular calculation can be found in Synge, Relativity,
the General Theory, pg 270ff. This is a useful general calculation, but
be careful, his Riemann tensor has the opposite sign to ours.

Translating Synge’s expressions, we have

" o, Ta L TuVa 1 maTow T TV
Fame @t =) e G )

7

[There is a discussion of this

in W.B. Bonnor’s article in
Recent Developments in General
Relativity, pg 167.]
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In these equations the subscripts stand for partial derivatives, without

the usual commas:

Oy =

a_u.

We explore the regions successively. In the first case we pick

r(u,v) = u.

The G", equation gives us

0
o _ 0.
ov
From G*, — G, we get
8—(044'7) =
From G?, we find
_q 0 e -1
e — = ,
ou r

Thus we have

_2m’
T

(17.1)

(17.2)

(17.3)

From equation (17.1) we know that the constant of integration does

not depend on v either.
From equation (17.2)

2m

e’ = C(U)(l — —))

7

The metric in this region can thus be written

G=—(1- 2—m)(B(v)dv)2 +

7

(1-

du?

2 1092
2_m)+r dQ”,
-
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with r(u,v) = u and the condition v > 2m, from our demand that u
and v always be the spacelike and timelike coordinates. We can pick
a new time variable satisfying

dw = B dv,

and this puts the solution into the familiar Schwarzschild form. We
see that without demanding it we have asymptotic flatness and no time
dependence. Clearly we have the Killing vector

v,

and this Killing vector is timelike.

The constant has been picked to be m, suggestive that it is the
mass of this solution. To verify that, one should go back to the orbit
calculation and look at Kepler’s Law for large radii.

The next region proceeds in just the same way, leading to another

spacetime with a metric

dv? 2
ﬁ—l—(Tm—l)duz—l—TZsz,
T

g =—

with r(u,v) = v and restricted to v < 2m. Now we have a spacelike
Killing vector.

The third region would have r = constant, and this is inconsistent
with the G*, equation, so there are only two solutions here. Now we

have the Killing vector
d

au,

and this Killing vector is spacelike. It is not at all clear what this
solution means, or what its relation to the first solution is. It is a
correct solution to the equations, however, not a meaningless brute
force extension of the first solution by passing to “imaginary” time.

Relativistic Stellar Structure

Suppose we start with a spherically symmetric metric, do not require
it to be static, and allow it to contain matter with pressure. It will be
useful to avoid the t—ish and r—ish labels for coordinates, and write it
in the form

G = —eVdv? + e“du® + r? dQ2.
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Here v,«, and r are all possibly functions of u and v.
Example: As a first check we verify that these equations
can handle flat space. That has the functions

a =0,
v =0,
r(u,v) = u.

Only two equations are non—trivial. We have

Tw 1
r r
and . .
Guu — 7“_2 - 7“_2 — 0,
and so on.

Schwarzschild Interior Solution

We want this to be static, and for this it is sufficient to study the r = u
case. The extra freedom, the result of bitter experience, is not needed
here.

The Einstein tensor is

1 u 1
Gy = e (S + - =

T T T
6 —a(Tuu 1.2, Ju— Oy 1
G'p=ce (2 -I-Z’YU-I-T—ZOM%L),
1 o 1
GUU: —af - U - =,
c (7“2 r) r2

G", = 0.

and using Einstein’s equations for a perfect fluid we have

N Yu 1
g+ 7)— 5 =8,
—a 7uu 1. 2 7u_au 1
NSt it T i) = 8,
o, L Uy 1

Example: Now we should pause and see if we can recover
the empty Schwarzschild solution, to check on the equations
and practice with the structure of the equations.
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The first equation leads to the separable equation for «

dr do

r 1 —e@

This is easy to integrate if we change variables (back again)

to
w=e".
And we find .
w = T
1-%
This will agree with what we know provided we take the [Be careful here, you need

to treat w>1 and w<1

constant of integration to be 1/2m. separately.]

Finally, if we subtract the first two equations we find

d

Since they should both vanish at infinity, we find

v =,
and we have recovered the Schwarzschild solution.

Back to our search for an interior solution. With a little manip-
ulation we can put the first equation into the form

d
5(%(1 — ™)) = 4mr’p.

In classical stellar structure one defines a useful function which is the
“mass interior” function:

m(r)E/ 4z pr dr.
0

This lets us solve for o

We still have two unknowns, p and . The second equation after
some manipulation leads to the equation

1 dy B drr3p +m

2dr r(r —2m)’
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We still need the constaint that is always floating around the
Einstein equations as an identity. This is going to provide the support
equation, that classically relates the gravitational potential gradient to
the pressure gradient. I had to fiddle around with several approaches
before I found this one. Start with the second Einstein equation:

e 1+ r’y’) —1= 87Tpr2.

