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The purpose of this lecture is to cover some more advanced, yet fundamental subjects
in statistical physics which are usually not presented in the introductory lectures on
thermodynamics and statistical mechanics. The introductory courses usually follow the
historical development, starting from the first and second laws of thermodynamics. The
concepts of statistical mechanics are introduced later in order to provide a microscopic
justification of the thermodynamic principles, as was done by L. Boltzmann more than 100
years ago. However, it is presently more meaningful to abandon the historical pathway and
to start from the statistical perspective, based on our knowledge of quantum and classical
mechanics, and to derive thermodynamics as a byproduct. This will be our standpoint
while reviewing the basic concepts at the beginning of this course.

In the following we shall review the basic concepts in statistical physics including statisti-
cal ensembles and the maximum entropy principle. This should allow readers that are not
quite familiar with statistical physics to profit from the more advanced topics. A basic
background in classical and quantum mechanics will be assumed. Applications of statis-
tical mechanics to Fermi and Bose systems should follow. This includes in particular a
discussion of Landau’s Fermi-liquid theory and Bose-Einstein condensation. In the second
part of the course we shall discuss the theory of phase transitions and critical phenomena.
In contrast to the first part, which concerns the statistical physics of particles, our purpose
here is to move progressively into the statistical physics of fields.

1 Basic statistical concepts

A full mechanical description of the dynamics of a macroscopic system is both hopeless
and not very meaningful, since we lack precise information on the exact initial conditions
of all degrees of freedom and on the exact form of the Hamiltonian governing the system
and its environment. Moreover, for describing the equilibrium properties a precise know-
ledge of all its constituents is not necessary at all. What we actually need to know is only
the probability of finding the macroscopic system in each one of its possible microscopic
states. It is the goal of statistical mechanics to provide such an inherently probabilistic de-
scription of macroscopic systems. This motivates a brief discussion of some basic concepts
of probability theory.

1.1 Random variables and probabilities

Variables wich outcome cannot be predicted with certainty are usually known as random
variables. We consider a random variable x with a set of possible outcomes S.

S may be discrete (e.g., S = {x1, x2, . . .}) or continuous (e.g., S ≡ R).
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An event E is a subset of outcomes E ⊆ S, for example, E = {even result of a dice throw}
= {2, 4, 6}. To each event E ⊆ S we assign a probabilty P (E) with the following three
fundamental properties:

i) Positive definiteness: P (E) ≥ 0.

ii) Additivity: P (E1) + P (E2) = P (E1 ∪ E2) if E1 ∩ E2 and E1, E2 ⊆ S.
E1 and E2 are said to be disconnected events.

iii) Normalization: P (S) = 1.

Probabilities may be assigned in two ways:

i) Experimentally as

P (E) = lim
N→∞

NE

N
,

where NE is the number of occurences of event E after N “throws” or outcomes.

ii) Theoretically by means of an estimation based on the determination of the set of
outcomes S and some hypothesis about the relative probabilities for a complete set
of events. For instance, knowing that S = {1, 2, 3, 4, 5, 6} for a dice and assuming
equal probabilities P (i) = 1/6 ∀ i ∈ S, we conclude that P (even) = 3 · 1/6 = 1/2.
Due to the lack of knowledge of the precise mechanical properties of the dice (≡
system) and the way of throwing it (≡ Hamiltonian of the environment), and in
the absence of any reason to believe that the dice is biased, we assume that all six
possibilities of the elements in S (≡ states) are equally probable.
All probability assignments in statistical mechanics are theoretical or “subjective”
(as opposed to “objective” in i) and their validity needs to be verified by contrasting
them to experiment.

Excercise 1.1:
A metastable nucleus decays through β emission. What is the probability density
p(φ, θ) for the electron to be emitted with a polar angle θ (relative to the z axis)
and azimuthal angle φ? Imagine the nucleus at the coordinate origin.

p(φ, θ) dφ dθ = prob (emission with angle θ ∈ [θ, θ + dθ] and angle φ ∈ [φ, φ+ dφ]) .

1.2 A single continuous random variable

We consider a continuous random variable x ∈ R. The cumulative probability function
(CPF) is defined as the probability P (x) for any outcome smaller than x:

P (x) = prob (E ⊂ [−∞, x]) .

The basic properties of a CPF are

i) P (−∞) = 0.
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ii) P (x) is monotonically increasing, i.e,

P (x+∆) = P (x) + P (∆) ≥ P (x),

since any probability satisfies additivity and positiveness.

iii) Finally, the normalization condition implies P (+∞) = 1.

