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1. Fundamental concepts of classical mechanics

In this chapter we briefly recall the fundamental concepts of classical mechanics starting
from Newton’s second law and introducing basic notions like linear momentum, energy,
Hamiltonian and conservation laws.

1.1. Dynamics of a single particle: Newton’s second law

Given a physical system as defined by its constituent particles, their interactions and
possible external fields, the purpose of a mechanical theory (either classical, quantum or
statistical) is to be able to predict the state of the system at any future time t > t0 on
the basis of the sole knowledge of the state of the system at a previous, so-called initial
time t0. The mathematical definition of the state will of course depend on the type of
theory one is considering (e.g., classical, quantum or statistical mechanics), but in all
cases it should be such that it contains the minimum amount of information needed to
predict the outcome of any experiment performed in the system.
In the case of a single particle the state in classical mechanics is defined by the position

vector ~r and the linear momentum ~p (~r, ~p ∈ R3). Let ~r(t) be the curve traced by the
particle as a function of t, then the linear momentum is defined in terms of the velocity

~v =
d~r

dt
= lim

∆t→0

~r(t+ ∆t)− ~r(t)
∆t

by

~p = m~v = m~̇r, (1.1)

where m is the mass of the particle. Notice that we have implicitly assumed that
the position is a continuous (actually differentiable) function of time, i.e., as ∆t →
[~r(t+ ∆t)− ~r(t)] ' ~v ∆t, where ~v is a constant vector. Do you think this is a reasonable
assumption?
The fundamental physics involved in the dynamics of a particle is contained in Newton’s

second law of motion, which in terms of ~r and ~p is given by

~F
(
~r(t)

)
=
d~p

dt
= ~̇p, (1.2)

where ~F is the force acting on the particle when it is at the position ~r. One says that
~F (~r) is a force vector field (~F : R3 → R3). Once more, differentiability of ~p as a function
of t is assumed.
If the mass of the particle is independent of time, from (1.1) and (1.2) we obtain the

more familiar but less general form

~F = m
d~v

dt
= m~̈r,

where ~̈r = ~a is the acceleration.
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1.2. Constants of motion

In classical mechanics, as well as in quantum mechanics, there are special physical quan-
tities whose value remains constant throughout the time evolution of the system. These
quantities have a special physical meaning and provide a fundamental insight on the
symmetries underlying the laws of motion.

1.2.1. Linear momentum

The first and most fundamental conservation theorem is the law of conservation of linear
momentum:

If the force ~F (~r) (or sum of forces) acting on a particle is zero then the momentum ~p
is conserved.
This statement (also known as Newton’s first law1) is an immediate consequence of Eq.

(1.2) since
~F = 0 ⇒ ~̇p = 0 ⇒ ~p = constant.

The linear momentum conservation law is intimately related with translational sym-
metry. It appears whenever the system is invariant under translations, i.e., when all
points in space are equivalent, in the absence of external forces, or when the energy at
all points in space is the same. We shall come back to this point in Sec. 1.4.

1.2.2. Angular momentum

The angular momentum ~L of a particle with respect to a given point O (typically the
origin of the coordinate system) is defined as

~L = ~r × ~p,

where ~r is the position vector going from O to the particle. Clearly, the value of ~L
depends on the choice of O. This can be illustrated by considering, for example, a free
particle with constant ~p and a point O at a distance d from the trajectory, in which case
L = pd.
The time dependence of ~L is given by

d~L

dt
=
d~r

dt
× ~p+ ~r × d~p

dt
.

Since ~p = m
d~r

dt
we have

d~L

dt
= ~r × ~F = ~N, (1.3)

1Actually, the first law is not just a special case of the second one, since it defines the notion of inertial
systems, where the second law applies.
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where ~F is the force acting on the particle and ~N = ~r × ~F the torque of the force.
Equation (1.3) is a relation between vectors (pseudovectors) which holds irrespectively
of the coordinate system, although both ~L and ~N depend on the choice of the origin O.
From Eq. (1.3) the law of conservation of angular momentum follows:
If the total torque ~N is zero, the angular momentum ~L is conserved (~̇L = 0).
This conservation law is useful in problems involving central forces, i.e., force fields

pointing to a common origin O, which is taken as the origin of the coordinate system.
For instance the gravitation field of the sun in the solar system or the electric field of the
nucleus ~E = −Ze~r/r3 in the atom.

The conservation of angular momentum is intimately related with the rotational sym-
metry of the force field. Since Eq. (1.3) is a vector equation it holds for each component
independently, i.e., if Nz = 0 then Lz is conserved.

1.2.3. Energy conservation: Kinetic and potential energy

Let us consider a particle of constant mass m under the action of an external force ~F
and determine the work done by ~F when the particle moves between two points ~r1 and
~r2 along the trajectory. This work is given by the circulation

W12 =

∫ ~r2

~r1

~F · d~r.

The integral can be calculated by using the parametrization of the trajectory ~r = ~r(t)

as a function of time [~r1 = ~r(t1) and ~r2 = ~r(t2)]. Knowing that ~F =
d~p

dt
and ~p = m

d~r

dt
,

or equivalently d~r =
~p

m
dt, we have

W12 =

∫ t2

t1

d~p

dt
· ~p
m
dt.

Assuming that the mass of the particle is independent of time and observing that
d

dt
(p2) =

d

dt
(~p · ~p) = 2 ~p · d~p

dt
we obtain

W12 =
1

2m

∫ t2

t1

d

dt
(p2) dt =

1

2m
(p2

2 − p2
1), (1.4)

where ~p1 = ~p(t1) and ~p2 = ~p(t2) are the linear momenta at the initial and final points of
the integration path.
The scalar quantity

T =
p2

2m
=
p2
x + p2

y + p2
z

2m
(1.5)

is known as the kinetic energy of the particle. Eq. (1.4) states that the work of the
external force is equal to the change in kinetic energy:

W12 = T2 − T1.
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It should be noted that the non-relativistic expression (1.5) for T is the simplest one
that satisfies the conditions imposed by symmetry: i) Since time is homogeneous, T
cannot depend explicitly on t; ii) since space is homogeneous, it cannot depend on ~r ;
iii) since space is isotropic, it must be invariant under rotations, i.e., all directions of the
motion must be equivalent; and iv) T must be positive definite and vanish only when
the particle is at rest (~p = 0). In relativistic classical mechanics T has the form

T =
√

(mc2)2 + p2c2 −mc2,

which of course satisfies all these general symmetry conditions.
All fundamental forces in nature (gravitational, electrical, etc.) have the property that

the circulation of the force field ~F (~r) around any closed path C is zero, i.e.,∮
C
~F (~r) · d~r = 0 ∀ C closed.

Force fields having this property are said to be conservative. Mathematically this is
equivalent to requiring

~∇× ~F = 0 ∀ ~r

or
~F (~r) = −~∇V (~r) = −

(
∂V

∂x
,
∂V

∂y
,
∂V

∂z

)
,

where V (~r) is a scalar differentiable function called potential energy (V: R3 → R).
Well-known examples of potential energy functions are the potential energy of the grav-
itation at the surface of the earth:

V (~r) = mgz ⇒ ~F = −~∇V = (0, 0,−mg),

or the Coulomb interaction between an electron and the nucleus carrying a charge Ze:

V (~r) = −Ze
2

r
⇒ ~F (~r) = −Ze2 ~r

r3
.

In the presence of conservative force fields the time dependence of the kinetic energy
takes a particularly simple and insightful form. Consider T = p2/2m along a trajectory
of the particle. Differentiating with respect to time one obtains

dT

dt
=

1

2m

d

dt
(~p · ~p) =

1

m
~p · d~p

dt
= −~∇V · d~r

dt
=
−dV
dt

,

where we have used that m is independent of time, ~F = −~∇V and ~p = m
d~r

dt
. More-

over, we know that for any scalar field V: R3 → R, the differential dV is given by

dV = V (~r + d~r)− V (~r) =
∂V

∂x
dx+

∂V

∂y
dy +

∂V

∂z
dz = ~∇V · d~r.
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Therefore
dT

dt
=
−dV
dt

,

or equivalently,
d

dt
(T + V ) = 0.

In other words the total energy

E = T + V =
p2

2m
+ V (~r) (1.6)

is a constant of motion. This explains why the force fields obtained as the gradient of a
potential are called conservative fields.

1.3. Hamiltonian and Hamilton equations for a single particle

The total energy E regarded as a function of the dynamical variables ~r and ~p and even-
tually time t is known as Hamilton’s function or Hamiltonian H = T + V . This is the
central mathematical object in the powerful Hamiltonian formulation of classical me-
chanics. Moreover, the corresponding operator in quantum mechanics defines the time
evolution of the quantum mechanical state or wave function. It is therefore important
to gain some insight into the physical significance of H.

For a single particle and in Cartesian coordinates H is given by

H =
p2

2m
+ V (~r) =

p2
x + p2

y + p2
z

2m
+ V (x, y, z).

In order to compact the notation, and to allow for more general sets of coordinates
(e.g., spherical or cylindrical) and constraints it is customary to denote the coordinates
by q and the conjugated or corresponding momenta by p. Thus, in Cartesian coordinates
we have

~q = (q1, q2, q3) = (x, y, z)

and the conjugated momenta

~p = (p1, p2, p3) = (px, py, pz),

which are the usual components of the linear momentum.
Newton’s second law and the relation between velocity and momentum can be replaced

by a set of first order differential equations known as Hamiltonian’s equations or, owing
to their simple and symmetric form, canonical equations. In terms of qi and pi they take
the form

q̇i =
∂H

∂pi
(1.7)

and

ṗi = −∂H
∂qi

. (1.8)
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It is easy to verify that Eq. (1.7) is equivalent to the definition of linear momentum. For
instance for i = 1 we have

ẋ = q̇1 =
∂H

∂p1
=
∂(p2/2m)

∂px
=
px
m
.

The second set of n equations (n is the dimension of space) are equivalent to Newton’s
second law. For example for i = 2

ṗy = ṗ2 = −∂H
∂q2

= −∂V
∂y

= Fy.

The canonical equations are valid in general, including interacting many-particle sys-
tems, other curvilinear coordinate systems or in the presence of constraints. Therefore,
the Hamiltonian

H = H(q1, . . . qn, p1, . . . pn, t) = T + V +W

as a function of qi, pi and eventually t (or in Cartesian coordinates as a function of
~pi and ~ri) univocally defines the time evolution of the system starting from the initial
conditions p0

i = pi(t0) and q0
i = qi(t0). In particular H contains all the information on

possible conservation laws.
For the sake of completeness let us mention that in relativistic mechanics the kinetic

plus rest energy of a free particle is related to the momentum ~p by the requirement that
the magnitude of the momentum four vector is constant:

pµ pµ = p2 − T 2

c2
= −m2c2

or equivalently
T 2 = c2p2 +m2c4.

Consequently, the Hamiltonian of a relativistic particle under the action of a velocity
independent potential V is given by

H = T + V =
√
c2p2 +m2c4 + V.

1.4. Symmetry and conservation laws

Let us consider a particle or a set of particles moving along their classical trajectory qi(t)
and pi(t). The total time derivative of the Hamiltonian along the trajectory is given by

dH

dt
=
∂H

∂t
+
∑
i

(
∂H

∂qi
q̇i +

∂H

∂pi
ṗi

)
.

Substituting the canonical equations −∂H
∂qi

= ṗi and
∂H

∂pi
= q̇i we obtain

dH

dt
=
∂H

∂t
∀ t.
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This implies that if the system is isolated (i.e., no external potential), or if the external
potential is independent of time, H does not depend explicitly on t and the energy is
conserved (∂H/∂t = 0). From the point of view of symmetry, one would say that if
all times are equivalent or, in other words, if a translation in time does not change the
Hamiltonian, then the energy is conserved:

Time invariance ↔ Energy conservation

Let us now consider a system whose energy is unchanged upon a translation δx along a
given direction x. For example, a rigid body in the gravitational field at the earth surface,
which energy remains constant under translations in the x or y horizontal directions. The
invariance of H implies

0 = δH =
∂H

∂x
δx ⇒ ∂H

∂x
= 0 ⇒ ṗx = −∂H

∂x
= 0 ⇒ px is conserved.

The invariance of the Hamiltonian with respect to translations along a given direction
implies, actually is equivalent to, the conservation of the corresponding component of
the linear momentum:

Invariance upon translation ↔ Linear momentum conservation

Let us now discuss what happens if the system is invariant upon rotations around a
given axis n̂. For simplicity we consider a single particle with coordinates ~r = (x, y, z)
and momentum ~p = (px, py, pz). The changes in ~r and ~p after an infinitesimal rotation
with angle δφ around n̂ are given by

δ~r = n̂× ~r δφ

and
δ~p = n̂× ~p δφ.

If H is invariant upon rotations around n̂ we have

0 = δH =

3∑
i=1

(
∂H

∂ri
δri +

∂H

∂pi
δpi

)
= −~̇p · (n̂× ~r) δφ+ ~̇ri · (n̂× ~p) δφ

= −δφ
[
n̂ · (~r × ~̇p) + n̂ · (~̇r × ~p)

]
= −δφ d

dt
[n̂ · (~r × ~p)]

= −δφ d

dt
(n̂ · ~L).

This implies that n̂ · ~L is conserved:
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Invariance upon rotation
around n̂

↔ Conservation of angular
momentum ~L along n̂

The fundamental relations between the symmetries of the system or of the Hamiltonian
and the conservation laws also hold in quantum mechanics. In fact, the constants of mo-
tion are the generators of the infinitesimal transformations which leave the Hamiltonian
invariant.

1.5. Many-particle systems

When we consider a system of particles we must distinguish between external forces ~F (e)
i ,

due to the action of external fields applied on each particle i, and internal forces ~Fji due
to the interactions between the particles i and j. Newton’s second law then takes the
form

~̇pi = ~F
(e)
i +

∑
j 6=i

~Fji,

where ~Fji is the force acting on particle i due to particle j. The forces of interest for
the following satisfy Newton’s third law of action and reaction:

~Fij = −~Fji

and, moreover, the interparticle forces lie along the line joining the particles:

~Fij = (~ri − ~rj) f(rij) where rij = ‖~ri − ~rj‖.

The latter condition is rather strong and does not apply to the electromagnetic forces
between moving charges.

1.5.1. Linear momentum

The action-reaction principle (which is of course obeyed by the important electron-
electron and electron-nucleus interactions) implies that the time dependence of the total
momentum

~P =
∑
i

~pi

is unaffected by the interparticle interactions since

~̇P =
∑
i

~̇pi =
∑
i

~F
(e)
i = ~F (e). (1.9)

The conservation law of the total linear momentum follows: If the total external force is
zero the total linear momentum is conserved.
The universal validity of this conservation law can be easily verified over all ranges of

length and energy (supernova, firework, nuclear decay, etc.).
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We may also use Eq. (1.9) to derive the equation of motion for the center of mass ~R
of the many-particle system. Using that

~R =

∑
imi ~ri∑
imi

, M =
∑
i

mi

we have
~̇P =

∑
i

mi ~̈ri = M ~̈R =
∑
i

~F
(e)
i = ~F (e).

Notice that this equation is not easy to solve when the external force field is inhomo-
geneous, i.e., ~Fi = ~F (~ri).

1.5.2. Angular momentum

The angular momentum of the system is obtained by summing the individual angular
momenta of all the particles with respect to the given origin O:

~L =
∑
i

~li =
∑
i

~ri × ~pi.

Its time dependence is given by

~̇L =
∑
i

(
~̇ri × ~pi + ~ri × ~̇pi

)
=
∑
i

~ri × ~̇pi =
∑
i

~ri × ~Fi.

It is meaningful to split the force ~Fi acting on particle i in external and internal
contributions:

~̇L =
∑
i

~ri × ~F
(e)
i +

∑
i

~ri ×
∑
j 6=i

~Fji.

Putting together the terms for each pair i and j the second term reads∑
i<j

(
~ri × ~Fji + ~rj × ~Fij

)
,

and using the action-reaction condition on the internal forces ~Fij = −~Fji we have∑
i<j

(~ri − ~rj)× ~Fji.

Finally, for internal forces acting along the line connecting the particles, ~Fji is parallel
to ~rij = ~ri − ~rj and thus each term of the sum vanishes (~Fij × ~rij = 0). Hence the time
dependence of the total angular momentum is determined by the total external torque

~N (e) =
∑
i

~ri × ~F
(e)
i ,
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which results exclusively from the external forces:

~̇L = ~N (e).

The conservation theorem for the angular momentum follows: The total angular mo-
mentum of a many-particle system is conserved if the total external torque is zero.
Note that the conservation of angular momentum relies on ~Fji being parallel to ~rij =

~ri−~rj , which does not hold for moving charges. In this case, transfer of angular momen-
tum between the mechanical degrees of freedom and the electromagnetic field is possible,
and only the sum of both is conserved.

1.5.3. Energy conservation

In order to introduce the concept of total kinetic energy we consider the work done by
all the forces acting on the particles along a path between any two given points in an
n-particle trajectory [e.g., ~r1(t1), . . . ~rn(t1) and ~r1(t2), . . . ~rn(t2)]:

W12 =
∑
i

∫ 2

1

~Fi · d~si =
∑
i

∫ 2

1
~̇pi ·

~pi
mi

dt

=
∑
i

∫ 2

1

d

dt

(
p2
i

2mi

)
dt =

∫ 2

1

d

dt

(∑
i

p2
i

2mi

)
dt

= T2 − T1,

where

T =
∑
i

p2
i

2mi
.

We turn now to the most interesting case of conservative forces. Concerning the external
forces the situation is the same as for a single particle, since the force field acts on each
particle independently:

~F
(e)
i (~ri) = −~∇ vext(~ri).

Consequently, the total potential energy due to the external field is

V =
∑
i

vext(~ri).

For the interparticle forces we must require ~Fij = −~Fji and ~Fij = (~ri − ~rj) f(rij), where
f(rij) depends only on the distance rij = |~ri−~rj | between the particles i and j. In order
to obtain a scalar function W (~r1, . . . ~rn) such that

−~∇iW = ~F
(int)
i =

∑
j

~Fji ,
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we consider first the interaction between two particles i and j and seek for a function
wij(~ri, ~rj) such that

−~∇iwij = ~Fji = −~Fij = ~∇jwij .

This can be solved by recalling the calculation of the gradient of a function of the
distance w = w(r)

∂w

∂x
=
dw

dr

∂r

∂x
= w′(r)

2x

2
√
x2 + y2 + z2

= w′(r)
~r

r
.

Consequently, if we choose
wij(~ri, ~rj) = wij(rij)

with rij = |~ri − ~rj | we have

−~Fji = ∇iwij(rij) = w′ij(rij)
(~ri − ~rj)
rij

and
−~Fij = ∇jwij(rij) = w′(rij)

(~rj − ~ri)
rij

= ~Fji.

In order to obtain the interaction potential we simply sum over all pairs (i, j):

W =
1

2

∑
i 6=j

wij(rij) =
∑
i<j

wij(rij).

Example: wij =
qi qj
rij

or simply w(rij) =
e2

rij
and W =

1

2

∑
i 6=j

e2

|~ri − ~rj |
.

Note the factor
1

2
if the double sum over i and j is used, which results from the fact that

each pair of variables ij appears twice, once in
∑

i and once in
∑

j . We may explicitly
verify that

−∂W
∂xk

= −1

2

∑
j

∂wkj
∂xk

+
∑
i

∂wik
∂xk


=

1

2

∑
j

~Fjk +
∑
i

~Fik

 =
∑
j

~Fjk.

Summarizing, the total potential energy

V +W =
∑
i

vext(~ri) +
1

2

∑
i 6=j

wij(|~ri − ~rj |)
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satisfies

−~∇i(V +W ) = ~F
(e)
i +

∑
j

~Fji. (1.10)

With the help of Eq. (1.10) we can easily determine the time dependence of the total
kinetic energy

T =
∑
i

p2
i

2mi

as

dT

dt
=
∑
i

~pi
m
· ~̇pi =

∑
i

−~∇i(V +W ) · d~ri
dt

= −d(V +W )

dt
.

Therefore,
d

dt
(T + V +W ) = 0,

which implies that the total energy, namely, kinetic, plus external potential, plus in-
teraction energy, is a constant of motion. For example, the total energy of a system of
n charged particles (e.g., electrons) around the point charge of a nucleus with atomic
number Z is given by

E =
n∑
i=1

p2
i

2m
+
∑
i

(−Ze2)

|~ri|
+

1

2

∑
i 6=j

e2

|~ri − ~rj |
.
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2. Basic concepts of quantum mechanics

Whenever one attempts to apply classical mechanics to explain atomic or subatomic
phenomena, one inevitably comes to very profound contradictions. For instance, in
the case of the atom, one would have to conclude that the electrons should fall into
the nucleus, since classical charge systems are unstable, and since moving charges in
closed trajectories would radiate electromagnetic waves, thereby losing progressively their
kinetic energy.
The contradictions are so profound that the formulation of a theory capable of describ-

ing microscopic phenomena (i.e., those occuring at very small distances and for particles
of very small mass) requires a complete modification of the basic physical concepts and
laws. The examples to be discussed below will show that some of the most basic notions
of classical mechanics and of our experience with macroscopic phenomena are simply
unapplicable to the atomic world. The limitations of classical mechanics are not sim-
ple quantitative disagreements but much more fundamental. The main problem is that
classical physics does not even provide an appropriate language for describing certain
microscopic phenomena, just in qualitative terms.
We will start by discussing a number of experiments that illustrate the concept of

wave-particle duality, the complementary principle, the superposition principle, the mea-
surement process in quantum mechanics, and the stochastic nature of the observed events.
While the conclusions of these experiments are for the most part negative, in the sense
that they show how the classical concepts fail or why they should be abandoned, they
also provide some extremely useful insights on the problems that quantum mechanics
needs to (and actually does) solve. Moreover, the examples will unravel important clues
on how the theory should look like.

2.1. Electromagnetic waves

The equations governing the classical dynamics of electrical and magnetic fields in vacuum
are the Maxwell equations

~∇ · ~B = 0 ~∇× ~E +
1

c

∂B

∂t
= 0

~∇ · ~E = 0 ~∇× ~B − 1

c

∂E

∂t
= 0.

With a few simple manipulations one can easily derive the equation for classical elec-
tromagnetic waves. Starting from

~∇× ~E +
1

c

∂ ~B

∂t
= 0,

take ~∇× to obtain
~∇× (~∇× ~E) +

1

c

∂

∂t
(~∇× ~B) = 0.
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Using a known relation from vector calculus this is written as

~∇ (~∇ · ~E)−∇2 ~E +
1

c

∂

∂t

(
1

c

∂ ~E

∂t

)
= 0,

which implies

∇2 ~E − 1

c2

∂2 ~E

∂t
= 0.

If we focus for simplicity on one component of ~E, a scalar electromagnetic field which
we denote by φ, we have

∇2φ− 1

c2

∂2φ

∂t
= 0. (2.1)

Let us solve this linear homogeneous differential equation with the usual exponential
ansatz

φ~k(~x, t) = ei(
~k·~x−ωt),

where ~x = (x1, x2, x3) refers to the position vector, ~k to the wave vector, and ω to
the angular frequency. Let us see under which conditions φ(~x, t) = ei(kx−ωt) satisfies the
wave equation:

~∇φ~k = ~∇
[
ei(k~x−ωt)

]
= i~k ei(k~x−ωt)

and thus

~∇ · (~∇φ~k) = i~k ~∇
(
ei(
~k·~x−ωt)

)
= −k2 ei(kx−ωt).

Since
∂2

∂t2
φ~k = −ω2ei(

~k~x−ωt) we have

∇2φ~k −
1

c2

∂2φ~k
∂t2

=

(
ω2

c2
− k2

)
ei(
~k~x−ωt) = 0,

which can only hold if
ω = c k with k = |~k|.

This is known as the dispersion relation of electromagnetic waves. A dispersion relation
gives the energy or frequency of a wave state as a function of the wave vector ~k. In the
present case the isotropy of space (vacuum) implies that ω depends only on k. Using the
relation ω = c k we can write the monochromatic plane wave as

φ~k(~x, t) = ei k(k̂·~x−c t),

which explicitly shows that the points of stationary phase propagate with the light
velocity c = ω/k along the direction k̂ = ~k/k of the wave vector.
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The wave equation is a linear homogeneous equation. This means that if φ1 and φ2

are solutions, then αφ1 +β φ2 is also a solution for any α, β ∈ C. We may then write the
most general solution φ(~x, t) of the wave equation (2.1) as a linear combination of plane
waves φ~k = ei(

~k·~x−ωt). If φ(~x, t) is periodic in space [φ(~x + ~ai, t) = φ(~x, t) for i = 1 − 3]
only discrete values of ~k are allowed. For instance, in one dimension kn = (2π n)/a with
n ∈ Z so that ei knx = ei kn(x+a). However, in the most general case all values of ~k are
allowed and the linear combination takes the form of a Fourier integral

φ(~x, t) =
1

(
√

2π)3

∫
d3k A(~k) ei(

~k·~x−ωt). (2.2)

The coefficient A(~k) ∈ C represents the weight in amplitude and phase of the plane wave
φ~k in the electromagnetic wave φ(~x, t). Notice that, since A(~k) = eiϕ~k |A(~k)| ∈ C, any
phase shifts ϕ~k between the plane waves can be taken into account.

The intensity of the radiation at the point ~x and time t is given by the square of
the fields (E2 + B2)/8π, which in the present scalar-field approximation corresponds to
|φ(x, t)|2. It is important to notice that, given two waves φ1 and φ2, the superposed
solution φ1 + φ2 leads to interference effects since the intensity of the superposed waves
is not equal to the sum of the intensities:

|φ1 + φ2|2 6= |φ1|2 + |φ2|2.

We may profit from the general expansion (2.2) to analyze under which conditions a
wave packet or light pulse can be localized in some reduced region in space. To this aim
we consider a Gaussian wave packet in one dimension:

φ(x, t) =
1√

2π∆k2

∫ +∞

−∞
dk e−

(k−k0)2

2∆k2︸ ︷︷ ︸
A(k) ∈ R
⇒ all plane
waves in phase

ei k(x−c t).

We replace for a moment x− c t by x and obtain

φ(x, t) =
ei k0 x

√
2π∆k2

∫ +∞

−∞
dk e−

(k−k0)2

2∆k2 ei (k−k0)x

and shifting the origin of k to k − k0

φ(x, t) =
ei k0 x

√
2π∆k2

∫ +∞

−∞
dk e−

k2

2∆k2 ei k x.

Taking into account that

k2

2∆k2
− i k x =

(
k√
2∆k

− i ∆k x√
2

)2

+
∆k2x2

2

we can write
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φ(x, t) =
ei k0 x

√
2π∆k2

e−
∆k2x2

2

∫ +∞

−∞
e−

(k−i∆k2x)2

2∆k2 dk.

This integral can be solved by changing to the complex variable z = k−i∆k2x. Noting
that dz = dk we obtain

φ(x, t) = ei k0 x e−
∆k2x2

2
1√

2π∆k2

∫
e−

z2

2∆k2 dz = ei k0 x e−
x2 (∆k)2

2 .

Finally

φ(x, t) = ei k0 x e−
x2

2∆x2 ,

where ∆x = 1/∆k. The uncertainty or dispersion ∆x in the wave-packet’s position is
inversely proportional to the uncertainty ∆k in the wave vector.

Since the Gaussian packet is an optimal packet in the sense that it reaches the largest
localization (smallest ∆x) for a given ∆k, we conclude that the uncertainty ∆k in the
value of the wave vector k and in the position of the light pulse (i.e., the photons) are
related by

∆x∆k ≥ 1.

For 3 dimensions we can generalize the relation to

∆xi ∆kj ≥ δij ,

since the dispersion of k in the direction i has no influence in the localization of φ(~x)
in the directions j with j 6= i.
Replacing now x by x− c t we obtain

φ(x, t) = ei k0 (x−c t) e−
(x−c t)2

2∆x2 .

One observes that the Gaussian wave packet propagates undistorted with the speed c,
since the dispersion relation is strictly linear in vacuum: ω = c k.

It is interesting to relate the uncertainty or width ∆x of the wave packet with the
duration ∆t of the pulse at a given fixed point in space. For a wave packet with the
dispersion ∆k the dispersion in frequency is ∆ω = c∆k. Moreover, the spatial extension
of the packet is

∆x ≥ 1

∆k
=

c

∆ω

∆x
∆ω

c
≥ 1

∆x

c
∆ω ≥ 1.

The duration of the passage of such a packet at any given point is

∆t =
∆x

c
≥ 1

c

c

∆ω
=

1

∆ω
.

19



Consequently,
∆t∆ω ≥ 1.

One concludes that it is impossible to ascribe a well-defined position (∆x = 0) and
a well-defined wave vector (∆k = 0) or frequency (∆ω = 0) to a photon. Moreover, it
is not possible to define the frequency (∆ω = 0) and the precise point in time of the
passage of a pulse (∆t = 0) at any given point. To be strict one should replace “photon”
by “electromagnetic wave” or “ensemble of photons” in the previous statement. These
uncertainty relations ∆k∆x ≥ 1 are a typical manifestation of wave properties. They
are inherited by quantum mechanical particles with a finite rest mass (e.g., electrons)
due to wave–particle duality.

2.2. Non-classical aspects of the electromagnetic field: Photons

2.2.1. The photoelectric effect

The interactions between light and electrons have provided many important clues in the
development of quantum theory. The first manifestation of the quantized, particle-like
nature of light is the photoelectric effect. The main experimental observations are the
following:

i) The rate of electron emission is proportional to the intensity of radiation, i.e., to
|φ|2.

ii) For each metal there is a threshold frequency ωc such that for ω < ωc no emission
at all is observed despite intensity increase (within reasonable limits).

iii) For ω > ωc, the largest kinetic energy Emax
kin of the emitted electrons depends

linearly on ω, but not on the intensity of the radiation |φ|2.

iv) The time delay between the start of the incident radiation and electron emission is
very short (< 10−9 s).

These results are incompatible with the classical theory of electromagnetic radiation.
All the observations indicate that the energy is not transferred by the field |φ2| but rather
that the process occurs in a quantized way.
Einstein’s explanation proposes that the emitted electron is scattered by a quantum

of light known as photon thereby receiving momentum and energy. The energy E of the
photon is related to its frequency by

E = ~ω

and its momentum ~p is given by
~p = ~~k,

where ~ = 1.054 × 10−34 Joule · s = 0.66 eV · fs is Planck’s constant (~ = h/2π). ~
has the units of action or of angular momentum.
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The intensity of the light corresponds to the number of emitted photons per unit time.
The energy of each photon is independent of intensity, it depends only on the frequency
ω or the wave length λ = 2π/k = 2πc/ω.

Since ω = c k ⇒ E = ~ω = c ~ k = c p. Recalling the relativistic energy-momentum
relation E2 = p2c2 +m2c4 one concludes that photons have vanishing rest mass m. The
explanation is as follows:

i) Emax
kin = ~ω − W , where W is the metal’s work function. If Emax

kin < 0 ⇒ no
emission whatever the intensity, since the electrons cannot escape from the metal.

ii) Emax
kin = ~ω −W is independent of the number of photons, i.e., of the radiation

intensity.

iii) The intensity of the radiation defines the number of photons, which controls the
number of emitted electrons.

iv) A single photon can emit an electron. Therefore, no delay in accumulating absorbed
energy is involved. According to the classical picture one would have to integrate
|φ|2 during some time before emission can occur, and this time delay would be
inversely proportional to the intensity |φ|2.

2.2.2. The Compton effect

The Compton effect provides a number of additional important clues. Consider a wave
packet with small ∆k (large spatial extension), i.e., essentially monochromatic. Clas-
sically one expects that the electron would gain momentum in the direction ~k of the
incident radiation and that the light would be scattered in the form of spherical waves.
However, Compton X-ray scattering experiments show the following:

i) The scattered electron often acquires a momentum ~p transversal to the incident ~k.

ii) There is no sign of a spherical outgoing wave.

iii) The scattered light is concentrated in a spatially confined packet.

iv) The propagation direction of the scattered light is correlated with the momentum
vector ~p of the scattered electron.

v) The wave length and consequently the energy of the scattered light depends on the
light’s scattering angle θ as

ω′ = ω

(
1 +

2~ω
mc2

sin2 θ

2

)−1
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or equivalently

λ′ − λ = 2λc sin2 θ

2
,

where λc =
2π ~
mc

is the Compton wave length.

This experiment can be explained by assuming that photons scatter with electrons as
individual particles like billard balls, i.e., following energy and momentum conservation
according to Einstein’s relations ~p = ~~k and E = ~ω = c p for photons, and E2 =
c2p2 +m2c4 for electrons.
In the photoelectronic effect, the need for the quantization of the energy

E = ~ω

of the electromagnetic radiation became clear. This established the relation between
energy and frequency of electromagnetic oscillations given by

ei ω t = ei
E
~ t.

For the explanation of the Compton effect we need to assume the relation

~p = ~~k

between the wave vector ~k and momentum ~p of a quantum of radiation. This establishes
the relation between momentum and the oscillations of the electromagnetic wave in space
given by

ei
~k·~x = e

i
~ ~p·~x.

Consequently there is a relation between momentum and wave length:

λ =
2π

k
=

2π ~
p
.

Since ω = c k, we also have E = c p.
The correlations between the light-scattering direction and its frequency, as well as

between the directions of the scattered particles, can be explained by assuming that the
interaction occurs between a single photon and an electron, and that the total energy
and momentum are conserved in the process. Let us assume that the direction of the
wave vector of the incident (scattered) photon is along ~k (~k ′), and that the electron is
initially at rest (~p = 0). Energy and momentum conservation imply

~ω +mc2 = ~ω ′ +
√
m2c4 + c2p′ 2 (2.3)

and

~~k = ~~k ′ + ~p ′, (2.4)
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where ~p ′ refers to the momentum of the scattered electron. From Eq. (2.4) we have
~p ′ = ~ (~k − ~k ′) and therefore

p′ 2 = ~2 (~k − ~k ′)2 = ~2 (k2 + k′ 2 − 2~k · ~k ′)
= ~2

[
(k − k′)2 + 2 k k′ (1− cos θ)

]
= ~2

[
(k − k′)2 + 4 k k′ sin2

(
θ

2

)]
. (2.5)

Moreover, Eq. (2.3) can be written as

~ c (k − k′) +mc2 =
√
m2c4 + c2p′ 2. (2.6)

Taking the square on both sides of Eq. (2.6) and replacing p′ 2 by Eq. (2.5) one obtains

mc (k − k′) = 2~ k k′ sin2 θ

2
.

Finally, introducing the Compton wavelength λc =
2π ~
mc

we have

2π

(
1

k′
− 1

k

)
= 2λc sin2 θ

2

or
λ′ − λ = 2λc sin2 θ

2
.

A number of nontrivial conclusions can be inferred from the previous partial explana-
tion of the effect:

1) The concept of particles or photons and waves ei (~k·~x−ωt) are linked by Einstein’s
relations

E = ~ω and ~p = ~~k.

In other words, we attach an energy quantum to the electromagnetic field and a
momentum ~p to a wave vector. This wave-particle duality is a concept that does
not exist at all in classical physics. In terms of Bohr’s complementary principle one
would say that a single classical concept (in this case wave- or particle-like aspects)
is not enough to describe atomic phenomena.

2) Another most remarkable feature of the experiment is the stochastic nature of the
outcome. It seems that there is no way one could control the momentum of the
scattered electron or the wave length of scattered light. Compton incorporates part
of the statistical aspect in the interpretation by establishing a relation between the
scattered angle and the frequency of the light. But this first analysis is clearly
incomplete, since it cannot predict the probability for each scattering angle.
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3) Classical theory, in contrast, is completely useless, since it would conclude that the
initial conditions (which are all the same for all photons) completely define the out-
come of the scattering process. The concepts of classical theory are inappropriate
since they do not incorporate the statistical aspects of the observed phenomena.

4) Already at this point one may ask oneself a kind of philosophical question: What
is the origin of the statistical nature of the experimental outcome? Is it the
quantum mechanical state (whatever this is) that has a statistical, somehow non-
deterministic nature? Or are the statistical results of the experiment only a con-
sequence of the measurement process, i.e., of the interaction between the quantum
mechanical state and the macroscopic world or apparatus that detects scattering
angle and wavelength, so that a human can read it? To put it in Einstein’s terms,
is God playing dices with nature?

2.2.3. Young interference experiment

One of the most remarkable features of quantum physics is the so-called wave-particle du-
ality which states that particle and wave aspects of quantum phenomena (in the present
case light) are indivisible. In other words, if one attempts to interpret quantum phe-
nomena with classical concepts corresponding to the notions of particles and waves, one
realizes that both concepts are needed at the same time. Since these are classically
incompatible, it is clear that the classical interpretation and language are inappropriate.
Young’s interference experiment for light, and the similar phenomenon of electron

diffraction observed for particles having a nonvanishing rest mass, illustrate the problem
very clearly. We consider the following arrangement:
(Bild)
The main qualitative observations are the following:

1) If S2 is closed, one observes a diffraction spot I1(x).

2) If S1 is closed and S2 open, one sees I2(x).

3) If both sides are open, one sees an interference pattern I(x) 6= I1(x) + I2(x).

How to explain this with the particle picture put forward by the explanation of pho-
toelectric effect and Compton’s experiment?

1) One could attempt to interpret the single-slit diffraction spot I1(x) or I2(x) clas-
sically in terms of collisions of the particles (photons) during the passage through
the slit. This is actually not quite satisfactory in detail, but anyway this is not so
crucial.
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2) Let us focus on the interference effect that appears when both slits are open. How
can one explain that a particle, which in a classical picture follows a trajectory
going, for example, through S1, knows whether S2 is open or not?

One could try to argue that the interference is due to interactions of the photons
going through S1 with photons going through S2. However, if one reduces the in-
tensity, so that only one or a few photons pass at a time and there is no possible
interaction, and one increases proportionally the exposure time, the interference
pattern remains. Consequently, interference is not a result of photon-photon inter-
actions.

The observed effect is therefore incompatible with the idea that particles go through
one slit or the other. The interference phenomenon is thus incompatible with the classical
notion of path.
However, we all know that the interference pattern can be easily interpreted by using

the notion of waves and the superposition principle, which holds for any linear homoge-
neous differential equation such as the wave equation

∇2φ− 1

c2

∂2φ

∂t2
= 0.

The wave picture of light implies that the intensity of the photon beam is proportional
to the square of the electric and magnetic fields

|E|2 or |φ|2.

The intensity at any point in the screen is given by the square of the sum or superpo-
sition of the fields generated by each slit S1 and S2 which act as secondary sources:

E(x) = E1(x) + E2(x) with Ei = ei
~k·(~ri−~Ri),

and

I(x) = |E(x)| = |E1(x) + E2(x)|2

= |E1(x)|2 + |E2(x)|2 + 2Re{E1(x)E∗2(x)}︸ ︷︷ ︸
interference term

6= |E1|2 + |E2|2.

There is no interaction at all between the fields E1 and E2, just linear superposition.
You could pragmatically say: “Here the wave explanation works, so maybe we can

forget about the particle picture for this experiment (despite Compton’s experiment).
Maybe something different happened there.”
But then you decide to look in more detail at the one-photon-at-a-time version of

Young’s experiment and you see what’s really going on.
If you reduce the intensity to the limit of one or a few photons at a time and keep the

exposure time relatively short, so that only one or a few photons are emitted, you see
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no interference pattern in the photographic plate, but isolated single-photon dots. This
is completely incompatible with the wave picture which predicts an interference for all
intensities, i.e.,

I ∝ |E(x)|2.

The individual dots follow a random distribution with no correlation between the
positions corresponding to successive photons. We recover here Compton’s randomness
of successively scattered photons.
Only when we increase the exposure time, so that many photons have arrived per

unit area and one can no longer distinguish or resolve individual dots, we recover the
interference pattern as predicted by the classical wave theory

I = |E(x)|2 = |E1(x) + E2(x)|2.

We must conclude that the wave theory, which follows superposition, only predicts the
probability density for a light quantum or photon to hit the screen at a given point x.
In fact |E(x)|2, which is the result of the superposition of E1(x) and E2(x), gives the
probability density.
While the idea that the classical field gives the probability amplitude is attractive, it

doesn’t solve the problem that a photon going through S1 behaves differently if S2 is
open or closed. So we may want to check if the photon does get through one slit or the
other. To this aim we put detectors just after the slits. One then observes 50% of the
counts on S1, 50% on S2, and never a count on both. In other words, if we measure the
position of the photon we get a well-defined value.
What happens if we put a detector only behind S2 (that absorbs of course all the

photons going through S2), so that we know that the rest of the photons go certainly
through S1. In this case, as expected, we recover the single-slit result I1(x) with no
interference at all.
At this point we can draw a few important conclusions:

1) If the photons are allowed to traverse different paths, we either remain ignorant
about which path the quantum particles have traversed and observe an interference
pattern, or we experimentally determine (i.e., “measure”) which was the path that
has actually been taken and then lose the interference pattern.

One often summarizes this by the complementarity principle which states that a
measurement designed to manifest one classical attribute (e.g., a wave or particle
aspect) precludes the possibility of observing the other or at least part of the
other classical attribute. A measurement affects the quantum state of a microscopic
particle in an essential way.

This is not what happens in classical physics. In classical mechanics the particles
have their own dynamical variables (position, momentum, etc.), irrespectively of
the measurement, which can in principle be as soft as wished.
(Example: Photons � Train.)
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2) We must conclude that a photon follows no trajectory. It has no intrinsic dynamical
variables like position or momentum. These variables appear only as a result of a
measurement.

3) The photons make random individual spots on the screen, so that there is no
possibility of predicting the outcome of a single measurement. The experiment
can only attempt to determine the probabilities for individual events. This implies
recording a large number of quantum events.