Since there are only r derivatives here, I use a prime for simplicity.
Now differentiate this equation with respect to r, and use the third
Einstein equation to eliminate the v term.
2dp 1T —2m
dr — 2
Now we know +' from the above work. Moosh this all together to find

Y'(v" +a').

finally the Oppenheimer—Volkoff equation

dp  (Arr’p+m)(p+p)
dr r(r —2m) ’

which, together with

dm 9
— =dnrp,

dr

and an equation of state
p=rp(p),

forms a basis for computing relativistic stellar models.

Schwarzschild Interior Solution

An easily obtained solution, not realistic, is matter which is in equi-
librium with constant density, independent of the pressure. This is
incompressible matter, which of course disagrees with special rela-
tivity. Still, it is a valid solution to the Einstein equations without
massive falling from virtue.

Since the density is constant, we can find the function m(r)

m(r) = %777“3,0 r<a,

m(r) = twa’p r>a,

where r = a is the surface of the star. The Oppenheimer—Volkoff
equation is separable

dp dmr? dr

(p+p)Bp+p)  3(0r—2m)

[There is a continuation of this
discussion in MTW, pg 610-611.]
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18. Kruskal Spacetime

Can we fit together the two solutions found in the preceeding section?
Then the radial coordinate would cover the entire range for zero to
infinity. We want to find a covering spacetime so that in one region
it looks like the first solution, and in another region, it looks like the
second. Arguing against any such possibility, and this blinded people
for decades, is the loss of time translation symmetry. The Killing
vector in the second solution is spacelike. How is this to be reconciled?
We expect to somehow “sew together” the two solutions along the
r = 2m line. But things are a bit fishy with that “line”, and closer
examination shows that it is not a line at all, but a point that is just
pretending. The real line that belongs there is hidden off at infinity in
these coordinate charts. To study this possibility, which is basic to all
of this, we study first the analogous problem in Euclidean geometry.

Polar Coordinates
Look at the two-dimensional space with metric
E = du® + u? dv? u > 0.
over the region (open set)

u > 0,
0 <v < 27.

This could be described by the orthonormal frame

w" = du,

w? = udv.
The metric figures are ellipses that fit inside these unit 1-forms. See
the first figure.

The game we wish to play is to pretend that we do not know
what space is really represented by the above metric. Instead we try
to discover what is going on only from internal evidence. The first
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Figure 18-1. The metric of Euclidean space in polar coordinates.

Figure 18-2. Some geodesics sketched
in polar coordinates.

observation is that the spacetime has an edge at u = 0. But, we can
reach this edge in a finite distance. Just look at the metric figures. If
we sketch geodesics in the metric, however, we see that they all avoid
this edge. See figure 2.

Finally we notice the metric figures blowing up in the vertical
direction as we approach the edge. This is a clue that a single point
has been expanded and is now pretending that it is a line.

Let us make a change of coordinates designed to be poorly be-
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haved in such a way that the bad behavior of the v = 0 “line” is

compensated. We try a map ¢ to new coordinates (x,y)
Y(u,v) = (u cosv,u sinv) = (x,y).

This map is not a diffeomorphism for v = 0. The metric in the new
coordinates can be found from the transformation of 1-forms. But
remember, 1-forms can be pulled back, not pushed forward. The pull

backs are
dx — cosvdu — usinv dv,

dy — sinv du + u cos v dv.

Since the coordinate transformation is a diffeomorphism over the
original coordinate chart, we can invert these to

udu = xdr + ydy,
u? dv =z dy — yde.

These come from differentiating

22 + y2 _ u2,
and
Y
=~ = tanwv.
T

The result of this is that the metric in the new coordinates is given by

the usual Euclidean metric
E=da? + dyz.

This is no surprise, but what coordinate region is covered by this
chart? The strip in the right half-plane in (u,v) space maps into the
full plane minus the origin and the positive x—axis. Since the above
metric in terms of (x,y) coordinates is perfectly well behaved at the
missing points, a covering space is just the full plane with the same
metric. Note how the “line” for v = 0 has been squashed into a point in
the covering space. The extension of a Minkowski spacetime proceeds
in a similar fashion, but with one important physical difference.