The probability density function (PDF) is defined as p(x) =
dP

dx
. Consequently,

p(x) dx = prob (E ⊂ [x, x+ dx]) .

Notice that, in contrast to probabilities satisfying P (x) ≤ 1, there is no upper bound for
p(x).

If x is a random variable, any function F (x) of x is also a random variable with its own
PDF, which is given by

pF (f) df = prob (F (x) ∈ [f, f + df ]) .

Let xi with i = 1, . . . ν be the solutions of F (xi) = f , we have

pF (f) df =
ν∑

i=1

p(xi) dxi

⇒ pF (f) =
ν∑

i=1

p(xi)

∣∣∣∣∣ dxdF
∣∣∣∣∣
x=xi=F−1(f).

(1.1)

Notice that |dx/dF | is the Jacobian for the change of variables. Eq. (1.1) may be written
as

pF (f) =
ν∑

i=1

p
(
xi = F−1(f)

) 1∣∣∣dF
dx

∣∣∣
x=xi=F−1(f).

Such a change of variables often leads to divergencies, which remain of course integrable,
as one may easily verify by changing variables back to x.

Excercise 1.2:
Consider the Gaussian distribution

p(x) =
1√

2π σ2
e−x2/2σ2

with x ∈ R and f = F (x) = x2. Show that pF (f) =
1√

2 π σ2

e−f/2σ2

√
f

for f > 0 and

pF (f) = 0 for f < 0. Verify the normalization of pF (f).

The expectation value of a function F (x) of the random variable x is given by

⟨F (x) ⟩ =
∫ +∞

−∞
F (x) p(x) dx.
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Particularly important expectation values are the moments of the PDF

⟨ xn ⟩ =
∫

xn p(x) dx

and the characteristic function χ(k)

χ(k) = ⟨ e−i k x ⟩ =
∫

e−i k x p(x) dx,

which is just the Fourier transform of the PDF. The characteristic function is the generator
of the moments:

χ(k) =

⟨
+∞∑
n=0

(−i k)n

n!
xn

⟩
=

+∞∑
n=0

(−i k)n

n!
⟨xn ⟩,

from which we obtain

in
dnχ(k)

dkn

∣∣∣∣∣
k=0

= ⟨xn ⟩.

The PDF can be recovered from χ(k) by the inverse transformation

p(x) =
1

2 π

∫
ei k x χ(k) dk.

One can also easily obtain the moments around any other point x0 from

ei k x0 χ(k) = ⟨ e−i k (x−x0) ⟩ =
+∞∑
n=0

(−i k)n

n!
⟨ (x− x0)

n ⟩.

The logarithm of the characteristic function χ(k) is known as the cumulant generating
function

lnχ(k) =
+∞∑
n=1

(−i k)n

n!
⟨xn ⟩c. (1.2)

The cumulants are defined implicitly from the previous series expansion of lnχ(k). Note
that lnχ(k = 0) = ln 1 = 0.

The cumulants and the moments are of course related. One can obtain the cumulants
from

χ(k) = 1 +
+∞∑
n=1

(−i k)n

n!
⟨ xn ⟩︸ ︷︷ ︸

ε

(1.3)

and

lnχ(k) = ln(1 + ε) =
+∞∑
l=1

(−1)l+1 εl

l
. (1.4)

Using the definition of the cumulants (1.2) and replacing ε from (1.3) in (1.4) we have

+∞∑
n=1

(−i k)n

n!
⟨xn ⟩c =

+∞∑
l=1

(−1) l+1

l

(
+∞∑
m=1

(−i k)m

m!
⟨xm ⟩

)l
.
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This leads to

⟨x ⟩c = ⟨x ⟩ mean

⟨x2 ⟩c = ⟨x2 ⟩ − ⟨x ⟩2 variance

⟨x3 ⟩c = ⟨x3 ⟩ − 3 ⟨x2 ⟩ ⟨x ⟩+ 2 ⟨x ⟩3 skewness

⟨x4 ⟩c = ⟨x4 ⟩ − 4 ⟨x3 ⟩ ⟨x ⟩ − 3 ⟨x2 ⟩2 + 12 ⟨x2 ⟩ ⟨x ⟩2 − 6 ⟨x ⟩4 curtosis (or kurtosis).