2.3. Non-classical properties of particles having finite rest mass:
The uncertainty principle

While the properties of photons and the interaction of light with matter are both interest-
ing and clarifying, a detailed development of the quantum theory of radiation cannot be
discussed without a previous background on non-relativistic quantum mechanics. From
now on we focus therefore on the properties of electrons, which we will loosely take as a
synonym of a quantum object with a non-vanishing rest mass.
We have already pointed out the impossibility of understanding the stability of atoms

in a classical framework. For the formulation of quantum mechanics it is also important
to realize that electrons show (like photons) a number of features belonging to wave
physics. In particular electrons diffract displaying interference patterns when they pass
through crystals, in a completely analogous way as electromagnetic waves.
Let us consider an idealized version of the electron diffraction experiment. In the

two-slit experiment
(Bild)
one observes the same phenomena found for electromagnetic waves. As already dis-

cussed for photons, this result is incompatible with the idea that electrons follow a path.
The lack of path or trajectory in quantum dynamics is one of the manifestations of
Heisenberg’s uncertainty principle, which is probably the most fundamental concept in
quantum mechanics.
The fact that electrons lack of a path also implies that they have no intrinsic dynamical

variables in a classical sense. In particular it means that an electron has no intrinsic
value of the position, velocity or momentum. These dynamical variables can only appear
as the result of a measurement. A measurement is the result of the interaction of an
electron with a classical object (typically, but not necessarily a macroscopic object like
a photomultiplier detector). These classical objects are called apparatus. As a result
of a measurement, i.e., as a result of the interaction of the electron and the classical
object, the state of the apparatus and the state of the electron change. These changes
depend on the initial state of the electron and can thus be used to characterize its state
quantitatively. For example, a detector set behind the slits S1 or S2 allows one to define
the position of the electron.
Notice that the notion of measurement as interaction is completely independent of the

presence of a human observer. Moreover, the apparatus need not be macroscopic. It
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should simply follow classical mechanics to a sufficiently high accuracy. For instance the
vapor molecules in a Wilson chamber, which condense to a thin but macroscopic cloud
upon the passage of an electron, allow one to determine the electron’s path to a low degree
of accuracy. As we shall see, momentum or velocity and position can be simultaneously
determined provided that both measurements are done with a limited accuracy. Precise
simultaneous measurements of both position and momentum are of course not possible,
since this would imply that the electron follows a trajectory.
We see that classical mechanics is not only a limiting case of quantum mechanics. It

is also needed to formulate the connection between the quantum and the macroscopic
worlds, i.e., the relation between the quantum state and the results of measurements. A
typical problem in quantum mechanics is to predict the result of a measurement on the
basis of the result of a previous measurement. The first measurement (i.e., the interaction
with a macroscopic classical object) is often referred to as a “preparation” of the system.
An example would be an electron going through a slit with a given kinetic energy. The
presence of a slit defines the position of the electron, even if no human is looking at
it. Moreover, quantum mechanics must be able to predict the possible values of a given
measurement which, as we shall see, are often restricted. For example, part of the energy
levels of an atom are discrete.
The measurement is an interaction and therefore affects the state of the electron. This

effect becomes increasingly important with increasing precision of the measurement. This
might remind you of the analysis of the electromagnetic wave packet, for which a well
defined wave length ∆k → 0 implies an undefined position ∆x → ∞, and vice versa.
For a given accuracy of the measurement the effect of the measurement cannot be made
arbitrarily small. If this would be possible, it would mean that this property is an
intrinsic property of the electron (e.g., its mass or charge) and not a dynamical variable.
The situation is conceptually completely different from what one is used to in classical
physics.
Among the different physical observables, the measurement of the coordinates of the

particle (position) plays a fundamental role. Successive measurements of the position of
an electron do not lie on a straight line. However, as the delay ∆t between consecutive
measurements is reduced (∆t → 0), the distance between the recorded positions tends
to vanish. This implies that a position measurement is reproducible. No velocity can
be inferred as the limit of ~xi+1 − ~xi for ∆t → 0. It is not possible to measure position
and velocity at the same time, since otherwise the electron would have a trajectory.
One concludes that position and velocity cannot be measured simultaneously. However,
inexact measurements of both ~x and ~p (or velocity) are possible.

Our previous analysis of a wave packet in the context of classical electromagnetic waves
has shown that the uncertainty ∆k in the wave vector and the uncertainty ∆x in the
position of a Gaussian wave packet are related by

∆k∆x = 1.

Using the de Broglie-Einstein relation between wave vector (or wave length λ = 2π/k)
and momentum

~p = ~~k
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we have for an hypothetical Gaussian electronic wave packet

∆x∆p = ~.

This provides a mathematically more precise statement of Heisenberg’s uncertainty
principle. It quantifies to what extent simultaneous measurements of position and mo-
mentum with a limited degree of accuracy are possible. Notice in particular that ∆x→ 0
implies ∆p→ +∞ and vice versa.
Later on, as soon as the mathematical formulation of quantum mechanics is available,

we shall define
∆x =

√
〈 (x− 〈x 〉)2 〉

and
∆p =

√
〈 (p− 〈 p 〉)2 〉,

and we shall prove that

∆p∆x ≥ ~
2

for any quantum mechanical state.
The uncertainty principle is in my views the most important single fundamental con-

cept in quantum mechanics. The reader may wish to stop here and think for himself
about the numerous physical implications of the simple relation ∆p∆x ∼ ~. Why do
electrons diffract through a small opening? Why do electrons not fall to the nucleus,
whatever large the nuclear charge is, as a meteorite would fall into the sun? Why do
fast electrons look as if they would follow a path in a Wilson chamber? Why is the
uncertainty principle irrelevant in the classical macroscopic world, e.g., for cannon shots
or for the motion of the moon around the earth? Why is it possible to use electrons to
create a moving image in a television set? Is it in principle possible to record a film of a
chemical reaction or of a vibrating molecule? If yes, under which conditions? And finally,
are two identical quantum mechanical particles (e.g., two electrons) distinguishable or
not? Could one devise an experiment to attach a label to an electron to distinguish it
from another electron, as one can do with any classical object?
A measurement on a quantum object changes its state. It is therefore not possible in

general to predict with certainty the result of a subsequent measurement on the basis of a
previous one. We have discussed the example of subsequent measurements of the position.
One can only predict the probability for a given result of a measurement, for instance,
the probability for an electron to hit the screen at a given point. There are two kinds of
measurements in quantum mechanics: those which do not lead with certainty to a given
result and those for which the result can be predicted precisely. In the latter case we
say that the associated physical quantity has a definite value. The measurement of a set
of physical quantities, also called observables, which have simultaneously definite values
and that are such that no other observable can have a definite value at the same time
are called complete set of observables. A measurement of a complete set of observables
defines the quantum state completely, irrespectively of the history of the electron prior
to the measurement.
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In the following we will focus on complete defined states. Moreover, we consider an
elementary particle, i.e., a particle with no internal structure, for which the measurement
of the position (x, y, z) in R3 constitutes a complete set of observables. For all practical
purpose this will be an electron ignoring for the moment its intrinsic spin.
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3. Fundamental mathematical formalism

The experiments discussed in the previous chapter have illustrated the problems faced by
quantum mechanics, the inadequacy of classical concepts such as trajectory and intrinsic
dynamical variables, and the concept of measurement in quantum mechanics as an inter-
action between quantum objects and a classical apparatus. They also provided a number
of hints on the probabilistic nature of the outcome of experiments, as well as on the
mathematical structure of the theory. For instance, the experiments suggest the notion
of interference and superposition, and the relation between momentum and wave length
(or wave vector) even for particles having a non-vanishing rest mass (e.g., electrons). We
are thus ready to present the mathematical formalism of quantum mechanics. Clearly, a
new theory requires new assumptions that cannot be derived from a less general theory.
We intend to present these basic assumptions or “postulates” clearly as such. At the
same time we shall attempt to provide plausibility arguments based on intuition and the
previous experimental discussion.

3.1. The wave function

In the following we shall denote by q the coordinates of the system and by dq the volume
element in the coordinate space. Thus, for an electron in one dimension (1D) q = x and
dq = dx, while in 3D we have q = ~x (or q = ~r) and dq = d3x (or dq = d3r). For a
many-particle system q = (~x1, ~x2, . . . ~xn) and dq = d3x1, . . . d

3xn.
The fundamental mathematical formulation of the theory relies on the fact that the

state of a quantum mechanical system at a given time t is completely described by a
definite in general complex function

Ψ (q, t) ∈ C

of the coordinates. The wave function contains the complete information of the physical
state. The answer to any question we may ask about the system is contained in Ψ(q).
This means that the knowledge of Ψ(q) allows one to predict the probability for each of
the various results of the measurement of any other observable (e.g., the momentum ~p of
the particle).
The state of the system and thus the wave function Ψ(q) vary in general with time [i.e.,

Ψ(q) = Ψ(q, t)]. According to our first postulate Ψ(q, t0) describes the quantum state
completely at time t0. Therefore, the knowledge of Ψ(q, t0) at t0 must suffice to predict
the state of the system and thus Ψ(q, t) at any future time t > t0. Mathematically,
this implies that the equations governing the time evolution of Ψ(q, t) must contain at
most first-order derivatives with respect to time. If higher derivatives would be involved
(like in Newton’s equations) one would also need to know Ψ̇(q, t0) to predict Ψ(q, t)
for t > t0. Conversely, if the time-evolution equation involves only first-order time
derivatives, the knowledge of Ψ(q, t0) implies that Ψ(q, t) is univocally defined for all
future times. Therefore, once the actual state of the system is defined by Ψ(q), quantum
mechanics is absolutely deterministic in the sense that the state Ψ(q, t) is perfectly known
to every possible detail at any future time t. As already discussed, it is the outcome of a
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measurement that is stochastic in nature, but this has nothing to do with time evolution.
It is a consequence of the nature of the measurement process and the interaction between
the quantum object and a classical apparatus.

3.2. The superposition principle

Once the notion of wave function and quantum state has been introduced we may turn
to the chief principle of quantum mechanics: The superposition principle.
Suppose that at time t the system can be in a state 1 described by the wave function

Ψ1(q) and suppose there is another possible state 2 described by Ψ2(q), we postulate
that every function of the form

Ψ(q) = c1 Ψ1(q) + c2 Ψ2(q) (3.1)

with c1 and c2 arbitrary constants in C describes a possible state of the system. Ψ(q) is
said to be a linear combination of Ψ1 and Ψ2. Note that c1 and c2 are independent of q
and t. Moreover, if we know the time dependence of the state of the system when it is in
the states 1 and 2 [i.e., Ψ1(q, t) and Ψ2(q, t)], then the time dependence of the combined
state is

Ψ(q, t) = c1 Ψ1(q, t) + c2 Ψ2(q, t). (3.2)

In other words the linear relation (3.1) holds for all times. Remember that c1 and c2

are independent of t. An immediate consequence of the principle of superposition is
that all the equations satisfied by any wave function Ψ(q, t) must be linear in Ψ and
homogeneous.
Conversely, if the time-evolution equation of the wave function is linear and homoge-

neous, then the superposition principle holds.
The previous statement can be immediately generalized to n wave functions. Given

the possible states Ψ1(q), . . .Ψn(q) of a system, then

Ψ(q) =
∑
n

an Ψn(q) (3.3)

is a possible state for arbitrary an ∈ C. If the set of functions Ψ1, . . .Ψn is such that
any state of the system can be written in the form (3.3) we say that the set of functions
is complete or closed.
From a mathematical perspective the first part of the superposition principle is equiv-

alent to asserting that the wave functions describing the states of a quantum system
form a linear vector space over the field of complex numbers C. The physical principle
asserts merely closure, while the other axioms of the definition of vector space follow im-
mediately from the properties of C. In mathematical language the postulate concerning
the superposition of time dependences is equivalent to requiring that the time-evolution
operator Û(t, t0) is linear. The definition of Û(t, t0) is

Ψ(q, t) = Û(t, t0) Ψ(q, t0), (3.4)
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which simply expresses that Û(t, t0) connects or propagates the wave function at two
different times t0 and t. The linearity of Û(t, t0) means precisely

Û(c1 Ψ1 + c2 Ψ2) = c1 Û Ψ1 + c2 Û Ψ2. (3.5)

Replacing Eq. (3.1) in (3.4) and using (3.5) one obtains indeed (3.2).
At this point it is useful to clarify the abstract notion of quantum mechanical state

and to provide an appropriate notation for it. From vector algebra we are used to the
idea that a vector ~v (for instance the position vector ~r), although it can be represented
in different orthonormal bases (coordinate systems), always has a well-defined physical
meaning as a point in space, which is independent of the basis choice. This imposes
precise relations between the coordinates in different bases:

~r =
∑
i

xi êi =
∑
i

x′i ê
′
i,

where xi (x′i) are the coordinates in the basis {êi} ({ê′i}). Using the properties of the
scalar product: êi · êj = ê′i · ê′j = δij we obtain the coordinates as

xi = ~r · êi and x′i = ~r · ê′i.

In quantum mechanics the physical states of the system, which vector properties are
guaranteed by the superposition principle, are also independent of the basis, i.e., of the
complete set of observables used for defining them. The different choices of complete sets
of observables are called representations. Besides the coordinate representation based
on the coordinate wave function Ψ(~x) one may consider, for example, the momentum
representation based on the momentum wave function Φ(~p). It is therefore useful to
introduce the notion of quantum mechanical state in a representation-independent form
which, following Dirac, we denote by the ket

|Ψ 〉.

The superposition principle can be stated as

|Ψ 〉 =
∑
n

an |n 〉,

where |n 〉 = |Ψn 〉 stands for the ket or vector state associated to the wave function
Ψn(q). In this framework the wave function is denoted by

〈 q |Ψ 〉 = Ψ(q).

As a result of the superposition principle it is easy to see that the application

〈 q | : {vector space |Ψ 〉} → C

that associates the wave function Ψ(q) to the vector state |Ψ 〉, namely |Ψ 〉 → 〈 q |Ψ 〉 =
Ψ(q), is linear in |Ψ 〉:

Ψ(q) = 〈 q |Ψ 〉 = 〈 q |
∑
n

an |n 〉 =
∑
n

an Ψn(q) =
∑
n

an 〈 q |n 〉.
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Later on we shall show that 〈 q |Ψ 〉 has the properties of an inner product in the complex
vector space of quantum mechanical states {|Ψ 〉}.
Analogously the momentum-space wave function associated with the state |Ψ 〉 is given

by
〈 ~p |Ψ 〉 = Φ(~p).

Of course, 〈 ~p |n 〉 = Φn(~p) is the momentum-space wave function associated to the
state |n 〉 and

Φ(~p) =
∑
n

an Φn(~p)

is the momentum-space wave function associated to |Ψ 〉 =
∑

n an |n 〉.

3.3. The wave function and the measurements of the coordinates

The connection between the wave function Ψ(q) and the measurement of the coordinates q
of the system is given by the third and last fundamental postulate of quantum mechanics:
The probability P that a measurement of the coordinates of the system yields values q′

in the volume element dq around q is

P{q′ ∈ dq@q} = |Ψ(q)|2 dq.

One says that |Ψ(q)|2 represents the probability density that a measurement of the
coordinates yields the value q.

The definition of probability requires that the sum of the probabilities of all possible
events be equal to one. This means∫

|Ψ(q)|2 dq = 1,

where the integration runs over all space. This is known as the normalization condition
for the wave function. If the integral

∫
|Ψ|2 dq converges, one can always normalize the

wave function by multiplying it by an appropriate constant. However, there are situations
where

∫
|Ψ|2 dq diverges (e.g., for plane waves or for eigenfunctions of continuous spectra).

In these cases |Ψ|2 does not represent the probability density, but nevertheless the ratio
|Ψ(q)|2/|Ψ(q′)|2 always gives the relative probability for a measurement at any two points
q and q′.
We can now use the probability distribution |Ψ(q)|2 in order to compute mean values,

also known as expectation values, of any function of the coordinates. Assuming that the
wave function is properly normalized (

∫
|Ψ(~x)|2 d3x = 1) the expectation value of the

position is given by

〈 ~x 〉 =

∫
|Ψ(x)|2 ~x d3x

and the uncertainty in the position by

∆x2 = 〈 (~x− 〈 ~x 〉)2 〉 = 〈x2 〉 − 〈 ~x 〉2,
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where
〈x2 〉 =

∫
|Ψ(~x)|2 x2 d3x.

As usual ~x = (x1, x2, x3) and x2 =
∑

i x
2
i . One can also calculate the average interac-

tion energy between an electron and the nucleus as

〈V (r) 〉 =
〈
− Ze2

r

〉
= −

∫
Ze2

r
|Ψ(~r)|2 d3r

= −4π Ze2

∫ +∞

0
r |Ψ(r)|2 dr

where we have assumed for simplicity that |Ψ(~r)|2 is spherically symmetric (i.e., |Ψ(~r)|2 =
|Ψ(r)|2). In this case the normalization condition reads 4π

∫ +∞
0 r2 |Ψ(r)|2 dr = 1.

3.4. Observables

We now turn to the question of the probability of measuring an arbitrary physical prop-
erty which in quantum mechanics are known as observables.
Let us consider a physical quantity f . The values that a physical quantity or observable

can take are called eigenvalues and the set of possible values is called the spectrum
of eigenvalues of f . The spectrum of eigenvalues can be continuous (e.g., position or
momentum eigenvalues) or discrete (angular momentum, energy of bound atomic levels,
etc.). We consider here for simplicity an observable with a discrete spectrum.
Let fn denote the n-th eigenvalue (n = 1, 2, . . .) and let Ψn(q) be the wave function

corresponding to the state where a measurement of the observable f yields with certainty
the value fn. The wave function Ψn(q) is said to be an eigenfunction or eigenstate of the
observable f with eigenvalue fn. We assume that the wave functions Ψn are normalized
for all n: ∫

|Ψn(q)|2 dq = 1.

If one considers just one observable, one finds that there are in general several different
eigenstates Ψn(q) which have the same eigenvalue. For instance, if f is the kinetic energy
p2/2m there are different states with momentum along the x, y or z direction which have
the same energy. This would complicate the following discussion, since eigenstates with
the same or different fn need to be treated separately. We therefore assume that fn
refers to a complete set of observables. This implies that they characterize the state |Ψ 〉
and wave function Ψn(q) completely and that no other observable can be measured with
certainty at the same time. Since the set of values fn with n = 1, 2, . . . covers all possible
values of fn, a measurement of the observable f on an arbitrary state |Ψ 〉 must yield one
of the eigenvalues fn. In accordance with the superposition principle the wave function
Ψ must be a linear combination of the eigenstates Ψn. We can therefore write

Ψ(q) =
∑
n

an Ψn(q) (3.6)
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or, in a representation-independent form,

|Ψ 〉 =
∑
n

an |n 〉

with some coefficients an. This is a consequence of the fact that fn characterizes the
state completely and that all possible values of fn are taken into account in the sum.
In fact, if there would be a state that cannot be written in this form, one would be
able to construct a state which is orthogonal to the subspace spanned by {Ψ1,Ψ2, . . .}
and for which a measurement of the observable f yields either a known value fn, which
would contradict the assumption that f is a complete set, or a new value, which would
contradict the assumption that all possible values of the observable f were included in
the expansion (3.6).
We therefore conclude that an arbitrary wave function can always be represented by

a linear combination (usually an infinite series) of the eigenstates of a complete set of
observables.
Once the state is written in the form (3.6), we postulate that |an|2 (i.e., the square

modulus of the coefficient of Ψ in the eigenstate Ψn) gives the probability Pn that the
value fn is obtained as a result of the measurement of the observable f in the state
Ψ(q) . This holds provided that

∫
|Ψ(q)|2 dq = 1, otherwise one would divide |an|2 by∫

|Ψ(q)|2 dq.
One may now analyze why this is a reasonable assumption. We know that Ψ(q) defines

the state, and since the Ψn(q) are fixed, the probability Pn for fn can only depend on
the expansion coefficients an. Moreover, we must have Pn ≥ 0, so that Pn cannot be
a linear function of an. Pn has to be bilinear (i.e., quadratic) in {an} and the sum of
all probabilities

∑
n Pn must be invariant under any unitary transformation among the

eigenstates |n 〉. Moreover, if Ψ = Ψn for some n, then Pm = δmn ∀ m. The only possible
choice is then Pn = |an|2, which tends to 1 whenever Ψ→ Ψn.
A few important remarks are due:

i) Notice that if one multiplies the wave function Ψ(q) or the vector state |Ψ 〉 by
an arbitrary complex number eiϕ of modulus 1 (ϕ ∈ R), none of the results of
any possible experiment would change. In other words Ψ(q), −Ψ(q) or eiϕ Ψ(q)
represent the same physical state.

This indeterminacy is irremovable. It has, hovewer, no physical significance since
it has no effect on any physical result.

Some authors say that quantum mechanics is a theory of rays since only the di-
rection of the vector |Ψ 〉 matters. The ray associated to a vector |Ψ 〉 is given by
the set {c |Ψ 〉 with c ∈ C and |c| = 1}. In fact the restriction |c| = 1 is not very
important since one can always normalize the probabilities Pn a posteriori.

Notice that eiϕ is a constant independent of q and t. Phase factors that depend on
position or time do matter [e.g., ei (kx−ωt)].
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ii) The second important consequence concerns the change in the quantum mechanical
state |Ψ 〉 that is caused by the measurement process. If the result of the measure-
ment of the complete set of observables f is fn, then the system can only be in the
state Ψn after the measurement. The measurement acts therefore as a projector

Ψ =
∑
n

an Ψn
f measurement−−−−−−−−−→ |Ψn 〉

with probability |an|2. This can be understood as follows. If the result of a mea-
surement is fn, then a subsequent measurement of f at an instant ∆t later must
yield the same result as the previous measurement when ∆t→ 0. Taking into ac-
count that fn defines the state completely, then |Ψ 〉 = |Ψn 〉 after the measurement
(besides an irrelevant phase factor). Note that the change in state |Ψ 〉 → |Ψn 〉
upon measuring f (and obtaining fn) occurs even if no human records the result.
The change of state occurs because of the interaction with the apparatus and has
nothing to do with the presence or not of a human observer.

It is clear that the previous history of the quantum state |Ψ 〉 system is irrelevant
just after the measurement. For t > t0 (t0 time of the measurement) we do not care
about the values of all the other am with m 6= n if the result of the measurement
was fn.

A measurement in quantum mechanics acts as a filter. It prepares the state in a
given eigenstate |Ψn 〉 of the system corresponding to the measured observable fn.

(Bild)

This would be a selective measurement with only one state filtered. But one can
of course filter two or more states |Ψn 〉 and let them interfere, as in our idealized
electron diffraction experiment.

(Bild)

iii) If we remove the assumption that fn is a complete set (which defines |Ψn 〉 univo-
cally besides a phase factor) the probability Pn of measuring a particular eigenvalue
fn would be

Pn =
∑
n′

|an′ |2,

where the sum runs over all the eigenstates n′ having the eigenvalue fn
(〈Ψl |Ψm 〉 = δlm ∀ l,m). Concerning the change of state resulting from a mea-
surement we have

|Ψ 〉 f measurement−−−−−−−−−−→ A
∑
n′

an′ |Ψn′ 〉,
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where n′ runs over all the eigenstates |Ψn′ 〉 having the eigenvalue fn, which is the
result of the measurement, and A−1 =

∑
n′ |an′ |2 is the normalization constant.

We see that the weaker the filtering is, i.e., the larger the number of acceptable
results of the measurement, the weaker the change in the quantum state after the
measurement, i.e., the weaker the projection.

In this context one often introduces the projection operator

Λ̂n = |Ψn 〉 〈Ψn |

which describes the result of the measurement of the complete set of eigenvalues
fn on any state |Ψ 〉:

Λ̂n |Ψ 〉 = Λ̂n
∑
m

am |Ψm 〉 =
∑
m

am Λ̂n |Ψm 〉 =
∑
m

am |Ψn 〉 〈Ψn |Ψm 〉︸ ︷︷ ︸
δnm

= an |Ψn 〉.

For a simple eigenvalue fn, which does not define |Ψn 〉 completely, or when the
measurement does not discern between different completely defined states |Ψn′ 〉,
the measurement process is described by the operator

Λ̂′n =
∑
n′

|Ψn′ 〉 〈Ψn′ |,

where the sum runs over the eigenstates having the eigenvalue fn.

The operator Λ̂n = |Ψn 〉 〈Ψn |, which we can simply write Λ̂n = |n 〉 〈n |, is also
known as outer product in contrast to the inner product 〈Ψ |Φ 〉 which is a complex
number. Notice that Λ̂2

n = Λ̂n and Λ̂′ 2n = Λ̂′n, as for any projector.

iv) We return now to the general case where fn is a complete set of observables in
order to infer some properties about the states |n 〉 and the corresponding wave
functions Ψn(q). We know that |an|2 is the probability for measuring fn (provided∫
|Ψ|2 dq = 1) and consequently ∑

n

|an|2 = 1. (3.7)

If Ψ(q) is not normalized we would have to divide |an|2 by
∫
|Ψ|2 dq, so that in

general we can write ∑
n

|an|2 =

∫
|Ψ|2 dq (3.8)
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and ignore the constraint on the expansion coefficients an concerning the normal-
ization of Ψ. From Eq. (3.6) we have

Ψ∗(q) =
∑
n

a∗n Ψ∗n(q),

so that Eq. (3.8) implies

∑
n

a∗n an =

∫ [∑
n

a∗n Ψ∗n(q)

]
Ψ(q) dq

=
∑
n

a∗n

∫
Ψ∗n(q) Ψ(q) dq. (3.9)

Since this holds for any values of the complex coefficients an, one can derive Eq.
(3.9) with respect to a∗n by considering an and a∗n as independent variables. This
yields

an =

∫
Ψ∗n(q) Ψ(q) dq, (3.10)

which is the expression for determining the coefficients an in terms of the wave
function Ψ(q) and the eigenfunction Ψn(q). This is a very important relation
between the wave function Ψ(q), which characterizes the state of the system, and
the eigenfunction or eigenstate Ψn(q) having the definite value fn of the observable
in question. We realize that finding the eigenstates of physical observables will be
a central task in solving problems in quantum mechanics.

v) Replacing Eq. (3.6) in Eq. (3.10) we further obtain

an =

∫
Ψ∗n(q)

(∑
m

am Ψm(q)

)
dq

=
∑
m

am

∫
Ψ∗n(q) Ψm(q) dq

which implies ∫
Ψ∗n(q) Ψm(q) dq = δmn, (3.11)

where δmn is the Kronecker delta defined by δmn = 1 for m = n and δmn = 0
for m 6= n. This is known as the orthogonality condition between the eigenfunc-
tions Ψn. We have demonstrated that the eigenfunctions corresponding to different
eigenvalues fn are orthogonal to each other. Therefore, the set of Ψn forms com-
plete orthonormal basis of the vector space of all the wave functions of the system.
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Notice that Eq. (3.11) is a particular case of Eq. (3.10), in which one sets Ψ(q) equal
to Ψm(q), since Ψ(q) is equal to Ψm(q) precisely when the expansion coefficients
an = δmn.

The orthogonality relation (3.11) has been derived assuming that fn is a complete
set of observables which defines Ψn univocally. This means that for any two eigen-
states Ψn and Ψm there is some observable whose value in the lists fn and fm
is different. For simple observables (e.g., the momentum px or the kinetic energy
p2/2m) there are many states corresponding to the same eigenvalue. However,
even in this case the eigenstates are either orthogonal (e.g., because they differ in
the eigenvalue of some other observable) or they can be reorthogonalized among
the eigenstates having the same eigenvalue. In conclusion one can always assume
that all the eigenstates of a physical observable can be written in the form of an
orthonormal basis.

3.5. Inner product

In the previous section we have repeatedly found expressions of the form
∫

Ψ∗(q) Φ(q) dq,
where Ψ and Φ are wave functions. It is therefore useful to analyze the properties of
this application V×V→ C from a more mathematical perspective and in particular to
identify it as the inner product in the vector space V of all quantum mechanical states.
Given two vector states |Ψ 〉 and |Φ 〉 corresponding to the wave functions Ψ(q) and

Φ(q) we define

〈Ψ |Φ 〉 =

∫
Ψ∗(q) Φ(q) dq. (3.12)

Denoting the vector space of quantum mechanical states |Ψ 〉 by V, we may say that
〈Ψ |Φ 〉 is an application from V×V to C. It is easy to see that this application satisfies
all the properties of an inner product in V:

i) Positive definiteness:

〈Ψ |Ψ 〉 =

∫
|Ψ|2 dq ≥ 0 ∀ |Ψ 〉

and

〈Ψ |Ψ 〉 = 0 ⇒
∫
|Ψ|2 dq = 0 ⇒ |Ψ|2 = 0 ∀ q ⇒ |Ψ 〉 = 0.
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ii) Linearity at right:

〈Ψ |αΦ1 + β Φ2 〉 =

∫
Ψ∗ (αΦ1 + β Φ2) dq

= α

∫
Ψ∗ Φ1 dq + β

∫
Ψ Φ2 dq

= α 〈Ψ |Φ1 〉+ β 〈Ψ |Φ2 〉.

iii) Antisymmetry:

〈Φ |Ψ 〉 =

∫
Φ∗(q) Ψ(q) dq =

[∫
Ψ∗(q) Φ(q) dq

]∗
= 〈Ψ |Φ 〉∗.

iv) Combining ii) and iii) the so-called antilinearity at left follows:

〈αΨ1 + βΨ2 |Φ 〉 = 〈Φ |αΨ1 + βΨ2 〉∗ =

= [α 〈Φ |Ψ1 〉+ β 〈Φ |Ψ2 〉]∗

= α∗〈Φ |Ψ2 〉∗ + β∗〈Φ |Ψ2 〉∗

= α∗〈Ψ1 |Φ 〉+ β∗〈Ψ2 |Φ 〉.

The coefficients get conjugated when extracted from the left hand side of the inner
products.

3.6. Kets and Bras

P. M. Dirac denoted the quantum mechanical vector state |Ψ 〉 of the system a ket and
attached to each ket |Ψ 〉 a bra 〈Ψ | so that 〈Φ |Ψ 〉 is a “bra-ket”. Though this may sound
trivial or almost silly at the beginning, the notation in ket and bra form is extremely
useful in practice, since it allows to write most relations in quantum mechanics in a
representation-independent form. It applies throughout quantum mechanics from the
present elementary level all over to relativistic quantum mechanics and complex many-
body problems.
For the algebraic manipulations one just needs to know that the bra 〈Ψ | and the ket
|Ψ 〉 are related one-to-one by

ket
|Ψ 〉 = α |Ψ1 〉+ β |Ψ2 〉

←→ bra
〈Ψ | = α∗〈Ψ1 |+ β∗〈Ψ2 |.

This follows from ii)–iv).

We may now profit from Dirac’s notation to summarize the previous results obtained
using the wave function notation in the more compact and representation-independent
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ket-bra form. Let |Ψ 〉 be the ket associated to the wave function Ψ(q), |Φ 〉 the one asso-
ciated to Φ(q), and |n 〉 the eigenket corresponding to the eigenvalue fn of the observable
f . Expanding the wave functions Ψ(q) =

∑
n an Ψn(q) and Φ(q) =

∑
n bn Ψn(q) in the

eigenfunctions Ψn(q) = 〈 q |n 〉 we have

〈Φ |Ψ 〉 =
∑
n,m

b∗m an

∫
Ψ∗m(q) Ψn(q) dq︸ ︷︷ ︸

δmn

=
∑
n

b∗n an,

which corresponds to the usual inner product in Cn. In particular for the eigenstates
|n 〉 and |m 〉 we have

〈n |m 〉 = δnm.

We can now write
|Ψ 〉 =

∑
n

an |n 〉,

where

〈n |Ψ 〉 = 〈n |
∑
m

am |m 〉 =
∑
m

am 〈n |m 〉 =
∑
m

am δmn = an =

∫
Ψ∗n(q) Ψ(q) dq.

The operator Λ̂n = |n 〉 〈n |, also known as outer product, acts like a projector onto
the ket |n 〉 since for any

|Ψ 〉 =
∑
m

am |m 〉

it holds

Λ̂n |Ψ 〉 = |n 〉 〈n |
∑
m

am |m 〉 =
∑
m

am |n 〉 〈n |m 〉︸ ︷︷ ︸
δnm

= an |n 〉.

In other words Λ̂n projects |Ψ 〉 along the state vector |n 〉. Notice that Λ̂2
n = Λ̂n, as

expected for any projector operator.
The completeness of the orthonormal set of eigenstates |n 〉 is equivalent to stating

that any state |Ψ 〉 can be expressed as a linear combination of them

|Ψ 〉 =
∑
n

an |n 〉.

Taking into account that an = 〈n |Ψ 〉 we can write

|Ψ 〉 =
∑
n

〈n |Ψ 〉 |n 〉 =
∑
n

|n 〉 〈n |Ψ 〉.

Since this holds for any |Ψ 〉 we must have∑
n

|n 〉 〈n | = 1. (3.13)

42



We conclude that an orthonormal basis of kets is complete if and only if Eq. (3.13) holds.
This equation is therefore known as the completeness relation for the basis of eigenstates.
This is an operator identity that expresses a relation between the ensemble of projector
operators Λ̂n = |n 〉 〈n |.
The completeness relation (3.13) is the most important contribution or innovation

of Dirac’s ket-bra notation. It is a very powerful tool for deriving algebraic relations
between different representations as well as operator relations.
In Dirac’s notation one recovers the wave function Ψ(q) by projecting |Ψ 〉 onto a ket

of defined position:

Ψ(q) = 〈 q |Ψ 〉. (3.14)

At this point one may consider Eq. (3.14) as a definition of the bra 〈 q |. The definition

〈Ψ |Φ 〉 =

∫
Ψ∗(q) Φ(q) dq

can then be written as

〈Ψ |Φ 〉 =

∫
〈 q |Ψ 〉∗ 〈 q |Φ 〉 dq

=

∫
〈Ψ | q 〉 〈 q |Φ 〉 dq

=
〈

Ψ
∣∣( ∫ | q 〉 〈 q | dq)∣∣Φ 〉. (3.15)

Noting that Eq. (3.15) holds for any states |Ψ 〉 and |Φ 〉 one concludes that∫
| q 〉 〈 q | dq = 1. (3.16)

This relation is known as completeness relation for the coordinate representation.

3.7. Operators

So far we have introduced the wave function Ψ(q) and the more abstract notion of
vector state or ket |Ψ 〉 as the fundamental mathematical objects describing the state
of a quantum system and we have established the general relation between Ψ(q) or |Ψ 〉
and the outcome of any experiment (i.e., the possible values of physical observables or
eigenvalues fn and the probabilities |an|2 for observing each eigenvalue). To this aim we
have introduced the concepts of eigenvalues and eigenstates, the latter being the quantum
states in which a measurement of the observable f yields with certainty the value fn. It
is the purpose of this section to derive the general form of the mathematical equations
from which both fn and Ψn are obtained.

Our starting point is the concept of mean value or expectation value of the observable
f in a given state Ψ(q) =

∑
n an Ψn(q) which is given by

〈 f 〉 =
∑
n

|an|2 fn. (3.17)
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This is the usual expression of a mean value known from probability theory (i.e., sum
of the possible values of a random variable times the corresponding probabilities). It is
equivalent to the result one would obtain by averaging the outcomes of a large number
of measurements performed on the same state |Ψ 〉 or wave function Ψ(q).

It is clear that for each observable f with a spectrum {fn, n = 1, 2, . . .} the expecta-
tion value depends only on Ψ(q) since an =

∫
Ψ∗n(q) Ψ(q) dq. We therefore seek for an

expression for 〈 f 〉 that involves Ψ(q) explicitly and not the expansion coefficients an.
Eq. (3.17) is bilinear in an and a∗n and must therefore be bilinear in Ψ and Ψ∗, since we
have the correspondence αΨ + βΨ′ ↔ αan + β a′n. The most general form of such a
bilinear expression is

〈 f 〉 =

∫
Ψ∗(q)

(
f̂ Ψ(q)

)
dq, (3.18)

where f̂ is some linear operator2 acting on Ψ(q). This operator is simply a linear appli-
cation f̂ : V → V, where V is the vector space of wave functions of the system. The
linearity of f̂ means that f̂ (αΨ + βΨ′) = α (f̂ Ψ) + β (f̂ Ψ′) for any wave functions Ψ
and Ψ′ and complex coefficients α and β. f̂ Ψ(q) is the function obtained by applying
the operator f̂ to the wave function Ψ(q).
From Eq. (3.17) we have

〈 f 〉 =
∑
n

a∗n an fn

and since

an =

∫
Ψ∗n Ψ dq ⇔ a∗n =

∫
Ψ∗ Ψn dq

we obtain

〈 f 〉 =
∑
n

(∫
Ψ∗ Ψn dq

)
an fn

=

∫
Ψ∗

(∑
n

an fn Ψn

)
dq. (3.19)

Since Eqs. (3.18) and (3.19) hold for any quantum state Ψ we conclude that

f̂ Ψ(q) =
∑
n

an fn Ψn(q). (3.20)

In Dirac’s notation one would write |Ψ 〉 =
∑

n an |n 〉 and f̂ |Ψ 〉 =
∑

n an fn |n 〉.
One concludes that for any physical quantity or observable f there is a definite linear

operator f̂ given by Eq. (3.20). The linearity of f̂ can be easily verified by noting the
linear correspondence between Ψ and the expansion coefficients an (i.e., αΨ + βΨ′ ↔
αan + β a′n).

2Throughout these notes we use a circumflex or hat ˆ to distinguish operators from numbers.
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A very important consequence of Eq. (3.20) is the so-called eigenvalue equation from
which both fn and Ψn(q) are derived. Consider Eq. (3.20) for Ψ(q) = Ψn(q) for some n,
i.e., when Ψ(q) is one of the eigenfunctions of the observable f . In this case an = 1 and
am = 0 ∀ m 6= n so that

f̂ Ψn(q) = fn Ψn(q). (3.21)

In Dirac’s notation Eq. (3.21) reads f̂ |n 〉 = fn |n 〉. The result of applying f̂ to Ψn(q)
is just the multiplication by the eigenvalue fn. Since this holds for all n, we conclude
that the eigenfunctions of the observable f are the solutions of the equation

f̂ Ψ(q) = f Ψ(q), (3.22)

where f is a constant. The eigenvalues fn are the values of f for which Eq. (3.22) has a
non-trivial solution (Ψ(q) 6= 0).

In following sections we shall derive the form of the operators associated to the most
important observables based on general physical considerations. A few examples, namely
position, momentum and kinetic energy, are given below.

3.7.1. Position, momentum and kinetic energy operators

The operator x̂ associated with a measurement of the x coordinate of an electron is
simply the multiplication by the x coordinate:

x̂Ψ(~r) = xΨ(~r),

where ~r = (x, y, z). This follows from the fact that |Ψ(~r)|2 represents the probability
density for a measurement of the position ~r and from the definition of average value

〈x 〉 =

∫
Ψ∗(~r)xΨ(~r) d3r,

which holds for all Ψ(~r). Of course, analogous relations hold for the y and z coordinates,
i.e., ŷ = y and ẑ = z.
The momentum operator p̂x along the x direction is related to the changes in the

wave function upon translation along this direction and is therefore proportional to the
derivative of the wave function along the x direction. The precise form is

p̂x = −i ~ ∂

∂x
, (3.23)

which means that
p̂x Ψ(~r) = −i ~ ∂Ψ

∂x
.

The corresponding expressions for p̂y and p̂z follow from symmetry considerations so
that

~̂p = −i ~ ~∇ = −i ~
(
∂

∂x
,
∂

∂y
,
∂

∂z

)
.
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In order to justify the form (3.23) of the operator p̂x we recall that according to the
de Broglie relation a plane-wave state ei~k·~r carries a momentum ~p = ~~k. Thus,

p̂x e
i~k·~r = px e

i~k·~r = ~ kx ei
~k·~r = −i ~ ∂

∂x
ei
~k·~r.

Consider now an arbitrary wave function Ψ(~r) which can be expanded in terms of
plane waves as a Fourier transform

Ψ(~r) =

∫
d3k A(~k) ei

~k·~r =

∫
d3k A(~k) ei

~p
~ ·~r.

Applying p̂x to Ψ(~r) one obtains

p̂x Ψ(~r) =

∫
d3k A(~k) p̂x e

i~k·~r

=

∫
d3k A(~k)

(
−i ~ ∂

∂x

)
ei
~k·~r

= −i ~ ∂

∂x
Ψ(~r).

Therefore p̂x = −i ~ ∂

∂x
for any wave function Ψ(~r).

The form of the kinetic energy operator can be derived by using the relation between
kinetic energy and momentum known from classical mechanics, which applies to wave
packets for which the de Broglie wave length is much shorter than the system’s dimen-
sions. In the classical limit we have

T =
p2

2m
.

Consequently, for a classical wave packet we must have

〈T 〉 =

∫
Ψ∗(T̂ Ψ) dq =

∫
Ψ∗
(
p̂2

2m

)
Ψ dq,

which implies

T̂ =
p̂2

2m
.

Noting that px = −i ~ ∂

∂x
and therefore p2

x = −~2 ∂2

∂x2
we obtain

T̂ =
p̂2

2m
= − ~2

2m
∇2 = − ~2

2m

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
.

The previous derivations of the momentum and kinetic energy operators are admittedly
not quite rigorous mathematically. Nevertheless, they do provide serious plausibility
arguments. Achieving mathematical rigor would imply a too long digression that we
cannot afford in this lecture.
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3.8. Properties of physical operators

The expectation values

〈 f 〉 =
∑
n

fn |an|2 =

∫
Ψ(q)

(
f̂ Ψ(q)

)
dq (3.24)

and the eigenvalues fn of the operators associated to physical observables must be real.
Note that fn is a particular case of Eq. (3.24) when Ψ = Ψn. This important physical
condition imposes precise restrictions on the form of the operator f̂ . Before discussing
this problem it is useful to introduce a few mathematical definitions.
For any orthonormal basis Ψn(q) (not necessarily a basis of eigenstates) we define the

matrix elements fmn of an operator f̂ in the basis {Ψn, n = 1, 2, . . .} as

fmn =

∫
Ψ∗m(q)

[
f̂ Ψn(q)

]
dq = 〈m | f̂ n 〉 = 〈m | f̂ | n̂ 〉. (3.25)

For the calculation of the matrix elements fmn only the form of the operator f̂ in some
representation is needed, since knowing how f̂ modifies any function we can determine
f̂ Ψn(q) or f̂ |n 〉 for any basis state Ψn(q) or |n 〉 and compute the inner product with
Ψ∗m(q) or 〈m |.
Conversely, if we know fmn in a complete basis we also know f̂ |Ψ 〉 for any |Ψ 〉, since

we can always write

f̂ |Ψ 〉 =

(∑
m

|m 〉 〈m |

)
f̂ |Ψ 〉 =

∑
m

|m 〉 〈m | f̂ |Ψ 〉 =

=
∑
m

|m 〉 〈m | f̂

(∑
n

|n 〉 〈n |

)
|Ψ 〉

=
∑
m,n

|m 〉 〈m | f̂ |n 〉 〈n |Ψ 〉

=
∑
m,n

|m 〉 fmn 〈n |Ψ 〉.