In Euclidean space we saw that geodesics avoided the “edge”.
This seems reasonable, because the edge is a single point, and how are
we to hit it dead on? This is not a good argument, however. If you
look at what goes on with a Minkowski metric, geodesics are sucked

[Remember that a coordinate
chart does not contain its edges.
It is an open set.]
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Singularity

Geodesic

Figure 18-3. Geodesics being sucked into a coordinate singularity in
spacetime.

into such a singularity rather than being repelled. This makes the
issue even less ignorable. See figure 3.

Extending Schwarzschild

If we look at the metric in the r > 2m region, we can sketch the metric
agaln using an orthonormal frame. What we see is the now familiar
point pretending to be a line, but now complicated by the squashing
of the frames horizontally.

_—
r
Figure 18-4. Outer Schwarzschild
coordinates.
r=2m
. . [First we look at an approxima-
Near r = 2m this has the behavior tion.]
u—2m 2m
G~ ————dv? 4+ ———— du® 4 4m? dQ*.
2m u—2m
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We see that there are two kinds of singularities here. The infinite
coefficient in the du? term we will see is no problem at all. It just
means that we have brought infinity in to where we can see it. On the
other hand, it is the zero in the dv? term, which causes all the trouble.

Again we will try to rectify the situation by squashing the line
r = 2m down to a point. We guess a transformation in the form

Y(u,v) = (f(u)cosh av, f(u)sinh av) = (x,y).

We leave the spherical coordinates unchanged. The function f is in
there to handle the minor problems with the infinity in the metric
coefficients. The constant « will be adjusted when we need it.

With this transformation we have

= tanh av.

and the metric in these new coordinates becomes

-2
G = —u(xdy—ydxz)—l—

ua? ft

[

(u—=2m)f2(f')?

(2 dx—y dy)* +r dQ>.

To cancel the cross terms we must pick

fr au

f u—2m’

This can be integrated:
log f = a[(u —2m) 4 2mlog | u — 2m |].

and so
f=(u—2m)*™m exp(oz(u — 2m)>

The metric is now
g = A(:L'2 — yz)(—aly2 + d:z;z) +r? dO?
with the factor A

(u—2m) exp<—4a(u — 2m)>

ua?(u — 2m)sme

A=

The choice of a = 1/4m removes most of the junk here.

18.5



The final metric form is

16m? r—2m
= exp [—

g r 2m

](d:z;z — dy?) +r? d?,

and the function r(x,y) here is found from

-2
\/xz—yzzvr—Qmexpr mn

dm

Unfortunately, this is a transcendental equation.
The diffeomorphism is

(xvy) =
-2 -2
(\/u—QmeXpu mcoshi,\/u—Zmexpu msinhi>.
4m 4m 4m 4m

The range of this in the (x,y) plane can be deduced as follows. The
r = constant curves are the hyperbolae

x? — y2 = constant.

The boundary r = 2m corresponds to
w? —y? =0.

Thus we are in the right-hand open quadrant, from —45° to
+45°. The curves v = constant go into lines through the origin:

y/x = constant.

We have indeed squashed r = 2m down to a point. What is more
important, though, is that we have brought in an entire line from
infinity, in fact two of them, the top and bottom edges of the quadrant.

Now what? Well, you can guess that the other solution is going
to be handled similarly. The end result of a similar calculation is the

transformed metric:

B 16m? r—2m

exp(—

g r 2m

)(d:z;z — dyz) + 2 dO2.

Notice how the signs have all straightened themselves out, and we can
insert this solution into the upper quadrant, smoothly and analytically
even crossing the r = 2m line. In the next figure we show how this
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g r>2m

Figure 18-5. Note how pathological the curve v appears in the original
charts.

covering space reveals details of curves that were obscured by the
r = 2m coordinate singularity in the original charts.

Note that in these new coordinates radial light signals travel along
45° lines.

The Complete Collapsing Dust Cloud

The metric still has edges and other problems. Some of these will be
eliminated by going to a more realistic physical situation. We can try
to extend the collapsing dust cloud, for starters.

Note that we have cut off the dust cloud solution for times before

18.7



Singularity

r=20

Empty spacetime

Identify

Discard this part

Dust t=0

Initial-value surface

Figure 18-6. The maximal extension of the collapsing dust cloud.

the initial conditions. Otherwise we will have to answer the question:
what was the dust cloud doing beforehand? How was it set up? If

astrophysicists with dump trucks are involved, then their T#¥ must be
included.

Bizarre Spacetimes

We can make a complete picture of the dust cloud, even into the distant
past if we use the complete cosmological solution. Then the dust cloud
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was created in an initial singularity, a little bang if you will. To get
enough of the Schwarzschild to patch it onto we need another copy of
the spacetime for r < 2m with a sign reversed so that it can be slipped
into the bottom quadrant. It will end up being the same metric form
as above. The picture for this is shown in figure 18-8.