A PDF can be described indistinctively in terms of its cumulants or of its moments.

1.3 Computation of moments in terms of cumulants

Theorem: The m-th moment ⟨xm ⟩ is obtained by considering all possible subdivisions of
m points in pn groups or connected clusters of n points each. Of course

∑
n pn n = m.

Each possible subdivision contributes with the product of the cumulants ⟨ xn ⟩c associated
to the connected cluster having n points.

Example:

⟨x ⟩ = (•) = ⟨x ⟩c

⟨x2 ⟩ = (•) (•) + (• •) = ⟨x ⟩2c + ⟨x2 ⟩c

⟨x3 ⟩ = (•) (•) (•) + 3 (•) (• •) + (• • •) = ⟨x ⟩3c + 3 ⟨ x ⟩c ⟨x2 ⟩c + ⟨x3 ⟩c

Excercise 1.3:
Obtain the expression for ⟨x4 ⟩ in terms of ⟨xl ⟩c and l = 1–4. Obtain ⟨xl ⟩c in terms
of ⟨ xl ⟩ for l ≤ 4.

The theorem can be demonstrated by noting that

χ(k) =
+∞∑
m=0

(−i k)m

m!
⟨xm ⟩ = exp {lnχ(k)}

= exp

{
+∞∑
n=1

(−i k)n

n!
⟨ xn ⟩c

}

=
+∞∏
n=1

exp

{
(−i k)n

n!
⟨ xn ⟩c

}

=
+∞∏
n=1

 +∞∑
pn=0

(−i k)npn

(n!)pn
⟨xn ⟩pnc
pn!

 .
Matching the coefficients of the powers of (i k)m with all the possibilities yielding

∑
n pn =

m we have

⟨xm ⟩
m!

=
∑
{pn}

∏
n

⟨xn ⟩pnc
pn! (n!)pn

(1.5)
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where the sum runs over all the possibilities of forming subgroups with
∑

pn n = m. After
rewriting Eq. (1.5) as

⟨xm ⟩ =
∑
{pn}

∏
n

(
m!

pn! (n!)pn
⟨xn ⟩pnc

)

we can identify the different variables and factors as follows:

n: number of points in one cluster.

pn: number of clusters with the same number n of points inside.

m!: number of permutations of all the m points.

(n!)pn : permutations of the points within each cluster.

pn!: number of permutations of the clusters with n points among them.

m!

pn! (n!)pn
: number of ways of splitting m points in {pn} subgroups with n points each.

1.4 Cumulant expansion in classical statistical mechanics

The characteristic function

χ(k) =
∫ +∞

−∞
e−i k x p(x) dx

can be extended analytically to complex values of k, since p(x) → 0 for x → ±∞ more
rapidly than eαx, or simply because p(x) vanishes beyond some finite bounds. One can
then set i k = β ∈ R ≥ 0 in order to obtain

χ(k = −i β) = ⟨ e−β x ⟩,

and according to the definition of cumulants

ln⟨ e−β x ⟩ =
+∞∑
n=1

(−β)n

n!
⟨xn ⟩c.

Replacing x by the interaction energy U of a classical gas we have

ln⟨ e−β U ⟩ =
+∞∑
n=1

(−β)n

n!
⟨Un ⟩c.

This can be related to the free energy of the interacting gas since

−β F (T, V,N) = lnZ = lnZ0 + ln⟨ e−β U ⟩0 (1.6)

= lnZ0 +
∞∑
l=1

(−β)l

l!
⟨U l ⟩0c , (1.7)

where ⟨ ⟩0 indicates average over the probability distribution of the non-interacting gas
and Z0 is the partition function of the non-interacting gas. In order to demonstrate Eq.
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(1.6) let us recall that

Z =
1

N !

∏
i

∫ d3qi d
3pi

h3N
e−β

∑
i
p2i /2m e−β U(q1...qN )

= Z0
1

N !

∏
i

∫ d3qi d
3pi

h3N

e−β
∑

i
p2i /2m

Z0

e−β U(q1...qN ),

where

Z0 =
1

N !