Notice the repeated use of the completeness relation
∑

n |n 〉 〈n | = 1. In other words,
if we write |Ψ 〉 =

∑
an |n 〉 or Ψ(q) =

∑
n an Ψn(q) we obtain f̂ |Ψ 〉 =

∑
m bm |m 〉 or

f̂ Ψ(q) =
∑

m bm Ψm(q) with
bm =

∑
n

fmn an.

The siutation is analogous to the description of a vector state |Ψ 〉, which is defined
whenever we give its components on a basis

|Ψ 〉 =
∑
n

an |n 〉.
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In the case of operators, giving the value of the matrix elements in a complete basis
defines the operator completely. One can actually say that fmn are the components of
the operator f̂ in the basis {|n 〉 with n = 1, 2, . . .}.

Notice that the definition (3.25) holds for any orthonormal set {Ψn}, which are not ne-
cessarily eigenstates of f̂ . However, if f̂ Ψn = fn Ψn ∀ n, Eq. (3.25) takes the particularly
simple form

fmn = fn 〈m |n 〉 = fn δmn. (3.26)

In this case, one says that the matrix fmn is diagonal. Of course, the converse is also
true. If Eq. (3.26) holds for all m and n in a complete orthonormal basis, then the states
{Ψn, n = 1, 2, . . .} are the eigenstates of f̂ .
Given an operator f̂ we define the conjugate operator f̂∗ by the relation

(f̂ Ψ)∗ = f̂∗Ψ∗.

In other words, if f̂ Ψ = Φ ⇒ f̂∗Ψ∗ = Φ∗. It is easy to show that f̂∗ is linear, since
f̂ is linear. Note that (f̂∗)∗ = f̂ .
For an arbitrary operator f̂ we define the transpose operator f̂ t by the relation∫

Φ (f̂ Ψ) dq =

∫
Ψ (f̂ t Φ) dq.

Notice that we simply interchange the functions Φ and Ψ. In addition we have (f̂ t)t =
f̂ . The adjoint or complex-conjugate-transpose operator f̂ † of an operator f̂ is defined by

f̂ † = (f̂∗)t = (f̂ t)∗.

It is easy to see that the order of the transposition and conjugation does not matter
since∫

Φ∗ (f̂∗)t Ψ dq =

∫
Ψ f̂∗Φ∗ dq =

(∫
Ψ∗ f̂ Φ dq

)∗
=

(∫
Φ f̂ t Ψ∗ dq

)∗
=

∫
Φ∗ (f̂ t)∗Ψ dq

for all Φ(q) and Ψ(q).
An operator f̂ and its adjoint f̂ † satisfy the following important relation

〈Φ | f̂ Ψ 〉 = 〈 f̂ †Φ |Ψ 〉 (3.27)

or equivalently ∫
Φ∗(q)

(
f̂ Ψ(q)

)
dq =

∫ [
f̂ †Φ(q)

]∗
Ψ(q) dq. (3.28)

Notice that in the left-hand side f̂ acts on Ψ(q) while in the right-hand side f̂ † acts on
Φ(q). This can be proven straightforwardly:∫

Φ∗ (f̂ Ψ) dq =

∫
Ψ (f̂ t Φ∗) dq =

∫
Ψ (f̂ †Φ)∗ dq.
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The matrix elements of f̂ and f̂ † are related to each other by

(f̂ †)mn = (f̂nm)∗. (3.29)

As in the usual adjoint of matrices in Cn×n, the indices are transposed and the result
conjugated. Eq. (3.29) can be demonstrated by using Eq. (3.28) since

(f̂ †)mn = 〈m | f̂ † n 〉 = 〈 f̂ m |n 〉 = 〈n | f̂ m 〉∗ = (fnm)∗. (3.30)

Using this relation one can show that (f̂∗)mn = [(f̂ t)nm]∗. To this aim one replaces f̂
by f̂ t in Eq. (3.30) and uses that (f̂ t)† = [(f̂ t)t]∗ = f̂∗.

Conversely, let us assume that f̂ † is defined by means of its matrix elements on a
complete basis as (f̂ †)mn = (fnm)∗. This is equivalent to

〈m | f̂ † n 〉 = 〈n | f̂ m 〉∗ = 〈 f̂ m |n 〉.

For arbitrary states |Ψ 〉 =
∑

n an |n 〉 and |Φ 〉 =
∑

n bn |n 〉 we have

〈Φ | f̂ †Ψ 〉 =
∑
m,n

b∗m an 〈m | f̂ † n 〉 =
∑
m,n

b∗m an 〈 f̂ m |n 〉

= 〈 f̂ Φ |Ψ 〉,

which means that the matrix-element relation (3.30) is equivalent to the definition of
adjoint operator as given by Eq. (3.27) or (3.28).
After this mathematical digression we may return to the properties of operators associ-

ated to physical observables. Since 〈 f 〉 is real for all quantum states Ψ, all its eigenvalues
fn are real. Let Ψn be a complete set of eigenstates then

f̂mn = δmn fn ∈ R ⇒ fmn = (fnm)∗ ⇒ f̂mn = (f̂ †)mn ∀ m,n.

This implies
f̂ = f̂ †.

One concludes that all operators f̂ of real physical quantities are equal to their adjoint.
These operators are called self-adjoint or hermitian.
It is easy to see that the converse is also true. If an operator is hermitian, i.e., f̂ † = f̂ ,

then all its eigenvalues f are real. In fact

f̂ |Ψ 〉 = f |Ψ 〉 ⇒ f = 〈Ψ | f̂ |Ψ 〉 = 〈 f̂ Ψ |Ψ 〉∗ = 〈Ψ | f̂ † |Ψ 〉∗ = 〈Ψ | f̂ |Ψ 〉∗ = f∗.

This does not imply, of course, that any hermitian operator corresponds to a meaningful
physical quantity.
Knowing that all operators of physical observables are hermitian (i.e., f̂ † = f̂) we can

prove the orthogonality of eigenstates corresponding to different eigenvalues directly. Let
us consider two eigenstates

f̂ |n 〉 = fn |n 〉 and f̂ |m 〉 = fm |m 〉.
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It follows that
〈m | f̂ n 〉 = 〈m | fn n 〉 = fn 〈m |n 〉

and at the same time

〈m | f̂ n 〉 = 〈 f̂ †m |n 〉 = 〈 f̂ m |n 〉 (f̂ † = f̂)

= 〈 fmm |n 〉 = f∗m 〈m |n 〉 = fm 〈m |n 〉 (fm ∈ R).

Subtracting the two identities one obtains

0 = (fm − fn) 〈m |n 〉,

which implies that 〈m |n 〉 = 0, whenever fm 6= fn.
In general f refers to a complete system of physical quantities f , g, h, etc. In this

case we have operators f̂ , ĝ, ĥ, etc. and eigenvalues fn, gn, hn with n = 1, 2, . . .. The
eigenstates Ψn must therefore be the solutions of a system of equations f̂ Ψ = f Ψ,
ĝΨ = gΨ, etc.

3.9. Sums, products and commutators of operators

Operators can be added and multiplied by constants. Since

〈α f̂ + β ĝ 〉 = α 〈 f̂ 〉+ β 〈 ĝ 〉

we must have
(α f̂ + β ĝ) Ψ = α f̂ Ψ + β ĝΨ.

If the quantities f and g have a common complete set of eigenvalues fn and gn, i.e., if

f̂ Ψn = fn Ψn and ĝΨn = gn Ψn

for the same set of quantum states Ψn, we have

(α f̂ + β ĝ) Ψn = (α fn + β gn) Ψn.

However, in the general case where f̂ and ĝ cannot be determined simultaneously with
certainty, the eigenvalues of f̂ + ĝ bear no relation to the eigenvalues of f̂ and ĝ.

For any α and β ∈ R and hermitic operators f̂ = f̂ † and ĝ = ĝ† it is clear that

(α f̂ + β ĝ)† = α∗ f̂ † + β∗ ĝ†

= α f̂ + β ĝ.

This implies that a linear combination of hermitic operators α f̂+β ĝ with real coefficients
α and β is also hermitic.
The multiplication of operators is defined like the composition of functions

Ψ
f̂−→ f̂ Ψ = Φ

ĝ−→ χ = ĝΦ = ĝ (f̂ Ψ).
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In general two operators f̂ and ĝ corresponding to two observables need not commute.
In order to quantify this difference one actually defines the commutator

[f̂ , ĝ] = f̂ ĝ − ĝ f̂ ,

which is in general a new operator. It is easy to see that

[f̂ , ĝ] = −[ĝ, f̂ ]

and that
[f̂ ĝ, ĥ] = f̂ [ĝ, ĥ] + [f̂ , ĥ] ĝ.

Notice that if [f̂ , ĥ] = 0 and [ĝ, ĥ] = 0, i.e., if f̂ and ĝ commute with ĥ, then f̂ ĝ also
commutes with ĥ. However, this does not imply that f̂ and ĝ commute.
The commutator of two operators corresponding to the observables f and g is very im-

portant, since it determines whether these two quantities can be measured simultaneously
with certainty, i.e., whether they can take simultaneously definite values.
In order to show this, let us first consider the case where two observables f and g have

definite values in the complete set of eigenfunctions Ψn, i.e.,

f̂ Ψn = fn Ψn and ĝΨn = gn Ψn.

It then follows that

(f̂ ĝ) Ψn = f̂ (ĝΨn) = gn (f̂ Ψn) = gn fn Ψn (3.31)

and analogously

(ĝ f̂) Ψn = ĝ (f̂ Ψn) = fn (ĝΨn) = fn gn Ψn. (3.32)

Comparing Eqs. (3.31) and (3.32) we conclude that

(ĝ f̂) Ψn = (f̂ ĝ) Ψn

for all states of a complete basis. Thus,

ĝ f̂ = f̂ ĝ

and the operators commute.
The proof of the converse is more subtle. In this case we consider a complete basis of

eigenstates of f̂ , which exists since f̂ = f̂ †, and look for a basis of eigenstates of ĝ. Let
us assume that [f̂ , ĝ] = f̂ ĝ − ĝ f̂ = 0 and consider the matrix elements

〈m | f̂ ĝ |n 〉 = 〈m | ĝ f̂ |n 〉, (3.33)

where |m 〉 and |n 〉 are eigenstates of f̂ . Using that f̂ † = f̂ and that fn ∈ R we have

〈m | f̂ ĝ |n 〉 = 〈 f̂ †m | ĝ |n 〉 = 〈 f̂ m | ĝ |n 〉 = 〈 fmm | ĝ |n 〉 = f∗m〈m | ĝ |n 〉 = fm 〈m | ĝ |n 〉
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and

〈m | ĝ f̂ |n 〉 = 〈m | ĝ fn |n 〉 = fn 〈m | ĝ |n 〉.

Using Eq. (3.33) we obtain

(fm − fn) 〈m | ĝ |n 〉 = 0.

Consequently, 〈m | ĝ |n 〉 = gmn vanishes for every pair of eigenstates of f̂ with different
eigenvalues fm 6= fn. Moreover, since ĝ† = ĝ, linear combinations of the eigenstates of f̂
with the same eigenvalues fn allow one to diagonalize ĝ within these subspaces so that
one can achieve gmn = 0 ∀ m 6= n. This implies that ĝ and f̂ have a common complete
set of eigenstates.

Examples:
Consider the different components (x̂, ŷ, ẑ) of the position operator ~̂r. It is clear
that

x̂ ŷΨ(~r) = x yΨ(~r) = y xΨ(~r) = ŷ x̂Ψ(~r).

Therefore, all the components xi of the position of the electron, or even of a system
of many electrons, can be determined simultaneously with arbitrary accuracy. The
same holds for all the components of the momentum since

p̂x p̂y Ψ(~r) =

(
−i ~ ∂

∂x

)(
−i ~ ∂Ψ

∂y

)
=

= −~2 ∂2 Ψ

∂x ∂y
= −~2 ∂2 Ψ

∂y ∂x
= p̂y p̂x Ψ(~r).

However, the same components of the position and momentum operators x̂ and p̂x
do not commute:

[x̂, p̂x] Ψ = (x̂ p̂x − p̂x x̂) Ψ = x

(
−i ~ ∂Ψ

∂x

)
−
(
−i ~ ∂(xΨ)

∂x

)
= −i ~x ∂Ψ

∂x
+ i ~Ψ + i ~x

∂Ψ

∂x
= i ~Ψ.

Consequently,
[x̂, p̂x] = i ~.

One concludes that position and momentum cannot be determined simultaneously
with arbitrary accuracy, in agreement with the Heisenberg principle. Of course,
different components of position and momentum commute (e.g, [x̂, p̂y] = 0), so
that in general we have

[x̂k, p̂l] = i ~ δkl.
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Summarizing, we have achieved the following important result: Two observables f and
g can be measured simultaneously to an arbitrary accuracy, i.e., they can have simul-
taneously definite values, if and only if the corresponding operators f̂ and ĝ commute.
Therefore, if the operators commute one says that the observables are compatible.
The simplest example of a product of operators is an operator raised to some integer

power f̂ν (ν ∈ N). It is clear that the eigenvalues of f̂ν are the ν-th power of the eigenval-
ues fn of f̂ . For any function Φ(f) admitting a Taylor expansion Φ(f) =

∑
ν αν f

ν the
operator Φ(f̂) has the same eigenstates Ψn as f̂ and the eigenvalues Φ(fn). It is easy to
see that if f̂ is hermitic (f̂ † = f̂) then [Φ(f̂)]† = Φ(f̂). To show this it is enough to prove
the hermiticity of f̂ν by induction: 〈m | f̂ν+1 |n 〉 = 〈m | f̂ f̂ν |n 〉 = 〈 f̂ †m | f̂ν |n 〉 =
〈 f̂ m | f̂ν n 〉 = 〈 (f̂ν)† f̂ m |n 〉 = 〈 f̂ν+1m |n 〉 = 〈n | f̂ν+1 |m 〉∗, where we have used the
induction hypothesis (f̂ν)† = f̂ν .
It is important to note that the product f̂ ĝ of two hermitian operators f̂ = f̂ † and

ĝ = ĝ† is not necessarily hermitian, unless the two operators commute, since (f̂ ĝ)† =
ĝ†f̂ †. In the latter case the eigenstate basis of the product operator is the eigenstate
basis common to f̂ and ĝ and has fn gn as eigenvalues. This is due to the particular form
of the transpose of a product of operators∫

Φ (f̂ ĝΨ) dq =

∫
Φ
[
f̂ (ĝΨ)

]
dq =

∫
(ĝΨ) (f̂ t Φ) dq

=

∫
(f̂ t Φ) (ĝΨ) dq =

∫
Ψ
[
ĝt (f̂ t Φ)

]
dq

=

∫
Ψ ĝt f̂ t Φ dq.

This implies that (f̂ ĝ)t = ĝt f̂ t. Since (f̂ ĝΨ)∗ = [f̂ (ĝΨ)]∗ = f̂∗ (ĝΨ)∗ = f̂∗ ĝ∗Ψ we
have

(f̂ ĝ)† = ĝ† f̂ †.

For hermitic operators f̂ = f̂ † and ĝ = ĝ† this implies

(f̂ ĝ)† = ĝ f̂ .

It is easy to verify that for any f̂ and ĝ, (f̂ ĝ+ ĝ f̂) and i[f̂ , ĝ] = i(f̂ ĝ− ĝ f̂) are always
hermitian.
Exercise: Using these properties show that the orbital angular momentum operator

~̂l = ~̂r × ~̂p is hermitian.

3.10. Dirac’s delta function δ(x)

Before discussing the properties of eigenfunctions having a continuous spectrum of eigen-
values it is useful to recall the main properties and some important representations of
Dirac’s delta function.
Dirac’s delta function δ(x) is defined by the following conditions:

δ(x) = 0 ∀ x 6= 0 (3.34)
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and ∫ +∞

−∞
δ(x) dx = 1. (3.35)

Clearly, δ(x) is not well defined as a function since (3.34) and (3.35) imply δ(x)
x→0−−−→ +∞.

Moreover, from (3.34) and (3.35) we have∫ ε

−ε
δ(x) dx = 1 ∀ ε > 0. (3.36)

It follows that the integral

∫ x

−∞
δ(x′) dx′ = θ(x) =


0 x < 0

1/2 x = 0

1 x > 0

is the Heaviside step function. The value for x = 0 follows from the fact that δ(x) is

even, i.e., δ(x) = δ(−x) ∀ x, and thus
∫ 0

−∞
δ(x′) dx′ =

∫ +∞

0
δ(x′) dx′ = 1/2.

From the fundamental theorem of analysis follows the differential representation of the
delta function:

δ(x) =
d θ

dx
(x).

The delta function is not a function in the usual sense, but a generalized function
or distribution function which are defined as the regular sequence of particularly well-
behaved functions. To be more explicit mathematically, a particularly well-behaved
function has derivatives of all orders at all points and falls at least as fast as |x|−n for
x → ∞ for all n. A sequence of particularly well-behaved functions fτ (x) with respect

to a parameter τ (τ > 0) is said to be a regular sequence when lim
τ→0

∫ +∞

−∞
fτ (x) g(x) dx

exists for any particularly well-behaved function g(x).
The central property of the delta function is that for any function that is continuous

at x = 0 it holds ∫ +∞

−∞
f(x) δ(x) dx = f(0). (3.37)

This follows from δ(x) = 0 for x 6= 0, or equivalently
∫ ε

−ε
δ(x) dx = 1 ∀ ε > 0, and the

continuity of f(x). One can immediately generalize Eq. (3.37) as∫
f(x) δ(x− a) dx = f(a) (3.38)

for all functions f and points a, provided that f(x) is continuous at x = a and that the
integration range includes the point x = a.
There are many useful representations of δ(x), as a derivative, regular sequence of

functions, integral or series:
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i) δ(x) =
d θ

dx
, where θ(x) is the Heaviside step function.

ii) δ(3)(~r) = δ(x) δ(y) δ(z) = − 1

4π
∇2

(
1

r

)
.

This can be easily proved by applying Gauss theorem to the vector field
~E = −~∇

(
1

r

)
=

~r

r3
.

iii) δ(x) = lim
ε→0

δε(x), where δε(x) =

{
1/ε for |x| < ε/2

0 otherwise
is a square function.

iv) δ(x) = lim
σ→0

δσ(ε), where δσ(ε) =
1√

2πσ2
e−

x2

2σ2 is a Gaussian function.

v) δ(x) = lim
λ→0

δλ(ε), where δλ(ε) =
1

π

λ

λ2 + x2
is a Lorentzian function.

vi) δ(x) = lim
K→+∞

δK(ε), where δK(ε) =
1

2π

∫ K

−K
ei k xdk =

1

π

sin(Kx)

x
.

Of course, these limits do not exist in the sense of the usual definition. They have to
be interpreted in the sense of a regular sequence, i.e., inside an integral. In fact, the limit

lim
ε→0

∫
δε(x) f(x) dx always exists. It is in this sense that the integral∫

δ(x) f(x) dx = lim
ε→0

∫
δε(x) f(x) dx

is to be interpreted.
Among other useful properties of the δ-function we have

δ(ax) =
δ(x)

|a|

or the more general expression

δ(f(x)) =
∑
i

δ(x− xi)
|f ′(xi)|

,

where xi are the roots of f(xi) = 0 and f ′(xi) 6= 0. These relations can be proved
straightforwardly:∫ +∞

−∞
δ(ax) f(x) dx =

1

|a|

∫ +∞

−∞
δ(x′) f

(
x′

|a|

)
dx′ =

1

a
f(0).
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3.10.1. Fourier integral representation of δ(x)

The Fourier integral theorem states that we can express any function f(x) in the form

f(x) =
1√
2π

∫ +∞

−∞
F (k) ei k x dk, (3.39)

where the Fourier transform is

F (k) =
1√
2π

∫ +∞

−∞
f(x) e−i k x dx. (3.40)

Replacing (3.40) in (3.39) we obtain

f(x) =
1

2π

∫ +∞

−∞

(∫ +∞

−∞
f(x′) e−i k x

′
dx′
)
ei k x dk

=

∫ +∞

−∞

(
1

2π

∫ +∞

−∞
ei k (x−x′) dk

)
f(x′) dx′.

Consequently,

δ(x− x′) =
1

2π

∫ +∞

−∞
ei k (x−x′) dk (3.41)

is an integral representation of the δ-function. As in any representation Eq. (3.41) is
used in connection with an integral of the form

∫
δ(x) f(x) dx.

3.10.2. Representation of δ(x) by a complete basis of orthonormal functions

Consider a complete orthonormal basis in a Hilbert space {Ψn(x), n = 1, 2, . . .}. Com-
pleteness means that an arbitrary function can be written in the form

Ψ(x) =
∑
n

an Ψn(x). (3.42)

Using the orthonormality of the basis we have

an =

∫
Ψ∗n(x) Ψ(x) dx, (3.43)

and substituting (3.43) in (3.42) we obtain

Ψ(x) =
∑
n

(∫
Ψ∗n(x′) Ψ(x′) dx′

)
Ψn(x)

or

Ψ(x) =

∫
dx′

[∑
n

Ψ∗n(x′) Ψn(x)

]
Ψ(x′).
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Therefore

δ(x′ − x) =
∑
n

Ψ∗n(x′) Ψn(x). (3.44)

In general Ψn(x) is either real or Ψ∗n(x) is another element of the basis for a different
n so that δ(x − x′) as given by Eq. (3.44) can be shown to be real and symmetric [i.e.,
δ(x− x′) = δ(x′ − x)].

3.11. The continuum spectrum

The properties of eigenvalues and eigenvectors discussed so far for observables having a
discrete spectrum can be generalized with a few but significant changes to observables
having a continuous spectrum. Let f be an observable (actually a complete set of observ-
ables) having a continuous spectrum. Assuming that all possible values of f are taken
into account we can expand any wave function in the form of an integral

Ψ(q) =

∫
af Ψf (q) df, (3.45)

where af are complex coefficients that depend on the continuous variable f . The wave
functions Ψf (q) are eigenstates of the operator f̂ corresponding to the observable f :
f̂ Ψf ′ = f ′Ψf ′ or f̂ | f ′ 〉 = f ′| f ′ 〉. In the case of a continuous spectrum the normalization
of the eigenstates Ψf (q) is more complex and we cannot require that the norm is equal to
1. We look however for a normalization in which the probability P that a measurement
of the physical quantity f in a system with wave function Ψ(q) yields a value f ′ in the
range (f, f + df) satisfies the proportionality relation

P [f ′ ∈ (f, f + df)] ∝ |af |2 df. (3.46)

In other words, the square modulus of the expansion coefficient |af |2 is proportional to
the probability density of measuring the value f , if the system is in the state Ψ(q) [see
Eq. (3.45)]. If the wave function is normalized (

∫
|Ψ|2 dq = 1) we must have∫

|af |2 df = 1.

Otherwise we must divide |af |2 by
∫
|Ψ|2 dq. In general we have∫

|af |2 df =

∫
|Ψ(q)|2 dq. (3.47)

From Eq. (3.45) we have

Ψ∗(q) =

∫
a∗f Ψ∗f (q) dq
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and thus ∫
a∗f af df =

∫ (∫
a∗f Ψ∗f (q) df

)
Ψ(q) dq

=

∫
a∗f

(∫
Ψ∗f (q) Ψ(q) dq

)
df. (3.48)

Since af is an arbitrary complex function of f , we may consider af and a∗f as independent
variables. Taking ∂/∂a∗f in Eq. (3.48), keeping af and thus Ψ(q) constant, we obtain

af =

∫
Ψ∗f (q) Ψ(q) dq = 〈 f |Ψ 〉. (3.49)

This expression gives expansion coefficients of Ψ(q) in terms of the eigenstates Ψf (q)
of the continuum spectrum. It is analogous to the corresponding expression an =∫

Ψ∗n Ψ dq = 〈n |Ψ 〉 for the discrete spectrum.
Replacing Eq. (3.45) in Eq. (3.49) we obtain

af =

∫
Ψ∗f (q)

(∫
af ′ Ψf ′(q) df

′
)
dq

=

∫
af ′

(∫
Ψ∗f (q) Ψf ′(q) dq

)
df ′.

Since this holds for any function af of f we must have∫
Ψ∗f (q) Ψf ′(q) dq = δ(f ′ − f) = 〈 f | f ′ 〉. (3.50)

This is the orthonormalization condition for the eigenfunctions of the continuum spec-
trum. Notice that this follows simply from Eq. (3.47) and the expansion (3.45). It
replaces the orthonormalization rule∫

Ψ∗m(q) Ψn(q) dq = δmn = 〈n |m 〉

for a discrete spectrum, basically by replacing Kronecker’s delta by Dirac’s delta function.
We may now derive the completeness relation in the continuum spectrum. For this we

replace Eq. (3.49) in Eq. (3.45), which gives

Ψ(q) =

∫ (∫
Ψ∗f (q′) Ψ(q′) dq′

)
Ψf (q) df

=

∫ (∫
Ψ∗f (q′) Ψf (q) df

)
Ψ(q′) dq′.

This implies ∫
Ψ∗f (q′) Ψf (q) df = δ(q′ − q). (3.51)
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The analogous relation for a discrete spectrum is∑
n

Ψ∗n(q′) Ψn(q) = δ(q′ − q), (3.52)

which was demonstrated in section 3.10.2 [Eq. (3.44)].
Using Dirac’s notation we can write

|Ψ 〉 =

∫
af | f 〉 df (3.53)

and

〈 f | f ′ 〉 =

∫
Ψ∗f (q) Ψf ′(q) dq = δ(f ′ − f), (3.54)

while in the discrete spectrum we have

|Ψ 〉 =
∑
n

an |n 〉

and

〈m |n 〉 =

∫
Ψ∗m(q) Ψn(q) dq = δmn.

From Eqs. (3.53) and (3.54) we obtain

〈 f |Ψ 〉 =

∫
af ′ 〈 f | f ′ 〉 df ′ =

∫
af ′ δ(f

′ − f) df ′ = af (3.55)

which coincides with Eq. (3.49) noting that

〈 f |Ψ 〉 =

∫
Ψ∗f (q) Ψ(q) dq. (3.56)

Finally, replacing Eq. (3.55) in Eq. (3.53) we have

|Ψ 〉 =

∫
| f 〉 〈 f |Ψ 〉 df

which implies ∫
df | f 〉 〈 f | = 1. (3.57)

This is the completeness relation for the continuum spectrum in analogy with the known
expression ∑

n

|n 〉 〈n | = 1
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for a discrete spectrum.
In particular the position is a complete set of eigenvalues. Therefore,∫

dq | q 〉 〈 q | = 1 or
∫
d3r |~r 〉 〈~r | = 1.

We look now for the eigenstates of the position operator q̂ = q, which we know is simply
the multiplication by q (q = x, y, z). Let Ψq′(q) be the eigenfunction with defined position
q′. Then we must have

q̂Ψq′(q) = qΨq′(q), (3.58)

since the operator q̂ is simply multiplication by q, and

q̂Ψq′(q) = q′Ψq′(q) (3.59)

for all q. Notice that Eq. (3.58) follows from the definition of the position operator q̂
which holds for any Ψ(q), while Eq. (3.59) is the condition for Ψq′(q) to be an eigenfunc-
tion of q̂ with the eigenvalue q′. This implies

(q − q′) Ψq′(q) = 0 ∀ q.

Consequently,

Ψq′(q) = 0 ∀ q 6= q′.

The normalization condition (3.50) reads∫
Ψ∗q′(q) Ψq′′(q) dq = δ(q′′ − q′),

which is satisfied if we set

Ψq′(q) = δ(q − q′).

The expansion coefficient aq′ of the wave function Ψ(q) is then given by

aq′ =

∫
Ψ∗q′(q) Ψ(q) dq =

∫
δ(q − q′) Ψ(q) dq = Ψ(q′).

The probability of measuring a position q′ ∈ (q, q + dq) is |aq|2 dq = |Ψ(q)|2 dq, as it
should.
In Dirac’s ket-bra form we denote the ket with defined position q′ by | q′ 〉. A general

vector state |Ψ 〉 would be expanded like

|Ψ 〉 =

∫
aq′ | q′ 〉 dq′ =

∫
Ψ(q′) | q′ 〉 dq′.
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Thus

〈 q |Ψ 〉 = aq = Ψ(q).

The wave function is the projection of the state |Ψ 〉 in the eigenstate with defined
position q. Moreover, if we want to change the representation, i.e., the complete set of
observables used to describe the state of the system, we can write

Ψ(q) = 〈 q |Ψ 〉 = 〈 q |
(∫
| f 〉 〈 f | df

)
|Ψ 〉

=

∫
〈 q | f 〉︸ ︷︷ ︸
Ψf (q)

〈 f |Ψ 〉︸ ︷︷ ︸
af

df

=

∫
af Ψf (q) df.

All relations and transformations between the various representations can be obtained by
using Dirac’s ket-bra notation, together with the orthonormalization and completeness
relations.
The projection of the ket |Ψ 〉 in the eigenstates of f̂ , namely

〈 f |Ψ 〉 = af ,

is analogous to the wave function Ψ(q) = aq with the only difference that in the case of
af the observable f has been considered to represent the state and not the position q.
Actually af = 〈 f |Ψ 〉 defines the state |Ψ 〉 as much as aq = 〈 q |Ψ 〉 = Ψ(q) defines it.
Therefore af = 〈 f |Ψ 〉 is known as the wave function in the f representation.
A particularly relevant example of a representation in the continuum is the momentum

representation

Φ(~p) = 〈 ~p |Ψ 〉.

Let us consider the eigenstates

p̂x | p′x 〉 = p′x | p′x 〉.

Knowing that in coordinate representation p̂x = −i ~ ∂

∂x
we have

〈x | p̂x | p′x 〉 = −i ~ ∂

∂x
〈x | p′x 〉 = p′x 〈x | p′x 〉.

The solution to this differential equation with respect to the variable x has the form

〈x | p′x 〉 = A e
i
~ p
′
x x,
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where A is a constant to be determined from the normalization condition

〈 p′′x | p′x 〉 =

∫
〈 p′′x |x 〉 〈x | p′x 〉 dx = |A|2

∫
e
i
~ (p′x−p′′x) dx

= |A|2 ~
∫
dx

~
e
i
~ (p′x−p′′x)x = 2π ~ |A|2 δ(p′x − p′′x).

Consequently |A|2 = (2π ~)−1 and

〈x | px 〉 =
1√

2π ~
e
i
~ px x.

Finally, let us mention that there are observables with partly discrete and continuous
spectra (e.g., the energy of atoms). In this case we have

|Ψ 〉 =
∑
n

an |n 〉+

∫
af | f 〉 df,

where |n 〉 and | f 〉 refer, respectively, to the eigenstates of the discrete and continuous
spectra.
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4. Quantum dynamics

In this section we focus on the time dependence of the wave function, the corresponding
kets, and observable quantities.

4.1. The Hamilton operator

From the superposition principle we know that the equations governing the time de-
pendence of the wave function must be linear and homogeneous. Moreover, since the
knowledge of Ψ(q) at any given time t0 defines the state at any future time t, they must
involve only first-order derivatives with respect to time. In the most general form we can
write

i ~
∂Ψ

∂t
= Ĥ Ψ, (4.1)

where Ĥ is a linear operator known as the Hamiltonian or Hamilton operator. The factor
i ~ is introduced for convenience. We would like to demonstrate some general properties
of Ĥ.
If a wave function is normalized at a given time∫

|Ψ(q, t0)|2 dq = 1,

then |Ψ(q, t)|2 dq represents the probability for an electron to have a coordinate q′ ∈
(q, q + dq) and must remain normalized at any future time. We must therefore have

0 =
∂

∂t

∫
|Ψ(q, t)|2 dq =

∫
∂Ψ∗

∂t
(q) Ψ(q) dq +

∫
Ψ∗(q)

∂Ψ

∂t
(q) dq

for all t. Replacing Eq. (4.1) and its complex conjugate −i ~ ∂Ψ∗

∂t
= (H Ψ)∗ = Ĥ∗Ψ∗ we

have

0 =

∫ [
−(Ĥ∗Ψ∗) Ψ dq + Ψ∗(Ĥ Ψ)

]
dq

=

∫
(Ψ∗H Ψ−Ψ∗H†Ψ) dq

=

∫
Ψ∗(H −H†) Ψ dq.

Since this holds for any state Ψ, we must have

Ĥ = Ĥ†.

The Hamiltonian is therefore hermitian.
As in classical mechanics the Hamiltonian defines the dynamics of the system. If a

system is isolated, i.e., it is not subject to any varying external fields, the Hamiltonian
cannot depend on time. In fact, in the absence of varying external field all times are
equivalent for the system and therefore the laws for the time evolution must be the same
at all times.
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4.2. Stationary states

Since the Hamiltonian is hermitic and time-independent (isolated system), its eigenstates
and eigenvalues given by

Ĥ Ψn = En Ψn

are also time-independent. As in classical mechanics the quantity associated to the
Hamiltonian and which is conserved in isolated systems is the energy of the system. The
eigenvalues En of Ĥ are known as eigenenergies.

The time dependence of the eigenstates of Ĥ is very easy to solve. It is given simply
by a phase factor, since

i ~
∂Ψn

∂t
= Ĥ Ψn = En Ψn

implies

Ψn(q, t) = e−
i
~ En(t−t0) Ψ(q, t0). (4.2)

The probability amplitude af for any time-independent observable f̂ (∂f̂/∂t = 0) in the
state Ψn(q, t) is given by

af (t) =

∫
Ψ∗f (q) Ψn(q, t) dq = e−

i
~ En(t−t0)

∫
Ψ∗f (q) Ψn(q, t0) dq.

Consequently, the probability |af |2 of measuring the value f and the expectation value
〈Ψn | f̂ |Ψn 〉 are independent of t. Notice that we have just used that the operator f̂ and
thus its eigenstates Ψf (q) do not depend on time. In particular the probability density
|Ψn(q, t)|2 for any value of the position is time-independent in an eigenstate of Ĥ [see
also Eq. (4.2)]. For these reasons the eigenstates of Ĥ are called stationary states.
The stationary state with the lowest energy is called the ground-state or normal state

of the system and the associated energy eigenvalue E0 is the ground-state energy. The
stationary states with higher energy eigenvalues En > E0 are called excited states.

An arbitrary wave function at a given time t0 can be expanded in terms of the wave
functions Ψn(q) of stationary states as

Ψ(q, t0) =
∑
n

an Ψn(q),

where the Ψn(q) are the solutions of the eigenvalue equation H Ψn = En Ψn. As usual
the square modulus |an|2 represents the probability of finding the system in the state
Ψn. The time dependence of Ψ is then given by

Ψ(q, t) =
∑
n

an Ψn(q) e−
i
~ En(t−t0).

This is the result of the superposition of the time dependences of the different stationary
states composing Ψ(q, t0). Notice that as soon as more than one value of En is involved
in the expansion of Ψ(q), the probablity density |Ψ(q)|2 oscillates in time and is therefore
not stationary.
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4.3. Conserved quantities

We have seen that two physical observables f and g can be measured simultaneously if and
only if the corresponding operators commute ([f̂ , ĝ] = 0). A quantity or observable f that
can be measured simultaneously with the energy, and whose operator f̂ is independent
of time, is called a conserved quantity. The reason for this name is that under these
conditions the average value

〈 f 〉 = 〈Ψ | f̂ |Ψ 〉

in any state |Ψ 〉 is independent of time. In fact, also the probability distribution |an|2
of the outcome of the measurement of the observable f̂ is independent of t. The proof
of this important property is actually very simple. Since f and E can be measured
simultaneously, one can find a complete set of eigenstates of Ĥ that are also eigenstates
of f̂ :

Ĥ |n 〉 = En |n 〉

and

f̂ |n 〉 = fn |n 〉,

where En, fn and |n 〉 are independent of time. For any state

|Ψ(t) 〉 =
∑
n

an e
− i

~ En t |n 〉

we have

〈 f̂ 〉 = 〈Ψ | f̂ |Ψ 〉 =
∑
nm

a∗m an e
i
~ (Em−En) t 〈m | f̂ |n 〉︸ ︷︷ ︸

δmn fn

=
∑
n

|an|2 fn.

Since the expansion coefficient at time t is an(t) = an(0) e−
i
~Ent, it is clear that the

probability |an|2 of finding the system in state |n 〉, or measuring the value fn, is inde-
pendent of t for all |n 〉. One concludes that in quantum mechanics a conserved property
is characterized by the condition [f̂ , Ĥ] = 0 and ∂f̂/∂t = 0. Let us recall that in classical
mechanics conserved quantities are characterized by having a vanishing Poisson bracket

{f,H} =
∑
i

(
∂f

∂qi

∂H

∂pi
− ∂f

∂pi

∂H

∂qi

)
= 0.

4.4. Degenerate energy levels

One often finds that there are various different eigenstates that correspond to the same
energy. In these cases one says that the corresponding energy level is degenerate. Physi-
cally this means that the energy alone does not form a complete set of observables.

65



An example of a system having a degenerate energy spectrum is the free particle whose
energy is given by E = p2/2m. Except for ~p = 0 there are infinitely many eigenstates
(two eigenstates in 1D) having the same energy.
It is interesting to see that if [f̂ , Ĥ] = 0 and |n 〉 is an eigenstate of Ĥ with energy En,

then |n′ 〉 = f̂ |n 〉 is also a stationary state with the same energy:

Ĥ |n′ 〉 = Ĥ f̂ |n 〉 = f̂ Ĥ |n 〉 = En f̂ |n 〉 = En |n′ 〉.

In fact, f̂ can be time-dependent (∂f̂/∂t 6= 0) provided it commutes with Ĥ at all times.
Notice that |n 〉 need not be an eigenstate of f̂ . Consequently, as soon as |n 〉 is not an
eigenstate of f̂ , there are degenerate levels. This situation is found when there are two
operators f̂ and ĝ that commute with Ĥ, but not between themselves. Consider

[f̂ , Ĥ] = 0 and [ĝ, Ĥ] = 0, but [f̂ , ĝ] 6= 0

and let {|n 〉 with n = 1, 2, . . .} be a set of eigenstates of f̂ and Ĥ with energy En. Then
there is at least one state |n 〉 for which

ĝ |n 〉 6= g |n 〉,

i.e., |n 〉 is not an eigenstate of ĝ, since otherwise f̂ and ĝ would commute. Taking into
account that ĝ |n 〉 has the same energy En as |n 〉 and that ĝ |n 〉 6= |n 〉 it is clear that
the energy level En is degenerate. An important example of non-commuting conserved
quantities are the components L̂x, L̂y and L̂z of the angular momentum in a central
symmetric field.

Exercise: Consider a system composed of two non-interacting parts whose Hamiltonian
can be written as Ĥ = Ĥ1(q1) + Ĥ2(q2). Let Ψ1(q1) and Ψ2(q2) denote the eigenstates
of Ĥ1 and Ĥ2 respectively (i.e., Ĥ1 Ψ1 = E1 Ψ1 and Ĥ2 Ψ2 = E2 Ψ2). Show that the
composite state Ψ(q1, q2) = Ψ1(q1) Ψ2(q2) is an eigenstate of Ĥ with energy E = E1+E2.

4.5. Finite vs. infinite motion

As we shall see the stationary states can have a discrete or continuous energy spectrum.
One can show that stationary states of the discrete spectrum necessarily correspond to a
finite motion, which means that neither the system nor any part of it moves to infinity at
any time. This can be easily understood since the eigenfunctions of the discrete spectrum
are square integrable, i.e., ∫

|Ψn|2 dq = 1.

Therefore, |Ψn|2 → 0 for q → ∞ faster than q−D, where D refers to the dimensions of
the coordinate space.
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In contrast the stationary states of a continuous energy spectrum have non-square-
integrable wave functions satisfying the orthonormality condition∫

Ψ∗E(q) ΨE′(q) dq = δ(E − E′).

In particular the norm of ΨE(q) diverges. The stationary states of a continuum spectrum
correspond therefore to an infinite motion. Even if at t = 0 the wave function Ψ(q, t0)
is localized, one can show that the probability of finding the particle at q →∞ becomes
finite for sufficiently long t. In fact the probability

∫
V |ΨE(q, t)|2 dq of finding the particle

in any finite volume V vanishes for sufficiently long time t.

4.6. The Schrödinger equation

We know that the momentum ~p of a particle defines its state completely, very much
like the position ~r does. Moreover, for a free particle, ~p is conserved and well defined.
Therefore ~p and the energy can be measured simultaneously. The Hamiltonian of a free
particle can thus be expressed in terms of the operators p̂x, p̂y and p̂z, since one can
find a complete set of eigenstates with defined values of ~p and E. The isotropy of space
requires that Ĥ can only depend on p̂2 = p̂2

x+ p̂2
y+ p̂2

z. Moreover, the homogenity of space
and time requires that for a free particle Ĥ cannot depend on t or ~̂r = (x̂, ŷ, ẑ). The
precise form of Ĥ must satisfy the correspondence principle, i.e., the limit of classical
mechanics. Therefore for a free particle we have

Ĥ =
p̂2

2m
, (4.3)

where m is the particle’s mass. It should be noted that Eq. (4.3) can be derived without
any reference to classical mechanics by requiring simply the Galileo invariance of the
equations of motion for Ψ(q, t).

In the presence of an external potential U(x, y, z) the Hamiltonian is given as in clas-
sical mechanics by

Ĥ =
p̂2

2m
+ U(x̂, ŷ, ẑ)

= − ~2

2m
∇2 + U(x, y, z).

The stationary states are therefore given by the time-independent Schrödinger equation

Ĥ Ψ = EΨ

which takes the form

− ~2

2m
∇2 Ψ + U(x, y, z) Ψ = EΨ.
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For a free particle the equation reads

− ~2

2m
∇2 Ψ = EΨ.