Unknown astrophysics

Figure 18-7. A Dust Cloud Expanding from a Little Bang.

The lower part of this diagram is often called a white hole. It
represents a delayed exploding singularity. There was a time when
such a desperate solution would be required to explain quasars. I say
desperate because normal physics and normal physical laws do not tell
us what is going on with a singularity.

Most Bizarre Spacetime (so far)

To fully compete the Schwarzschild solution, we need to fill in the far
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left quadrant. This requires another whole universe. Let’s not think

small.

Figure 18-8. The Wormhole Spacetime.

This spacetime is often said to have a wormhole in it, a connection
to another universe called an Einstein—Rosen bridge. You can see
by looking at the solution that it is not possible to get through the
wormbhole without exceeding the speed of light.

This spacetime has further unsavory features: it has a naked sin-
gularity. From the outer, normal regions of the universe, either one,
it 1s possible to trace a null geodesic back to a singularity. Since we
do not know what initial conditions to impose on this line, we cannot

predict what radiation will be seen, or what.

FEvent Horizon

These spacetimes have a special geometric feature called an event
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horizon. This concept is only defined for spacetimes which have a flat
infinity tucked off somewhere. If we look at the worldline of some-
thing falling in to the future singularity, and look at light signals that
it sends out, we see that after a finite amount of time, at an unre-
markable point in spacetime, the light signals themselves are trapped
by the singularity. The surface separating the universe into causally
disconnected pieces is called an event horizon.

trapped light signal

observer

Figure 18-9. Event horizon for an observer falling into a Schwarzschild
singularity.
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19. Global Structure

These issues arise from a consideration of causality and the initial—-
value problem. The basic idea is that no information or causal influ-
ence can propagate faster than the speed of light. This follows from
the hyperbolic nature of the basic equations of physics. It is not re-
ally quite so straightforward because of the complications of gauge
invariance, as we saw when discussing gravitational waves.

The situation in Minkowski spacetime is sketched in figure 19-1.

A
Solution determined here
Null edges
A
7 N
/
/ N
/ N
R4 N
Figure 19-1. Causal structure in
Minkowski spacetime. \

Data given here

Data given on the initial hypersurface determines the solution
within a triangle with null edges. What if you have to go all the way
out to infinity? When would this be important? Well, in a wave
problem you might have the condition that there are no incoming
waves.

If infinity is important, then you should bring it in to where you
can see it. Then you can do a further step, similar to extending the
Schwarzschild spacetime by finding a covering space. You can attach
new points at infinity, called ideal points. This is called compactifi-
cation. There is not a unique way to compactify a spacetime. Some
physical properties are lost, like distance, and some preserved, like
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causality. You might try to preserve straight lines as well, and this
would be called a projective compactification. There are no existence
theorems that guarantee that any particular type of compactification
is possible. The situation is quite different from the situation in Eu-
clidean space, where compactification involves only adding a single
point at infinity.

Conformal Structure

If we ignore everything about a metric except its null geodesics, then
we are talking about the conformal structure of a manifold. We say an
application of conformal equivalence when we discussed the redshift
in an expanding universe.

If we rescale the metric by a factor that can depend upon position,
then obviously null lines are transformed into other null lines. If the
original lines are geodesics, then we have to check that the transformed
lines are also geodesics. This is routine, and shows that while the
curve remains a geodesic, the parameter on the curve will not remain
a special affine parameter. That is, the final curve may only satisfy

B oV — boh
ot.,o¥ = pot,

rather than

wooov
ot.,0” =0.

This shows that the causal structure, the null geodesics, is a conformal
invariant.

Conformal Minkowski Spacetime

Let us look into the equivalence class of spacetimes that are confor-
mally equivalent to Minkowski spacetime. We start from

G = da? — dt?,
and consider maps
Yt a) = (u,0) = (Ut 2), VIt @),
such that the pullback metric

PH(G) xG.
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We have
du = uy, dr + uq dt,

dv = v, dzx + vs dt.
The new metric will not have cross terms if we make the choice (this
is not unique)
Upt — Uge = 0,
Vit — Ugp = 0,
Uy = Vg,
Ut = V.

In this case the metric goes to
dv? — du® = (u? — u3)(dt? — da?),

and they are related by a conformal factor, as we hoped.

Two—Dimensional Minkowski Spacetime
First look at an example of what we mean by compactification.
Example: Look at the infinite line, and the map
6 — tan 6.