∫ ∏
i

d3pi d
3qi

h3N
e−β

∑
i
p2i /2m =

(
V

λ3

)N 1

N !

with λ = h/
√
2πmkB T . 1 The factor e−β

∑
i
p2i /2m/Z0 represents the probability distri-

bution of the non-interacting gas, which is of course independent of the coordinates qi.
The fact that the non-interacting gas is uniform renders the calculation of the cumulants
⟨Un ⟩0c entering Eq. (1.7) very simple:

⟨Un ⟩0c =
∫ N∏

i=1

(
d3qi
V

)
U(q1 . . . qN)

n

(uniform distribution of independent particles). The expectation values of observables
O = O(p1, . . . pn, q1, . . . qn) can be calculated perturbatively from

⟨O ⟩ = 1

Z

1

N !

∫ ∏
i

dpi dqi
h3N

e−β
∑

i
p2i /2m e−β U(q1...qn)O

=
⟨O e−β U(q1...qn) ⟩0

⟨ e−β U ⟩0
= i

∂

∂k
ln⟨ e−i k O−β U ⟩0

∣∣∣
k=0

.

Noting that

ln⟨ e−i k O−β U ⟩0 =
∑
l l ′

(−i k)l
′
(−β)l

l ′! l!
⟨Ol ′ ∗ U l ⟩0c

1

Z0 =
1

N !

∫ ∏
i

d3qi d
3pi

h3N
e−β

∑
i
p2i /2m =

1

N !

∏
i

(∫
dq3i

∫
dp3i e

−β p2i /2m

)

=
1

N !
V N

(
4π

h3

∫ +∞

0
p2 dp e−β p2/2m

)N
=

1

N !
V N

[
4π

√
π

4

(
β

2m

)−3/2
]N

∫ +∞

0
x2 e−αx2

dx = − ∂

∂α

(∫ +∞

0
e−αx2

dx

)
= − ∂

∂α

( √
π

2
√
α

)
=

√
π

2

1α−3/2

2
=

√
π

4
α−3/2

Z0 =
1

N !
V N

(√
π 2mkB T

h

)3
=

1

N !
V N / λ3N

with λ =
h√

2πmkB T
.
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we finally obtain

⟨O ⟩ =
∞∑
l=0

(−β)l

l!
⟨O ∗ U l ⟩0c ,

which provides a high-temperature perturbation expansion of ⟨O ⟩.

1.5 The Gaussian or normal distribution

p(x) =
1√

2π σ2
e−

(x−λ)2

2σ2 .

The characteristic function has also a Gaussian form:

χ(k) =
1√

2 π σ2

∫
dx e−

(x−λ)2

2σ2 −i k x.

Setting ξ = x− λ and rewriting the exponent as

(x− λ)2

2σ2
+ i k x =

ξ2

2σ2
+ i k ξ + i k λ

=
(ξ + i σ2 k)2

2σ2
+

σ2 k2

2
+ i k λ

one obtains

χ(k) = e−i k λ− k2σ2

2
1√

2 π σ2

∫ +∞

−∞
dξ e−

(ξ+i σ2 k)2

2σ2

︸ ︷︷ ︸
=1

.

The cumulant generating function is simply given by

lnχ(k) = −i k λ− k2 σ2

2

which implies

⟨x ⟩c = ⟨x ⟩ = λ,

⟨x2 ⟩c = σ2,

and

⟨xn ⟩c = 0 for n ≥ 3.

This makes the calculations using the cluster expansion particularly simple, since the
graphical expansions involve only one- and two-point clusters.
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1.6 Many random variables

For more than one variable x⃗ = (x1, . . . xN) ∈ Rn the set of outcomes S ⊆ R
n. The joint

probability distribution function (PDF) is defined by

p(x⃗)
N∏
i=1

dxi = prob {event x⃗ ′ in xi < x′
i < xi + dxi ∀ i} ,

which satisfies the normalization condition∫
p(x⃗) dNx = 1.

If, and only if, the variables are independent we have p(x⃗) =
∏N

i=1 pi(xi), where pi(x) is
the PDF of the random variable xi.

The unconditional probability density for a subset of random variables x1, . . . xm is given
by

p(x1 . . . xm) =
∫ N∏

i=m+1

dxi p(x1 . . . xm xm+1 . . . xN).

It describes the behavior of these x1 . . . xm variables irrespective of all the others. For
instance p(x⃗) =

∫
d3r p(x⃗, v⃗) gives the particle density (i.e., probability distribution for

the position) irrespective of the velocity v⃗.

The conditional PDF p(x1 . . . xm |xm+1 . . . xN) describes the behavior of some variables
x1 . . . xm, subject to the constraint that the other variables xm+1 . . . xN have specified
values. For example, one may search for the velocity distribution at a given point x⃗,
which we denote by p(v⃗ | x⃗).