This is solved by the eigenstates

Φ~p(~r) =
1

(2π~)3/2
e
i
~ ~p·~r

of the momentum operator ~̂p, where ~p = (px, py, pz) is an arbitrary vector in R3. Here we
have chosen the normalization condition 〈 ~p | ~p ′ 〉 = δ(~p− ~p ′). The corresponding energy
is

E =
p2

2m
=
p2
x + p2

y + p2
z

2m
.

Therefore the energy spectrum E ≥ 0 is continuous, unbound and infinitely degenerate
except for E = 0 (twofold degenerate in 1D). The complete time-dependent stationary
states are given by

Φ~p(~r, t) =
1

(2π~)3/2
e−

i
~ E t+

i
~ ~p·~r.

4.7. The variational principle

Mathematically it is always possible to reformulate a differential equation in a variational
form by finding an appropriate functional3 such that its minimization with respect to the
function yields the original differential equation. In the case of the Schrödinger equation
the variational principle takes a very simple and physically transparent form. One can
in fact show that the stationary states are the extremes of the expectation value of the
energy subject to the normalization constraint. Let

E[Ψ] = 〈Ψ | Ĥ |Ψ 〉 =

∫
Ψ∗(q) Ĥ Ψ(q) dq (4.4)

be the average energy in the wave function Ψ(q). E[Ψ] is a functional of Ψ(q). The norm
of Ψ, given by

〈Ψ |Ψ 〉 =

∫
Ψ∗(q) Ψ(q) dq, (4.5)

is also a functional of Ψ. Actually the precise value of the norm
∫
|Ψ|2 dq is not important,

provided that it remains constant when Ψ is varied. Therefore, the following also applies
to states of the continuum spectrum. To be explicit we require 〈Ψ |Ψ 〉 = 1. The extrema

3A functional is an application that assigns to each function a number in R or C.
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of Eq. (4.4) subject to Eq. (4.5) are obtained by introducing a Lagrange multiplier E,
so that we actually seek for the extrema of the auxiliary functional

F [Ψ] =

∫
Ψ∗(q) Ĥ Ψ(q) dq − E

(∫
Ψ∗(q) Ψ(q) dq − 1

)
. (4.6)

Since Ψ(q) ∈ C we may consider the variations δΨ(q) and δΨ∗(q) as independent vari-
ables, instead of taking the variations of the real and imaginary parts. At the extrema
the variation δF of F with respect to Ψ∗(q) and Ψ(q) must vanish. Varying Ψ∗ keeping
Ψ constant, we have

δF =

∫
δΨ∗(q)

[
Ĥ Ψ(q)− EΨ(q)

]
dq.

Since δF = 0 for any function δΨ∗(q) we must have

Ĥ Ψ(q) = EΨ(q) (4.7)

at all q, which is the Schrödinger equation.4 Taking the variations of F given by Eq.
(4.6) with respect to δΨ(q) keeping Ψ∗(q) constant yields

δF =

∫ [
Ψ∗(q) Ĥ − EΨ∗(q)

]
δΨ(q) dq =

∫ {
[H Ψ(q)]∗ − EΨ∗(q)

}
δΨ(q) dq.

Requiring δF = 0 for all δΨ(q) also implies Eq. (4.7).
The absolute minimum of E[Ψ] subject to the normalization condition 〈Ψ |Ψ 〉 = 1 is

the lowest eigenvalue of Ĥ, i.e., the ground state energy E0. We may therefore write

E0 = min
Ψ

〈Ψ | Ĥ |Ψ 〉
〈Ψ |Ψ 〉

. (4.8)

This result can be obtained more directly by computing E[Ψ] in the form

E[Ψ] =
∑
n

|an|2En, (4.9)

where |Ψ 〉 =
∑

n an |n 〉 is expanded in the stationary states |n 〉 of Ĥ (H |n 〉 = En |n 〉).
Here we assume for simplicity that

∑
n |an|2 = 1. From Eq. (4.9) it is clear that the

absolute minimum of E[Ψ] is the lowest eigenvalue of Ĥ, i.e., the ground-state energy
E0.
Eq. (4.9) also gives a useful hint for obtaining the excited states from a variational

procedure. Suppose that one has determined the ground state |Ψ0 〉 or that one knows its
symmetry. One can then minimize E[Ψ] = 〈Ψ | Ĥ |Ψ 〉 by requiring not only 〈Ψ |Ψ 〉 = 1
but also 〈Ψ0 |Ψ 〉 = 0. This means minimizing E[Ψ] keeping a0 = 0 and

∑
n |an|2 = 1,

which corresponds to a1 = 1 and am = 0 ∀ m 6= 1. In this way the first excited state Ψ1

4Here we have used the fundamental theorem of the calculus of variations.
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and its energy E1 are obtained. The procedure can be iterated in principle at will. The
n-th excited state is the minimum of E[Ψ] = 〈Ψ | Ĥ |Ψ 〉 with the additional conditions

〈Ψ |Ψ 〉 = 1 and 〈Ψm |Ψ 〉 = 0 ∀ m < n.

Using the variational principle one can show that the ground-state wave function for a
single-particle system has no nodes. Consequently the excited states necessarily have
nodes, since otherwise

∫
Ψ∗n Ψ0 dq 6= 0. Moreover, this implies that the ground state is

nondegenerate, since otherwise nodes could be introduced by forming linear combinations
of two or more states having the ground-state energy.
If the motion occurs in a restricted region, Ψ0 vanishes at the boundaries and has no

nodes inside. If the size of the restricted region increases (e.g., if the size of a nanoparticle
increases), the energy of all levels decreases since the number of accessible functions
for the minimization of E[Ψ] increases. We recover Heisenberg’s uncertainty principle

implying lower ∆p2 and
〈 p2

2m

〉
for larger ∆x2.

4.8. Properties of the Schrödinger equation and stationary wave functions

The single-particle Schrödinger equation reads

Ĥ Ψ = EΨ

with

Ĥ =
p̂2

2m
+ U(x, y, z) = − ~2

2m
∇2 + U(x, y, z)

and can be written as

− ~2

2m
∇2 Ψ + (U(x, y, z)− E) Ψ = 0. (4.10)

For simplicity we often focus on the one-dimensional case for which Eq. (4.10) reads

− ~2

2m

d2Ψ

dx2
+ [U(x)− E] Ψ = 0. (4.11)

Local continuity and boundary conditions on Ψ(~r)
In order to identify the conditions that physical solutions of Eqs. (4.10) and (4.11)

must satisfy, several cases should be considered:

i) If U(~r) is continuous at ~r, then Ψ(~r) has continuous second-order (partial) deriva-

tives at this point. Obviously, the first-order derivates ~∇Ψ or
dΨ

dx
and the wave

function Ψ(~r) are also continuous at ~r.
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ii) If ~r belongs to a surface of finite discontinuities of U(~r), or if U(x) is discontinuous

at x in 1D, the second-order derivative
d2Ψ

dx2
=

2m

~2
[U(x) − E]Ψ also shows a

finite discontinuity at this point. However, the integral of
d2Ψ

dx2
, i.e.,

dΨ

dx
, remains

continuous at this point:

dΨ

dx
(x+ η)− dΨ

dx
(x) =

∫ x+η

x

d2Ψ

dx2
(x′) dx′

η→0−−−→ 0,

where we have used that
d2Ψ

dx2
=

2m

~2
(U − E)Ψ is everywhere finite. Since

dΨ

dx
is

continuous the wave function itself is also continuous even in the presence of finite
discontinuities of the potential U(~r).

iii) Finally, we consider a potential U(~r) that becomes infinitely repulsive in a region
of finite measure (i.e., a finite volume in 3D or a segment of finite length in 1D,
not an isolated point). If U(~r)→∞ in a finite (non-infinitesimal) region the wave
function must strictly vanish throughout this region, since otherwise the energy
E would diverge: Ψ(~r) → 0 for U(~r) → +∞. At the boundary of the domain

where U(~r) → +∞, Ψ(x) is continuous, and thus vanishes, but
dΨ

dx
has a finite

discontinuity. To show this we can write

dΨ

dx
(x0 + η)− dΨ

dx
(x0 − η) =

∫ x0+η

x0−η

2m

~2
(U − E) Ψ dx′ =

2m

~2
〈 (U − E) Ψ 〉 2η,

where x0 refers to a point at the boundary of the infinitely repulsive domain and
〈 . . . 〉 indicates the average in the interval [x0 − η, x0 + η]. We may now take the
limit U → +∞ keeping 〈 (U − E) Ψ 〉 η constant. Therefore the discontinuity of
dΨ

dx
remains finite even at points where the discontinuity in U(~r) diverges. A finite

discontinuity in
dΨ

dx
implies of course that Ψ(x) is continuous.

The previous arguments also apply to the limit of arbitrarily small width of the
divergent region. If the potential has a divergency only at one point and the
divergency is integrable of the form U(x) = α δ(x), then Ψ(x) remains finite and

continuous but
dΨ

dx
is discontinuous. To illustrate the origin of the discontinuity of

dΨ

dx
we can write

dΨ

dx
(η)− dΨ

dx
(−η) =

∫ η

−η

d2Ψ

dx2
(x′) dx′

=
2m

~2

∫ η

−η

(
U(x′)− E

)
Ψ(x′) dx′ =

2m

~2

∫ η

−η

[
α δ(x′)− E

]
Ψ(x′) dx′
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=
2m

~2
(αΨ(0)− 2ηE〈Ψ〉) η→0−−−→ 2m

~2
αΨ(0).

Since the discontinuity of
dΨ

dx
at x = 0 is finite, Ψ(x) remains continuous even in

the presence of locally divergent potentials.

Eigenenergy lower bound
Concerning the eigenenergies E it is easy to see that they are necessarily larger than

the minimum value Umin of the potential. In fact U(~r) ≥ Umin ∀ ~r implies 〈U 〉 ≥ Umin.

Moreover, the kinetic energy T =
〈 p̂2

2m

〉
is always positive. Consequently,

E = 〈Ψ | T̂ + Û |Ψ 〉 ≥ 〈Ψ | Û |Ψ 〉 ≥ Umin.

The nature of the energy spectrum, either discrete or continuous, is conditioned by the
long-distance behavior of the potential energy. Let us consider a potential U(~r) that
vanishes at infinite or, more precisely, such that limr→+∞ U(r, θ, ϕ) = 0 ∀ θ, ϕ. In
this case all possible negative-energy eigenstates have a wave function that vanishes for
r → ∞. The motion is thus localized and the spectrum is discrete. Conversely, if the
energy is positive, the motion is not bounded and the spectrum is continuous. In the case
where U > 0 ∀ ~r and U(~r)

r→∞−−−→ 0 there is no discrete spectrum, since E ≥ Umin = 0
and E > 0 implies unbounded motion.
Let us finally recall that the time-independent Schrödinger equation in the absence of

magnetic fields

− ~2

2m
∇2 Ψ + UΨ = EΨ

is real. The same holds for the above-mentioned continuity boundary conditions on Ψ(~r)
and ~∇Ψ. Therefore, in the absence of magnetic field the time-independent stationary
states Ψn(~r) can be chosen to be real. If the level is nondegenerate Ψn(x) is necessarily
real. In any case Ψ∗(x) is always an eigenstate of energy E, whenever Ψ(x) is an eigen-
state with energy E. Consequently, it is always possible to choose Ψ(x) to be real by
considering Ψ + Ψ∗ and i (Ψ−Ψ∗).

4.9. Motion in one dimension: The square potential well

If U(~r) depends only on one coordinate or, more generally, if U(~r) = U1(x)+U2(y)+U3(z),
the Hamiltonian can be splitted in the sum of three terms each of which involves the
variables x, y and z separately. The stationary states are then given by the product
Ψ(~r) = Ψ1(x) Ψ2(y) Ψ3(z), where Ψi are the solutions of one-dimensional equations of
the form

− ~2

2m

d2Ψ

dx2
+ U(x)Ψ = EΨ.
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In order to illustrate some of the properties of Ψ(x) we consider a square potential well
given by

U(x) =

{
U0 > 0 for |x| > a/2

0 for |x| ≤ a/2.

In the region I, where |x| < a/2, the Schrödinger equation reads

− ~2

2m

d2Ψ

dx2
= EΨ

with E > 0. The solutions have therefore the form

Ψ(x) = Aei k x +B e−i k x

with

E =
~2k2

2m

and k > 0 (k ∈ R). For x outside the well, in regions II (x < −a/2) and III (x > a/2),
we have

− ~2

2m

d2Ψ

dx2
= (E − U0)Ψ with (E − U0) < 0.

The solutions for E < U0 have the form

Ψ±(x) = e±κx

with

U0 − E =
~2κ2

2m
or κ =

√
2m

~2
(U0 − E) > 0.

The spectrum for E < U0 is discrete and therefore the eigenfunctions must be integrable.
Thus we have

Ψ(x) = C eκx for x < −a/2 (Region I)

and

Ψ(x) = De−κx for x > a/2 (Region III),

where C and D are constants (κ > 0).
Notice that the particle has a finite probability to be found outside the well (U0 finite).

However, the penetration length 1/κ vanishes for U0 → +∞, as already discussed in
the previous section. The discrete eigenvalues E < U0 and the constants A, B, C and
D are determined by imposing the continuity of Ψ(x) and Ψ′(x) at the well boundaries
x = ± a/2. This is discussed in some detail below.
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For E > U0 the motion is infinite and the spectrum is therefore continuum. In the
regions I and III the solutions have the general plane-wave form

Ψ(x) = A′ ei k
′ x +B′ e−i k

′ x

with k =

√
2m

~2
(E − U0) ≥ 0 (|x| > a/2). However, notice that the constants A′ and

B′ may be different in regions I and III.
As a first example of a system having a completely discrete energy spectrum we consider

the case U0 → +∞, for which the motion is confined to region II. Ψ(x) vanishes in regions
I and III and the continuity of Ψ(x) imposes the constraints Ψ(± a/2) = 0 at the well
boundaries. We thus have

Ψ(a/2) = Aei k a/2 +B e−i k a/2 = 0 (4.12)

and

Ψ(−a/2) = Ae−i k a/2 +B ei k a/2 = 0. (4.13)

Multiplying Eq. (4.12) by e−i k a/2 (ei k a/2) and Eq. (4.13) by ei k a/2 (e−i k a/2) and
subtracting one obtains

B
(
e−i k a − ei k a

)
= 0 ⇒ B sin k a = 0

and

A
(
ei k a − e−i k a

)
= 0 ⇒ A sin k a = 0.

Since A and B cannot be simultaneously zero, we have sin k a = 0, which implies k =
nπ

a
with n = 1, 2, . . . . Note that n = 0 is excluded since it yields a constant Ψ(x) ≡ 0. The
corresponding eigenenergies take thus the values

En =
π2 ~2

2ma2
n2 with n = 1, 2, . . . .

The condition Ψ(−a/2) = 0 implies

A+B ei k a = A+B ei n π = A+ (−1)nB = 0,

which is equivalent to the relation

A+B e−i k a = A+B e−i n π = A+ (−1)nB = 0

derived from the constraint Ψ(a/2) = 0. Consequently, A = B =

√
2

a
and

Ψn(x) =

√
2

a
cos
(nπ x

a

)
for n odd.
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Similarly A = −B =

√
2

a
and

Ψn(x) =

√
2

a
sin
(nπ x

a

)
for n even.

Notice that Ψn(x) is either even or odd [Ψn(−x) = (−1)n+1 Ψn(x)] and that the ground
state Ψ1(x) is even and nodeless. These are general properties of even potentials [U(−x) =
U(x)].

4.10. Summary of quantum dynamics

4.10.1. The time-dependent Schrödinger equation

The superposition principle implies that the dynamics (time evolution) of the wave func-
tion Ψ(q, t) is given by a first-order linear differential equation of the general form

i ~
∂Ψ

∂t
= Ĥ Ψ,

where Ĥ is the Hamilton operator or Hamiltonian of the system. For a single particle in
an external potential U(~r) it is given by

Ĥ =
p̂2

2m
+ U(~r).

In general we know that the dynamics must preserve the normalization of the wave
function, i.e., ∫

|Ψ(q, t)|2 dq is independent of t.

This requires that Ĥ† = Ĥ is an hermitic operator, which means just that for all Ψ1(~r)
and Ψ2(~r) ∫

Ψ∗1(q) [Ĥ Ψ2(q)] dq =

∫
[Ĥ Ψ1(q)]∗ Ψ2(q) dq.

4.10.2. Stationary states

Since Ĥ† = Ĥ we can find a complete set of eigenstates Ψn(q), i.e.,

Ĥ Ψn(q) = En Ψn(q),

where En ∈ R are the eigenenergies. Ψn(q) are independent of time since Ĥ does not
depend explicitly on time. The eigenstates of Ĥ have a very simple time dependence:

Ψn(q, t) = Ψn(q) e−
i
~ En(t−t0),
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where we have set Ψn(q, t0) = Ψn(q). The eigenstates Ψn(q) of Ĥ are called stationary
states since for any observable f̂ that does not depend explicitly on time we have that

|af |2 =
∣∣ ∫ Ψ∗f (q) Ψn(q, t) dq

∣∣2
is independent of time (f̂ Ψf = f Ψf ).
The time dependence of an arbitrary state is obtained straightforwardly if the complete

set of stationary states Ψn(q) is known. One then expands

Ψ(q, t0) =
∑
n

an Ψn(q)

in terms of Ψn, and the superposition implies

Ψ(q, t) =
∑
n

an Ψn(q) e−
i
~ En(t−t0)

for all t ≥ t0.

4.10.3. The energy spectrum

The spectrum of eigenenergies can be discrete or continuous. A discrete spectrum, ac-
tually a stationary state Ψn belonging to a discrete energy spectrum, corresponds to a
finite motion that is restricted in space, since the corresponding wave function is square-
integrable: ∫

dq |Ψn(q)|2 = 1.

In contrast an energy eigenstate ΨE of the continuous spectrum corresponds to an infinite
motion that is unbounded. These are known as scattering states. Even if localized states
can be constructed with stationary states of the continuous spectrum, one can show that
the particle always moves to infinity for large enough time. In this case∫

V
|ΨE(q, t)|2 dq t→∞−−−→ 0 for any finite volume V.

A given eigenvalue En of Ĥ can correspond to a single stationary state, to several states,
or to infinitely many states. In the first case we say that the energy level is nondegenerate,
otherwise it is said to be degenerate. In most cases the energy levels are degenerate, which
means that the energy alone does not suffice to define the quantum state univocally. As
examples one can mention the p, d, and f orbitals in atoms, or a free particle with ~p 6= 0.

4.10.4. The variational principle

The stationary state with the lowest energy is known as the ground state, while the other
states are called excited states. The ground state energy E0 and the corresponding wave
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function can be derived from a variational procedure

E0 = min
Ψ

〈Ψ | Ĥ |Ψ 〉
〈Ψ |Ψ 〉

.

The excited states Ψn(q) can be derived by minimizing

E[Ψ] = 〈Ψ | Ĥ |Ψ 〉

under the constraints 〈Ψ |Ψ 〉 = 1 and 〈Ψ |Ψm 〉 = 0 ∀ m < n. For the ground state Ψ0

only the constraint 〈Ψ0 |Ψ0 〉 = 1 applies.

4.10.5. Properties of the stationary Schrödinger equation

We consider the time-independent Schrödinger equation

Ĥ Ψ = EΨ (4.14)

or, making the form of Ĥ explicit,

− ~2

2m
∇2 Ψ + U(x, y, z)Ψ = EΨ (4.15)

in 3D and

− ~2

2m

d2Ψ

dx2
+ U(x)Ψ = EΨ (4.16)

in 1D. Since the Schrödinger equation is a second-order differential equation, it is the
second derivative of Ψ(~r) that shows discontinuities at the points where the potential is
discontinuous. Consequently,

i) Ψ(x) and
−−→
∇Ψ are continuous provided that U(~r) has only finite discontinuities.

ii) If U(~r) → +∞ in a finite volume in space (or in a finite segment in 1D), then
Ψ(~r) = 0 in this volume. Otherwise E would diverge.

iii) At the boundary of regions excluded to the particles [Ψ(~x) = 0] the wave function
remains continuous but

−−→
∇Ψ is discontinuous.

If the potential has a lower bound Umin = min {U(~r) for ~r ∈ R3}, the ground state
energy E0 satisfies E0 ≥ Umin. If U → −∞ for a finite number of points (e.g., at the
nuclei of atoms), the ground state remains finite and the particle does not fall into the
center of attraction provided that the potential does not decrease (diverge) very rapidly
with distance, actually as long as

U(~r) ∼ 1

rα
with α < 2.
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The reason is the positive kinetic energy contribution which diverges as ∆r−2 when the
wave function is localized in a region ∆r.
In the absence of magnetic field Ĥ is real. Moreover, the boundary conditions on

Ψ(~r) are also real. Therefore, if Ψ(~r) is a solution of Eq. (4.14), then Ψ∗(~r) is also a
solution with the same eigenenergy E. Thus, the stationary state wave functions can be
taken to be real [ proportional to Ψ + Ψ∗ and (Ψ−Ψ∗)/i ]. Nondegenerate states have
necessarily real Ψ(~r). Otherwise one can search the energy eigenstates assuming a real
Ψ(~r).

4.11. The square potential well

In this section we consider the problem of a one-dimensional potential of the form

U(x) =


U0 > 0 for x < 0 I
0 for 0 < x < a II
U0 for x > a III.

The potential being piecewise constant, we determine the energy eigenfunctions by solv-
ing Eq. (4.16) in the three regions I–III and by matching the solutions at the boundaries.
In regions I and III the Schrödinger equation reads

− ~2

2m

d2Ψ

dx2
+ U0 Ψ = EΨ ⇔ 2m

~2
(U0 − E)Ψ =

d2Ψ

dx2
.

For the discrete spectrum of bound states having 0 ≤ E ≤ U0 we obtain

Ψ(x) = e±κx

with κ2 =
2m

~2
(U0 − E) > 0 ⇒ κ =

√
2m(U0 − E)

~2
. Since Ψ(x) → 0 for |x| → +∞

(bound state), we must have

Ψ1(x) = A1 e
κx for x < 0 (region I)

and

Ψ3(x) = A3 e
−κx for x > a (region III)

with κ > 0 and A1, A3 ∈ R. Let us recall that the discrete spectrum is non-degenerate
and therefore the eigenfunctions are real.
In region II we have

d2Ψ

dx2
= −2mE

~2
Ψ

with E > 0. This implies

Ψ(x) = e±i k x

78



with k2 =
2mE

~2
> 0 ⇒ k =

√
2mE

~
. The most general solution in region II has the

form

Ψ2(x) = A ei k x +B e−i k x

with A and B ∈ C (k > 0). Since we are looking for real solutions we consider

Ψ2 ±Ψ∗2 = (A±B∗) ei k x + (B ±A∗) e−i k x.

Without loss of generality we can write

Ψ2(x) = A2 sin(k x+ ϕ) for 0 < x < a

with k > 0, A2 and ϕ ∈ R.

The continuity constraints on Ψ(x) and Ψ′ =
dΨ

dx
can be replaced by the requirement

that Ψ(x) and Ψ′(x)/Ψ(x) are continuous. Considering the logarithmic derivative Ψ′/Ψ
is more practical since the continuity conditions define Ψ up to a multiplicative constant.
At x = 0 we must have Ψ1 = Ψ2, i.e.,

A1 = A2 sin δ.

Noting that Ψ′1(x) = A1 κ e
κx and Ψ′2(x) = A2 k cos(k x+ δ), Ψ′1/Ψ1 = Ψ′2/Ψ2 implies

κA1

A1
=
k A2 cos δ

A2 sin δ

k = tan δ κ = tan δ

√
2m

~2
(U0 − E)

k = tan δ

√
2m

~2

(
U0 −

~2 k2

2m

)

k = tan δ

√
2mU0

~2
− k2 (k > 0). (4.17)

Note that tan δ > 0. At x = a we must have

A2 sin(k a+ δ) = A3

and

Ψ′

Ψ
=
−κ e−κ a

e−κ a
=
k cos(k a+ δ)

sin(k a+ δ)

k = − tan(k a+ δ)κ = − tan(k a+ δ)

√
2mU0

~2
− k2. (4.18)
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Note that tan(k a+δ) < 0. We can obtain k and δ from Eqs. (4.17) and (4.18) as follows.
From Eq. (4.17) we have

k2 =
sin2δ

cos2 δ

(
2mU0

~2
− k2

)

k2(1− sin2 δ) = sin2 δ

(
2mU0

~2
− k2

)

k2 = sin2 δ
2mU0

~2

sin δ = ± ~ k√
2mU0

.

In this way we obtain

δ = sin−1 ~ k√
2mU0

+ nπ (4.19)

with k > 0, tan δ > 0 and n ∈ Z. In the following we choose 0 ≤ sin−1 x ≤ π/2 to ensure
that tan δ > 0. Analogously from Eq. (4.18) we have

sin(k a+ δ) = ∓ ~ k√
2mU0

(4.20)

with k > 0, tan(k a+ δ) < 0 and n ∈ Z. Notice that the signs in Eqs. (4.19) and (4.20)

are opposite since
tan δ

tan(k a+ δ)
= −1. Thus we obtain

k a+ δ = − sin−1 ~ k√
2mU0

+ n′ π

with 0 ≤ sin−1 x ≤ π/2. The minus sign ensures that tan(k a + δ) < 0. Finally, k is
obtained from the transcendental equation

n′ π − sin−1

(
~ k√

2mU0

)
= k a+ sin−1

(
~ k√

2mU0

)
+ nπ

with n and n′ ∈ Z. We can then write m = n′ − n

k a = mπ − 2 sin−1

(
~ k√

2mU0

)
1

2
(mπ − k a) = sin−1

(
~ k√

2mU0

)

sin

[
1

2
(mπ − k a)

]
=

~√
2mU0

k,
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where 0 ≤ (mπ − k a)/2 ≤ π/2. It follows that

sin
(mπ

2

)
cos

(
k a

2

)
+ cos

(mπ

2

)
sin

(
k a

2

)
=

~√
2mU0

k (4.21)

and

0 ≤ mπ

2
− k a

2
≤ π

2
⇔ (m− 1)π

2
≤ k a

2
≤ mπ

2

⇔

{
tan

(
k a
2

)
> 0 for m odd

tan
(
k a
2

)
< 0 for m even.

For m odd we have sin (mπ/2) = (−1)(m−1)/2. Thus, Eq. (4.21) implies

(−1)(m−1)/2 cos

(
k a

2

)
=

~
√

2

a
√
mU0

k a

2
and tan

(
k a

2

)
> 0. (4.22)

For m even we have cos (mπ/2) = (−1)m/2. Thus, Eq. (4.21) implies

(−1)m/2 sin

(
k a

2

)
=

~
a

√
2√

mU0

k a

2
and tan

(
k a

2

)
< 0. (4.23)

Once k is known from Eq. (4.22) or (4.23) the eigenenergies are given by

En =
~2 k2

2m
=

2 ~2

ma2

(
k a

2

)2

.

4.12. General properties of one-dimensional systems

A system is said to be one-dimensional when it is governed by the one-dimensional
Schrödinger equation

− ~2

2m

d2Ψ(x)

dx2
+ U(x) Ψ(x) = EΨ(x). (4.24)

This is the case when U(~r) depends only on x, but also when U(~r) = U1(x)+U2(y)+U3(z)
so that the eigenfunctions can be written in the form Ψ(~r) = φ1(x)φ2(y)φ3(z). Some
general properties of the motion in one dimension are summarized below.
Degeneracy of the energy spectrum: The energy levels of the discrete spectrum, i.e.,

when the motion is finite, are nondegenerate. The same holds when the particle cannot
move in one direction, i.e., when the spectrum is continuous but Ψ(x)

x→+∞−−−−→ 0 or
Ψ(x)

x→−∞−−−−→ 0.
To prove this assertion consider that there were two solutions Ψ1 and Ψ2 of Eq. (4.24).

In this case we would have

Ψ′′1
Ψ1

=
2m (U − E)

~
=

Ψ′′2
Ψ2

∀ x,
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which implies

Ψ′′1 Ψ2 −Ψ′′2 Ψ1 = 0 or Ψ′1 Ψ2 −Ψ′2 Ψ1 = constant.

Taking the limit of x→ ±∞ in the direction for which Ψ1,2(x)→ 0, we find that the
constant is zero:

Ψ′1 Ψ2 −Ψ′2 Ψ1 = 0.

Integrating
Ψ′1
Ψ1

=
Ψ′2
Ψ2

we obtain

ln Ψ1 = ln Ψ2 + constant ∀ x

or

Ψ1 = cΨ2 ∀ x.

The two functions can only differ in an irrelevant constant (phase) factor.
Nodes of the wave function: The eigenfunction of the discrete spectrum corresponding

to the n-th eigenvalue has n nodes, i.e., it vanishes n times. The ground state is nodeless
and the n-th excited state has n nodes. This is known as oscillation theorem. If the
motion is restricted to a finite region (e.g., |Ψ(x)| = 0 for |x| > a due to U(x) = +∞ for
|x| > a), then the oscillation theorem applies to the finite region where Ψ(x) 6= 0.
Symmetric potentials: Let us consider a potential that is even, i.e., U(x) = U(−x), and

let Ψ(x) be a stationary state of energy E. Taking into account that
d2Ψ(−x)

dx2
=
d2Ψ(x)

dx2

it is clear that the function Ψ(−x) is also an eigenstate with the same energy E. In fact,
starting from Eq. (4.24) and replacing x by −x we have

d2Ψ(−x)

dx2
+ U(x) Ψ(−x) = EΨ(−x),

where we have used that U(x) = U(−x). There are then two possibilities. If the energy
level is nondegenerate (e.g., discrete spectrum), then Ψ(x) and Ψ(−x) can only differ by
a constant:

Ψ(x) = cΨ(−x).

Repeating the change of sign again we obtain

Ψ(x) = cΨ(−x) = c2 Ψ(x),

which implies c = ±1. Consequently,

Ψ(x) = ±Ψ(−x)

is either even or odd. In this case one says that Ψ has defined parity. Taking into account
that the n-th eigenstate has n nodes we conclude that the ground state Ψ0 is necessarily
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even, that the first excited state is odd, and that in general the n-th eigenstate Ψn has
the same parity as n.

If the stationary is doubly degenerate, the parity of the wave function is not univocally
defined by its energy. However we can always construct the states

Ψ+(x) = Ψ(x) + Ψ(−x) (4.25)

and

Ψ−(x) = Ψ(x)−Ψ(−x) (4.26)

which are, respectively, even and odd. For instance, if we have

Ψ(x) = ei k x,

the corresponding even and odd states are

Ψ+ = ei k x + e−i k x = 2 cos kx

and

Ψ− = ei k x − e−i k x = 2 i sin kx.

Notice, however, that Ψ+ and Ψ− as given by Eqs. (4.25) and (4.26) are in general
not normalized and can eventually be zero, if the original function Ψ(x) has a defined
parity. In conclusion, for even potentials U(x) = U(−x) one can always assume that the
stationary states have defined parity, i.e., that they are even or odd.
Scattering states: We consider now a potential U(x) which tends to finite limiting

values for large distances. Let U(x)
x→−∞−−−−→ 0 and U(x)

x→+∞−−−−→ U0 > 0. Since the
discrete spectrum corresponds to a finite motion we can only find discrete energy levels
for Umin ≤ E < 0. In this case the wave function decreases exponentially in both
directions as soon as E < U(x).
For 0 < E < U0 the motion is infinite in the direction x → −∞ and therefore the

spectrum is continuous. As already discussed the eigenvalues are nondegenerate since
Ψ(x) → 0 for x → +∞ (E < U0). For x → −∞, U(x) → 0 and we can neglect the
potential in order to infer the limiting value of the wave function. For x → −∞ we
therefore have a stationary plane way of the form

Ψ(x) = A sin(k x+ δ),

where k =
√

2mE/~. In the other limit (x→ +∞) we can approximate U(x) ' U0 and
the wave function takes the limiting form

Ψ(x) = B e−κx,

where κ =
√

2m (U0 − E)/~. This follows from
d2Ψ(x)

dx2
∼=

2m

~
(U0 − E) for x → +∞.

As expected Ψ(x) decreases exponentially in the classically forbidden region where E <
U(x).
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Finally for E > U0 the spectrum is continuous and doubly degenerate. In this case
both solutions of the second order differential equation are physically acceptable (no
divergent behavior). The asymptotic forms of the stationary state are

Ψ(x) = A1 e
i k1 x +B1 e

−i k1 x

with k1 =
√

2m (E − U0)/~ for x→ +∞, and

Ψ(x) = A2 e
i k2 x +B2 e

−i k2 x

with k2 =
√

2mE/~ for x→ −∞. Notice that the form of Ψ(x) is similar for both limits
but that wave vectors or momenta p = ±~ k are different. As we will discuss in more
detail below the term ei k x (k > 0) corresponds to a particle having a positive velocity and
current density, i.e., moving to the right, while e−i k x corresponds to a particle moving
to the left.

4.13. Transmission and reflection coefficients

We consider a potential as in the previous section such that U(x) → 0 for x → −∞
and U(x) → U0 > 0 for x → +∞. For simplicity we can assume that U(x) increases
monotonously with x, but this is not really necessary. Suppose we are dealing with
classical particles that are moving from left to right under the action of such a force field
~F = −~∇U . If the energy of the incident particles is E < U0, a classical particle would
move from left to right with a velocity v that decreases with increasing x until it reaches
the return point xc given by U(xc) = E. After that, the particle is always reflected by
the potential wall and continues its motion back towards x → −∞ with reversed v. If
the incident energy is E > U0 the classical particle overcomes the barrier and continues
its motion to x→ +∞, albeit with a reduced velocity v =

√
2 (E − U0)/m. In quantum

mechanics, however, two new phenomena appear. First, there is a finite probability of
finding the particle beyond the classical return point xc (i.e., |Ψ(x)|2 > 0 for x > xc).
And second, there is a finite (non-vanishing) probability that the particle is reflected
even for an incident kinetic energy E > U0.
We consider an incident particle from the left with E > U0, which can eventually be

reflected in the direction x → −∞, or transmitted to x → +∞. The wave function has
thus the form

Ψ(x) = A2 e
i k2 x where k2 =

√
2m (E − U0)/~

for x→ +∞, and

Ψ(x) = A1 e
i k1 x +B1 e

−i k1 x where k1 =
√

2mE/~

for x→ −∞. In order to introduce the notions of transmission and reflection coefficients
we consider the probability current density j, which measures the flux of probability across
a surface (or a given point in 1D). For the transmitted wave (x → +∞), j is given by
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jt =
~ k2

m
|A2|2 =

p2

m
|A2|2, while for the incident wave it is given by ji =

~ k1

m
|A1|2.

The concept of probability current density is discussed in detail in Sec. 4.16.
We define the transmission coefficient T as the ratio between the transmitted and the

incident probability current densities:

T =
jt
ji

=
k2 |A2|2

k1 |A1|2
.

Analogously, the probability current density of the reflected wave is jr = −~ k1

m
|B1|2

(i.e., pointing to the negative x direction). The reflection coefficient R is then defined by
the ratio

R =
|jr|
|ji|

=
|B1|2

|A1|2

between the reflected and the incident probability current densities.
In any stationary state the probability of finding an electron in any finite volume is

independent of time. Therefore the total flux of the probability current density over the
surface of any volume must vanish. This means that the incident probability flux must
be equal to the sum of the reflected and transmitted flux:

~ k1

m
|A1|2 =

~ k2

m
|A2|2 +

~ k1

m
|B1|2.

Consequently, we have

T +R = 1.

It is interesting to point out that the reflection and transmission coefficients are the same
for positive and negative directions of the incoming particle. To show this we write the
asymptotic values of a general solution of the Schrödinger equation for a given energy E:

Ψ(x) =

{
A1 e

i k1 x +B1 e
−i k1 x for x→ −∞

A2 e
i k2 x +B2 e

−i k2 x for x→ +∞.
(4.27)

We consider first the particular case A1 = 1 and B1 = 0 and denote the corresponding
complex coefficients of the asymptotic values for x→ +∞ as α and α′:

Ψ1(x) =

{
ei k1 x for x→ −∞
α ei k2 x + α′ e−i k2 x for x→ +∞.

Second, we consider the case A1 = 0 and B1 = 1 and we write

Ψ2(x) =

{
e−i k1 x for x→ −∞
β ei k2 x + β′ e−i k2 x for x→ +∞.
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Since the Schrödinger equation is linear we can construct the general solution Ψ(x) given
by Eq. (4.27) as a linear combination Ψ(x) = A1 Ψ1 +B1 Ψ2. Comparing the asymptotic
behaviors for x→ +∞ we infer

A2 = αA1 + β B1 (4.28)

and

B2 = α′A1 + β′B1 (4.29)

for all A1 and B1 ∈ C. Since the Hamiltonian is real, Ψ∗ is a stationary state whenever
Ψ(x) is a stationary state. We can therefore construct the function Ψ(x) given by Eq.
(4.27) by combining Ψ∗1(x) and Ψ∗2(x) with the coefficients B1 and A1, respectively.
Indeed

Ψ(x) = B1 Ψ∗1(x) +A1 Ψ∗2(x)

=

{
A1 e

i k1 x +B1 e
−i k1 x for x→ −∞

(α′∗B1 + β′∗A1) ei k2 x + (α∗B1 + β∗A1) e−i k2 x for x→ +∞

has the same asymptotic behavior for x → −∞ as the stationary state given by Eq.
(4.27) and must therefore coincide with it for all x. Comparing with Eq. (4.27) we
conclude that

B2 = α∗B1 + β∗A1. (4.30)

The reflection coefficient for a particle coming from left to right [B2 = 0 in Eq. (4.27)]
is given by

Rl =

∣∣∣∣B1

A1

∣∣∣∣2.
Since B2 = 0 we have, using Eq. (4.30), that α∗B1 + β∗A1 = 0. This implies

Rl =

∣∣∣∣β∗α∗
∣∣∣∣2.

The reflection coefficient for a particle coming from the right [A1 = 0 in Eq. (4.27)] is
given by

Rr =

∣∣∣∣A2

B2

∣∣∣∣2.
Since A1 = 0 we have, using Eq. (4.30), B2 = α∗B1 and, using Eq. (4.28), A2 = β B1.
Thus,

Rr =

∣∣∣∣ βα∗
∣∣∣∣2 = Rl.

86



Since T + R = 1, the transmission coefficients Tl and Tr for left and right incidence are
also the same. Notice that in classical mechanics we have Rr = Rl = 0 and Tr = Tl = 1
(E > U0). Therefore, the left-right symmetry also holds in the classical case.
If E < U0, then E − U(x) < 0 for x → −∞ and k2 becomes purely imaginary. The

wave function Ψ2(x)→ 0 for x→ +∞ and the transmitted current density vanishes. In
this case T = 0 and R = 1. However, notice that there is a finite probability of finding the
particle beyond the classical turning point xc. This probability decreases exponentially
for x→ +∞.
A few simple examples can be worked out analytically, for instance, the square potential

step. For E < E0, R = 1 and T = 0. For E ≥ U0 we have R→ 1 for E → U0 and R→ 0
for E → +∞.
Another interesting example is the rectangular potential barrier. In this case we see

that the transmission coefficient does not vanish even for E < U0. Since there is always
a reflected wave, we must have R ≥ 0 and T ≤ 1. The possibility that the particles
traverse a potential energy barrier is known as tunnel effect. It is a well-known specific
feature of quantum mechanics. The phenomenon appears in a number of experiments in
nanophysics, condensed matter, atomic physics, chemistry, etc.

4.14. Time dependence of observables and operators

In quantum mechanics the derivative of observables with respect to time cannot be
defined as in classical physics. Consider for example the position of the particle as
observable and its derivative, the velocity. In classical mechanics the position is an
intrinsic dynamical variable of the particle and one can measure it with arbitrary accuracy
at any time. The velocity v(t) is then defined as

v(t) = lim
∆t→0

x(t+ ∆t)− x(t)

∆t
,

where x(t) refers to the position at time t. However, in quantum mechanics the particles
do not have an intrinsic value of the position. The position appears only as the result
of a measurement, and the measurement alters the quantum state in an essential way.5

A particle having a definite position at time t will not have a definite position at a
subsequent time t + ∆t. Therefore, the result of the differences ∆x = x(t + ∆t) − x(t)
can never be predicted with certainty. Only the wave functions Ψ(x, t) and the probability
distribution of the position |Ψ(x, t)|2 are well-defined at all times. Therefore, only the
average value of the position 〈x 〉 and any other higher moments 〈xn 〉 of |Ψ(x, t)|2 have
well-defined values at all times.
The previous arguments apply to any observable. Except for the conserved quantities

of a specific physical situation (i.e., for a specific Hamiltonian), an observable having
a definite value at an instant t will not have a definite value at time t + ∆t. Only
the probability distribution |af |2 is well-defined. It is therefore natural to define time

5As already discussed, the measurement of an observable f projects the quantum state in an eigenstate
Ψf ′ of the observable, where f ′ is the result of the measurement.
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derivatives of observables in terms of mean values. We introduce the derivative of the
physical quantity f̂ by means of the operator ˙̂

f = df̂/dt, which is defined by the relation

〈
Ψ
∣∣ df̂
dt

∣∣Ψ 〉 =
d

dt
〈Ψ | f̂ |Ψ 〉. (4.31)

In other words, the average value of the quantity ˙̂
f is equal to the time derivative of the

average value of f̂ for any state |Ψ 〉. Notice that in this way ˙̂
f is univocally defined, since

two operators having the same average on any state |Ψ 〉 are necessarily equal. Moreover,
f̂ † = f̂ implies ˙̂

f † =
˙̂
f . Consequently, if f̂ is a physical observable, ˙̂

f also corresponds to
an observable.
An explicit expression for ˙̂

f can be readily obtained from Eq. (4.31) by calculating
the derivative of 〈Ψ | f̂ |Ψ 〉 =

∫
Ψ∗f̂ Ψ dq taking into account the time dependence of

Ψ = Ψ(q, t), as well as a possible time dependence of f̂ = f̂(t). A straightforward
differentiation yields

d

dt
〈Ψ | f̂ |Ψ 〉 =

∫ (
∂Ψ∗

∂t
f̂ Ψ + Ψ∗

∂f̂

∂t
Ψ + Ψ∗f̂

∂Ψ

∂t

)
dq.