This maps the open interval —7/2 < 8 < 7/2 onto the en-
tire real line. This is the same trick that we want to do
on Minkowski spacetime using the above type of conformal
transformation.

To do this to Minkowski spacetime, we need to guess solutions of

the wave equation similar in form to the above. It works to use
U= tan_l(t + ) + tan_l(t —x),
v = tan_l(t + ) — tan_l(t —x).
These are obviously solutions of the wave equation, and they also

satisfy the other conditions.
We need to study the map. What happens to the t—axis?

(5,0) = (2tan™"' s,0).

So the entire time axis is mapped into the finite open interval of the
t—axis (—m, 7). The same thing happens to the x—axis. What about a
null geodesic?

(5,8) = (tan™' 2s,tan"" 2s).
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This is a 45° segment, ending at (7/2, 7/2). What about an off—center
null geodesic?

(s,s+a)— (tan_l(Zs +a)+ tan " a,tan_l(Qs +a)— tan™! a).

These all have future endpoints on the line connecting the end of the t—
segment with the end of the x—segment. These curves fill in a diamond—
shaped region.

]-1—

I—I—

I° I°

Figure 19-2. The compactification
of 2D Minkowski Spacetime.

What about time-like lines?
(s,a) — (tan_l(s +a)+ tan_l(s — a),tan_l(s +a)— tan_l(s — a)).

The endpoints are again at (£+7,0). This point is called future timelike
infinity.

More interesting curves are finite—velocity time-like geodesics.
We plot their behavior next, considering

(s,v8) — (tan_l (1—|—v)3—|—tan_1(1—v)3, tan " (1—|—v)3—tan_1(1—v)3>.

These also end up at future time-like infinity.
The result of all of this is that the diamond

|u+v]|<m,

|u—wv| <.
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Figure 19-3. Timelike curves in 2D
Minkowski spacetime.

is conformally equivalent to Minkowski spacetime.

A conformal extension can be made now by just adding in the
boundary points of this open diamond. The top and bottom points of
the diamond are called future and past time-like infinity. There are
also two space-like infinite points. There are also four open null lines,
that are called null infinity. This will change just a little bit when we
go and extend four dimensional Minkowski spacetime.

Four Dimensional Minkowski Spacetime
We look at the map

T = tan_l(t +r)+ tan_l(t —r),
x =tan"'(t +7r) —tan" (¢t — 1),
=20,
=0
which leads after the same sort of computation to the metric

1

4c0s2(X'2|'T) COSZ(XZ;T)

g = [ ](—de +dy: + sin’ Xdﬂz).

Now a conformally equivalent spacetime will just eliminate the
first factor. This spacetime

G = —dr? + dy* + sin® y dQ?,

19.5



is just our friend the Einstein static universe. Here we are just using
it as a model spacetime in which to embed conformally the spacetime
of interest. A picture of the embedding, in which the 3—spheres are

represented by circles is shown next.

Time axis

|_—— Space axis

/

/

— \
™~

Figure 19-4. Embedding Minkowski spacetime in the Einstein static
universe.

The only major change here is that spatial infinity has become a
single point, called [y It is customary to represent this by the plane
drawing in figure 19-5, which is to be “rotated over a 2—sphere, while
keeping the y axis and I fixed.

This is the first view of what are often called pocket spacetimes.
This is the tool that we need to delve into the intricacies of black holes

in the next section.
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Figure 19-5. A 2D representation
of compact Minkowski spacetime.

Al. Tensor Notation

For most of these notes we will use the usual tensor notation, where
k# denotes the u-th component of a contravariant tensor. Sometimes,
however, we use the “abstract index” convention championed by Roger

’, while other times I will in-

Penrose, and speak of “the tensor g,,’
troduce a new symbol, and speak of “the tensor G”. The advantages
of the abstract index notation lie in the automatic indication of the
type of the tensor, and the nature of any contractions that are to be

performed. It should be clear that
hyy = (2m/r)(dt2 + drz)

only makes sense if we are using the abstract index notation.
Sometimes the kernal symbol alone will be use to indicate the
tensor, but only for vectors and covectors. For the above metric per-

turbation, one usually defines
h=hasg®?,
and for a metric tensor itself

g = Det g,,.

IO
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In old tensor a metric was denoted by the abstract symbol ds?,
which I happen to dislike because it is not the square of the d of any
s.

If the metric tensor is diagonal, then you can easily work as if you
were in an orthonormal basis by using what MTW call the “physical
components”. You move the indices midway between up and down,
using

ot /guuawa /gaa‘
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