The joint probability is given by

p(x1 . . . xm, xm+1 . . . xN) = p(xm+1 . . . xN) p(x1 . . . xm |xm+1 . . . xN),

where p(xm+1 . . . xN) is the probability density for xm+1 . . . xN irrespectively of the other
variables x1 . . . xm, and p(x1 . . . xm | xm+1 . . . xN) is the probability of x1 . . . xm given the
values xm+1 . . . xN . Thus

p(x1 . . . xm | xm+1 . . . xN) =
p(x1 . . . xN)

p(xm+1 . . . xN)
,

where p(x1 . . . xN) is the number of events x1 . . . xm, xm+1 . . . xN (divided by the number
N of trials) and p(xm+1 . . . xN) is the number of events xm+1 . . . xN (divided by the number
N of trials). The expectation values are calculated as usual from

⟨F (x⃗) ⟩ =
∫

dNx p(x⃗) F (x⃗).

The joint characteristic function is given by the Fourier transform

χ(k⃗) =
∫

dx⃗ e−i k⃗·x⃗ p(x⃗)

= ⟨ e−i
∑N

j=1
kj xj ⟩.
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The joint moments and joint cumulants are obtained as

⟨xn1
1 . . . xnN

N ⟩ = ∂ n1

∂(−i k1)
. . .

∂ nN

∂(−i kN)
χ(k⃗)

∣∣∣∣∣
k⃗=0

and

⟨xn1
1 ∗ . . . ∗ xnN

N ⟩ = ∂ n1

∂(−i k1)
. . .

∂ nN

∂(−i kN)
lnχ(k⃗)

∣∣∣∣∣
k⃗=0

.

The graphical relation between moments and cumulants, that was demonstrated for one
variable, also applies to N variables. For instance,

⟨x1 x2 ⟩ =
(
•
1

) (
•
2

)
+
(
•
1
•
2

)
= ⟨ x1 ⟩c ⟨x2 ⟩c + ⟨x1 ∗ x2 ⟩c

or

⟨ x2
1 x2 ⟩ =

(
•
1

) (
•
2

) (
•
1

)
+
(
•
1
•
1

) (
•
2

)
+ 2

(
•
1
•
2

) (
•
1

)
+
(
•
1
•
2
•
1

)
= ⟨ x1 ⟩2c ⟨x2 ⟩c + ⟨x2

1 ⟩c ⟨ x2 ⟩c + 2 ⟨x1 ∗ x2 ⟩c ⟨x1 ⟩+ ⟨x2
1 ∗ x2 ⟩c.

Joint cumulants of independent random variables

It is easy to see that ⟨xα ∗ xβ ⟩c = 0 if xα and xβ are independent random variables. Let
the PDF be of the form

p(x⃗) = p1(x1 . . . xm) p2(xm+1 . . . xN).

Then

χ(k⃗) =
∫

dx⃗ e−i k⃗·x⃗ p(x⃗)

= ⟨ e−i
∑m

j=1
kj xj ⟩1 ⟨ e−i

∑N

j=m+1
kj xj ⟩2

= χ1(k⃗1) χ2(k⃗2).

The joint moment

⟨xα xβ ⟩ =
∂χ1

∂(−i kα)

∂χ2

∂(−i kβ)
= ⟨xα ⟩1 ⟨xβ ⟩2

for 1 ≤ α ≤ m and m+ 1 ≤ β ≤ N . It follows that

lnχ(k⃗) = lnχ1(k⃗1) + lnχ2(k⃗2)

and consequently

∂

∂kα

∂

∂kβ
lnχ(k⃗) = 0

if 1 ≤ α ≤ m and m + 1 ≤ β ≤ N . The joint cumulant ⟨ xα ∗ xβ ⟩c is also known as the
connected correlation.
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1.7 Gaussian distribution

The generalization to N variables of the normal distribution has the form

p(x⃗) =
1√

(2π)N det(Σ)
exp

{
− 1

2

∑
mn

(
Σ−1

)
mn

(xm − λm) (xn − λn)
}
,

where Σ is a positive-definite symmetric matrix and Σ−1 refers to its inverse. Note that
Σ−1 is also positive definite. In other words, the argument of the exponential is an arbitrary
positive-definite quadratic form.