From the Schrödinger equation i ~
∂Ψ

∂t
= Ĥ Ψ we have −i ~ ∂Ψ∗

∂t
= (Ĥ Ψ)∗, and therefore∫

∂Ψ∗

∂t
f̂ Ψ dq =

i

~

∫
(Ĥ Ψ)∗f̂ Ψ dq =

∫
Ψ∗ Ĥ f̂ Ψ dq,

where we have used the hermiticity of Ĥ (Ĥ† = Ĥ). It follows that

d

dt
〈 f̂ 〉 =

∫ (
Ψ∗

∂f̂

∂t
Ψ +

i

~
Ψ∗ Ĥ f̂ Ψ− i

~
Ψ∗ f̂ Ĥ Ψ

)
dq.

Applying the definition (4.31) of ˙̂
f we have∫

Ψ∗
˙̂
f Ψ dq =

∫
Ψ∗

[
∂f̂

∂t
+
i

~

(
Hf̂ − f̂ Ĥ

)]
Ψ dq.

Since this holds for all Ψ, we conclude that

˙̂
f =

∂f̂

∂t
+
i

~
[Ĥ, f̂ ]. (4.32)

At the present stage Eq. (4.32) should be regarded as the definition of the operator
˙̂
f associated to a new observable, namely, the derivative of the observable f̂ . Notice
that ˙̂

f depends on the Hamiltonian Ĥ, which contrasts with the usual definition of time
derivative in classical mechanics.
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In many cases of interest (e.g., ~r, ~p, ~l = ~r × ~p, etc.) the operator f̂ does not depend
explicitly on time (∂f̂/∂t = 0), so that

˙̂
f =

i

~

[
Ĥ, f̂

]
. (4.33)

Assuming that Ĥ does not depend on time (isolated system) we conclude that ˙̂
f does not

depend explicitly on time, either. From this perspective only the wave functions Ψ(q, t) or
the representation-independent kets |Ψ(t) 〉 depend on time. The operators associated to
the observables are time-independent. This is the so-called Schrödinger picture in which
the quantum dynamics is governed by the Schrödinger equation. An alternative approach
to quantum dynamics is to consider Eq. (4.32) or (4.33) as a differential equation for
the operator f̂ , which is now regarded as being time-dependent. This is the so-called
Heisenberg picture. In the present section and in the following sections (4.15–4.17) we
stick to the Schrödinger picture in which the operators are independent of time (except
for an eventual explicit dependence) and the wave functions depend on t following the
Schrödinger equation. The Heisenberg picture will be discussed in Sec. 4.18.
An important class of observables are the conserved quantities which mean value does

not depend on time for any state Ψ(q, t). In previous sections we have shown that the
operators f̂ of conserved quantities do not depend explicitly on time and commute with
Ĥ. Eq. (4.32) shows that this is equivalent to requiring ˙̂

f = 0. In other words, the
operator ˙̂

f corresponding to the time derivative of the observable f̂ (in short, the time
derivative ˙̂

f of the observable f̂) vanishes if and only if the observable is conserved. Let
us recall that if the particle is in a state Ψf ′ with a defined value f ′ of a conserved
observable f̂ at a time t (f̂ Ψf ′ = f ′Ψf ′), it preserves the same defined value f ′ of f̂ at
all subsequent times.
Finally, one may notice that Eq. (4.32) implies

( ˙̂
f
)†

=
∂f̂ †

∂t
− i

~

[
f̂ †, Ĥ

]
=
∂f̂ †

∂t
+
i

~

[
Ĥ, f̂ †

]
.

In particular for hermitic operators we have
( ˙̂
f
)†

=
˙̂
f . In other words, the time derivative

of a physical observable is also a physical observable.

4.15. Velocity and acceleration: Ehrenfest theorem

As a first application of the derivative of an operator we determine the velocity operator

~̂v =
d

dt
~̂r.

The x component of the velocity is given by

v̂x =
i

~
[Ĥ, x̂],
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since x̂ does not depend explicitly on time. Using that Ĥ = p̂ 2/2m+ U(~r) we have

[Ĥ, x̂] =
1

2m
[p̂2
x, x] =

1

2m
(p̂x [p̂x, x̂] + [p̂x, x̂] p̂x) = − i ~

m
p̂x.

Consequently,

v̂x =
p̂x
m
.

Proceeding analogously for the other components we obtain

~̂v =
~̂p

m
.

This relation is formally the same as in classical mechanics. It implies that in the classical
limit, when the de Broglie wavelength is much smaller than the system dimensions, we
recover the classical value of the velocity.
The eigenstates of the velocity and momentum are the same. A state having a defined

velocity (or momentum) cannot have a defined position and vice versa ([x̂i, p̂j ] = i ~ δij).
This means that after a measurement of the position at time t, the velocity is undefined
and therefore the position at an infinitesimally close time t + ∆t is undefined. The
theory reproduces the experimental observations which demonstrate the breakdown of
the concept of trajectory in the microscopic world.

Let us determine the derivative of the momentum
d~̂p

dt
which is related to the accelera-

tion operator ~̂a =
d~̂v

dt
by

d~̂p

dt
= m~̂a. From Eq. (4.32) we have

d~̂p

dt
=
i

~
[Ĥ, ~̂p ],

since ~̂p does not depend explicitly on time (∂p̂/∂t = 0). Using that Ĥ = p̂ 2/2m+ U(~r)
we have, for the x component,

˙̂px =
i

~
[U(~r), p̂x] =

i

~
(Up̂x − p̂x U)

= U
∂

∂x
− ∂

∂x
U = U

∂

∂x
− ∂U

∂x
− U ∂

∂x

= −∂U
∂x

.

Analogous expressions hold for the other components and therefore

d~̂p

dt
= −~∇U(~r) = ~̂F (~r).
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This relation, also known as Ehrenfest theorem, is formally the same as Newton’s equation
in classical mechanics. As before it ensures that the classical limit is properly obtained.
Moreover, for any quantum state Ψ(~r, t) the time derivative of the average momentum

d

dt
〈 ~̂p 〉 =

d

dt
〈Ψ | ~̂p |Ψ 〉 =

〈
Ψ
∣∣∣ d~̂p
dt

∣∣∣Ψ〉 = 〈 ~̂F 〉

follows the average force 〈 ~̂F 〉. In other words 〈 ~̂p 〉 follows a classical equation of motion
at any instant t, provided that the quantum mechanical average of the force 〈~F 〉 is
calculated using the wave function |Ψ(t) 〉. Notice that 〈~F 〉 is not a simple function of
〈~r〉 and 〈~p〉, except for free particles and the harmonic oscillator

[
U(x) = k x2/2

]
. One

should therefore not exaggerate the meaning of this exact relation. While the Ehrenfest
theorem is seldom used for electrons, it is often applied to compute the dynamics of nuclei
in molecules and clusters in the framework of the Born-Oppenheimer approximation or
other semiclassical approximations. Here the nuclear motion is treated classically under
the action of the average force derived from the electronic ground-state wave function
corresponding to the given nuclear coordinates.

4.16. The probability current density

The probability density |Ψ(q, t)|2 gives the probability per unit volume of finding the
electron in a small volume dq around point q at time t. It represents the particle density
at point q and time t. It is therefore very interesting to investigate the time dependence
of |Ψ|2 and to relate it to the flux of probability density across the surface of the small
volume dq:

∂|Ψ|2

∂t
=
∂Ψ∗

∂t
Ψ + Ψ∗

∂Ψ

∂t
=
i

~
(Ĥ Ψ)∗Ψ− i

~
Ψ∗ (Ĥ Ψ).

Using that

Ĥ = Ĥ∗ = − ~2

2m
∇2 + U(~r)

we have

∂|Ψ|2

∂t
= − i~

2m

(
Ψ ∇2Ψ∗ −Ψ∗∇2Ψ

)
. (4.34)

We can now rewrite the right-hand side with the help of known identities from vector
calculus:

~∇ · (ϕ ~A) = ~∇ϕ · ~A+ ϕ ~∇ · ~A

implies

~∇ · (Ψ ~∇Ψ∗) = ~∇Ψ · ~∇Ψ∗ + Ψ ∇2Ψ∗ (4.35)
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and

~∇ · (Ψ∗ ~∇Ψ) = ~∇Ψ∗ · ~∇Ψ + Ψ∗∇2Ψ. (4.36)

Subtracting Eqs. (4.35) and (4.36) we obtain the identity

~∇ · (Ψ ~∇Ψ∗ −Ψ∗ ~∇Ψ) = Ψ ∇2Ψ∗ −Ψ∗∇2Ψ, (4.37)

which can be substituted in Eq. (4.34) to yield

∂|Ψ|2

∂t
= − i ~

2m
~∇ · (Ψ ~∇Ψ∗ −Ψ∗ ~∇Ψ).

This has the form of a continuity equation

∂%

∂t
+ ~∇ · ~ = 0

provided that we identify the density % = |Ψ|2 with the probability density and

~ =
i ~
2m

(Ψ ~∇Ψ∗ −Ψ∗ ~∇Ψ) (4.38)

with the probability current density. Eq. (4.38) can also be written in the form

~ =
1

2m

[
Ψ (~̂p Ψ)∗ + Ψ∗(~̂p Ψ)

]
=

1

m
Re {Ψ∗(~̂p Ψ)}

or

~ =
1

2

[
Ψ (~̂v Ψ)∗ + Ψ∗(~̂v Ψ)

]
= Re {Ψ∗(~̂v Ψ)}.

Notice that ~ vanishes for real Ψ(x) since ~̂p = −i ~ ~∇ and ~̂v = ~̂p/m are purely imaginary.
Therefore in the absence of magnetic field (real Ĥ) ~ vanishes for all nondegenerate
stationary states.

In order to clarify the physical interpretation of ~ we can integrate
∂|Ψ|2

∂t
over a finite

volume V . The rate of change in the probability
∫
V |Ψ|

2 dq of finding the particle in the
volume V is given by

d

dt

∫
V
|Ψ|2 dV =

∫
V

∂|Ψ|2

∂t
dV = −

∫
V

~∇ · ~ dV.

Using Gauss theorem we can write the last integral as the flux of ~ through the closed
surface S surrounding the volume V , and obtain

d

dt

∫
V
|Ψ|2 dV = −

∫
S
~ · d~s.

Let us recall that the surface-element vector d~s = ds n̂ is given by the surface differential
ds multiplied by the outwards pointing normal to the surface n̂. If ~ · d~s > 0 the flux of
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probability current density across ds goes outside the volume V , and the contribution to
the change in the probability of finding the particle inside V is negative. The total flux
of ~ across the surface S enclosing V gives the probability that the particle abandons the
volume V per unit time.

As an example consider Ψ(~r) = Aei
~k·~r. In this case ~̂pΨ = −i ~ ~∇Ψ = A ~~k ei k·~r and

Ψ∗ ~̂pΨ = |A|2 ~~k so that

~ = |A|2 ~~k
m

= |A|2 ~p

m
.

The current density ~ is equal to the probability |A|2 of finding the particle at ~r times

the velocity ~v =
~p

m
. The analogy with a classical fluid is clear. Notice that for real Ψ(x),

for instance, Ψ(x) = sin(~k · ~r), we have ~̂pΨ = −i ~~k cos(~k · ~r), Ψ∗ ~̂pΨ = −i ~~k sin(~k ·
~r) cos(~k · ~r) and ~ = 0 ∀ ~r.

4.17. The time-evolution operator

So far we have implicitly worked in the so-called Schrödinger picture in which the quan-
tum dynamics is derived exclusively from the time dependence of the wave function Ψ(q, t)
or of the corresponding ket |Ψ(t) 〉. In this case the operators associated to the various
observables are independent of time, except for a possible explicit time dependence found
in particular cases. As we shall see this is not the only possibility of describing the quan-
tum dynamics. In order to discuss these alternative approaches it is useful to introduce
the concept of time-evolution operator.
Our starting point is the time evolution of an arbitrary ket

|Ψ(t) 〉 =
∑
n

an e
− i

~ En t |Ψn(0) 〉, (4.39)

where |Ψ(0) 〉 =
∑

n an |Ψn(0) 〉 and |Ψn(0) 〉 are the stationary states given by Ĥ |Ψn(0) 〉 =
En |Ψn(0) 〉. Using that

e−
i
~ En t |Ψn(0) 〉 = e−

i
~ Ĥ t |Ψn(0) 〉

we can rewrite Eq. (4.39) as

|Ψ(t) 〉 =
∑
n

an e
− i

~ Ĥ t |Ψn(0) 〉 = e−
i
~ Ĥ t |Ψ(0) 〉. (4.40)

Note that if Â is a linear operator, Ân is also linear ∀ n ∈ Z and therefore F (Â) is also
linear for any function F . Eq. (4.40) can be written in a more general form

|Ψ(t) 〉 = Û(t, t0) |Ψ(t0) 〉, (4.41)

where Û(t, t0) is the time-evolution operator. For closed systems, for which Ĥ is inde-
pendent of time, we have

Û(t, t0) = e−
i
~ Ĥ (t−t0). (4.42)
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Û(t, t0) propagates the state |Ψ 〉 from time t0 to time t. The superposition principle
implies that Eq. (4.41) is valid in general with Û(t, t0) being a linear operator (even in
cases where Ĥ depends on time). The conservation of the norm, i.e.,

〈Ψ(t) |Ψ(t) 〉 = 〈Ψ(t0) |Ψ(t0) 〉

for all |Ψ 〉, t and t0, requires that

Û(t, t0)† Û(t, t0) = 1

or

Û(t, t0)−1 = Û(t, t0)† = Û(t0, t), (4.43)

since

〈Ψ(t) |Ψ(t) 〉 = 〈Ψ(t0) | Û †(t, t0) Û(t, t0) |Ψ(t0) 〉.

In other words, Û is a unitary operator. Note that Eq. (4.43) holds if and only if Ĥ
is hermitic (Ĥ = Ĥ†). One can easily verify Eq. (4.43) in the case of a closed system,
where Ĥ is independent of time and Û is given by Eq. (4.42).
Notice that Eqs. (4.41) and (4.42) contain the same physical information as Eq. (4.39)

or as the Schrödinger equation. They have, however, the advantage of being written in
a representation-independent form.

4.18. The Schrödinger and Heisenberg pictures

The discussion of quantum dynamics has been based on a description in which the wave
functions Ψ(q, t) or kets |Ψ(t) 〉 depend on time and the operators associated to the
observables stay fixed. This approach was first introduced by Schrödinger and is therefore
known as Schrödinger picture. However, this is not the only possibility of describing
quantum dynamics. Another very important approach consists in attaching all the time
dependence to the operators keeping the kets |Ψ 〉 independent of time. This approach,
first introduced by Heisenberg, is known as the Heisenberg picture.
In order to discuss the relation between the two pictures and to avoid confusions we

attach the subscripts S and H to the corresponding kets, bras and operators. Thus, the
Schrödinger operator f̂S associated with the observable f is independent of time6 and
the Schrödinger kets |Ψ(t) 〉S are given by

|Ψ(t) 〉S = e−
i
~ Ĥ t |Ψ(0) 〉S . (4.44)

6For simplicity we focus on observables and operators that do not depend explicitly on time ( ∂f̂
∂t

= 0).
In particular we assume that the Hamiltonian Ĥ corresponds to an isolated system and is therefore
time-independent.
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In the Heisenberg approach the quantum states |Ψ 〉H are assumed to be independent of
time. We take t = 0 as reference time and define the |Ψ 〉H in terms of the Schrödinger
ket as

|Ψ 〉H = |Ψ(0) 〉S . (4.45)

We seek now for the form of the Heisenberg operator f̂H which must satisfy

H〈Ψ | f̂H(t) |Ψ 〉H = S〈Ψ(t) | f̂S |Ψ(t) 〉S (4.46)

for all states |Ψ 〉 and times t. Using that

|Ψ(t) 〉S = e−
i
~ Ĥ t |Ψ(0) 〉S = e−

i
~ Ĥ t |Ψ 〉H

and the corresponding relation for the bras,

S〈Ψ(t) | = H〈Ψ | e
i
~ Ĥ t,

we obtain

f̂H(t) = e
i
~ Ĥ t f̂S e

− i
~ Ĥ t (4.47)

with the initial condition f̂H(0) = f̂S . The latter is a consequence of choosing t = 0 as
reference time [ see Eq. (4.45) ], as can be easily verified by setting t = 0 in Eq. (4.46)
and by noting that 〈Ψ(0) | f̂H(0) |Ψ(0) 〉 = 〈Ψ(0) | f̂S |Ψ(0) 〉 for all possible initial states
|Ψ(0) 〉. The two approaches are thus completely equivalent since for any states |α 〉 and
|β 〉 we have

S〈α(t) | f̂S |β(t) 〉S = H〈α | f̂H(t) |β 〉H .

In the Schrödinger picture the kets or wave functions evolve in time following the Schrö-
dinger equation or equivalently Eq. (4.44). In the Heisenberg picture the kets |Ψ 〉H
are independent of time and coincide with the initial state |Ψ(0) 〉S of the Schrödinger
approach. Thus,

|Ψ(t) 〉S = e−
i
~ Ĥ t |Ψ 〉H (4.48)

and

|Ψ 〉H = e
i
~ Ĥ t |Ψ 〉S . (4.49)

It is important to note that the reference time at which |Ψ(0) 〉S = |Ψ 〉H (here t = 0)
is the same for all states. For example, if one considers a fixed state |α 〉 at different
times t in the S-picture, this implies that the initial state |α(0) 〉S = e

i
~ Ĥ t |α 〉 leading

to the same |α 〉 = e−
i
~ Ĥ t |α(0) 〉S at different t must depend on time. In this case,

the corresponding Heisenberg ket |α 〉H = e
i
~ Ĥ t |α 〉 is different for different t. It has to
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evolve with time in the opposite sense (as the initial Schrödinger ket) in order that it
corresponds to the same Schrödinger state |α 〉 at all t.

Let us consider the S-picture and calculate the probability amplitude S〈α |Ψ(t) 〉S of
finding a state |Ψ(t) 〉S in a fixed state |α 〉S . From Eq. (4.48) we have

S〈α |Ψ(t) 〉S = S〈α | e−
i
~ Ĥ t |Ψ 〉H .

Using Eq. (4.49) we can write

|α 〉H = e
i
~ Ĥ t |α 〉S ⇒ H〈α | = S〈α | e−

i
~ Ĥ t

and therefore

S〈α |Ψ(t) 〉S = H〈α |Ψ 〉H .

The probability amplitude 〈α |Ψ 〉 and the transition probability |〈α |Ψ 〉|2 do not depend
on the picture used for evaluating them provided that the relation |Ψ 〉H = |Ψ(0) 〉S is
fulfilled by all states.
In the S-picture the operators are usually independent of time (∂f̂/∂t = 0), while in

the H-picture they are functions of t. Although the time dependence is explicit in Eq.
(4.47) [ pretty much like the one of |Ψ(t) 〉S in Eq. (4.44) ], this equation is in general
difficult to solve due to the exponential dependence on Ĥ. One would like to derive a
simpler first-order differential equation from which f̂H(t) can be inferred. Differentiating
Eq. (4.47) with respect to t, one obtains

df̂H
dt

=
i

~
Ĥ e

i
~ Ĥ t f̂H(0) e−

i
~ Ĥ t − i

~
e
i
~ Ĥ t f̂H(0) e−

i
~ Ĥ t Ĥ

or

df̂H
dt

=
i

~

[
Ĥ, f̂H(t)

]
, (4.50)

where we have used that the operator f̂ in the Schrödinger picture is independent of
time (i.e., ∂f̂s/∂t = 0). This is the Heisenberg equation of motion which takes the role of
the Schrödinger equation as the fundamental equation governing the quantum dynamics
in the H-picture. Notice that Eq. (4.50) is a first-order homogeneous linear differential
equation in f̂H(t) which is completely defined by the Hamiltonian Ĥ of the system. The
superposition principle holds therefore for Heisenberg operators. Eq. (4.50) and the
initial condition f̂(0) = f̂S define f̂(t) univocally.
If the operator f̂ depends explicitly on time (i.e., ∂f̂S/∂t 6= 0), the condition

H〈Ψ | f̂H(t) |Ψ 〉H = S〈Ψ(t) | f̂S(t) |Ψ(t) 〉S , (4.51)

which defines f̂H(t), leads to

f̂H(t) = e
i
~ Ĥ t f̂S(t) e−

i
~ Ĥ t.

96



The Heisenberg equation of motion then reads

df̂H(t)

dt
=
∂f̂H(t)

∂t
+
i

~

[
Ĥ, f̂H(t)

]
, (4.52)

where, as for any operator,

∂f̂H
∂t

= e
i
~ Ĥ t ∂f̂S(t)

∂t
e−

i
~ Ĥ t.

The formalism can be generalized to the case where the Hamiltonian depends on time.
This situation is found in systems under the action of external fields. In this case the
equations are somewhat different, since the time evolution operator Û(t) does not take
the simple form (4.42). Replacing Eq. (4.41) in Eq. (4.51) one easily obtains that the
proper general definition of the Heisenberg operator is

f̂H(t) = Û †(t) f̂S(t) Û(t). (4.53)

Differentiating Eq. (4.41) and comparing with the Schrödinger equation one finds that

i ~
∂Û(t)

∂t
= ĤS(t) Û(t).

Differentiation of Eq. (4.53) finally yields

df̂H(t)

dt
=
∂f̂H(t)

∂t
+
i

~

[
ĤH(t), f̂H(t)

]
,

which is formally very similar to Eq. (4.52), except for the fact that ĤH(t) also needs to
be propagated in time.
Notice that Eq. (4.50) for t = 0 coincides with the definition of the derivative of an

observable with respect to time in the Schrödinger picture that we discussed in Secs.

4.14 and 4.15 [ see Eq. (4.32) ]. Thus
df̂H
dt

has the same physical significance as the time

derivative of the observable f̂ at time t. In particular

dx̂H(t)

dt
=
p̂H(t)

m

and

m
d2x̂H(t)

dt2
= −~∇VH(x)

at all times.
As an example in order to illustrate the physical meaning of the uncertainty relations

and of Heisenberg operators we would like to investigate the possibility of measuring
the position of a free electron at two different times t0 = 0 and t. For this purpose we
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calculate the commutator [x̂(0), x̂(t)] = [x, x̂(t)] where we have replaced x̂(0) = x̂S = x
by the time-independent Schrödinger operator. Recalling that

x̂(t) = e
i
~ Ĥ t x̂(0) e−

i
~ Ĥ t = e

i
~ Ĥ t x e−

i
~ Ĥ t

we have

[x̂(0), x̂(t)] =
[
x, e

i
~ Ĥ t x e−

i
~ Ĥ t

]
= e

i
~ Ĥ t

[
x, x e−

i
~ Ĥ t

]
+
[
x, e

i
~ Ĥ t

]
x e−

i
~ Ĥ t

= e
i
~ Ĥ t x

[
x, e−

i
~ Ĥ t

]
+
[
x, e

i
~ Ĥ t

]
x e−

i
~ Ĥ t.

Since for free electrons Ĥ = p̂2/2m, and using that

[x, F (p̂)] = i ~
∂F

∂p
(p̂),

we have [
x, e±

i
~
p̂2

2m
t

]
= ± i ~

(
i t

~

)
p̂

m
e±

i
~
p̂2

2m
t = ∓ p̂ t

m
e±

i
~
p̂2

2m
t = ∓ p̂ t

m
e±

i
~ Ĥ t.

Consequently,

[x̂(0), x̂(t)] = e
i
~ Ĥ t x

p̂ t

m
e−

i
~ Ĥ t − p̂ t

m
e
i
~ Ĥ t x e−

i
~ Ĥ t

=
t

m
e
i
~ Ĥ t (x p̂− p̂ x) e−

i
~ Ĥ t =

i ~ t
m

,

where we have used that [p̂, Ĥ] = 0 and [x̂, p̂] = i ~. Notice that the commutator
vanishes only for t = 0 (equal times). Therefore, it is not possible to measure the
position at two subsequent times t = 0 and t > 0 with arbitrary accuracy! As t increases,
| [〈x(0), x(t) 〉] | = ~ t/m increases. Consequently, for a given uncertainty ∆x(0) in the
position at t = 0, the uncertainty ∆x(t) in the position at time t increases with t.
Besides the previous straightforward calculation there is a more elegant and simpler

way to compute the commutator [x̂(0), x̂(t)]. We consider the equation of motion

dx̂

dt
=
i

~

[
Ĥ, x̂(t)

]
=
−i
~

[
x, Ĥ

]
=

(
−i
~

)
i ~

∂Ĥ

∂p
=

p̂

m
=
p̂(0)

m
, (4.54)

where we have used that

[x, F̂ (p)] = i ~
∂F̂

∂p
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and that [p̂, Ĥ] = 0 for free particles, which implies that p̂(t) = p̂(0) is independent of t.

Eq. (4.54) for
dx̂

dt
can be integrated straightforwardly to give

x̂(t) = x̂(0) +
p̂(0)

m
t.

Consequently,

[x̂(0), x̂(t)] =
t

m
[x̂, p̂] =

i ~ t
m

. (4.55)

In order to analyze the physical meaning of Eq. (4.55) we consider the uncertainty
inequality

〈 (∆Â)2 〉 〈 (∆B̂)2 〉 ≥ 1

4

∣∣∣ [Â, B̂] ∣∣∣2,
where ∆Â = Â− 〈 Â 〉 and ∆B̂ = B̂ − 〈 B̂ 〉. Applying this relation to the dispersion or
uncertainty 〈 (∆x̂)2 〉t = 〈 [ x̂(t) − 〈 x̂(t) 〉 ]2 〉 of the position at time t and 〈 (∆x̂)2 〉0 =
〈 [ x̂(0)− 〈 x̂(0) 〉 ]2 〉 at time t = 0, one obtains√

〈 (∆x̂)2 〉t
√
〈 (∆x̂)2 〉0 ≥

~ t
2m

for t ≥ 0. As physically expected, the product of uncertainties increases with t and
vanishes only for t = 0. For any given t > 0 (whatever small)

√
〈 (∆x̂)2 〉t diverges as

the measurement of the position at t = 0 becomes arbitrarily sharp
[
〈 (∆x̂)2 〉0 → 0

]
.

The Heisenberg formulation allows us to characterize conserved quantities in a very
simple and transparent way. In the H-picture a quantity is conserved if the time deriva-
tive of the corresponding operator vanishes. From Eq. (4.52) we conclude that this is
the case when the operator does not depend explicitly on time (i.e., ∂f̂S/∂t = 0) and
[Ĥ, f̂H ] = 0. This is equivalent to ∂fS/∂t = 0 and [Ĥ, f̂S ] = 0, since [Ĥ, e

i
~ H t] = 0. The

condition characterizing conserved quantities is of course the same as the one derived in
previous sections within the S-picture.

4.19. The uncertainty relation for arbitrary observables

The uncertainty relation between position and momentum has been discussed in different
contexts. The impossibility of measuring the position and momentum of a particle at
the same time demonstrates most clearly that quantum particles do not follow a classical
trajectory. This fact has changed profoundly our views of the physical world and thus led
to the new concepts inherent to quantum theory. Furthermore, we have shown that two
physical observables A and B can be measured simultaneously with arbitrary accuracy
in all states |Ψ 〉, if and only if the corresponding operators commute (i.e., [Â, B̂] = 0).
It is the purpose of this section to quantify the relation between the commutator [Â, B̂]
and the minimum possible value of the mean square deviations of the outcomes of the
measurement of A and B in an arbitrary state |Ψ 〉.
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Let us recall that, given the operator Â of a physical observable and a complete set of
eigenstates

Â | a 〉 = a | a 〉,

the probability of measuring the value a of A in the state |Ψ 〉 is

PΨ(a) = |〈 a |Ψ 〉|2.

The average value of A according to the probability distribution PΨ(a) is therefore

〈A 〉 =
∑
a

aPΨ(a) = 〈Ψ | Â |Ψ 〉.

The variance ∆A2 of the probability distribution PΨ(a) is given by

∆A2 =
∑
a

(a− 〈A 〉)2 PΨ(a) = 〈Ψ | (Â− 〈A 〉)2 |Ψ 〉. (4.56)

Developing (Â− 〈A 〉)2 in Eq. (4.56) we recover the usual relation

∆A2 = 〈Ψ | (Â− 〈A 〉)2 |Ψ 〉 = 〈Ψ | Â2 |Ψ 〉 − 〈Ψ | Â |Ψ 〉2 (4.57)

known from statistics. ∆A2 gives a measure of the dispersion of the outcome of a mea-
surement of Â in the state |Ψ 〉. The uncertainty of the observable A in the state |Ψ 〉 is
defined as the mean square deviation

∆A =

√
〈Ψ | (Â− 〈A 〉)2 |Ψ 〉. (4.58)

Consider for example an eigenstate | a′ 〉 of Â. In this case one says that the observable A
is sharp since Â | a′ 〉 = a′ | a′ 〉 implies 〈 a′ | Â | a′ 〉 = a′ and ∆A2 = 〈 a′ | (Â−a′)2 | a′ 〉 = 0.
In this context it is important to recall that for any two observables A and B, the

probability distribution of the measured values PΨ(a) = |〈 a |Ψ 〉|2 and PΨ(b) = |〈 b |Ψ 〉|2
are not independent of each other, since they both derive from the same state |Ψ 〉. Our
goal here is to quantify this relation in terms of the uncertainties ∆A and ∆B.
Using the Schwarz inequality

|〈Ψ |ϕ 〉|2 ≤ 〈Ψ |Ψ 〉 〈ϕ |ϕ 〉,

which is valid for any state vectors |Ψ 〉 and |ϕ 〉, and a few algebraic manipulations the
following important generalization of Heisenberg’s uncertainty principle can be shown.
For any hermitic operators Â = Â† and B̂ = B̂† and any arbitrary state |Ψ 〉 it holds

that √
〈Ψ | (Â− 〈A 〉)2 |Ψ 〉

√
〈Ψ | (B̂ − 〈B 〉)2 |Ψ 〉 ≥ 1

2

∣∣〈Ψ | [Â, B̂] |Ψ 〉
∣∣. (4.59)
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Taking advantage of the definition of uncertainty or mean square deviation ∆A [see Eqs.
(4.56)–(4.58)] we can write the inequality (4.59) in a more compact form as

∆A∆B ≥ 1

2

∣∣〈 [Â, B̂] 〉
∣∣. (4.60)

The average of the commutator [Â, B̂] gives a measure of the degree of incompatibil-
ity of a simultaneous measurement of A and B in the quantum state |Ψ 〉. In other
words, |〈 [Â, B̂] 〉| measures the minimum degree of uncertainty ∆B to be expected in a
measurement of B if the observable A is measured at the same time with an accuracy
∆A. Moreover, the uncertainty relation (4.60) provides a means of quantifying to what
extent a measurement of A alters the outcome of a measurement of B. In fact we see
that unless [Â, B̂] = 0, the more accurate the measurement of A is (∆A→ 0), the more
unpredictable the outcome of a measurement of B becomes (∆B →∞).
For incompatible observables ([Â, B̂] 6= 0) having an unbounded eigenvalue spectrum

(e.g., x̂ and p̂) one usually finds ∆B →∞ when ∆A→ 0 since for most states |Ψ 〉 the
average 〈Ψ | [Â, B̂] |Ψ 〉 6= 0. This is of course always the case when [Â, B̂] is a constant
like for x̂ and p̂. However, for operators with bounded eigenvalues (e.g., the components
L̂x, L̂y and L̂z of the angular momentum ~̂L), the uncertainty or mean square deviation
cannot diverge. Thus, ∆B remains finite even if ∆A = 0. This is possible because
〈Ψ | [Â, B̂] |Ψ 〉 = 0 when |Ψ 〉 is an eigenstate of Â. For example, for the angular

momentum operators we have [L̂x, L̂y] = i ~ L̂z ⇒ ∆L2
x ∆L2

y ≥
~2

4
|〈Lz 〉|2. If we

consider an eigenstate of L̂x, i.e., L̂x |Ψ 〉 = lx |Ψ 〉, we have ∆Lx = 0 and ∆Ly finite,
since 〈Ψ | L̂z |Ψ 〉 = 0 when |Ψ 〉 is an eigenstate of L̂x or L̂y.
A few examples are worth mentioning in order to assess the implications of the uncer-

tainty relation. In the case of compatible observables (i.e., [Â, B̂] = 0) the lower bound
is zero and there is no limitation for measuring A and B with arbitrary accuracy at the
same time. The states satisfying ∆A = 0 and ∆B = 0 are the simultaneous eigenstates
of Â and B̂. Of course nothing precludes considering states |Ψ 〉 where either A, B or
both are not sharp (i.e., ∆A > 0 and ∆B > 0). We can apply Eqs. (4.59) and (4.60) to
the fundamental commutation relation

[x, p] = i ~

in order to obtain

∆x∆p ≥ ~
2
, (4.61)

which physical consequences have already been discussed in length.
Motivated by the inequality (4.61), we may investigate the mathematical conditions

for having optimal-uncertainty kets |Ψ 〉, such that the equality sign in (4.60) holds, and
determine the corresponding wave functions Ψ(x) = 〈x |Ψ 〉. One can show that

∆A∆B =
1

2
〈 [Â, B̂] 〉
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when ∆̂A |Ψ 〉 and ∆̂B |Ψ 〉 are collinear, i.e.,

∆̂A |Ψ 〉 = λ ∆̂B |Ψ 〉 (4.62)

with λ ∈ C, where ∆̂A = Â − 〈A 〉 and ∆̂B = B̂ − 〈B 〉 are the zero-average deviation
operators. This follows from the Schwarz inequality in which the equal sign holds only
when the corresponding kets are a multiple of each other (|α 〉 = λ |β 〉). A further
condition needs to be imposed to |Ψ 〉, namely

〈Ψ | {∆̂A, ∆̂B} |Ψ 〉 = 〈Ψ | (∆̂A ∆̂B + ∆̂B ∆̂A) |Ψ 〉 = 0.

Using Eq. (4.62) one can show that this implies that λ must be purely imaginary (λ∗ =
−λ).
To illustrate these optimal-uncertainty kets let us consider x̂ and p̂. The condition

(4.62) reads

xΨ(x) = λ

[
−i ~ ∂

∂x
Ψ(x)

]
, (4.63)

where we have assumed for simplicity 〈Ψ | x̂Ψ 〉 = 0 and 〈Ψ | p̂ |Ψ 〉 = 0. Note that 〈x 〉
can be shifted at will by redefining the origin of the coordinates. Moreover, the average
momentum can be shifted by considering Ψ′(x) = Ψ(x) e

i
~ p
′ x since

p̂

(
Ψ(x) ei

p′
~ x

)
= ei

p′
~ x p̂ Ψ(x) + p′ ei

p′
~ x Ψ(x) ⇒ 〈Ψ′ | p̂ |Ψ′ 〉 = 〈Ψ | p̂ |Ψ 〉+ p′.

Eq. (4.63) can be written as

i

λ ~
x dx =

dΨ

Ψ

and integrated to give

i

2λ ~
x2 = ln Ψ + c ⇒ Ψ(x) = a e

i
2λ ~ x

2
= a e

− x2

2 ~ |λ| ,

where in the last step we have set λ = −i |λ| in order that Ψ(x) is normalizable (i/λ < 0).
This shows that the Gaussians are the optimal wave packets in the sense that they corre-
spond to the best possible compromise between uncertainty in position and momentum.

This example should also help to emphasize that
1

2
|〈 [Â, B̂] 〉| should always be regarded

as a lower bound of ∆A∆B and that only very special kets actually show this lowest
value for a given pair of observables. Furthermore, we can also use |〈 [Â, B̂] 〉| as a less
rigorous order-of-magnitude estimate of ∆A∆B, since the lower bound can be attained.

A particularly interesting case of the uncertainty relation is found when one of the
observables is the energy, i.e., B̂ = Ĥ and ∆B = ∆E. In this case we have

∆A∆E ≥ |〈 [Ĥ, Â] 〉|
2

=
~
2

∣∣∣∣
〈
d Â

dt

〉∣∣∣∣ =
~
2

∣∣∣∣d〈A 〉dt

∣∣∣∣, (4.64)
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since
dÂ

dt
=
i

~
[Ĥ, Â]. This implies that conserved quantities can be measured with ar-

bitrary accuracy at the same time as the energy (∆E∆A ≥ 0 for dÂ/dt = 0). In the case
of non-conserved quantities, Eq. (4.64) allows us to estimate the time ∆t after which the
quantity A (more precisely, the probability distribution for A) has changed significantly
in the given state |Ψ 〉. As we shall see in the following section, this characteristic time
is essentially independent of the particular property considered and simply given by the
uncertainty in the energy ∆E of the state |Ψ 〉.

4.20. The energy-time uncertainty relation

We consider a state |Ψ 〉 at t = 0 and an observable A and would like to estimate the time
∆t required for the ket |Ψ 〉 to change significantly from the perspective of this observable.
In other words, how much time ∆t do we need to wait in order to see a significant change
in the probability distribution PΨ(a) of the observable Â in the state Ψ(t)? At time t the
quantity A has a given probability distribution PΨ(a) = |〈 a |Ψ 〉|2 with an average 〈A 〉
and an uncertainty or mean-square deviation ∆A. The time ∆t required for observing
a significant change in the probability distribution PΨ(a) can be estimated by requiring
that after this time the change in the average of 〈A 〉 should be comparable with the width
∆A of the original probability distribution PΨ(a). Mathematically this is expressed by
the condition

|∆〈A 〉| =
∣∣∣∣d 〈A 〉dt

∣∣∣∣∆t ' ∆A.

Using the uncertainty relation

∆E∆A ≥ ~
2

∣∣∣∣d〈A 〉dt

∣∣∣∣
we obtain

∆E∆t ≥ ~
2
. (4.65)

Remarkably, this inequality relating ∆t with the energy uncertainty ∆E in the state Ψ
is independent of the considered observable Â. Eq. (4.65) is usually referred to as the
energy-time uncertainty relation. It should be however noted that the inequality (4.65) is
conceptually very different from the uncertainty relation (4.60) between two incompatible
observables. In the latter case we compare the uncertainty of two quantities that are
measured simultaneously in a given state |Ψ 〉. In contrast in the relation (4.65) we
compare the uncertainty in the energy ∆E with the time ∆t after which the quantum
state |Ψ 〉 changes significantly. Only the energy is a physical magnitude, the time being
simply a parameter in quantum mechanics. In particular there is no operator associated
to time.
Physically, the energy-time uncertainty relation states that the time evolution of a

state occurs faster when the energy of the system is known less precisely. In particular
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an energy eigenstate has ∆E = 0. It is therefore a stationary state and the time required
for any physical property to change is infinite. More precisely, the probability distribution
PΨ(a) for any physical property remains unchanged at all times.
Notice that the relation (4.65) is the same for all observables. Its universal validity

allows us to illustrate it in a variety of physical situations. Let us consider for example a
wave packet with a given spatial extension ∆x. The uncertainty in the momentum can
be estimated by

∆p ' ~
∆x

and the corresponding uncertainty in the energy is given by

∆E =
dE

dp
∆p =

p

m
∆p = vG ∆p, (4.66)

where vG is known as the group velocity of the wave packet. The time required for the
wave packet to move a distance comparable with its spatial extension is

∆t =
∆x

vG
. (4.67)

Combining (4.66) and (4.67) we have

∆E ·∆t = vG ∆p · ∆x

vG
= ∆p∆x ≥ ~

2
.

The broader the energy uncertainty of the wave packet is, the shorter is the time ∆t for
it to pass, i.e., the faster the time evolution of |Ψ 〉.

As a further example let us consider a state given by the superposition of two stationary
states |Ψ1 〉 and |Ψ2 〉 with energies E1 and E2 (E1 6= E2 ⇒ 〈Ψ1 |Ψ2 〉 = 0). At time t
we have

|Ψ(t) 〉 = a1 e
− i

~ E1 t |Ψ1 〉+ a2 e
− i

~ E2 t |Ψ2 〉,

where a1 and a2 are complex numbers defining the initial state |Ψ(0) 〉. A measure of
the change in |Ψ(t) 〉 as a function of time is given by the modulus of the correlation
amplitude

c(t) = 〈Ψ(0) |Ψ(t) 〉 = |a1|2 e−
i
~ E1 t + |a2|2 e−

i
~ E2 t,

where we have used that 〈Ψ1 |Ψ2 〉 = 0. Thus,

|c(t)|2 =
∣∣|a1|2 + |a2|2 e−

i
~ ∆E t

∣∣2,
where ∆E = E2 − E1. We see that |c(t)|2 oscillates with a period

T =
2π ~
∆E

.
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Therefore, the characteristic time of the dynamics of the system satisfies

∆t∆E ' 2π ~.

The energy-time uncertainty also applies to quasi-stationary states |Ψ 〉 having a finite
lifetime τ . In this context τ represents the typical time required for the system to decay
into other states, i.e., for |Ψ 〉 to change significantly. The relation (4.65) implies that
quasi-stationary states have a finite energy width ∆E = Γ of the order of ~/τ . In
spectroscopy Γ is often referred to as the line width of the corresponding excited energy
level.
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5. The harmonic oscillator

The harmonic oscillator is a very important problem in quantum mechanics. On the one
side it is simple enough to be solvable analytically using the fundamental concepts of
quantum theory. Therefore it constitutes a very useful example of quantum mechanical
methodology. On the other side the harmonic oscillator appears in a number of different
physical situations including the vibrations of the atoms in molecules and solids, as well
as the quantum theory of radiation. Understanding its properties in detail is of the
utmost importance.
The basic assumption or formulation of the problem is that the potential energy takes

the form

U(x) =
1

2
k x2,

where k is a constant. It is important to remark that any potential can be approximated
by this form close to minimum. This actually holds in n dimensions once the coordinate
system is taken along the normal modes. Close to an n-dimensional minimum one can

always write U =
1

2

∑n
i=1 ki q

2
i , where qi refers to the normal coordinates. Since U

is the sum of potentials of the form U =
∑n

i=1 Ui (qi), the n-dimensional problem can
be separated in n one-dimensional ones, each of them corresponding to an harmonic
oscillator. In the following we will therefore focus on the 1D case.

5.1. The classical oscillator

Let us recall the main properties of the classical solution. Since U(x) =
1

2
k x2, the force

is given by Fx = −∂U
∂x

= −k x. The equation of motion reads

m
dx2

dt2
= −k x. (5.1)

The restoring force is proportional to the displacement from the equilibrium position
x = 0. We can easily solve Eq. (5.1) with an exponential ansatz of the form

x(t) = Aei ω t.

Substituting in Eq. (5.1) we obtain

−mω2 ei ω t = −k ei ω t,

which implies

mω2 = k. (5.2)

Taking ω =
√
k/m, the most general solution has the form

x(t) = Aei ω t +B e−i ω t, (5.3)
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or equivalently

x(t) = xM cos(ω t+ ϕ),

where xM is the largest possible displacement [ | cos(ω t+ ϕ)| ≤ 1]. The velocity

v(t) =
dx

dt
= −xM ω sin(ω t+ ϕ)

vanishes at the turning points ±xM . The total energy

E =
p2

2m
+

1

2
k x2

is of course conserved. Since p = mv = 0 at the turning points ±xM we have

E =
1

2
k x2

M

or xM =
√

2E/k. The classical motion is thus constrained to a finite region given by
|x| ≤ xM =

√
2E/k.

In order to make the dependence on the vibrational frequency apparent it is customary
to replace k by using Eq. (5.2) and to write the Hamiltonian in the form

H =
p2

2m
+
mω2

2
x2.

For the sake of future comparison it is useful to express the classical solution (5.3) in
terms of the initial position x(0) and momentum p(0). From (5.3) we have

x(t) = Aei ω t +B e−i ω t = (A+B) cosω t+ i (A−B) sinω t

and

p(t) = mẋ(t) = imωAei ω t − imωB e−i ω t

= imω (A−B) cosω t−mω (A+B) sinω t

with x(0) = A+B and p(0) = imω (A−B). Thus we can write

p(t) = p(0) cosω t−mω x(0) sinω t (5.4)

and

x(t) = x(0) cosω t+
p(0)

mω
sinω t. (5.5)
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5.2. The quantum oscillator

In order to solve the quantum mechanical problem we consider first the Heisenberg picture
and determine the time dependence of the operators x̂(t) and p̂(t). The equations of
motion are

i ~
dp̂

dt
=
[
p̂, Ĥ

]
=

[
p̂,
mω2 x̂2

2

]
= −i ~ ∂

∂x

(
mω2 x̂2

2

)
= −i ~mω2 x̂

⇒ dp̂

dt
= −mω2 x̂ (5.6)

and

i ~
dx̂

dt
=
[
x̂, Ĥ

]
=

[
x̂,

p̂2

2m

]
= i ~

∂

∂p

(
p̂2

2m

)
= i ~

p̂

m

⇒ dx̂

dt
=

p̂

m
. (5.7)

Multiplying Eq. (5.7) by imω and subtracting to Eq. (5.6) we obtain

d

dt
(p̂− imω x̂) = −imω

p̂

m
−mω2 x̂

= −i ω (p̂− imω x̂) .

The non-hermitian operator7

â =
p̂− imω x̂√

2m ~ω
(5.8)

satisfies the simple equation

dâ

dt
+ i ω â = 0.

This implies

â(t) = â(0) e−i ω t,

where â(0) =
p̂(0)− imω x̂(0)√

2m ~ω
refers to the Schrödinger operator. Let us recall that at

t = 0 the operators for the H- and S-pictures are identical. Introducing the hermitic
conjugate operator

â† =
p̂+ imω x̂√

2m ~ω
, (5.9)

7At this point the normalizing factor (2m ~ω)−1/2 is not relevant. However, it will prove very useful
later on in order to simplify the commutation rules for â and â†. Note that â is dimensionless and
that mω x has the units of momentum.
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which time dependence is given by â†(t) = â†(0) ei ω t, we can solve for p̂ and x̂ as

p̂(t) =

(
m ~ω

2

)1/2 [
â(t) + â†(t)

]
(5.10)

= p̂(0) cosω t−mω x̂(0) sinω t

and

x̂(t) = i

(
~

2mω

)1/2 [
â(t)− â†(t)

]
(5.11)

= x̂(0) cosω t+
p̂(0)

mω
sinω t. (5.12)

These equations are formally the same as the classical solution (5.4) and (5.5). In par-
ticular the average values of the position and momentum follow the classical trajectory
as predicted by the Ehrenfest theorem.
From Eq. (5.12) it is interesting to calculate the commutator

[x̂(0), x̂(t)] =
sinω t

mω
[x̂(0), p̂(0)] =

i ~
mω

sinω t

between the position operator at times t = 0 and t. This shows that the observables x̂(t)
and x̂(0) are incompatible except at the same time t = 0 and at integer multiples of the
half period T/2 = π/ω. The uncertainty relation implies

∆x(0) ∆x(t) ≥ ~
2mω

| sinω t|

and in the limit of short times t� 1/ω

∆x(0) ∆x(t) ≥ ~
2m

t.

For small t, ∆x(0) ∆x(t) increases as expected with increasing t. Moreover, for all finite
t 6= 2π n/ω with n ∈ N, ∆x(t) → +∞ for ∆x(0) → 0. Notice that for short times the
details of the potential play no role since [x̂(0), x̂(t)] is independent of ω for ω t� 1.
Since â(t) and â†(t) have a simple oscillatory time dependence, it is interesting to

express Ĥ in terms of them by replacing p̂ and x̂ using Eqs. (5.10) and (5.11). From Eq.
(5.10) we have

p̂2

2m
=

1

2m

m ~ω
2

(
â2 + â† 2 + â â† + â† â

)
and from Eq. (5.11)

mω2

2
x̂2 =

mω2

2

(
− ~

2mω

) (
â2 + â† 2 − â â† − â† â

)
.
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Summing the kinetic and potential energy contributions we obtain

Ĥ =
~ω
2

(
â â† + â† â

)
. (5.13)

Notice that, since Ĥ is hermitic and time-independent, we could have already expected
that â and â† appear in bilinear expressions of the form â â† + â† â.
In order to determine the eigenenergies of Ĥ it is useful to compute the commutator[

â, â†
]

=
1

2m ~ω
[p̂− imω x̂, p̂+ imω x̂]

=
1

2m ~ω
[imω (−i ~)− imω (i ~)]

=
1

2m ~ω
2mω ~ = 1.

The commutation rule [
â, â†

]
= 1 (5.14)

is of central importance to the problem. Using it we can write Ĥ in the form

Ĥ = ~ω
(
â† â+

1

2

)
.

The hermitian operator

n̂ = â† â

is positive definite since for all |Ψ 〉

〈Ψ | â† â |Ψ 〉 = 〈 âΨ | âΨ 〉 ≥ 0. (5.15)

Therefore the eigenenergies have ~ω/2 as a lower bound. The presence of a finite (non-
zero) lower bound for the ground state energy, that is proportional to ~, is clearly a con-
sequence of Heisenberg’s uncertainty principle. The phenomenon is sometimes referred
to as the zero point motion of the oscillator.
The stationary states are clearly the eigenstates of n̂. Let |n 〉 denote the normalized

eigenstate with eigenvalue n:

n̂ |n 〉 = n |n 〉 with 〈n |m 〉 = δnm.

Notice that Eq. (5.15) implies that n ≥ 0. In other words, the eigenvalues n have zero
as a lower bound. In terms of |n 〉 we have

Ĥ |n 〉 = En |n 〉 with En =

(
n+

1

2

)
~ω.
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It is easy to see that â |n 〉 is either zero or an eigenstate of n̂ with eigenvalue n− 1. To
show this we calculate the effect of n̂ on the state â |n 〉:

n̂ â |n 〉 = â† â â |n 〉 = (â â† − 1) â |n 〉 = â â† â |n 〉 − â |n 〉
= (n− 1) â |n 〉.

Thus â |n 〉 is either zero or it is proportional to an eigenstate |n′ 〉 of n̂ which eigenvalue
is reduced by one (n′ = n− 1). Let us compute the square norm of this state:

〈 â n | â n 〉 = 〈n | â† â |n 〉 = n ≥ 0.

This implies that n must be a positive integer or zero, since for any non-integer value of n
one would obtain an eigenstate of n̂ with a negative eigenvalue by successive application
of â. Notice that 〈 â n | â n 〉 vanishes only for n = 0. Thus we must have that for all
n > 0, a positive integer exists such that n − k = 0. Otherwise we would violate the
lower bound existing on the eigenvalues of n̂.
Moreover, it is easy to see that all non-negative integers are actually eigenvalues of n̂,

since for any |n 〉 (n̂ |n 〉 = n |n 〉), â† |n 〉 is also an eigenstate of n̂ with eigenvalue n+1:

n̂ â† |n 〉 = â† â â† |n 〉 = â† (â† â+ 1) |n 〉 = (n+ 1) â† |n 〉.

The square norm of â† |n 〉 is given by

〈 â† n | â† n 〉 = 〈n | â â† |n 〉 = 〈n | (1 + n̂) |n 〉 = n+ 1.

Finally, choosing the relative phases between |n 〉, â |n 〉 and â† |n 〉 to be zero, we have

â |n 〉 =
√
n |n− 1 〉

and

â† |n 〉 =
√
n+ 1 |n+ 1 〉,

where we have used the orthonormality condition 〈n |m 〉 = δnm. The eigenenergies are
then given by

En =

(
n+

1

2

)
~ω

with n a non-negative integer (n ≥ 0). The operator â† (â) increases (decreases) the level
of excitation by one and is therefore known as the creation (annihilation) operator. The
operator n̂ = â† â counts the level of excitation and is therefore known as the number
operator. Starting from an eigenstate of n̂, applying â causes a quantum of energy ~ω
to disappear (En−1 = En − ~ω), while â† adds a quantum of energy to the system
(En+1 = En + ~ω).
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5.3. Some properties of the stationary kets

Before we determine the wave functions 〈x |n 〉 = Ψn(x) of the harmonic oscillator it is
interesting to derive some average properties of the stationary eigenkets |n 〉 in the so-
called occupation number representation. For this purpose we use the commutation rules
for the creation, annihilation and number operators and the properties of |n 〉. Starting
from

x̂ = i

(
~

2mω

)1/2

(â− â†)

and

p̂ =

(
m ~ω

2

)1/2

(â+ â†)

we have 〈n | x̂ |n 〉 = 0 and 〈n | p̂ |n 〉 = 0, since both â and â† change the occupation
number n by one and since 〈n |m 〉 = δnm. The average position and momentum of all
stationary states is zero. This is consistent with the fact that the eigenfunctions of an
even potential have defined parity (even or odd).
In order to compute the uncertainty in position and momentum we calculate

〈n | p̂2 |n 〉 =

(
m ~ω

2

)
〈n | (â+ â†)2 |n 〉

=

(
m ~ω

2

)
〈n | (â2 + â â† + â† â+ â† 2) |n 〉

=

(
m ~ω

2

)
〈n | (1 + 2 â† â) |n 〉 = m ~ω

(
n+

1

2

)
= mEn

and

〈n | x̂2 |n 〉 = −
(

~
2mω

)
〈n | (â− â†)2 |n 〉

=
~

2mω
〈n | a a† + a† a |n 〉 =

~
mω

(
n+

1

2

)
=

En
mω2

.

As expected, both 〈 x̂2 〉 and 〈 p̂2 〉 increase with increasing excitation level. Notice that
the average kinetic and potential energies are both equal to En/2. For the uncertainty
product one obtains

∆x∆p =

(
n+

1

2

)
~.

Thus the ground state corresponds to the lowest possible value allowed by the uncertainty
relation (4.60). From our previous discussion of uncertainty-optimal wave functions in
1D we may already conclude that the ground-state wave function 〈x | 0 〉 is a Gaussian.
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5.4. The eigenfunctions

In order to determine the wave functions Ψn(x) = 〈x |n 〉 we start with the condition

defining the ground state | 0 〉, namely, â | 0 〉 = 0. Using that â =
p̂− imω x̂√

2m ~ω
we can

write

〈x | (p̂− imω x̂) | 0 〉 = 0

or equivalently

−i ~ ∂

∂x
〈x | 0 〉 − imω x 〈x | 0 〉 = 0, (5.16)

where we have used that 〈x | p̂ |α 〉 = −i ~ ∂

∂x
〈x |α 〉 for any ket |α 〉. Let us recall

that 〈x | p̂ |α 〉 represents the wave function obtained by applying the operator p̂ to the
state |α 〉. In wave-function language (position representation) 〈x | p̂ α 〉 corresponds to

p̂Ψα(x) = −i ~ ∂Ψα(x)

∂x
= −i ~ ∂ 〈x |α 〉

∂x
, since by definition Ψα(x) = 〈x |α 〉.

Once the connection between the stationary kets |n 〉 and the wave function Ψn(x) has
been established it is helpful to change to the more familiar notation

Ψn(x) = 〈x |n 〉.

The equation (5.16) defining the ground-state wave function then reads

∂

∂x
Ψ0(x) +

mω

~
x Ψ0(x) = 0. (5.17)

At this point it is useful to introduce the characteristic length

λ =

(
~
mω

)1/2

of the quantum oscillator. Physically, λ represents the distance at which the potential
energy equals the ground-state energy ~ω/2 or, in other words, the return point of a
classical oscillator with energy E = ~ω/2 (i.e., mω2 λ2/2 = ~ω/2). From Eq. (5.17) we
obtain

dΨ0 = − x

λ2
Ψ0 dx

1

Ψ0
dΨ0 = − x

λ2
dx

ln Ψ0 = − x2

2λ2
+ c

Ψ0(x) = A e−
x2

2λ2 ,
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where c and A = ec are constants. The normalization condition implies

Ψ0(x) =

(
1

π λ2

)1/4

e−
x2

2λ2 =
(mω

π ~

)1/4
e−

x2

2λ2 .

The wave function of the excited states can be generated by applying the creation oper-
ator:

â† | 0 〉 = | 1 〉

(â†)2 | 0 〉 = â† | 1 〉 =
√

2 | 2 〉

(â†)3 | 0 〉 =
√

2 â† | 2 〉 =
√

6 | 3 〉

(â†)n | 0 〉 =
√

(n− 1)! â† |n− 1 〉 =
√
n! |n 〉.

Consequently,

|n 〉 =
1√
n!

(â†)n | 0 〉,

Ψn(x) =
1√
n!
〈x | (â†)n | 0 〉 =

1√
n!

〈
x
∣∣∣ [(p̂+ imω x̂)√

2m ~ω

]n ∣∣∣ 0〉
and

Ψn(x) = (n! 2m ~ω)−1/2

(
−i ~ ∂

∂x
+ imω x

)n
Ψ0(x).

Since Ψ0(x) ∝ e−
1
2( xλ)

2

, the derivatives and multiplication by x yield a polynomial of
degree n times the same Gauss function. Finally, the eigenfunctions take the form

Ψn(x) =

(
1

π λ2

)1/4 1

(
√

2)n
√
n!

e−
1
2( xλ)

2

Hn

(x
λ

)
,

where λ =
√
~/mω and Hn(ξ) are the Hermite polynomials:

H0(ξ) = 1

H1(ξ) = 2 ξ

H2(ξ) = 4 ξ2 − 2

H3(ξ) = 8 ξ3 − 12 ξ, etc.

Notice that Ψn(−x) = (−1)n Ψn(x). As expected, the eigenfunctions have alternating
parity, the ground state being nodeless and therefore even. The n-th wave function has
n nodes located at the roots of Hn(ξ), which are all real.
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Figure 1: The stationary state wave functions Ψn(y) of the harmonic oscillator for n ≤ 5,
as a function of y = x/λ (λ =

√
~/mω) [5]. Notice how far the particle

penetrates in the classically forbidden region |x/λ| >
√

2n+ 1. It is easy to
see that the classical return point xnM for the n-th excited state with energy
En = ~ω (n+ 1/2) is given by (xnM/λ)2 = 2n+ 1.
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6. Angular momentum

In the absence of external fields or external potential V (x) the space is homogeneous
and the linear momentum p̂ = −i ~ ~∇ is a conserved quantity. The correlation between
homogeneity of space (i.e., all points in space are equivalent or ∂Ĥ/∂x = ∂Ĥ/∂y =
∂Ĥ/∂z = 0) and momentum conservation is well known from classical mechanics (~̇p =
−~∇H). In addition we know that in the absence of external fields the space is also
isotropic, i.e., invariant with respect to rotations. This implies that all directions in
space are equivalent, and we have actually used this fact in order to infer that the
free-particle Hamiltonian H ∝ p2. In classical mechanics the isotropy of space implies
the conservation of angular momentum, which is an important observable even in the
presence of an external field, particularly when it is centrally symmetric. The purpose of
this chapter is to introduce the concept of angular momentum in quantum mechanics and
to investigate its most fundamental properties such as its eigenvalues and eigenfunctions.

6.1. Definition and commutation rules

Following the correspondence principle the angular momentum operator ~̂l is defined as
in classical mechanics by the vector relation

~ ~̂l = ~̂r × ~̂p, (6.1)

where ~̂r = (x, y, z) = (x1, x2, x3) and ~̂p = −i ~ ~∇. The factor ~ is introduced in order to
simplify the equations. Thus, ~l is measured in units of ~ and is therefore dimensionless.
For the individual components we have

~ l̂x = y p̂z − z p̂y, (6.2)

~ l̂y = z p̂x − x p̂z, (6.3)

~ l̂z = x p̂y − y p̂x. (6.4)

Notice that a cyclic permutation of the coordinates (i.e., x→ y, y → z and z → x) allows
one to obtain (6.3) from (6.2), (6.4) from (6.3) and (6.2) from (6.4). This symmetry will be
used to avoid repeating calculations which results can be inferred by cyclic permutations.
Moreover, one observes that the order of x̂i and p̂j in Eqs. (6.2)–(6.4) is irrelevant, since
the same components are never multiplied together and [x̂i, p̂j ] = 0 for i 6= j.
The fundamental commutation rule between the components of ~l can be calculated

straightforwardly:

~2
[
l̂x, l̂y

]
= [y p̂z − z p̂y, z p̂x − x p̂z]

= [y p̂z, z p̂x] + [z p̂y, x p̂z]

= y [p̂z, z] p̂x + x [z, p̂z] p̂y
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= −i ~ y p̂x + i ~ x p̂y

= i ~2 l̂z = i ~ L̂z.

From now on we measure ~̂l in units of ~, i.e., we replace ~̂l by ~̂l/~, so that ~̂l becomes
dimensionless. Thus, [

l̂x, l̂y

]
= i l̂z.

Cyclic permutation of the variables implies[
l̂m, l̂j

]
= i l̂k, (6.5)

where (m, j, k) is a cyclic permutation of (1, 2, 3). This is often written in the compact
form [

l̂m, l̂j

]
= i εmjk l̂k, (6.6)

where m, j and k refer to the components (m, j, k = 1–3) and εmjk is the Levy-Civita
symbol (or antisymmetric unit tensor of rank 3) satisfying εmjk = 1 for (m, j, k) a cyclic
permutation of (1, 2, 3), εmjk = −1 for (m, j, k) a cyclic permutation of (2, 1, 3) and
εmjk = 0 in all other cases, i.e., when two indices are equal. In Eq. (6.6) a sum over the
repeated index k is implied

(∑3
k=1

)
in which only one term is non-vanishing.

Eq. (6.6) is the fundamental angular momentum commutation rule. Notice that the
different components do not commute with each other. Therefore, any pair of them
cannot have definite values simultaneously, except when all the components are zero
(∆lx ∆ly ≥ |〈 [l̂x, l̂y] 〉|/2 = |〈 l̂z 〉|/2). The angular momentum (a pseudovector) is in this
respect fundamentally different from other vectors like position ~r or linear momentum ~p,
which components can all be measured simultaneously with arbitrary accuracy.
The commutation rules between ~l, ~r and ~p can be easily found. It is straightforward

to show that [
l̂x, x

]
=
[
l̂y, y

]
=
[
l̂z, z

]
= 0

and [
l̂x, y

]
=

1

~
[y pz − z py, y] =

−z
~

[py, y] = i z.

Cyclic permutation yields [
l̂m, xj

]
= i εmjk xk, (6.7)

where a sum over repeated indices is implied. Analogously for the linear momentum we
have [

l̂x, p̂x

]
=
[
l̂y, p̂y

]
=
[
l̂z, p̂z

]
= 0
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and [
l̂x, p̂y

]
=

1

~
[y p̂z − z p̂y, p̂y] =

1

~
[ŷ, p̂y] p̂z = i p̂z,

which can be written in a more compact form as[
l̂m, p̂j

]
= i εmjk p̂k. (6.8)

A set of three operators ~̂v = (v̂1, v̂2, v̂3) satisfying the commutation rule [l̂m, v̂j ] =

i εmjk v̂k (like ~̂p and ~̂r) are known as vector operators. Their components transform
like usual vectors under rotations.8

With the components of ~̂l we can construct, as for any vector, the operator of the
square modulus of ~̂l given by

l̂ 2 = l̂ 2
x + l̂ 2

y + l̂ 2
z .

It is easy to see that l̂ 2 commutes with all the components of ~̂l:[
l̂ 2, l̂x

]
=
[
l̂ 2
y , l̂x

]
+
[
l̂ 2
z , l̂x

]
= l̂y

[
l̂y, l̂x

]
+
[
l̂y, l̂x

]
l̂y + l̂z

[
l̂z, l̂x

]
+
[
l̂z, l̂x

]
l̂z

= i(−l̂y l̂z − l̂z l̂y + l̂z l̂y + l̂y l̂z) = 0.

Since the same holds for l̂y and l̂z (cyclic permutation leaves l̂ 2 unchanged), we have[
l̂ 2, l̂k

]
= 0 ∀ k = 1, 2, 3. (6.9)

One concludes that the square modulus l̂ 2 and any one of the components (e.g., l̂z) can
have definite values at the same time, although the different components of ~l cannot have
definite values simultaneously. Notice that Eq. (6.9) has been derived using exclusively
the fundamental angular momentum commutation rule (6.6). Therefore, it also holds for
the intrinsic angular momentum ~̂S of elementary particles (e.g., the spin of the electron)
which fulfills Eq. (6.6) but which can not be written in terms of position and momentum

operators, as the orbital angular momentum in Eq. (6.1). In fact, ~̂l commutes with the
square modulus v̂2 = v̂2

x + v2
y + v2

z of any vector operator ~̂v such as ~r or ~p. Physically,
this corresponds to the fact that rotations do not alter the moduli of vectors.

8The commutation rules (6.7) and (6.8) can be derived more elegantly by using the known
expression (~x × ~p)k = εkmn xm pn for the components of the vector product (sum over repeated
indices is implied). Noting that ~ l̂k = εkmn xm pn we have ~ [l̂k, xj ] = εkmn [xm pn, xj ] =
εkmn xm [pn, xj ] = −i ~ εkmn xm δnj = −i ~ εkmj xm = i ~ εkjm xm and ~ [l̂k, p̂j ] = εkmn [xm pn, pj ] =
εkmn pn δmj (i ~) = i ~ εkjn pn.
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6.2. Translations and rotations

The purpose of this section is to provide with a physical or geometrical interpretation
of the vector operators ~̂p and ~̂l of the linear and angular momentum. We would like
to calculate how a wave function Ψ(~r) changes when we translate it by an infinitesimal
displacement δ~a. Let Ψ̃ be the translated wave function which is given by

T̂ (δ~a) Ψ(~r) = Ψ̃(~r) = Ψ(~r − δ~a) = Ψ(~r)− δ~a · ~∇Ψ(~r) +O(δa2).

Using the definition of the momentum operator ~̂p = −i ~ ~∇ we can write

Ψ̃(~r) =

[
1− i

~
(−i ~ δ~a · ~∇)

]
Ψ(~r) +O(δa2) =

(
1− i

~
δ~a · ~̂p

)
Ψ(~r) +O(δa2).

We conclude that ~̂p is the operator describing an infinitesimal translation of the wave
function. We actually say that ~̂p is the generator of infinitesimal translations. The
translated wave function Ψ̃ is usually written in terms of the linear operator T̂ (δ~a) for
infinitesimal translations as

Ψ̃(~r) = T̂ (δ~a) Ψ(~r)

with

T̂ (δ~a) = 1− i

~
δ~a · ~̂p+O(δa2).

Notice that δÛ = T̂ (δ~a) is unitary to first order in δ~a, since δÛ δÛ † = 1 +O(δa2), where
we have used that ~̂p = ~̂p † is hermitic. The fact that δÛ is unitary was of course expected,
since a translation (infinitesimal or finite) does not change the norm of Ψ(~r).
We say that an observable Â is invariant under a given transformation, in the present

case a translation, if the result of applying the operator to the translated function, Â Ψ̃,
is the same as the translation of the function ÂΨ. Mathematically, invariance upon
translation means

Â Ψ̃ = Â T̂ (δ~a) Ψ = T̂ (δ~a) ÂΨ

for all Ψ, which is equivalent to

Â T̂ (δ~a) = T̂ (δ~a) Â

or
Â ~̂p = ~p Â ⇔

[
~p, Â

]
= 0. (6.10)

We conclude that the linear momentum operator commutes with translational invariant
observables and vice versa. Moreover, in the case where the Hamiltonian Ĥ is transla-
tional invariant

d~̂p

dt
=
i

~

[
Ĥ, ~̂p

]
= 0 (6.11)
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and the linear momentum is a conserved quantity.
An alternative, maybe more explicit proof of the previous statements is obtained by

calculating the change in an operator, for example the Hamiltonian Ĥ, resulting from a
translation δ~a of the coordinates:

δĤ = Ĥ (~r + δ~a, ~̂p )− Ĥ (~r, ~̂p ) = δ~a · ~∇~r Ĥ =
3∑
i=1

δai
∂Ĥ

∂xi
=
i

~

3∑
i=1

δai

[
p̂i, Ĥ

]
=
i

~
δ~a ·

[
~̂p, Ĥ

]
, (6.12)

where we have used that [
p̂i, F̂

]
= −i ~ ∂F̂

∂xi
(6.13)

for any function F̂ (~r) of the position operator ~̂r
[
~̂r = (x1, x2, x3) and ~̂p = (p̂1, p̂2, p̂3)

]
.

Let us recall that a similar relation[
x̂i, Ĝ

]
= i ~

∂Ĝ

∂pi
(6.14)

holds for the commutator of the position operator ~̂r = (x1, x2, x3) and any function G(~p)
of the linear momentum.9

We now turn to the somewhat more complicated case of rotations. We would like to
calculate how the wave function Ψ(~r) changes when we rotate the system by a small
angle δϕ around an arbitrary axis n̂. We know that the change δ~r in the position vector
~r is given by

δ~r = δ~ϕ× ~r,

where δ~ϕ = δϕ n̂. The rotated wave function Ψ̃ is given by

Ψ̃(~r) = Ψ(~r − δ~r) = Ψ(~r)− δ~r · ~∇Ψ(~r) +O (δr2)

=

[
1− i

~
(δ~ϕ× ~r) · ~̂p

]
Ψ(~r) +O (δr2).

Using the relation (~a×~b) ·~c = ~a · (~b×~c), which holds also for non-commuting operators,
we have

Ψ̃(~r) =

[
1− i

~
δ~ϕ · (~r × ~̂p )

]
Ψ(~r) + δ (δϕ2)

=
(

1− i δ~ϕ ·~l
)

Ψ(~r) +O (δϕ2).

9The proof of Eqs. (6.13) and (6.14) is straightforward by induction once F (~r) are expanded in a Taylor
series. In the case of Eq. (6.13) we have [p, xn] = x

[
p, xn−1

]
+ [p, x]xn−1 = −i ~x (n − 1)xn−2 −

i ~xn−1 = −i ~nxn−1. The proof of Eq. (6.14) is analogous.
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We conclude that ~ ~̂l = ~r × ~̂p is the operator describing an infinitesimal rotation of the
wave function. One therefore says that ~̂l is the generator of infinitesimal rotations. As
in the case of translations it is useful to write

Ψ̃(~r) = D̂(δ~ϕ) Ψ(r),

where the operator of an infinitesimal rotation D̂(δ~ϕ) is given by

D̂(δ~ϕ) = 1− i δ~ϕ · ~̂l +O(δϕ2).

As in the case of translations, D̂(δ~ϕ) is unitary up to first order in δϕ
[
D̂(δ~ϕ) D̂(δ~ϕ)† = 1

+O (δϕ2)
]
since ~̂l = ~̂l † is hermitic.

The arguments used to derive Eqs. (6.10) and (6.11) apply to any symmetry transfor-

mation δÛ . We can therefore conclude that the orbital angular momentum ~̂l commutes
with any rotational invariant observable. Moreover, if the Hamiltonian is rotational
invariant

d~̂l

dt
=
i

~

[
Ĥ,~̂l

]
= 0

and the angular momentum is conserved.
The calculation of the change in the Hamiltonian (or any other operator) under an

infinitesimal rotation is somewhat more complicated, since a rotation implies a change
in the position δ~r = δ~ϕ × ~r as well as in the momentum δ~p = δ~ϕ × ~p. We consider a
single-particle Hamiltonian Ĥ = Ĥ(~r, ~p) given by the sum of the kinetic energy operator
T̂ (~p) = p̂2/2m and the potential energy V (~r).10 The change in the Hamiltonian following
an infinitesimal rotation is

δĤ = Ĥ(~r + δ~ϕ× ~r, ~p+ δ~ϕ× ~p)− Ĥ(~r, ~p)

= (δ~ϕ× ~r) · ~∇~r Ĥ + (δ~ϕ× ~p) · ~∇~p Ĥ
= δ~ϕ · (~r × ~∇~r Ĥ) + δ~ϕ · (~p× ~∇~p Ĥ)

= δ~ϕ · (~r × ~∇~r V ) + δ~ϕ · (~p× ~∇~p T̂ ).

Using the relations

i
[
~̂l, F̂ (~r)

]
= ~r × ~∇r F̂

and

i
[
~̂l, Ĝ(~p)

]
= ~p× ~∇~p Ĝ

10The extension to a many-particle Hamiltonian Ĥ(~r1, . . . ~rN , ~p1, . . . ~pN ) including interactions is rather
straightforward.
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we can write

δĤ = i δ~ϕ ·
[
~̂l, V̂

]
+ i δ~ϕ ·

[
~̂l, T̂
]

= i δ~ϕ ·
[
~̂l, Ĥ

]
.

Consequently, the angular momentum operator ~̂l commutes with rotational invariant
observables. Moreover, if the Hamiltonian is invariant under rotations, the angular mo-
mentum is conserved. The most important and fundamental examples of rotational
invariant Hamiltonians are the atoms.

6.3. Angular momentum operator in spherical coordinates

Taking into account that ~̂l is conserved when the external potential V = V (r) is spheri-

cally symmetric, it is important to know how to express ~̂l and l̂2 in spherical coordinates.
Let us recall the usual relation between spherical coordinates (r, ϕ, θ) and the Cartesian
coordinates (x, y, z):

x = r sin θ cosϕ

y = r sin θ sinϕ (6.15)

z = r cos θ.

For any function Ψ(~r) we have

∂Ψ

∂ϕ
=
∂Ψ

∂x

∂x

∂ϕ
+
∂Ψ

∂y

∂y

∂ϕ
,

since z is independent of ϕ. Using Eqs. (6.15) we have

∂Ψ

∂ϕ
= −r sin θ sinϕ

∂Ψ

∂x
+ r sin θ cosϕ

∂Ψ

∂y

= −y ∂Ψ

∂x
+ x

∂Ψ

∂y

=
i

~

(
y i ~

∂Ψ

∂x
− x i ~ ∂Ψ

∂y

)
=
i

~
(x p̂y − y p̂x) Ψ.

Recalling that ~~l = ~r × ~p, this implies

l̂z = −i ∂
∂ϕ

⇔ L̂z = −i~ ∂

∂ϕ
.

As expected the z component of the angular momentum operator represents the effect of
an infinitesimal rotation of the wave function around the z axis. It is actually analogous

to a Cartesian component of the linear momentum operator, for example, p̂x = −i ~ ∂

∂x
.
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The eigenfunctions of l̂z satisfy the equation

−i ∂Ψ(r, θ, ϕ)

∂ϕ
= mΨ(r, θ, ϕ),

where m ∈ R denotes the eigenvalue. This can be easily integrated to yield

Ψm(r, ϕ, θ) = f(r, θ) eimϕ. (6.16)

If we focus on single-valued functions, Ψm must be periodic in ϕ with a period 2π, which
implies that the eigenvalues of l̂z must be integers m = 0,±1,±2, . . . .
For the orbital angular momentum ~~l = ~r × ~p, integer values of m and single-valued

wave functions Ψm(r, ϕ, θ) are the only possibility. However, from a more general per-
spective one could also expect m to be a half integer m = ±1/2,±3/2, . . . . To see this,
one should recall that the wave function Ψ cannot be directly measured in experiment.
Instead, the experimentally accessible quantity is the probability distribution given by
|Ψ|2. Therefore, it is actually |Ψ|2 that always has to be single-valued, i.e., periodic in
ϕ with period 2π. Of course, applying this condition to the eigenfunctions of l̂z given
by Eq. (6.16) gives no information on the possible values of m, since |eimϕ|2 = 1 for all
m ∈ R. The point is that the single-valued condition on |Ψ|2 must hold for any physical
state and therefore for any linear combination of eigenstates of l̂z. Let

Ψ = α eimϕ + β eim
′ ϕ,

then

|Ψ|2 = |α|2 + |β|2 + αβ∗ ei (m−m
′)ϕ + α∗β e−i (m−m

′)ϕ

= |α|2 + |β|2 + 2 Re {αβ∗ ei (m−m′)ϕ}.

The 2π periodicity of |Ψ|2 implies that m−m′ must be an integer. Taking m′ = −m one
concludes that 2m must be an integer, and thus the eigenvalues of angular momentum
operators must be integer or half-integer. The physical consequences of half-integer values
of the angular momentum, as found for instance in the case of the electron spin (S = 1/2),
will be discussed later on.

6.4. Eigenvalues and eigenstates of l̂z and l̂2

We have shown that
[
l̂z, l̂

2
]

= 0 and therefore it is possible to find a complete basis of

simultaneous eigenstates of l̂ 2 and l̂z. We denote these eigenstates by |λ,m 〉 so that

l̂ 2 |λ,m 〉 = λ |λ,m 〉

with λ ≥ 0 and

l̂z |λ,m 〉 = m |λ,m 〉.
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The derivation of the eigenvalues of l̂ 2 and l̂z will be done on the sole basis of the
commutation rule [

l̂x, l̂z

]
= i l̂z

and its cyclic permutations. It is therefore valid for any type of angular momentum:
orbital or intrinsic, integer or half-integer. We have already shown that[

l̂ 2, l̂z

]
= 0.

Since

l̂ 2 = l̂ 2
x + l̂ 2

y + l̂ 2
z

it is clear that

〈α | l̂ 2 − l̂ 2
z |α 〉 = 〈α | l̂ 2

x + l̂ 2
y |α 〉 ≥ 0

for all states |α 〉. In particular for the eigenstates |λ,m 〉 we have

λ ≥ m2

or
√
λ ≥ |m|.

This means that for any given eigenvalue of l̂ 2 the eigenvalues of l̂z are bounded. We
shall denote by l = lmax

z the largest possible value of m for the given λ. Note that l can
be smaller than

√
λ.

The eigenstates having different m but the same λ of l̂ 2 can be related to each other
with the help of the so-called ladder operators

l̂+ = l̂x + i l̂y

and

l̂− = l̂x − i l̂y,

in a similar way as the creation and annihilation operators relate different eigenstates
of the number operator in the harmonic oscillator. One first notices the important
commutation relations[

l̂z, l̂±

]
=
[
l̂z, l̂x

]
± i
[
l̂z, l̂y

]
= i l̂y ± l̂x = ±l̂±.

This implies

l̂z l̂+ − l̂+ l̂z = l̂+ ⇔ l̂z l̂+ = l̂+

(
l̂z + 1

)
.

124



Consider now an eigenstate |λ,m 〉, then we have

l̂z

(
l̂+ |λ,m 〉

)
= l̂+

(
l̂z + 1

)
|λ,m 〉 = (m+ 1) l̂+ |λ,m 〉.

Therefore, l̂+ |λ,m 〉 is either zero or it is an eigenstate of l̂z with the eigenvalue lz
increased by one. We can then write

l̂+ |λ,m 〉 = c+(m) |λ,m+ 1 〉,

where c+(m) is a constant (eventually equal to zero) that depends on m. Moreover, we
know that the eigenvalues of l̂z for a given λ are bounded by the relation lz ≤ l = lmax

z ,
where l ≤ λ. We must therefore have c+(l) = 0 or equivalently

l̂+ |λ, l 〉 = 0, (6.17)

since otherwise, by applying l̂+, one would obtain an eigenstate of l̂z with eigenvalue
larger than l.
The equation derived in the following is important in order to relate λ and l:

l̂− l̂+ = (l̂x − i l̂y) (l̂x + i l̂y)

= l̂ 2
x + l̂ 2

y + i (l̂x l̂y − l̂y l̂x)

= l̂ 2
x + l̂ 2

y − l̂z

= l̂ 2 − l̂ 2
z − l̂z. (6.18)

Applying l̂− l̂+ to |λ, l 〉 and using Eqs. (6.17) and (6.18) we have

0 = l̂− l̂+ |λ, l 〉 =
(
l̂ 2 − l̂ 2

z − l̂z
)
|λ, l 〉 =

(
λ− l2 − l

)
|λ, l 〉.

One concludes that

λ = l (l + 1).

Since λ is a simple function of l = lmax
z , it is meaningful to label the eigenstates of l̂ 2 in

terms of l as | l,m 〉 instead of using the actual eigenvalue λ of l̂ 2 [λ = l (l + 1)]. Thus,
summarizing our results in the new notation, we have

|m| ≤ l,

l̂ 2 | l,m 〉 = l (l + 1) | l,m 〉,

l̂z | l,m 〉 = m | l,m 〉,

and

l̂+ | l,m 〉 = c+(m) | l,m+ 1 〉
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with c+(l) = 0.
Proceeding as in Eq. (6.18) it is easy to see that

l̂∓ l̂± = l̂ 2 − l̂ 2
z ∓ l̂z. (6.19)

We can now repeat the previous reasoning for l̂−. In this case we have[
l̂z, l̂−

]
= −l̂−.

Therefore,

l̂z

(
l̂− | l m 〉

)
=
(
−l̂− + l̂− l̂z

)
| l m 〉 = (m− 1) l̂− | l m 〉,

which implies

l̂− | l m 〉 = c−(m) | l,m− 1 〉.

In other words, l̂− | l m 〉 is an eigenstate of l̂z with its eigenvalue reduced by 1. For the
minimum value of m = lmin

z we must have

l̂− | l, lmin
z 〉 = 0. (6.20)

Using Eqs. (6.19) and (6.20) one obtains

0 = l̂+ l̂− | l, lmin
z 〉 =

(
l̂ 2 − l̂ 2

z + l̂z

)
| l, lmin

z 〉 =
[
(l2 + l)− (lmin

z )2 + lmin
z

]
| l, lmin

z 〉,

which implies

lmin2

z − lmin
z = l2 + l.

One concludes that

lmin
z = −l

since the other root lz = l + 1 makes no sense. Consequently,

−l ≤ m ≤ l.
We may now compute the normalization coefficients c+(m) and c−(m) relating | l,m 〉

and | l,m± 1 〉 as

l̂± | l,m 〉 = c±(m) | l,m± 1 〉

⇒ 〈 l,m | l̂∓ = 〈 l,m± 1 | c±(m)∗.

It follows that

|c±(m)|2 = 〈 l,m | l̂∓ l̂± | l,m 〉

= 〈 l,m | l̂ 2 − l̂ 2
z ∓ l̂z | l m 〉

= l(l + 1)−m(m± 1) ≥ 0,
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and thus

c±(m) =
√
l(l + 1)−m(m± 1) =

√
(l ∓m) (l ±m+ 1),

where we have chosen the arbitrary phase to be equal to 1. Finally,

l̂+ | l,m 〉 =
√
l(l + 1)−m(m+ 1) | l,m+ 1 〉

and

l̂− | l,m 〉 =
√
l(l + 1)−m(m− 1) | l,m− 1 〉.

Note that

l+ | l,m 〉 6= 0 ∀m < l,

and

l− | l,m 〉 6= 0 ∀m > −l.

One may start from | l,−l 〉 and apply repeatedly l̂+ to obtain

| l,−l 〉
| l,−l + 1 〉
| l,−l + 2 〉

...
| l,−l + k = l 〉.

It is clear that k = 2 l ∈ N, since otherwise we would find |c+(m)|2 < 0. Consequently,
2 l ∈ N, which implies that l is integer or half-integer. Moreover, notice that the values
of m differ always by 1. For instance, for l = 1 we have

| l,m 〉 = {| 1,−1 〉, | 1, 0 〉 and | 1, 1 〉},

and for l = 3/2

| l,m 〉 = {| 3/2,−3/2 〉, | 3/2,−1/2 〉, | 3/2, 1/2 〉 and | 3/2, 3/2 〉}.

We can now summarize the expression for the matrix elements of the operators Ĵ2, Ĵz,
Ĵ+ and Ĵ− in the J2, Jz representation, also known as | j,m 〉 representation:

Ĵ2 | j,m 〉 = j (j + 1) ~2 | j,m 〉
〈 j m′ | Ĵ2 | j,m 〉 = j (j + 1) ~2 δmm′

Ĵz | j,m 〉 = m ~ | j,m 〉
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〈 j,m′ | Ĵz | j,m 〉 = m ~ δmm′

〈 j,m′ | Ĵ+ | j,m 〉 =
√
j (j + 1)−m (m+ 1) ~ δm′,m+1

=
√

(j −m) (j +m+ 1) ~ δm′,m+1

〈 j,m′ | Ĵ− | j,m 〉 =
√
j (j + 1)−m (m− 1) ~ δm′,m−1

=
√

(j +m) (j −m+ 1) ~ δm′,m−1.