The characteristic function is given by

χ(k⃗) =
∫
dx⃗ e−i k⃗·x⃗ e−

1
2
(x⃗−λ⃗)·Σ−1 (x⃗−λ⃗) 1√

(2π)N det(Σ)
,

where we have introduced k⃗ = (k1, . . . kN) and λ⃗ = (λ1, . . . λN).

One may easily verify the normalization of p(x⃗) and compute χ(k⃗) by changing variables

to y⃗ = x⃗− λ⃗, so that the Gaussian distribution is centered at the origin of the coordinate
system, and by performing an orthogonal transformation U such that U tΣ−1 U = σ−2

m δmn

is diagonal (Σ−1 is symmetric). The Jacobian of the orthogonal transformation being equal
to 1 (detU = 1) and denoting the eigenvalues of Σ−1 by 1/σ2

m > 0 we have

(
U tΣ−1 U

)
mn

= δmn
1

σ2
m

with U t U = 1

and (
U tΣU

)
mn

= δmn σ
2
m.

Setting Uξ⃗ = y⃗ = (x⃗− λ⃗) we have

χ(k⃗) =
e−i k⃗·λ⃗√

(2π)N det(Σ)

∫
dξ⃗ e−i k⃗·Uξ⃗ exp

{
− 1

2

(
Uξ⃗

)
· Σ−1 Uξ⃗︸ ︷︷ ︸

ξ⃗·Ut Σ−1 Uξ⃗

}
.

If we set for a moment k⃗ = 0 to verify the normalization, we see that the integral splits

in a product of N one-dimensional Gaussians each yielding an integral
√
2π σ2

m, so that∏
m

(√
2 π σ2

m

)
=
√
(2π)N det(Σ). The joint PDF is therefore properly normalized.

In order to compute χ(k⃗) one can use the result for one-dimensional Gaussians for k⃗ ′ =

U t k⃗ noting that (U tΣ−1 U)mn =
δmn

σ2
m

. In this way one has

χ(k⃗) = e−i k⃗·λ⃗ ∏
m

e−
k′ 2m σ2

m
2

= e−i k⃗·λ⃗ exp

{
− 1

2

∑
m

k′ 2
m σ2

m

}
.
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Using that

∑
m

k′ 2
m σ2

m =
∑
m

k′
m σ2

m k′
m = k⃗′ · U tΣU k⃗′ =

= U t k⃗ · U tΣ k⃗ = k⃗ · Σ k⃗ =
∑
mn

Σmn km kn,

we finally obtain

χ(k⃗) = e−i k⃗·λ⃗− 1
2
k⃗·Σ k⃗

= exp

{
− i

∑
m

km λm − 1

2

∑
mn

Σmn km kn

}
.

Consequently,

lnχ(k⃗) = −i
∑
m

km λm − 1

2

∑
mn

Σmn km kn,

which implies

⟨xm ⟩c = λm,

⟨xm ∗ xn ⟩c = Σmn,

and all higher cumulants vanish.

In the special case of vanishing mean values, i.e., λm = 0 ∀m, we have that all odd
cumulants vanish. Thus, all odd moments vanish and any even moment is given by the
sum of the products of cumulants obtained from all possible ways of forming pairs of
variables. For instance,

⟨xα xβ xγ xδ ⟩ = ⟨xα ∗ xβ ⟩c ⟨ xγ ∗ xδ ⟩c +

+ ⟨ xα ∗ xγ ⟩c ⟨xβ ∗ xδ ⟩c

+ ⟨ xα ∗ xδ ⟩c ⟨xβ ∗ xγ ⟩c.

This is analogous to Wick’s theorem in many-body Green’s function theory.

1.8 The central limit theorem

We consider the average x̄ = 1
N

∑N
ν=1 xν of N random variables x1, . . . xN having the joint

PDF p(x1, . . . xN). The PDF for the random variable x̄ is

px̄(x) =
∫

dx1 . . . dxN p(x1, . . . xN) δ

(
x− 1

N

N∑
ν=1

xν

)

12



and the characteristic function is

χx̄(k) =
∫

dx px̄(x) e
−i k x

=
∫

dx e−i k x
∫

dx1 . . . dxN p(x1, . . . xN) δ

(
x− 1

N

∑
ν

xν

)

=
∫

dx1 . . . dxN p(x1, . . . xN) e
−i k

N

∑N

ν=1
xν

= χp

(
k1 =

k

N
, . . . kN =

k

N

)
,

where χp(k⃗) is the characteristic function of p(x1 . . . xN) [χp : R
N → R].