The 2j+1 states {| j,m 〉} = {| j,−j 〉, | j,−j+1 〉, . . . , | j, j−1 〉, | j, j 〉} span a subspace
S which is invariant upon rotations, i.e., any state within S remains within S after any
rotation in SO(3). This subspace, or the set of 2j+ 1 states | j,m 〉 that span it, are said
to be irreducible, since no linear subspace included in S with a lower dimension than S
can be found, which is invariant upon all rotations in SO(3). The latter can be clearly
seen by noting that all basis states | j,m 〉 can be obtained starting from any of them
and applying Ĵ+ and Ĵ−, which represent linear combinations of infinitesimal rotations
around the axis x and y.

Examples:
1) The case j = 1/2 is relevant for the electronic spin and therefore deserves special

attention. We consider the basis {| 1/2, 1/2 〉 = | z, ↑ 〉 = | z,+ 〉 =
(

1
0

)
and | 1/2,−1/2 〉 =

| z, ↓ 〉 = | z,−〉 =
(

0
1

)
}.

Ĵ2 =
3

4
~2 = j (j + 1) ~ Ĵz =

~
2

(
1 0
0 −1

)

Ĵ+ = ~
(

0 1
0 0

)
Ĵ− = ~

(
0 0
1 0

)

Ĵx =
1

2
(Ĵ+ + Ĵ−) =

~
2

(
0 1
1 0

)
Ĵy =

−i
2

(Ĵ+ − Ĵ−) =
~
2

(
0 −i
i 0

)
The 2× 2 matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
and σz =

(
1 0
0 −1

)
are known as Pauli matrices. They have a few quite interesting properties:

σ2
x = σ2

y = σ2
z = 1,

and

σi σj = i εijk σk.
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Writing the spin operator in vector form as ~̂S =
(
Ŝx, Ŝy, Ŝz

)
and introducing ~σ =

(σx, σy, σz) we have

~̂S =
~
2
~σ.

2) The spin-1 case: For J = 1 we have | j,m 〉 = {| 1, 1 〉, | 1, 0 〉, | 1,−1 〉} and J2 =
j (j + 1) ~2 = 2 ~2. The explicit form of the operators is the following:

Ĵ2 = 2 ~2

1
1

1

 Ĵz = ~

1
0
−1



Ĵ+ = ~

0
√

2 0

0 0
√

2
0 0 0

 Ĵ− = ~

 0 0 0√
2 0 0

0
√

2 0



Ĵx =
J+ + J−

2
=

~
2

 0
√

2√
2 0

√
2√

2 0

 Ĵy =
~
2 i

 0
√

2

−
√

2 0
√

2

−
√

2 0

 .

6.5. Angular momentum operator in spherical coordinates

In order to calculate the orbital angular momentum operator in spherical coordinates we
need to find the corresponding expression for the nabla operator. Consider a function
Ψ(~r) and its gradient

~∇Ψ = (∇Ψ)r êr + (∇Ψ)θ êθ + (∇Ψ)ϕ êϕ (6.21)

expressed in terms of its spherical components. For any displacement vector

d~r = dr êr + r dθ êθ + r sin θ dϕ êϕ

the change in Ψ(~r) is given by

dΨ = ~∇Ψ · d~r = (∇Ψ)r dr + (∇Ψ)θ r dθ + (∇Ψ)ϕ r sin θ dϕ. (6.22)

On the other side the change ~∇Ψ · d~r in the function Ψ(~r) = Ψ(r, θ, ϕ) can be expressed
in terms of its partial derivatives as

dΨ = ~∇Ψ · d~r =
∂Ψ

∂r
dr +

∂Ψ

∂θ
dθ +

∂Ψ

∂ϕ
dϕ. (6.23)

Comparing Eqs. (6.22) and (6.23) and replacing in Eq. (6.21) it follows that

~∇ =
∂

∂r
êr +

1

r

∂

∂θ
êθ +

1

r sin θ

∂

∂ϕ
êϕ.
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The orbital angular momentum operator can then be obtained as

~̂L = −i ~ (~r × ~∇) = −i ~

∣∣∣∣∣∣
êr êθ êϕ
r 0 0
∂
∂r

1
r

∂
∂θ

1
r sin θ

∂
∂ϕ

∣∣∣∣∣∣
= −i ~

[
êϕ

∂

∂θ
− êθ

1

sin θ

∂

∂ϕ

]
.

Notice that ~̂L has no component along the radial direction êr. Moreover, ~̂L acts only on
the angular variables θ and φ. In order to obtain the expressions for L̂x, L̂y and L̂z we
express êϕ and êθ in Carthesian coordinates as

êϕ = (− sinϕ, cosϕ, 0)

and

êθ = (cos θ cosϕ, cos θ sinϕ,− sin θ)

to obtain

L̂z = −i ~ ∂

∂ϕ

and

L̂± = ~ e±i ϕ
(
± ∂

∂θ
+ i cot θ

∂

∂ϕ

)
.

A straightforward calculation yields

L̂+ L̂− = ~2

[
− ∂

∂θ2
− i ∂

∂ϕ
− cot θ

∂

∂θ
− cot2 θ

∂2

∂ϕ2

]
.

Using that L̂2 = L̂+ L̂− − ~ L̂z + L̂2
z one obtains

L̂ 2 = − ~2

sin2 θ

[
sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

∂2

∂ϕ2

]
.

Notice that L̂ 2 depends only on the angular variables θ and ϕ, i.e., it does not act on
the radial variable r. In this context it is useful to relate L̂ 2 with the Laplace operator:

∇2 =
1

r2

∂

∂r

(
r2 ∂

∂r

)
− L̂ 2

r2 ~2
.

The kinetic energy operator T̂ can then be written as

T̂ =
p̂2

2m
= − ~2

2m

1

r2

∂

∂r

(
r2 ∂

∂r

)
︸ ︷︷ ︸

T̂r

+
L̂ 2

2mr2︸ ︷︷ ︸
T̂θ,ϕ

,
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where T̂r depends only on r and T̂θ,ϕ depends only on θ and ϕ. Taking into account
that L̂ 2 and T̂θ,ϕ act only on θ and ϕ, and that the radial part of the kinetic energy
T̂r acts only on r, we can seek for the eigenfunction of T̂ , and even of the Hamiltonian
Ĥ = T̂ + V (r) in the presence of a spherically symmetric potential V (r), by separating
radial and angular variables as

Ψlm(~r) = R(r) Ylm(θ, ϕ),

where Ylm(θ, ϕ) is an eigenfunction of L̂ 2 and L̂z.
The angular dependent functions Ylm(θ, ϕ) are known as spherical harmonics. They

are eigenfunctions of L̂z, and therefore

−i ~ ∂

∂ϕ
Ylm(θ, ϕ) = m ~ Ylm(θ, ϕ) ⇒ Ylm(θ, ϕ) = f(θ) eimϕ,

where f(θ) is a function of θ alone. Replacing Ylm(θ, ϕ) in the equation

L̂ 2 Ylm(θ, ϕ) = l (l + 1) ~ Ylm(θ, ϕ)

one obtains a differential equation for f of the form[
d

dz
(1− z2)

d

dz
+

(
l (l + 1)− m2

1− z2

)]
f(z) = 0,

where z = cos θ. The spherical harmonics thus take the form

Ylm(θ, ϕ) =

√
2 l + 1

4π

(l −m)!

(l +m)!
Pml (cos θ) eimϕ

for m ≥ 0, where Pml (cos θ) are the associated Legendre polynomials. Besides an arbi-
trary choice of phase factor, we have used the normalization condition∫ 2π

0

∫ 1

−1
dΩ Y ∗l′m′(θ, ϕ) Ylm(θ, ϕ) = δll′ δmm′ .

For m = 0, Pml (cos θ) reduces to the usual Legendre polynomials Pl(cos θ). Thus,

Yl 0(θ, ϕ) =

√
2 l + 1

4π
Pl(cos θ).

For m < 0 we have

Yl,−|m|(θ, ϕ) = (−1)m Y ∗l, |m|(θ, ϕ).

The spherical harmonics satisfy the following important completeness relation:

+∞∑
l=0

l∑
m=−l

Y ∗lm(θ′, ϕ′) Ylm(θ, ϕ) = δ(ϕ− ϕ′) δ(cos θ − cos θ′).

131



Consequently, an arbitrary function Ψ(r, θ, ϕ) can be written in the form

Ψ(r, θ, ϕ) =

+∞∑
l=0

l∑
m=−l

Rlm(r) Ylm(θ, ϕ).

Examples:
i) l = 0

Y00(θ, ϕ) =
1√
4π

← independent of θ and ϕ.

ii) l = 1

Y10(θ, ϕ) =

√
3

4π
cos θ ← independent of ϕ.

Y1;±1(θ, ϕ) = ∓
√

3

8π
sin θ e±i ϕ

= ∓
√

3

8π
sin θ (cosϕ± i sinϕ)

Notice that Y10 ∝ cos θ ∝ z corresponds to the atomic orbital pz and that Y1;±1 ∝
(x ± i y) corresponds to the atomic orbital px ± i py. The eigenfunctions of L̂2 and L̂z
are classified according to the value of l as

l 0 1 2 3
s p d f orbitals.

The spherical harmonics have well-defined inversion symmetry, i.e., symmetry with
respect to the transformation ~r → −~r, or equivalently (r, θ, ϕ) → (r, π − θ, ϕ + π). In
fact, upon inversion we have

Ylm(π − θ, ϕ+ π) = (−1)l Ylm(θ, ϕ).

This implies even (odd) parity for l even (odd).
An alternative derivation of the eigenfunctions of L2 and Lz would be to apply our

knowledge of the operator algebra. Starting from

L+ | l l 〉 = 0,

and using that

L̂+ = ~ ei ϕ
(
∂

∂θ
+ i cot θ

∂

∂ϕ

)
as well as

〈~r | l l 〉 = Yl l(θ, ϕ) = ei l ϕ f(θ),
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we have

0 = ei l ϕ
∂f

∂θ
+ i

cos θ

sin θ
(i l) ei l ϕ f(θ),

which implies

∂f

∂θ
− l cos θ

sin θ
f(θ) = 0.

This equation is satisfied by f(θ) = c sinl(θ) so that

Yl l(θ, ϕ) = cl sinl(θ) ei l ϕ.

Repeated application of L̂− allows one to obtain all the other Ylm(θ, ϕ) with m < l. The
normalization constant is determined by the condition∫

dΩ |Yl l(θ, ϕ)|2 = 1.

With an appropriate choice of the phase factor, so that (L̂−)l Yl l(θ, ϕ) has the same sign
as Pl(cos θ), one obtains

cl =
(−1)l

2l l!

√
(2 l + 1) (2l)!

4π
.

Taking into account that

L̂− = ~ e−i ϕ
(
− ∂

∂θ
+ i cot θ

∂

∂ϕ

)
and

L̂− | l,m 〉 = ~
√

(l +m) (l −m+ 1) | l,m− 1 〉

we finally arrive to the recursive relation

Yl m−1(θ, ϕ) =
1√

(l +m) (l −m+ 1)
e−i ϕ

(
− ∂

∂θ
+ i cot θ

∂

∂ϕ

)
Ylm(θ, ϕ).
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7. Spin

Consider a system consisting of several parts such as a nucleus. We would like to describe
the quantummechanical state of the nucleus as a whole for a given fixed internal energy E.
It is clear that the position (or momentum) of the nucleus is not enough to describe its QM
state, since we must take into account that the nucleus can have different internal states.
Taking into account the rotational invariance of isolated systems we can attempt to
describe the state of the nucleus by its total angular momentum L. It often happens that
all the states of a given energy E have the same total angular momentum L. However,
even in this case, we must also take into account the possible orientations of ~L in space
(unless L = 0). These have all the same E and are characterized by the 2L+ 1 possible
projections of ~L along a given axis, say, the z axis. Therefore, in order to describe the
state of the nucleus, we need to consider not only its coordinates ~r (or momentum ~p),
but also an additional discrete variable, namely the projection of the angular momentum
along a given direction in space. The state of a composite particle can then be described
by the wave function

ΨnL = ΨnL(~r, Lz).

There is no reason why elementary particles, that is, particles that appear to be structure-
less in the considered energy range of the interactions,11 should not have such an internal
degree of freedom. In fact there are many examples in nature where a particle “at rest”
or in a state bearing no orbital angular momentum (e.g., a spherically symmetric state
Ψ(~r) = Ψ(r) or in a plane wave state Ψ(~r) = 1√

V
ei ~p~r) shows a finite (non-vanishing)

intrinsic angular momentum j0 6= 0. Moreover, the value of j0 is very often half-integer.
The intrinsic angular momentum of an elementary particle is called spin and the vector

operator associated to this observable is denoted by ~̂s = (ŝx, ŝy, ŝz). The commutation
rules for ŝx, ŝy and ŝz follow from the commutation rules of the rotations (matrices) in
R3 and are the same as those of the orbital angular momentum ~l = ~r × ~p, since ŝx, ŝy
and ŝz are the generators of infinitesimal rotations (around the axis x, y and z) acting
on the spin variables. Therefore

[ŝx, ŝy] = i ~ ŝz, [ŝy, ŝz] = i ~ ŝx, and [ŝz, ŝx] = i ~ ŝy.

All the properties derived for the angular momentum ~ hold of course for ~s. In particular
ŝ2 and ŝz form a complete set of compatible observables. The corresponding eigenvalues
are s(s+ 1) and ms = −s,−s+ 1, . . . , s−1, s. Since the length of the spin is fixed by the
nature of the particle considered (e.g., s = 1/2 for an electron), the angular momentum
~~s vanishes in the limit ~→ 0. Thus, the spin has no classical equivalent.
For the description of the state of a particle we not only need to consider the usual

classical variables such as position ~r or momentum ~p, but also the spin variable ms, also
denoted by σ, which characterizes the intrinsic state. The length s of the spin is fixed,
like the mass or the charge of the given particle, and therefore does not depend on the

11The fact that the notion of elementary particle is energy dependent shall be discussed below.
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particle state. In three dimensions four compatible observables are needed to describe
the state of a particle having s 6= 0. These can be written as |~r,ms 〉 or | ~p,ms 〉, for
example. One may also define the state by the observables Ĥ, l̂ 2, l̂z and ŝz or Ĥ, l̂ 2,
̂ 2 and ̂z, where ~ = ~l + ~s is the total angular momentum. In this case one denotes the
states as |E, l,ml,ms 〉 and |E, l, j, jz 〉, respectively. The wave function

〈~r, σ |Ψ 〉 = Ψ(~r, σ) = Ψσ(~r)

is thus a function of four variables (3 continuous and 1 discrete). One often attaches an
index to the wave function corresponding to the different values of ms = σ. These are
known as the spin components of the wave function. Notice that the spin variables are
completely independent of the usual classical variables ~r or ~p. One can therefore regard
the kets of a particle with spin as the elements of a Hilbert space, which is the direct
product of the usual Hilbert space associated to the classical variables and (2 s + 1)-
dimensional space associated to the spin variable. For example,

| ~p,ms 〉 = | ~p 〉 · |ms 〉

or

|E, l,ml,ms 〉 = |E, l,ml 〉 |ms 〉.

The spin operators act on the spin variable only and therefore commute with the oper-
ators acting on the coordinates such as ~r, ~p, ~l, etc. If one rotates a particle with spin,
one must take into account the effect of the rotation on both the coordinates and the
spin variable. The operator describing an infinitesimal rotation of the orbital part of the
ket is given by

Ûorb(δφ) = 1− i

~
n̂ · ~̂l δφ+O(δφ2),

where δφ denotes the angle and n̂ the axis of rotation. The rotation of the spin variables
is realized by the operator

Ûspin(δφ) = 1− i

~
n̂ · ~̂s δφ+O(δφ2),

where ~̂s is the spin operator. The operator corresponding to the rotation of the complete
ket is therefore given by the product

Û = Ûspin Ûorb = Ûorb Ûspin

= 1− i

~
n̂ · (~̂l + ~̂s ) δφ+O(δφ2).

Consequently, the total angular momentum

~ = ~l + ~s
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is the generator of infinitesimal rotations. It is easy to verify that

[̂i, ̂k] = i εikl ̂l,

from which it follows that ̂ 2 and ̂z form a complete set of observables with eigenvalues
j(j + 1) and m = −j,−j + 1, . . . , j − 1, j. It is therefore important to determine which
are the eigenvalues of ̂ 2, i.e., the possible values of j, that can be obtained for given
values of l and s.
For a system of particles the total angular momentum is given by the sum of the

operators acting on each variable:

~J =
∑
i

~i with ~i = ~li + ~si,

which we can put in the form

~J = ~L+ ~S

with ~L =
∑

i
~li and ~S =

∑
i ~si.

Example: The electron spin and spinor states
Electrons are particles having s = 1/2. The dimension of the spin space is therefore

2 s + 1 = 2. We can write the wave function as Ψσ(~r) with σ = 1/2 and −1/2 or as a
two-component or spin-1/2 spinor :

|Ψ 〉 =

(
Ψ1/2(~r)

Ψ−1/2(~r)

)
=

(
Ψ↑(~r)
Ψ↓(~r)

)
=

(
Ψ+(~r)
Ψ−(~r)

)
.

For the discussion of the spin dependence one can drop the dependence on the classical
variables ~r or ~p (e.g., one may consider a given position ~r or imagine that the electron
has a defined momentum ~p) and simply write

|Ψ 〉 =

(
c+

c−

)
with |c+|2 + |c−|2 = 1.

The eigenstates of

ŝx =
~
2

(
0 1
1 0

)
are given by

|x,+ 〉 =
1√
2

(
1
1

)
and |x,−〉 =

1√
2

(
1
−1

)
,

which correspond to the eigenvalues sx = ± ~/2. The ket |x,+ 〉 (|x,−〉) represents a
state in which the spin of the electron points along the positive (negative) x direction.
In terms of the eigenstates of ŝz, namely

| z,+ 〉 =

(
1
0

)
and | z,−〉 =

(
0
1

)
,
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we can write

|x,±〉 =
1√
2

(| z,+ 〉 ± | z,−〉) .

And the corresponding components of the wave functions are

Ψx
±(~r) = 〈~r |x,±〉 =

1√
2

(〈~r | z,+ 〉 ± 〈~r | z,−〉) =
1√
2

[
Ψz

1/2(~r)±Ψz
−1/2(~r)

]
.

Let us finally notice that if one prepares an electron in a state |x,+ 〉 having its spin
pointing along the positive x direction (e.g., as a result of a Stern-Gerlach filtering ex-
periment with the magnetic field gradient along the x direction) and one measures the
projection of the spin along a perpendicular direction (e.g., by means of a second Stern-
Gerlach experiment with the magnetic field gradient along the z direction) the probability
of measuring the value sz = + ~/2 or sz = − ~/2 is |〈 z,± |x,+ 〉|2 = 1/2.
The addition of spin and orbital angular momenta is discussed in the following section.

7.1. Addition of angular momentum

We consider two commuting angular momentum operators ~̂J1 and ~̂J2 acting on different
subspaces S1 and S2. These can be the spin ~̂S and orbital momentum ~̂L of an electron,
for which we have

[~̂L, ~̂S ] = 0,

since they act on different variables, or the total angular momenta ~̂1 and ~̂2 of two
electrons, which satisfy

[~̂1, ~̂2] = 0

for the same reason. The usual commutation relations in component form read

[Ĵ1 k, Ĵ1 l] = i ~ εklm Ĵ1m

and

[Ĵ2 k, Ĵ2 l] = i ~ εklm Ĵ2m

with

[Ĵ1 k, Ĵ2 l] = 0

for all k, l,m = 1–3. Since ~̂J1 and ~̂J2 are angular momentum operators, and choosing as
usual z as the quantization direction, we have

[Ĵ1 z, Ĵ
2
1 ] = 0
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and

[Ĵ2 z, Ĵ
2
2 ] = 0.

Recalling that [ ~̂J1, ~̂J2] = 0, it is clear that Ĵ1 z, Ĵ
2
1 , Ĵ2 z and Ĵ2

2 are compatible observables.
Therefore, we can characterize our kets by the corresponding quantum numbers as

| j1, j2; m1,m2 〉 ≡ | j1m1 〉︸ ︷︷ ︸
φ orbital

| j2m2 〉︸ ︷︷ ︸
χ spin

.

As usual Ĵα z | jαmα 〉 = mα | jαmα 〉 and Ĵ2
α | jαmα 〉 = jα (jα + 1) | jαmα 〉 for α = 1

and 2. If we now perform a rotation R on the system we must rotate or transform the
orbital ket and the spin ket, or the coordinates of both electrons, if we are dealing with
a two-electron system. The corresponding operators are given by

D̂1(R) = e−
i
~
~̂J1·n̂ φ

and

D̂2(R) = e−
i
~
~̂J2·n̂ φ.

The operator transforming the complete ket is

D̂(R) = D̂1(R) D̂2(R) = D̂2(R) D̂1(R),

where it is understood that D1 acts on the variables of subspace S1 and D2 on the
variables of S2. In terms of ~̂J1 and ~̂J2 we have

D̂(R) = e−
i
~
~̂J1·n̂ φ e−

i
~
~̂J2·n̂ φ = e−

i
~ ( ~̂J1+ ~̂J2)·n̂ φ.

The generator of rotations of the composite system S1 ⊕ S2 is therefore

~̂J = ~̂J1 + ~̂J2,

i.e., the vector sum of the individual operators. The fundamental property of ~̂J = ~̂J1 + ~̂J2

reads

[Ĵk, Ĵl] = i ~ εklm Ĵm, (7.1)

i.e., ~̂J is an angular momentum operator. The usual properties of angular momenta
follow:

i) [Ĵ2, Ĵz] = [Ĵ2, Ĵy] = [Ĵ2, Ĵx] = 0.
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ii) [Ĵz, Ĵ
±] = ± ~ Ĵ±.

iii) One finds the same kind of eigenstates | j m 〉 with −j ≤ m ≤ j.

iv) The values of j are either integer or half-integer, and the values of m are
m = −j,−j + 1, . . . , j − 1, j.

v) The ladder operators Ĵ± = Ĵx ± i Ĵy satisfy
Ĵ± | j m 〉 =

√
j (j + 1)−m (m± 1) | j,m± 1 〉.

It is therefore important to construct the states | j m 〉 with defined Ĵ2 | j m 〉 = j(j+1)
| j m 〉 and Ĵz | j m 〉 = m | j m 〉 in terms of the states | j1, j2; m1,m2 〉 = | j1,m1 〉 | j2,m2 〉
of S1 ⊕ S2.

The proof of Eq. (7.1) is straightforward:

[Ĵk, Ĵl] = [Ĵ1k + Ĵ2k, Ĵ1l + Ĵ2l]

= [Ĵ1k, Ĵ1l] + [Ĵ2k, Ĵ2l]

= i ~ εklm Ĵ1m + i ~ εklm Ĵ2m

= i ~ εklm Ĵm.

In addition we have

[Ĵk, Ĵ1l] = [Ĵ1k, Ĵ2l] = i ~ εklm Ĵ1m.

This implies that ~̂J1 and ~̂J2 are vector operators. Therefore [Ĵ 2
1 ,
~̂J ] = [Ĵ 2

2 ,
~̂J ] = 0. We

can prove this statement for vector operators in general:

[V̂ 2, Ĵz] = [V̂ 2
x + V̂ 2

y + V̂ 2
z , Ĵz]

= V̂x [V̂x, Ĵz] + [V̂x, Ĵz] V̂x + V̂y [V̂y, Ĵz] + [V̂y, Ĵz] V̂y

= V̂x (−i ~ V̂y) + (−i ~ V̂y) V̂x + V̂y (i ~ V̂x) + (i ~ V̂x) V̂y

= 0.

In conclusion, besides Ĵ1z, Ĵ2
1 , Ĵ2z and Ĵ2

2 , we also have the following set of compatible
operators Ĵ 2

1 , Ĵ 2
2 , Ĵ2 and Ĵz. The states of the composite system S1 ⊕ S2 can be

characterized by the corresponding quantum numbers as | j1, j2; j,m 〉, where

Ĵ 2
1 | j1, j2; j,m 〉 = j1 (j1 + 1) | j1, j2; j,m 〉

Ĵ 2
2 | j1, j2; j,m 〉 = j2 (j2 + 1) | j1, j2; j,m 〉
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Ĵ2 | j1, j2; j,m 〉 = j (j + 1) | j1, j2; j,m 〉

Ĵz | j1, j2; j,m 〉 = m | j1, j2; j,m 〉.

What are the possible values of j in terms of j1 and j2? How are the states | j1, j2; j,m 〉,
which are eigenstates of Ĵ 2

1 , Ĵ
2

2 , Ĵ
2 and Ĵz, written in terms of the states | j1, j2; m1,m2 〉,

which are eigenstates of Ĵ 2
1 , Ĵ

2
2 , Ĵ1z and Ĵ2z? In general we can have

| j1, j2; j,m 〉 =

j1∑
m1=−j1

j2∑
m2=−j2

| j1, j2; m1,m2 〉 〈 j1, j2; m1,m2 | j1, j2; j,m 〉.

〈 j1, j2; m1,m2 | j1, j2; j,m 〉 are the so-called Clebsch-Gordan or vector addition coeffi-
cients. An important property is the conservation of the total z component of the angular
momentum:

〈 j1, j2; m1,m2 | j1, j2; j,m 〉 = 0

unless

m1 +m2 = m. (7.2)

To prove Eq. (7.2) we compute

〈 j1, j2 |m1,m2 | Ĵz − Ĵ1z − Ĵ2z | j1, j2; j,m 〉 = 0

(since Ĵz = Ĵ1z + Ĵ2z) by acting with Ĵz on the ket and with Ĵ1z and Ĵ2z on the bra.
This implies

(m−m1 −m2) 〈 j1, j2; m1,m2 | j1, j2; j,m 〉 = 0,

which proves the statement.
The second important property is

〈 j1, j2; m1,m2 | j1, j2; j,m 〉 = 0

unless

|j1 − j2| ≤ j ≤ j1 + j2. (7.3)

This can be demonstrated as follows: Since Ĵz | j1, j2; m1,m2 〉 = (m1+m2) | j1, j2; m1,m2 〉,
the largest possible value of Jz is j1 + j2. There is only one state with Jz = j1 + j2,
namely,

| j1, j2, j = j1 + j2, m = j1 + j2 〉 = | j1, j2; m1 = j1,m2 = j2 〉.
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Applying Ĵ+ = Ĵ1+ + Ĵ2+ we obtain

Ĵ+ | j1, j2; m1 = j1,m2 = j2 〉 = 0

⇒ | j1, j2; m1 = j1,m2 = j2 〉 = | j1, j2; j = j1 + j2, m = j1 + j2 〉.

There are 2 kets for m = j1 +j2−1. One is proportional to Ĵ− | j = j1 +j2, m = j1 +j2 〉,
and the other has j = j1 + j2 − 1. There are 3 kets for m = j1 + j2 − 2, etc. In general,
one finds k+ 1 kets with m = j1 + j2 − k until j2 − k = min{j1, j2} = j2, where we have
chosen j2 ≤ j1 by convention. This proves the inequality (7.3).

One can easily verify that the sum of the numbers 2j+1 of orthogonal states | j1, j2; j,m 〉
corresponding to each value of j gives (2j1 + 1) (2j2 + 1), which is the number of states
| j1, j2; m1,m2 〉 = | j1,m1 〉 | j2,m2 〉 that can be formed by combining the two angular
momenta (direct product):

j1+j2∑
j=|j1−j2|

(2j + 1) = (2j1 + 1) (2j2 + 1).

This means that the dimension of the subspace is not modified by the change of repre-
sentation (unitary transformation).
The spectrum of Ĵ2 is then given by

j = j1 + j2, j1 + j2 − 1, . . . |j1 − j2|.

Notice that the difference between successive values of j is always 1, even if j can be half
integer (e.g., j = 5/2, 3/2 and 1/2 for j1 = 3/2 and j2 = 1). Moreover, there is only
one sequence of 2j + 1 states having m = −j, −j + 1, . . . j for each value of j. This is
usually summarized by the triangular relation

|j1 − j2| ≤ j ≤ j1 + j2.

Let us finally recall that the actual eigenvalues of Ĵ2 are as usual j(j + 1), since

Ĵ2 | j,m 〉 = j(j + 1) | j,m 〉.

Example: L = 2 and S = 1/2

In order to ilustrate how the different eigenstates of Ĵ2 are constructed we would
like to determine the states with defined total angular momentum ~J = ~L + ~S for an
electron (S = 1/2) in an atomic orbital (L = 2). We denote the eigenstates with
defined mL and mS by |L, S; mL,mS 〉 (L̂z |L, S; mL,mS 〉 = mL |L, S; mL,mS 〉 with
mL = ±2, ±1 and 0, and Ŝz |L, S; mL,mS 〉 = mS |L, S; mL,mS 〉 with mS = ±1/2)
and the eigenstates of Ĵ2 and Ĵz by |L, S; J,mJ 〉. There is only one possible state with
maximal mJ = L+ S = 5/2. It is given by

| 2, 1/2; J = 5/2, mJ = 5/2 〉 = | 2, 1/2; mL = 2, mS = 1/2 〉.
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There are two states with mJ = 3/2, one with mL = 1 and mS = 1/2 and the other with
mL = 2 and mS = −1/2. Appropriate linear combinations of these two states yield the
following eigenstates of Ĵ2 and Ĵz:

| 2, 1/2; J = 5/2, mJ = 3/2 〉

and

| 2, 1/2; J = 3/2, mJ = 3/2 〉.

How many states can we find with defined mL and mS and mL + mS = mJ = 1/2?
These are

| 2, 1/2; mL = 0, mS = 1/2 〉

and

| 2, 1/2; mL = −1, mS = 1/2 〉.

Since application of Ĵ− on the eigenstates having J = 5/2 and J = 3/2 with mJ = 3/2
yields two orthogonal states with mJ = 1/2, it is clear that no new values of J are
obtained for mJ = 1/2. The states | 2, 1/2; J = 5/2, mJ = 1/2 〉 and | 2, 1/2; J =
3/2, mJ = 1/2 〉 are obtained by appropriate linear combination of the states | 2, 1/2; mL =
0, mS = −1/2 〉 and | 2, 1/2; mL = −1, mS = 1/2 〉. The same reasoning applies to neg-
ative values of mJ = −1/2, −3/2 and −5/2. Therefore, the values of J resulting from
the sum of L = 2 and S = 1/2 are simply J = 5/2 and 3/2, in agreement with the
inequality (7.3).

Example: j1 = 2 and j2 = 2 Consider now the sum of two angular momenta j1 = 2

and j2 = 2. The largest value of Jz = mJ = m1 + m2 is obtained for m1 = m2 = 2,
which corresponds to the state

| 2, 2; J = 4, mJ = 4 〉 = | 2, 2; m1 = 2,m2 = 2 〉.

For Jz = 3 we find two states [(m1,m2) = (1, 2) and (m1,m2) = (2, 1)], for Jz = 2
we find three states [(m1,m2) = (0, 2), (1, 1) and (2, 0)], for Jz = 1 there are four
[(m1,m2) = (−1, 2), (0, 1), (1, 0) and (2, −1)] and for Jz = 0 there are five [(m1,m2) =
(−2, 2), (−1, 1), (0, 0), (1, −1) and (2, −2)]. In other words, we always find that the
dimension of the subspace with a given Jz increases by one each time we decrease Jz
(4 ≥ Jz ≥ 0). Consequently, the values of J obtained from the sum of j1 = 2 and j2 = 2
are J = 4, 3, 2, 1 and 0, in agreement with the inequality (7.3).
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7.2. The recursion relation for the Clebsch-Gordan coefficients

The purpose of this section is to determine the expansion coefficients of | j1, j2; j,m 〉 in
terms of | j1, j2; m1,m2 〉. We compute 〈 j1, j2; m1,m2 | Ĵ± | j1, j2; j,m 〉 in two equivalent
ways. First, we operate with (Ĵ±)† = Ĵ∓ on the bra or left-hand side (LHS) and, second,
we operate with Ĵ± on the ket or right-hand side (RHS):

〈 j1, j2; m1,m2 | Ĵ± | j1, j2; j,m 〉 =
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LHS −→
√

(j ∓m) (j ±m+ 1) 〈 j1, j2; m1,m2 | j1, j2; j,m±1 〉 =

RHS −→ =
√

(j1 ±m1) (j1 ∓m1 + 1) 〈 j1, j2; m1∓1,m2 | j1, j2; j,m 〉+

+
√

(j2 ±m2) (j2 ∓m2 + 1) 〈 j1, j2; m1,m2∓1 | j1, j2; j,m 〉. (7.4)

Notice that m is defined entirely by m1 and m2, since we must always have m1 +m2 =
m± 1. Equation (7.4) defines the Clebsch-Gordan (CG) recursion relations. They form
a set of triangular relations which can be illustrated by the following figure.
Given one coefficient, for example, for m1 = j1 and m2 + m1 = j, we can deter-

mine all others without any ambiguity. The value of the first coefficient is fixed by the
normalization condition ∑

m1
m2

|〈 j1j2; m1m2 | j1j2; jm 〉|2 = 1

and by a sign or phase convention. One can also have complex CG coefficients or, to
be more precise, the solutions of the recursion relations (7.4) can be complex. However,
in this case the complex conjugate is also always a solution. The CG coefficients are
therefore usually chosen to be real.
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8. The central symmetric field

8.1. General formulation

We consider the motion of two different interacting particles, for example, an electron
moving around a nucleus or an electron-positron pair. Taking into account the isotropy of
space, the interaction energy U(r) between the particles can only depend on the distance
r = |~r2 − ~r1| between the particles. Denoting by m1 and m2 the particle masses, the
Hamilton operator of the two-particle system is given by

Ĥ = − ~2

2m1
∇2

1 −
~2

2m2
∇2

2 + U(r).

As in classical mechanics it is convenient to change the coordinates by using the relative
coordinate

~r = ~r2 − ~r1

and the center of mass coordinate

~R =
m1 ~r1 +m2 ~r2

m1 +m2
⇔ M ~R = m1 ~r1 +m2 ~r2,

where M = m1 +m2 is the total mass. Since

~r1 = ~R− m2

M
~r

and

~r2 = ~R+
m1

M
~r,

and denoting the vector components as ~r = (x, y, z), ~R = (X,Y, Z), ~r1 = (x1, y1, z1) and
~r2 = (x2, y2, z2) we have

∂Ψ

∂x1,2
=
∂Ψ

∂x
· ∂x

∂x1,2
+
∂Ψ

∂X
· ∂X
∂x1,2

= ∓∂Ψ

∂x
+
m1,2

M

∂Ψ

∂X
,

where − (+) corresponds to 1 (2). From this it follows that

∂2Ψ

∂x1,2
= ∓

(
∓∂

2Ψ

∂x2
+

∂2Ψ

∂X ∂x

m1,2

M

)
+
m1,2

M

(
∓ ∂2Ψ

∂x ∂X
+
∂2Ψ

∂X2

m1,2

M

)
and therefore

1

m1

∂2Ψ

∂x2
1

+
1

m2

∂2Ψ

∂x2
2

=

(
1

m1
+

1

m2

)
∂2Ψ

∂x2
+
m1 +m2

M2

∂2Ψ

∂X2
+

2

M

∂2Ψ

∂X ∂x
− 2

M

∂2Ψ

∂x ∂X
.
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The Hamilton operator can then be written in the form

Ĥ = − ~2

2M
∇2
R −

~2

2µ
∇2
r + U(r),

where ∇2
R refers to the Laplacian with respect to the center of mass coordinate ~R, ∇2

r to
the Laplacian with respect to the relative coordinate ~r, and µ =

m1m2

m1 +m2
to the reduced

mass. Since the mass of the nucleus m2 is much larger than the mass of the electron
m1 = me we may set µ ' me.
The separation of variables ~r and ~R in Ĥ allows us to write its eigenfunctions Ψ(~r1, ~r2)

as product states of the form

Ψ(~r, ~R) = φ(~R) Ψ(~r),

where φ(~R) describes the free-particle motion of the center of mass and Ψ(~r) the relative
motion of the particles under the action of the interparticle potential U(r).
We focus on the relative motion and write the Schrödinger equation as

− ~2

2µ
∇2 Ψ + U(r) Ψ = EΨ.

Using the expression for the Laplace operator in spherical coordinates

∇2 =
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2

1

sin2 θ

[
sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

∂2

∂φ2

]
and the expression for the square of the angular momentum (in units of ~)

l̂ 2 = − 1

sin2 θ

[
sin θ

∂

∂θ

(
sin θ

∂

∂θ
+

∂2

∂φ2

)]
we can write the Hamiltonian as

Ĥ = − ~2

2µ

1

r2

∂

∂r

(
r2 ∂

∂r

)
+

~2

2µ

l̂ 2

r2
+ U(r). (8.1)

If one introduces the radial component of the linear momentum

p̂r Ψ = −i ~ 1

r

∂

∂r
(rΨ) = −i ~

(
∂Ψ

∂r
+

Ψ

r

)
,

one can bring Ĥ in the form known from classical mechanics:

Ĥ =
p̂2
r

2µ
+

1

2µ

L̂2

r2
+ U(r), (8.2)

where ~L = ~~l = ~̂r × p̂.
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Recalling that ~̂r and ~̂p are vector operators and that the corresponding squares r̂2

and p̂2 are invariant upon rotation
(
i.e.,

[
r̂2, ~̂l

]
=
[
p̂2, ~̂l

]
= 0
)
, it is easy to see that the

Hamiltonian given by Eq. (8.1) or (8.2) commutes with ~l, since the interparticle potential
U depends only on r. We may therefore search for the common eigenstates of Ĥ, l̂ 2 and
l̂z. The eigenfunctions of l̂ 2 and l̂z have the form

Ψ = R(r) Ylm(θ, ϕ), (8.3)

where R(r) is the radial wave function and Ylm(θ, ϕ) are spherical harmonics satisfying

l̂ 2 Ylm = l(l + 1) Ylm

and

l̂z Ylm = m Ylm.

Replacing Eq. (8.3) in Eq. (8.1) and using that ~l acts only on the angular variables θ
and ϕ we obtain that the radial part of the stationary states is given by

− ~2

2µ

1

r2

d

dr

(
r2 dR

dr

)
+

~2

2µ

l(l + 1)

r2
R+ U(r)R = ER.

This is the Schrödinger equation for the radial wave function. Notice that R depends on
E and l but not on the z component of the angular momentum lz = m. Consequently,
all stationary states are 2l + 1 degenerate. This is of course an expected consequence of[
Ĥ,~̂l

]
= 0 and in particular

[
Ĥ, l̂±

]
= 0. In the case of a discrete spectrum one usually

denotes the radial part by Rνl(r), where ν ≥ 0 is an integer, known as radial quantum
number, which gives the number of nodes in Rνl(r) for r > 0.
In order to investigate the properties of R(r) it is useful to make the substitution

R(r) =
χ(r)

r
.

Using that

1

r2

d

dr

(
r2 dR

dr

)
=

1

r2

d

dr

[
r2

(
1

r

dχ

dr
− 1

r2
χ

)]
=

1

r2

d

dr

(
r
dχ

dr
− χ

)

=
1

r2

dχ

dr
+

1

r

d2χ

dr2
− 1

r2

dχ

dr

=
1

r

d2χ

dr2

one obtains that the equation for χ reads

− ~2

2µ

d2χ

dr2
+

~2

2µ

l(l + 1)

r2
χ+ U χ = E χ, (8.4)
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which looks exactly as a 1D Schrödinger equation with the effective potential V (r) =
U(r) + ~2l(l + 1)/(2µr2). Since R(r) must be finite everywhere, it follows that

χ(0) = 0.

This condition, which is rather obvious if U(r) is finite everywhere, also holds when U(r)
diverges at the origin (r → 0) as U(r) ∼ rs with s > −2 [2]. This will be discussed in
more detail below. The normalization condition for bound states requires

1 =

∫ +∞

0
|R(r)|2 r2 dr =

∫ +∞

0
|χ(r)|2 dr.

Equation (8.4) is equivalent to a one-dimensional (1D) Schrödinger equation for χ(r)
with the boundary condition r ≥ 0 and χ(0) = 0.

8.2. Properties of the motion in a spherical potential

Based on our knowledge of the motion in one dimension (see Sec. 4.12) a few general
conclusions can be derived concerning the motion in a spherically symmetric field:

i) Since the motion is bounded on one side [χ(0) = 0], there is only one eigenstate of
Eq. (8.4) for each energy E. This implies that for a given l there is only one radial
solution χEl for each value of E. This does not preclude, however, that different
values of l might lead to different χlE having the same eigenenergy. This is actually
the case in the Coulomb field U(r) = −α/r (α > 0). Such degeneracies are said
to be accidental, since they are not a consequence of rotational symmetry.

ii) Taking into account that the angular part is completely defined by the values of l
and m, we conclude that E, l and m form a complete set of compatible observables
according to which the eigenstates

ΨElm(~r) = REl(r) Ylm(θ, ϕ)

can be classified. Alternatively, one may consider ν, l and m as complete set of
quantum numbers.

iii) Further insight in the structure of the energy spectrum can be obtained by applying
the oscillator theorem, which states that the eigenfunction corresponding to the n-
th eigenvalue of a discrete spectrum in 1D has n− 1 nodes (i.e., the lowest-energy
state has no nodes, the following 1 node, etc.). Notice that the effective potential

Ul(r) = U(r) +
~2

2m

l(l + 1)

r2

of the 1D Schrödinger equation for χνl(r) depends on l. We therefore fix the value
of l and conclude that the lowest-energy eigenstate χ0l for each l has no nodes. The
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number of nodes in χνl increases by one as we increase the level of excitation ν for
any given l. Assigning ν = 0 to the lowest-energy state and ordering the states
by increasing energy, it follows that ν defines the number of nodes in χ(r) and in
R(r) = χ/r for all finite values of r [excluding r = 0 where χ(0) = 0]. The number
ν is known as radial quantum number, l as azimuthal or orbital quantum number
and m as magnetic quantum number.

iv) Since the centrifugal potential
~2

2m

l(l + 1)

r2
is strictly positive, it is clear that the

ground state of a central symmetric problem always has l = 0. This is easily seen by
applying the variational principle. In fact, using the radial part χ of a hypothetical
ground state for l ≥ 1 as a variational ansatz for the l = 0 equation, would always
yield a strictly lower energy. Consequently, the ground state is non-degenerate
(2l + 1 = 1 for l = 0).

v) The previous variational argument also implies that the lowest possible energy for
a given l increases monotonously with l. While E increases with increasing l for a
given ν, and also E increases with ν for a given l, there is no simple rule concerning
different ν and l. For instance, in the Coulomb field U(r) = −α/r, the eigenstate
having l = 0 and ν = 1 (i.e., the 2s-orbital) is degenerate with the eigenstate
having l = 1 and ν = 0 (i.e., the 2p-orbital).

vi) Finally, we can determine the behavior of R(r) near the origin. We restrict ourselves
to potentials that do not diverge very rapidly at the origin, satisfying

lim
r→0

r2 U(r) = 0, (8.5)

which includes all cases of interest including the unscreened Coulomb field. The
condition (8.5) implies that the particle does not fall into the center [2]. The
Schrödinger equation reads

− ~2

2µ

1

r2

d

dr

(
r2 dR

dr

)
+

~2

2µ

l(l + 1)

r2
R+ UR = ER. (8.6)

Multiplying Eq. (8.6) by r2 and taking the limit r → 0 we conclude by using (8.5)
that for small r the radial wave function satisfies the equation

d

dr

(
r2 dR

dr

)
= l(l + 1)R.