Let us now assume that the xν are independent variables having all the same PDF p1(x),
i.e.,

p(x1, . . . xN) =
N∏
ν=1

p1(xν),

where the index 1 in p1(xν) indicates that only one variable is involved. The characteristic

function for x̄ =
1

N

∑
xν takes then the form

χx̄(k) =
N∏
ν=1

(∫
dxν p1(xν) e

−i k
N

xν

)
=

[
χ1

(
k

N

)]N
,

where χ1 is the characteristic function of p1(x). The cumulant generating function for x̄
reads

lnχx̄(k) = N lnχ1

(
k

N

)
. (1.8)

We can now expand χ1 or lnχ1 for small k/N , i.e., large N , in terms of the cumulants of
the probability distribution for one variable:

lnχ1

(
k

N

)
= −i

k

N
⟨x ⟩c −

1

2

(
k

N

)2
⟨x2 ⟩c +O(N−3). (1.9)

Combining Eqs. (1.8) and (1.9) we have

lnχx̄(k) = −i k ⟨x ⟩c −
1

2
k2 ⟨x2 ⟩c

N
+O(N−3).

The average of x̄ is, as expected, equal to ⟨x ⟩ and the variance is given by ⟨ x̄2 ⟩c =
⟨x2 ⟩c
N

,

which vanishes for N → ∞. Transforming back to px̄(x) we have asymptotically

px̄(x) ∼=
1√

2 π σ2
x̄

exp

{
− 1

2σ2
x̄

(x− ⟨ x ⟩)2
}

with σ2
x̄ =

σ2

N
. The distribution of the average follows a Gaussian distribution for N →

∞. Notice that this holds independently of the form of the PDF, i.e., for any p1(x) of

13



the random variable x. The details of the physical processes behind p1(x) are therefore
irrelevant. This important result is known as the central limit theorem. The same holds
for the sum of N independent random variables X =

∑
ν xν . In this case the average

⟨X ⟩ = N ⟨ x ⟩ and ⟨X2 ⟩c = N ⟨x2 ⟩c, so that also in this case the fluctuations around

the mean as measured by the standard deviation Tx̄ =
√
⟨X2 ⟩c =

√
N τ scale with

√
N .

The relative fluctuation
σx̄

⟨ x̄ ⟩
∼ 1√

N
→ 0 for N → ∞.

Excercise 1.4:
In many specialized populations (e.g., in the ensemble of marathon runners) there
are very little fluctuations among the performances of the best individuals. Is this a
consequence of optimal performance selection?

i) Let {rν} be a set of n random numbers 0 ≤ rν ≤ 1 with a probability density
distribution p(r) (r ∈ [0, 1]). Calculate in terms of p(r) the probability pn(x) dx
that the largest value of rν is in the range [x, x + dx]. p(x) is the probability
density for the random variable x = max{r1, . . . rn}. Verify the normalization
of pn(x) for an arbitrary p(r).

ii) Assume r is uniformly distributed in [0, 1]. Calculate ⟨x ⟩ and σ2 = ⟨x2 ⟩−⟨x ⟩2
as a function of n and analyze the corresponding limits for large n.

Excercise 1.5:
Benford’s law [F. Benford, “The law of anomalous numbers”, Proc. Amer. Phil.
Soc. 78, 551 (1938)] is a phenomenological law also called first digit law or leading
digit phenomenon. The law states that the first digit of data appearing in listings
and statistic tables (e.g., population, addresses, cost data, stock prices, death rates,
etc.) follows a particular non-uniform distribution. The averages and probable error
recorded in Benford’s original paper are

First digit 1 2 3 4 5 6 7 8 9

Occurrence 30.6 18.5 12.4 9.4 8.0 6.4 5.1 4.9 4.7

in % ±0.8 ±0.4 ±0.4 ±0.3 ±0.2 ±0.2 ±0.2 ±0.2 ±0.2

It has been said that the validity of this law may be empirically verified (qualita-
tively) by noting that the first pages of the tables of logarithms are much more worn
out than the later pages [Newcomb, Amer. J. Math. 4, 39 (1881)]. However, this is
not very helpful, since 21st century students hardly ever had a table of logarithms
in their hands. The phenomenon is counter-intuitive since naively one would have
expected that the probability of each digit 1–9 would have been 1

9
≡ 11.1%. It is

important (actually crucial) to know that Benford’s law applies to data that are
not dimensionless, so that the numerical values depend on the units. If there is a
universal probability distribution for the data p(x) over several orders of magnitude,
it must be invariant under a change of scale. Find a formula for the probability p(i)
that the first digit is i which fits Benford’s data. While Benford’s law applies unques-
tionably to many situations a reasonable explanation has only been given recently
[T. P. Hill, Amer. Sci. 86, 358 (1998)].
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Try first to find your own solution and then follow separately each of the hints given
below.