We seek R(r) for r → 0 in the form of a power law

R(r) = Ars +O(rs+1)
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and focus on the leading term. Since

d

dr

[
r2 d

dr
(rs)

]
= s

d

dr

(
rs+1

)
= s(s+ 1) rs,

the condition on s reads

s(s+ 1) = l(l + 1),

whose solutions are s = l ≥ 0 and s = −(l + 1) ≤ −1. The latter is of course
unphysical, since R would diverge at the origin.12 Thus,

Rnl(r) ∼ rl.

The larger l is, the stronger is the centrifugal potential. Therefore, the probability
of finding the particle close to the origin decreases faster as l increases.

8.3. The Coulomb field

A particularly important example of central potential is the Coulomb field of the form

U(r) = −α
r

with α > 0, which applies to Hydrogen-like atoms (α = Z e2). In this potential the
eigenenergies take the form

En = −µα
2

2 ~2

1

n2
,

where n = 1, 2, 3, . . . is called the principal quantum number. The integer n is strictly
positive (n ≥ 1) and must satisfy the condition

n ≥ l + 1.

Notice that the energy is independent of l, except for the constraint

l ≤ n− 1.

The ground state corresponds to n = 1 and l = 0. As expected, it is non-degenerate.
The radial quantum number ν, giving the number of nodes of the radial wave function,
is related to n and l by

ν = n− l − 1.

12In fact, s = −(l + 1) with l ≥ 1 would imply that R(r) ∝ 1/rl+1 is not integrable at the origin. The
remaining case l = 0 implies R(r) ∝ 1/r, which is integrable. However, ∇2 (1/r) = −4πδ(~r) would
require that U(r) ∝ δ(~r) near the origin, which is also unphysical.
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For a given n, l takes the values

l = 0, 1, . . . , n− 1.

This additional degeneracy (beyond the 2l + 1 degeneracy associated with the magnetic
quantum number m) is an accidental degeneracy, which is specific of the Coulomb field.
The principal quantum number n and the azimuthal quantum number l are used to label
the orbitals in atomic physics:

principal orbital radial magnetic
orbitals n l ν 2l + 1

1s 1 0 0 1
2s 2 0 1 1
2p 2 1 0 3
3s 3 0 2 1
3p 3 1 1 3
3d 3 2 0 5

The lowest energy radial functions Rnl(r) are

R1 0 = 2 e−r

R2 0 =
1√
2
e−r/2

(
1− r

2

)

R2 1 =
1

2
√

6
e−r/2 r

R3 0 =
2

3
√

3
e−r/3

(
1− 2

3
r +

2

27
r2

)

R3 1 =
8

27
√

6
e−r/3 r

(
1− 1

6
r

)

R3 2 =
4

81
√

30
e−r/3 r2.

The reader may wish to verify that the general properties discussed in the previous
section are fulfilled.
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9. Perturbation theory

The large majority of problems in quantum mechanics cannot be solved in an analytical
way. As in any other branch of physics, approximation methods are of central impor-
tance. Besides the practical motivation for providing a quantitative or qualitative insight
on otherwise inaccessible phenomena, the formal development of approximate methods
often provides a valuable new perspective in the structure of the theory, which is rather
universal and thus helps to develop a quantum mechanical intuition. This is particularly
true in the case of perturbation theory.
The general problem can be formulated as follows. We consider a Hamiltonian

Ĥ = Ĥ0 + V̂ ,

which can be splitted in two terms. The first one is the unperturbed Hamiltonian Ĥ0,
whose eigenstates |n0 〉 and eigenenergies E0

n are exactly known. The second term is the
perturbation, which is assumed to be small, in some sense to be quantified below. In the
following we consider first the stationary case, in which both Ĥ0 and V̂ are independent
of time. Later on we shall discuss perturbations V̂ introducing a time dependence.

9.1. Symmetry and perturbation

Splitting Ĥ in the form Ĥ = Ĥ0 + V̂ is in some cases not obvious, nor is the best choice
of a complete set of compatible observables spanning the Hilbert space in which Ĥ0 and
Ĥ operate. In any case we assume that the properties of Ĥ0 are completely understood.
By this we mean that we know a complete set of eigenstates |n0, α 〉 with energies E0

n,
where α denotes the eigenvalues of the observables which might be needed in order to
define the states completely:

Ĥ0|n0, α 〉 = E0
n |n0, α 〉.

In order to illustrate the various possible choices of |n0, α 〉 and the role of symmetry in
Ĥ0 and V̂ , let us consider the three dimensional isotropic harmonic oscillator

Ĥ0 =
p̂2

2m
+

1

2
mω2r̂2

=
1

2m

(
p̂2
x + p̂2

y + p̂2
z

)
+

1

2
mω2

(
x2 + y2 + z2

)
,

whose eigenvalues are

E0
N =

(
N +

3

2

)
~ω =

(
nx + ny + nz +

3

2

)
~ω = E0

nx ny nz .

The spectrum is highly degenerate since the eigenvalues depend only on

N = nx + ny + nz.
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The degeneracy is actually

gN = (N + 1)(N + 2)/2 =
N∑

nx=0

(N − nx + 1).

The degeneracy of the spectrum of Ĥ0 opens various possibilities for the quantum
numbers α classifying the states |n, α 〉 within each degenerate manifold. This choice
reflects different symmetries of the underlying states, which becomes non-trivial when
perturbations are introduced.
Besides the obvious Cartesian representation |nx, ny, nz 〉 with product wave functions
〈x, y, z |nx, ny, nz 〉 = Ψnx(x)Ψny(y)Ψnz(z), one may consider a spherical representa-
tion |N, l, m 〉 in which the wave functions 〈 r, θ, ϕ |N, l, m 〉 = RNl(r)Ylm(θ, ϕ) are the
product of spherical harmonics and a solution of the radial Schrödinger equation with
angular momentum l. In addition one may also consider polar coordinates, in which case
the states |N, nz, m 〉 are characterized by the polar, z and magnetic quantum numbers
N , nz and m. Of course, unitary transformations within each degenerate subspace allow
us to obtain any of these representations as linear combinations from each other.
Consider now the following perturbations:

a) Va(~r) = λ v(r),

b) Vb(~r) = λ1 v1(x) + λ2 v2(y) + λ3 v3(z) and

c) Vc(~r) = λ v12(x2 + y2) + λ′ v3(z).

It is clear that the difficulty in finding the eigenstates of Ĥ = Ĥ0 + V̂ will be very
different, depending on the choice of the unperturbed states. For example, if we con-
sider the Va = λ v(r) in Cartesian representation |nx, ny, nz 〉, we will find matrix el-
ements among all the states having the same energy (nx + ny + nz = N). There-
fore, the changes in the eigenstates will be very significant even if the strength of
the perturbation tends to zero (i.e., Va(~r) = λ v(r) with λ → 0). Thus, Cartesian
states |nx, ny, nz 〉 do not provide a meaningful starting point for a perturbative treat-
ment of Va. In contrast, the spherical basis |N, l, m 〉, in which Va is already diag-
onal within each degenerate subspace and the matrix elements are independent of m
( 〈N ′, l′,m′ |Va |N, l, m 〉 = δll′ δmm′〈N ′ |Va |N 〉 ) is perfectly suited, since the shape of
|N, l, m 〉 does not change in the limit λ→ 0. Thus, we may expect that the corrections
resulting from Va can be introduced in an iterative way. Furthermore, it is not necessary
to solve the eigenvalue problem for different m, since they are independent of m. Similar
considerations immediately show that |nx, ny, nz 〉 and |N, nz, m 〉 are the appropriate
choices for Vb and Vc, respectively.

A few general conclusions may be drawn:

i) Finding the stationary states of Ĥ = Ĥ0+V̂ is considerably simplified by symmetry
considerations, particularly when some of the constants of motion under Ĥ0 remain
constants of motion under the action of the perturbation V̂ .
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ii) Not all choices of stationary states |n0 〉 of Ĥ0 are good starting points for finding
the eigenstates |n 〉 of Ĥ. Particularly in the presence of degeneracies, the changes
introduced by V̂ may be very significant even in the limit of V̂ → 0 (i.e., |〈n0 |n 〉|9
1 for V̂ → 0). In order that a perturbation expansion remains meaningful we must
ensure that |n 〉 V→0−−−→ |n0 〉.

iii) If symmetry of the perturbation V̂ is lower than the symmetry of Ĥ0, the degen-
eracy of the spectrum is in general reduced. For example, the perturbation Vb will
in general remove the degeneracy of Ĥ0, since it removes isotropy, while the per-
turbation Va will remove the degeneracy between states having different l (but the
same N). The 2l+1 degeneracy among the different m remains of course unaltered
under the action of Va.

9.2. The Rayleigh-Schrödinger perturbation expansion

We intend to obtain a general iterative solution of the eigenvalues problem

Ĥ|n 〉 = En|n 〉, (9.1)

where

Ĥ = Ĥ0 + V̂ (9.2)

and V̂ can be regarded as "small" in a sense to be defined with some mathematical rigor
below. The idea is to seek for an iterative solution of the form

En = E(0)
n + E(1)

n + E(2)
n + · · ·

or equivalently,

∆n = En − E(0)
n = ∆(1)

n + ∆(2)
n + · · ·

and

|n 〉 = |n0 〉+ |n1 〉+ |n2 〉+ · · · ,

where the k-order corrections to the eigenenergies ∆
(k)
n and eigenstates |nk 〉 are of the

order of V k
lm, where Vlm = 〈 l0 | V̂ |m0 〉 are the matrix elements of the perturbation V̂ .

In order to allow for a clear identification of the contributions of the different orders in
V̂ , it is useful to write

Ĥ = Ĥ0 + λ V̂ , (9.3)

∆n = λ∆(1)
n + λ2 ∆(2)

n + · · · , (9.4)

|n 〉 = |n0 〉+ λ |n1 〉+ λ2 |n2 〉+ · · · , (9.5)

and to regard Ĥ, ∆n(λ) and |n 〉λ as functions of the parameter λ ∈ [0, 1]. In this way
λ = 0 corresponds to the unperturbed case Ĥ0. Finally, at the end of the calculations
we may set λ = 1 and recover Eqs. (9.1) and (9.2).
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9.3. The non-degenerate case

We consider first an unperturbed Hamiltonian Ĥ0 having a non-degenerate spectrum
E

(0)
n . As we shall see, this hypothesis is only required for the unperturbed eigenstate
|n0 〉 to which the perturbed eigenstate |n 〉 tends when λ→ 0. We aim to calculate each
|n 〉 in terms of |n0 〉 knowing that 〈n0|n〉 6= 0 for all λ and that |n 〉 → |n0 〉 for λ→ 0.
The degeneracy of the other unperturbed levels E(0)

m with E(0)
m 6= E

(0)
n is not relevant for

calculating |n 〉. Later on we will remove the restriction on the non degeneracy of |n0 〉.
We further assume that the spectrum is discrete. Again this applies only to the state |n0 〉
to which the perturbation is applied, i.e., which is actually being calculated. Ĥ0 itself
may also have a continuous spectrum, at higher energies, for example. Extending the
formulae to states belonging to the continuum spectrum is in principle straightforward
by replacing the sums over the discrete spectrum by the corresponding integrals over the
continuum spectrum.
Our aim is to solve the eigenvalue problem

Ĥ|n 〉 = En|n 〉,(
Ĥ0 + λ V̂

)
|n 〉 = En|n 〉,

which we rewrite in the form(
Ĥ0 − E(0)

n

)
|n 〉 =

(
∆n − λ V̂

)
|n 〉. (9.6)

This form is quite appealing because it groups on the left side known operators and
constants of order zero, keeping on the right side all the terms of order λ or higher. Still
we need to solve for |n 〉 in order to obtain an expression which is useful for iterative
approximations.
In order to solve for |n 〉 one may regard Eq. (9.6) as an inhomogeneous linear equation,

where (
Ĥ0 − E(0)

n

)
|n 〉 = 0 (9.7)

is the homogeneous part and (
∆n − λV̂

)
|n 〉

the inhomogeneity. The solution of the homogeneous part (9.7) is obviously proportional
to |n0 〉 and can be written as |n0 〉〈n0 |n 〉. However, notice that Eq. (9.6) provides no
information on the projection 〈n0 |n 〉. In fact,

(
Ĥ0 − E(0)

n

)
projects out any component

of |n 〉 along |n0 〉, since the latter has the unperturbed energy E(0)
n . As for any eigenvec-

tor, one of the non-vanishing components of |n 〉, in the present case 〈n0 |n 〉, can always
be chosen freely, provided that the normalization of |n 〉 is addressed a posteriori. Since

|n 〉 → |n0 〉 for λ→ 0
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we assume

〈n0 |n 〉 = 1 (9.8)

for all λ. Consequently,

〈n |n 〉 = 〈n |

(∑
m

|m0 〉〈m0 |

)
|n 〉

= 1 +
∑
m 6=n
|〈m0 |n 〉|2

necessarily exceeds unity. The renormalization of |n 〉 is not important to lowest order
in λ, as it will be discussed below.
In order to find a particular solution of Eq. (9.6) including the inhomogeneity, one is

tempted to multiply Eq. (9.6) from the left by the Green’s operator

Ĝ0 =
(
Ĥ0 − E(0)

n

)−1
.

But of course
(
Ĥ0 − E(0)

n

)
is invertible only in the subspace orthogonal to |n0 〉. To

circumvent this problem we introduce the projection operators

P̂n = |n0 〉〈n0 |

and its complement

Q̂n = 1− P̂n =
∑
m6=n
|m0 〉〈m0 |.

These allow us to split

|n 〉 =
(
P̂n + Q̂n

)
|n 〉 = |n0 〉〈n0 |n 〉+ Q̂n|n 〉 (9.9)

in the part belonging to the kernel of
(
Ĥ0 − E(0)

n

)
and the part where

(
Ĥ0 − E(0)

n

)
is

regular. Notice that [Q̂n, Ĥ0] = 0 because they are diagonal on the same basis. We
consider the operator

Q̂n

Ĥ0 − E(0)
n

=
∑
m6=n

|m0 〉〈m0 |
E

(0)
m − E(0)

n

,

which is well defined since E(0)
n is nondegenerate, and multiply with it Eq. (9.6) from the

left to obtain

Q̂n

Ĥ0 − E(0)
n

(
Ĥ0 − E(0)

n

)
|n 〉 =

∑
m6=n

|m0 〉〈m0 |
E

(0)
m − E(0)

n

(
Ĥ0 − E(0)

n

)
|n 〉

=
∑
m6=n
|m0 〉〈m0 |n 〉

= Q̂n|n 〉
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This implies

Q̂n|n 〉 =
Q̂n

Ĥ0 − E(0)
n

(
∆n − λ V̂

)
|n 〉. (9.10)

This is the particular solution of the inhomogeneous equation. Combining (9.8) and (9.10)
in (9.9) we have

|n 〉 = |n0 〉+
Q̂n

Ĥ0 − E(0)
n

(
∆n − λ V̂

)
|n 〉 . (9.11)

This exact equation is most useful for obtaining |n 〉 by successive iterations, each one
involving a higher-order correction in λ. For example, one may start with |n0 〉 (the limit
of |n 〉 for λ→ 0) insert it on the right-hand side in order to obtain the correction of |n 〉
to first order in λ. Replacing then this approximation in the RHS of Eq. (9.11) gives |n 〉
to second order in λ and so on. Formally, one would replace Eq. (9.11) in itself iteratively
ad infinitum and thus obtain a series expansion of |n 〉 as a function of λ.

But before doing that we need an iterative equation for the correction of the energy
levels ∆n, which also enter Eq. (9.11). This we obtain from the relation

〈n0 |
(

∆n − λ V̂
)
|n 〉 = 0 ,

which is easily inferred from Eq. (9.6) by recalling that Ĥ0|n0 〉 = E
(0)
n |n0 〉. Using the

normalization condition 〈n0 |n 〉 = 1 we have

∆n = λ〈n0 | V̂ |n 〉 , (9.12)

which shows that the knowledge of |n 〉 to the order k in λ yields the correction ∆n of
the nth energy level to the order k + 1. This can then be inserted in Eq. (9.11) to infer
the correction of |n 〉 to the order k + 1.

The basic assumptions of the Rayleigh-Schrödinger perturbation expansion are that V̂
is small in some sense and that Eqs. (9.11) and (9.12) can be solved by iterations. In the
following we develop such a solution, derive the corresponding perturbation expansion of
∆n and |n 〉, and finally analyze the convergence conditions.
We expand ∆n and |n 〉 in powers of λ in order to facilitate keeping track of the

contributions with different orders in V̂ :

∆n =

∞∑
k=1

λk ∆(k)
n (9.13)

and

|n 〉 =

∞∑
k=1

λk |nk 〉. (9.14)

157



Replacing this expansions in Eq. (9.12) we obtain

∞∑
k=1

λk ∆(k)
n = λ 〈n0 | V̂

∞∑
k=0

λk |nk 〉,

which implies

∆(k+1)
n = 〈n0 | V̂ |nk 〉. (9.15)

The (k + 1)-order corrections to ∆n is obtained straightforwardly from the k-order cor-
rection to the eigenstate. Replacing the expansions (9.13) and (9.14) in Eq. (9.11) we
obtain

∞∑
k=0

λk |nk 〉 = |n0 〉+
Q̂n

Ĥ0 − E(0)
n

[ ∞∑
k=1

λk ∆(k)
n − λ V̂

] ∞∑
k′=0

λk
′ |nk′ 〉 (9.16)

The second term on the right-hand side can be rearranged as follows:

Q̂n

Ĥ0 − E(0)
n

[ ∞∑
k=1

∞∑
k′=0

λk+k′∆(k)
n |nk′ 〉 −

∞∑
k=0

λk+1V̂ |nk 〉

]

=
Q̂n

Ĥ0 − E(0)
n

[ ∞∑
m=1

λm
m∑
k=1

∆(k)
n |nm−k 〉 −

∞∑
k=1

λkV̂ |nk−1 〉

]
(9.17)

Comparing (9.17) with the left-hand side of (9.16) and equating the kets corresponding
to the same powers of λ, we obtain for k ≥ 1

|nk 〉 =

k∑
k′=1

∆(k′)
n

Q̂n

Ĥ0 − E(0)
n

|nk−k′ 〉 −
Q̂n

Ĥ0 − E(0)
n

V̂ |nk−1 〉. (9.18)

Again, as in the case of ∆
(k)
n , the k-order correction to the eigenvector can be obtained

by operating on the states |nk′ 〉 with k′ < k.
We may now make these expressions explicit for the most important lowest orders.

The first-order correction of the energy level reads

∆(1)
n = 〈n0 | V̂ |n0 〉, (9.19)

which represents the average of the perturbation in the corresponding unperturbed state
|n0 〉, a transparent result worth keeping in mind.
For the first-order correction of |n 〉 we have

|n1 〉 = ∆(1)
n

Q̂n

Ĥ0 − E(0)
n

|n0 〉 −
Q̂n

Ĥ0 − E(0)
n

V̂ |n0 〉.

158



Knowing that Q̂n|n0 〉 = 0, we obtain

|n1 〉 = − Q̂n

Ĥ0 − E(0)
n

V̂ |n0 〉

=
∑
m6=n

|m0 〉〈m0 |
E

(0)
n − E(0)

m

V̂ |n0 〉.

It is useful to denote the matrix elements of the perturbation between the unperturbed
eigenstates in a more compact way as

Vmn = 〈m0 | V̂ |n0 〉.

Thus, we can write

|n1 〉 =
∑
m6=n

Vmn

E
(0)
n − E(0)

m

|m0 〉. (9.20)

To first order in V̂ , the amplitude of the state |m0 〉 in the eigenstate |n 〉 is directly pro-
portional to the matrix element Vmn between |n0 〉 and |m0 〉, and inversely proportional
to the energy difference between these states. This is a very fundamental and widely
applicable trend in quantum mechanics. This explains why the same matrix element
Vmn connecting two states |m0 〉 and |n0 〉 can have a huge effect on the eigenstates and
eigenenergies if the unperturbed levels E(0)

m and E(0)
n are close (|E(0)

m −E(0)
n | ∼ Vmn), while

the effects can be negligible if the unperturbed energies are far appart (|E(0)
m − E(0)

n | �
|Vmn|).
The second-order correction to ∆n is

∆(2)
n = 〈n0 | V̂

Q̂n

Ĥ0 − E(0)
n

V̂ |n0 〉 =
∑
m6=n

|Vnm|2

E
(0)
n − E(0)

m

. (9.21)

This second-order correction is very important in practice, since very often the first-order
correction vanishes (Vnn = 0) for example due to symmetry reasons. The trends implied
by (9.21), being independent of explicit form of V̂ , have a universal validity in quantum
mechanics. For example, in the case of the ground state we have E(0)

n − E(0)
m < 0 ∀m,

which implies that any perturbation tends to stabilize the ground state. This can be
interpreted on the basis of the variational principle. Indeed, if one regards the zeroth-
order approximation of the ground state wave-function |n0 〉 as a variational Ansatz for
the exact ground state |n 〉, it is clear that

En = 〈n | Ĥ0 + V̂ |n 〉 ≤ 〈n0 | Ĥ0 + V̂ |n0 〉 = E(0)
n + ∆(1)

n .

The situation is of course different for the excited states. Eq. (9.21) tells us that any
two levels E(0)

k and E(0)
l connected by a matrix element Vkl tend to repel each other: If
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E
(0)
k < E

(0)
l the second-order correction of the level k is negative, while the correction on

the level l due to the same coupling is positive.
Finally, Eqs. (9.20) and (9.21), but also the general expansions (9.15) and (9.18),

give us a crude criterion for the convergence of the Rayleigh-Schrödinger perturbation
expansion, namely,

|Vmn| = |〈m0 | V̂ |n0 〉| � |E(0)
m − E(0)

n |. (9.22)

Notice that this is only a necessary condition. Moreover, its validity usually depends
strongly on the particular state |n 〉 that one is trying to approximate. A well isolated
state |n0 〉, with large gaps |E(0)

n −E(0)
m | to all other unperturbed levels may satisfy (9.22)

very well and already the first-order correction (9.20) may be a very good approximation
to |n 〉. However, another state in the same system belonging to a group of close by
non-degenerate levels may be much harder to approximate accurately. Rigorous math-
ematical conditions are not available, at least not in a form having practical relevance.
Every problem must be analyzed individually from a physical perspective, in order to con-
clude if a given level of perturbation approximation is satisfactory, or if the perturbation
expansion is sound at all.
A very nice example of the limitations of the simple criterion (9.22), but also of the

ways to take advantage of perturbation theory, is discussed in the book by Gottfried [1].
Consider a one dimensional harmonic oscillator Ĥ0 = mω2x2/2 with a perturbation

V (x) = γ ~ω
(
x

x0

)k
that is cubic or quartic in x (i.e., k = 3 or 4). x0 =

√
~/mω stands for the length scale of

the oscillator. It is clear that taking γ sufficiently small one can always satisfy (9.22), i.e.,
|Vmn| � ~ω for an arbitrary number of states above the ground state. Nevertheless, the
consequences of V̂ on the spectrum are dramatic for k = 3 and for k = 4 with γ < 0, in
which cases the spectrum becomes continuous, even for arbitrarily small |γ|. Only k = 4
and γ > 0 (in general k even and γ > 0) allows a safe perturbation expansion. Still,
even for k = 3 or for k = 4 with γ < 0, the states derived from the unperturbed ground
state and low-lying excited states correspond to strong resonances in the continuum of
the perturbed oscillator (γ small). Their position in the spectrum and their lifetime can
then be calculated by using a perturbation expansion.

9.4. Wave function normalization

Before closing the discussion of non-degenerate perturbation theory we would like to
calculate the norm of the approximation to |n 〉. This is certainly larger than 1, since
we assumed 〈n |n0 〉 = 1 for all λ in order to derive the perturbation expansion [see
Eq. (9.8)]. We consider the first order approximation, which according to Eq. (9.20) is
given by

|n 〉 = |n0 〉+
∑
m 6=n

Vmn

E
(0)
n − E(0)

m

|m0 〉+O(V 2). (9.23)
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This implies

〈n |n 〉 = 1 +
∑
m

|Vmn|2(
E

(0)
n − E(0)

m

)2 +O
(
V 3
)
.

The normalization factor is thus

〈n |n 〉−1/2 = 1− 1

2

∑
m

|Vmn|2(
E

(0)
n − E(0)

m

)2 +O(V 3),

which implies that the wave function |n 〉 as given by (9.23) is properly normalized to
first order in V . In other words, although 〈n |n 〉 depends on V or λ, the probability of
finding the system in a state other than |n0 〉 (after the action of the perturbation) is of
second order in V .

9.5. The degenerate case

We consider the case in which the unperturbed states, whose energy and eigenstates we
want to compute under the action of the perturbation V , belong to a level having a
degeneracy g. Let us denote these states by |n0, α 〉, where

Ĥ0|n0, α 〉 = E(0)
n |n0, α 〉

with α = 1, · · · , g. The choice of these states is a priori arbitrary, since we can combine
them linearly at will. However, the choice of the unperturbed states ceases to be arbitrary
if one requires that the changes that they experience under the action of a very small
perturbation remain small. To be explicit, we denote the eigenstates of

Ĥ = Ĥ0 + λ V̂

by |n, α 〉, so that

Ĥ|n, α 〉 = Enα|n, α 〉.

The basic condition in order that the development

|n, α 〉 = |n0, α 〉+ λ |n1, α 〉+ λ2|n2, α 〉+ · · ·

in a power series of λ remains meaningful is that

|n, α 〉 λ→0−−−→ |n0, α 〉. (9.24)

This means that the unperturbed states must be adapted to the perturbation V̂ , so that
the changes in |n, α 〉 are arbitrarily small when λ→ 0.
Let us illustrate the problem with a simple two-state Hamiltonian

Ĥ0 =

(
ε0 0
0 ε0

)
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whose energy levels are degenerate. Let us denote the orthonormal kets in the unper-
turbed basis by | 1 〉 and | 2 〉. For instance, | 1 〉 and | 2 〉 may describe two identical
orbitals on atoms that are far apart. If we introduce the perturbation

V̂ =

(
∆ 0
0 −∆

)
we obtain two distinct energies ε± = ε0 ±∆. The perturbation removes the degeneracy,
but the states | 1 〉 and | 2 〉 remain the eigenstates of the perturbed Hamiltonian Ĥ =
Ĥ0 + V̂ . The reason for this is, of course, that the perturbation is diagonal in the
unperturbed basis | 1 〉 and | 2 〉. Moreover, if we denote the eigenstates of Ĥ by |+ 〉 and
| − 〉, with Ĥ|+ 〉 = ε+|+ 〉 and Ĥ| − 〉 = ε−| − 〉, it is clear that the condition (9.24) is
trivialy satisfied, since |+ 〉 (| − 〉) coincides with | 1 〉 (| 2 〉).
However, if the perturbation is non-diagonal, i.e.,

V̂ =

(
0 t
t 0

)
,

the changes introduced by V̂ are dramatic. We know that in this case the eigenstates
are |+ 〉 = 1√

2
(| 1 〉+ | 2 〉) and | − 〉 = 1√

2
(| 1 〉 − | 2 〉), even in the limit of t → 0. The

angle between |+ 〉 and | 1 〉 or | 2 〉 is π/4, the largest value one can obtain between pairs
of orthogonal vectors in a plane! The only way to avoid such a discontinuous change
in |n, α 〉 upon switching on an arbitrary small V (t → 0) is to choose the unperturbed
basis such that there are no off-diagonal matrix elements of the perturbation between
degenerate unperturbed states. In other words, before starting with any perturbative
expansion of |n, α 〉 and Enα in powers of λ, we need to adapt the unperturbed states to
the perturbation under study, by solving the so-called secular equation

det [Vαβ − ε δαβ] = 0 , (9.25)

where

Vαβ = 〈n0, α | V̂ |n0, β 〉 (9.26)

are the matrix elements of V̂ between the eigenstates of Ĥ0 in the degenerate subspace
under consideration (α, β = 1, . . . , g). This represents a finite g × g eigenvalue problem.
Solving Eq. (9.25) implies building the linear combinations

| ñ0, γ 〉 =

g∑
α=1

cγα |n0, α 〉

with γ = 1, . . . , g, so that ∑
β

Vαβ c
γ
β = ∆(1)

γ cγα .
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In this way one obtains the new unperturbed states | ñ0, γ 〉 and the corresponding first
order corrections to the energy levels ∆

(1)
γ , which are the eigenvectors and eigenvalues of

the matrix Vαβ [see Eqs. (9.25) and (9.26)]. Notice that the actually important property
of | ñ0, γ 〉 is that V̂ is diagonal in the g-dimensional subspace spanned by them. The fact
that the eigenvalues ∆

(1)
γ give the first-order corrections to the energy levels coincides

with (9.19), since ∆
(1)
γ = 〈 ñ0, γ | V̂ | ñ0, γ 〉.

Once that appropriate zeroth-order states | ñ0, γ 〉 are obtained, the corrections due
to the coupling to other states |m0, β 〉 having E(0)

m 6= E
(0)
n can be calculated just as

in the non-degenerate case. This holds, however, only if at first order [Eq. (9.25)] the
perturbation removes the degeneracy completely, i.e., if all the ∆

(1)
γ are different, and if

no further degeneracies with other states are accidentally introduced by the first-order
corrections ∆

(1)
γ . The latter can be safely assumed in the limit of small Vαβ .

It often happens, however, that the perturbation has no matrix elements between the
unperturbed orbitals |n0, α 〉, or that some degeneracies still remain after the diagonaliza-
tion of V . In this case the second-order approximation needs to be calculated. Although
the equations tend to look more complicated, the basic idea remains, as before, to find
the unperturbed states | ñ0, γ 〉 which do not change in the limit of V → 0. The only
difference is that now all the processes up to second order in V need to be taken into
account. The secular equation to be solved reads

det

〈n0, α | V̂ |n0, β 〉+
∑
m 6=n
δ

〈n0, α | V̂ |m0, δ 〉〈m0, δ | V̂ |n0, β 〉
E

(0)
n − E(0)

m

− ε δαβ

 = 0

where α and β belong to the g-fold degenerate subspace (α, β = 1, . . . , g) and |m0, δ 〉
refers to the unperturbed states outside the degenerate subspace (i.e., E(0)

m 6= E
(0)
n ). This

secular equation has the same form as Eq. (9.25) with the effective coupling

V eff
αβ = 〈n0, α | V̂ |n0, β 〉+

∑
m 6=n
δ

〈n0, α | V̂ |m0, δ 〉 〈m0, δ | V̂ |n0, β 〉
E

(0)
n − E(0)

m

.

between the states |n0, α 〉 and |n0, β 〉. The following picture illustrates how the effective
second-order coupling arises:

En(0)

Em(0)Vαδ
n,α n,β

m,δ
Vδβ
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10. Identity of particles

The physical world and in particular atoms, molecules and solids are made of many inter-
acting particles. In principle the N body wave function Ψ(x1 . . . xN ) and the Schrödinger
equation i~∂Ψ

∂t = ĤΨ contain all the information for describing the physical states of a
given system of N identical particles and their time evolution. However, neither the
Schrödinger equation is easy to solve in general nor the wave function Ψ(x1 . . . xN ) ap-
pears to be the most practical representation of many-particle states. The representation
in terms of occupation numbers usually known as second quantization provides a much
more appropriate framework. Most of the theoretical developments on the many-body
properties of matter rely on this approach.
Second quantization is a formalism in which the occupation numbers of an arbitrary

complete set of single-particle states play the role of independent variables, instead of
the coordinates xi of the individual particles, as in the usual wave function Ψ(x1 . . . xN ).
The transitions between different many-particle states can be visualized as changes in
the occupations of simpler single-particle orbitals. This is particularly useful in order to
formulate, visualize and understand the fundamental physical processes defining the elec-
tronic and magnetic properties of matter. For instance, the relevant orbitals responsible
for chemical bonding, optical transitions, conductivity, magnetism etc. can be focused
by an appropriate choice of the single-particle basis. The most important interactions
and energy scales can then be readily identified. In the following we discuss the princi-
ple of indistinguishability of identical particles and its consequences on the symmetry of
many-body wave functions. A detailed discussion of second quantization may be found
in the books by Landau & Lifshitz or Fetter & Wallecka [2, 6] or in the lecture notes on
Quantum Mechanics II (http://www.physik.uni-kassel.de/pastor).

10.1. The principle of indistinguishability of identical particles

In classical physics the particles preserve their individuality despite having the same
physical properties. A “numbering" of the particles is possible with which one can follow
the trajectory of each particle individually along its path. This applies, whatever the
number of particles is, and in particular for particles that are exactly identical in all
respects. In quantum mechanics the situation is entirely different, since the notion of
deterministic path ceases to have any meaning as a consequence of Heisenberg’s uncer-
tainty principle. Even if a numbering of the particles were possible at some time, for
example if we measure the position of each particle in the system at time t, there is no
possibility of tracking the positions of the particles at any future (or past) time t′ > t
(t′ < t), since the coordinates have no definite values even at times arbitrarily close to t.
If we then localize (or measure) an electron at given instant t′ > t, it is impossible to say
which electron (among the N previously localized ones) has arrived at this point. The
lack of a single deterministic path can be illustrated in the following scattering picture
[7]:

164



In quantum mechanics identical particles entirely lose their individuality and become
completely indistinguishable. No experimental measurement can ever remove this indis-
tinguishability. This is the principle of indistinguishability of identical particles, which
has many far-reaching consequences.
Consider two observers O and O’ who prepare two physically identical quantum me-

chanical states of a system consisting of two identical particles, but adopt different
conventions for labelling the electronic coordinates of the two particles. For exam-
ple, O and O’ measure the position of the particles at x1 and x2 or they prepare the
scattering of two identical wave packets. Let |Ψ 〉 be the state considered by O and
Ψ(x1, x2) = 〈x1, x2 |Ψ 〉 the coordinate wave function. And let |Ψ′ 〉 be the state con-
sidered by O’ with the coordinate wave function Ψ′(x1, x2) = 〈x1, x2 |Ψ′ 〉. As stated
above, the only difference between |Ψ 〉 and |Ψ′ 〉 is the way in which the particles are
labelled, i.e., Ψ′(x1, x2) = Ψ(x2, x1).
The principle of indistinguishability of identical particles states that |Ψ 〉 and |Ψ′ 〉

are equivalent representations of the same physical states with completely equivalent
physical properties. Therefore, for any quantum mechanical state |β 〉, the probability
of finding the system described by |Ψ 〉 or by |Ψ′ 〉 in the state |β 〉 must be the same.
Mathematically, this means that

|〈β |Ψ 〉|2 = |〈β |Ψ′ 〉|2 ∀ |β 〉.

In particular for |β 〉 = |Ψ 〉 we have

|〈Ψ |Ψ 〉|2 = 1 = |〈Ψ |Ψ′ 〉|2.

Consequently, taking into account that 〈Ψ′ |Ψ′ 〉 = 1, we must have

|Ψ′ 〉 = eiα|Ψ 〉.

In fact, two normalized states which overlap has the absolute value 1 can only differ by
a multiplicative phase factor.13 Then we have

〈x1, x2 |Ψ′ 〉 = eiα〈x1, x2 |Ψ 〉
13To prove this one may write |Ψ′ 〉 = a |Ψ 〉+b |Ψ 〉 with 〈Ψ |Ψ 〉 = 0. This implies |〈Ψ |Ψ′ 〉|2 = |a|2 = 1

and 〈Ψ′ |Ψ′ 〉 = |a|2 + |b|2 = 1. It follows that |Ψ′ 〉 = a |Ψ 〉 with a = ei α.
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or

Ψ′(x1, x2) = eiα Ψ(x1, x2),

and thus

Ψ(x2, x1) = eiα Ψ(x1, x2).

By repeating the interchange we obtain

Ψ(x1, x2) = eiα Ψ(x2, x1) = e2iα Ψ(x1, x2),

which implies that e2iα = 1 or eiα = ±1. One concludes that

Ψ(x1, x2) = ±Ψ(x2, x1).

In other words, the wave function of two identical particles is either symmetric or anti-
symmetric with respect to the interchange of the two coordinates.

The previous arguments can immediately be generalized to any two particles xi, xj in
an N -particle system. Therefore,

Ψ(x1, . . . xi, . . . xj , . . . xN ) = ±Ψ(x1, . . . xj , . . . xi, . . . xN )

for all i and j. Since the particles are indistinguishable, the same sign holds for any two
particles in the system. The wave function Ψ(x1, . . . xN ) is either fully symmetrical or
fully antisymmetrical with respect to the interchange of variables. The superposition of
states with different symmetry is not possible, since the resulting wave function would
neither be symmetrical nor antisymmetrical.
The particles in nature are thus divided in two disjoint groups. The particles having

symmetrical wave functions are called bosons and are said to obey Bose-Einstein statistics.
The particles with antisymmetrical wave functions are called fermions and are said to
obey Fermi-Dirac statistics. The property of being a boson or a fermion is of course a
fundamental property that depends on the nature of the particle. Experiment shows that
there is a one-to-one correspondance between the fermionic or bosonic character and the
intrinsic spin of the particles: Bosons are particles with integer spin, while Fermions are
particles with half-integer spin. Most elementary particles are fermions (e−, e+, p, n).
However, photons and a number of elementary excitations in condensed matter (phonons,
magnons, etc.) are bosons.
In the case of complex particles (e.g., an α particle) the interchange of two particles can

be regarded as the simultaneous interchange of its constituents. Therefore, the statistics
of complex particles is fermionic if the number of elementary fermions in the particle
is odd, or bosonic if the number of fermions is even. Thus, an α particle composed by
two protons and two neutrons is a boson. 3He atoms are fermions while 4He atoms are
bosons. This has crucial consequences on the low-temperature properties of these two
isotopes. Notice that the integer/half-integer rule holds also for complex particles, since
an even (odd) number of half-integer elementary particles corresponds to a total spin
which is integer (half-integer).
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To conclude this section, let us consider the effect of an arbitrary permutation on the
coordinates. Let P : [1, N ]→ [1, N ] be a permutation in the natural interval [1, N ] which
we denote by

P =

(
1 2 . . . N

P (1) P (2) . . . P (N)

)
or simply P = [P (1), P (2), . . . P (N)]. The order of the permutation O(P ) = p is defined
as the number of transpositions required to bring the sequence [P (1), P (2), . . . P (N)] into
the normal ordering [1, 2, . . . N ]. For example,

P =

(
1 2 3
1 3 2

)
has p = 1, while P =

(
1 2 3
3 1 2

)
has p = 2.

It is then easy to see that for bosons

Ψ
(
xP (1), xP (2), . . . xP (N)

)
= Ψ(x1, x2, . . . xN ), (10.1)

while for fermions

Ψ
(
xP (1), xP (2), . . . xP (N)

)
= (−1)p Ψ(x1, x2, . . . xN ). (10.2)

This fundamental property of the many-particle wave function [Eq. (10.1) or (10.2)] has
many far-reaching consequences for the properties of matter. In the case of Fermions it
leads to the Pauli exclusion principle with which the structure of Mendeleev’s periodic
table of the elements can be explained.

167



A. Systems of units

The cgs Gaussian system
Throughout this lecture and the associated exercises we will try to stick to the cgs

(centimeter-gram-second) system in the Gaussian version for electromagnetic units. The
Maxwell equations thus take the form

~∇ · ~D = 4πρ

~∇× ~H =
4π

c
~J +

1

c

∂ ~D

∂t

~∇ · ~B = 0

~∇× ~E +
1

c

∂ ~B

∂t
= 0.

The Lorentz force per unit charge is given by
~F

q
= ~E +

~v

c
× ~B.

The following are the units corresponding to some important physical magnitudes:
[Energy] = ergs = erg
[Charge] = electrostatic unit = esu = statcoulomb = statC
1 Coulomb = 1 C = 3 × 109 statC
[Potential] = statV = 1 erg/esu
[Current] = statA = esu/s
[Current density] = statA/cm2

Some physical constants in Gaussian units:

Bohr radius a0 =
~2

me2
= 0.529 Å = 5.29× 10−9 cm

Electron mass = me = 9.109× 10−28 g
Electron charge = e = 4.803× 10−10 esu

Planck constant ~ =
h

2π
= 1.054× 10−27 erg × s

c = 2.998× 1010 cm/s

The dimensionless fine structure constant is α =
e2

~ c
∼=

1

137
.

Atomic units
A very practical unit system for the calculations, particularly if one focuses on the

properties of electrons, is the system of atomic units denoted by au. In this system the
following fundamental physical constants are set equal to 1:

Electron charge e = 1 au
Electron mass me = 1 au

Planck’s constant ~ =
h

2π
= 1 au

The Bohr radius a0 =
~2

me2
= 1 au = 5.29× 10−9 cm = 0.529 Å becomes the

unit of length.
The Hartree, i.e., twice the ionization energy of the H atom, is given by

Eh =
me4

~2
=
e2

a0
=

~2

ma0
2

= 1 au = 27, 2 eV = 4.36× 10−11 erg = 2 Ry
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Finally, 1 eV = 1.6× 10−19 J = 1.6× 10−12 erg.
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