Hint 1
Consider a given data characterized by the random variable x, and let p(x) be the
probability density of finding the value x. Assume p(x) is invariant under a change of
scale. This means, for example, that the p(x) of the price of goods must be the same
function if you express the price in US$, Euro or Argentine pesos! Mathematically
this means p(kx) = f(k) p(x) where f(k) is some function of k.

i) Find f(k).
ii) Take advantage of the relation and find p(x).
iii) Normalize p(x) assuming 10q1 ≤ x ≤ 10q2 with qi ∈ Z, i.e., x runs over several

orders of magnitude but has natural cutoffs.
iv) Find an expression for p(i), i.e., for the probability that the first digit is i, in

terms of p(x).
v) Solve this expression and obtain p(i) in a simple form.
vi) Verify the normalization of p(i).
vii) Compare it with the experimental data of Benford.

Hint 2
Benford’s law applies not only to scale-invariant data, but also to data obtained
from a variety of different sources. Consider numbers that are obtained as the result
of multiplications of a large number of random numbers. For example stock prices in
Wall Street change, say, every minute or hour ν by a factor rν , which has some un-
specified distribution p(r). The random variable we are interested in is x =

∏N
ν=1 rν ,

where rν ≥ 0 is a random variable with some probability distribution.

i) Consider the random variable l = lnx. Can you use the central limit theorem
to infer the PDF p(l) for l?

ii) Write down p(l) assuming l̄ = ⟨ l ⟩ and σ2 = ⟨ l2 ⟩ − ⟨ l ⟩2.
iii) Obtain the PDF p(x) of the variable x.
iv) Find an expression for pi = {prob. of the 1st digit being equal to i} in terms

of p(x). Assume 10q1 ≤ x ≤ 10q2 .
v) Express pi in terms of p(l).
vi) Solve pi ignoring multiplicative constants independent of i by assuming that

p(l) ≃ p(q) for q + ln10 i ≤ l ≤ q + ln(i+ 1).
vii) Find the normalization constant for pi and compare with Benford’s data and

with the solution from hint 1.

1.9 Information content of a probability distribution or probability density
function

Consider a random variable with a discrete set of outcomes S = {xi, i = 1, . . .M} having
the probabilities pi. Suppose we construct a message x1 . . . xN with N independent out-
comes of the random variable xi. We intend to quantify the possible information content of
such a message as a function of the probability distribution {pi, i = 1, . . .M}. Analyzing
the number of different possible messages will allow us to infer how much of the apparent
information content of the message is already contained in the probability distribution.

15



For instance, if the probability distribution is {p1 = 1 and pi = 0 ∀ i > 1} there is just
one possible message (x1 . . . x1) and actually no information can be conveyed. All the
information is in the probability distribution (PD). In the other extreme case, where xi

is uniformly distributed, the PD carries no information at all.

Let us first consider the case where the values of xi in the message x1 . . . xN can be chosen
at will. Since there are M possibilities for each xi, the number of different messages
is g = MN . The number of bits K necessary to transmit such a message, or, if you
want, the number of bits to distinguish one message from the other, is K = ln2 g =
ln2 M

N = N ln2M (since 2K = MN). On the other hand, if the xi are taken from the
probability distribution pi, the possible choices of xi are limited. For instance, if p1 ≫ p2
it is unlikely to construct a message with more occurences of x2 than x1. In the limit
of large number of message elements N , the number of occurrences of xi in the message
approaches asymptotically Ni = piN . In fact the probability of finding |Ni−N pi| >

√
Ni

becomes exponentially small as N → ∞. Taking into account the restriction that the
message contains Ni occurrences of xi, the number of possible messages is reduced to

g =
N !∏M

i=1 Ni!
.

This corresponds to the number of possible ways of arranging the N1, . . . NM occurrences
of x1 . . . xM . To specify the message we therefore need

K = ln2 g = ln2N !−
M∑
i=1

ln2Ni!

∼= N ln2N −N −
M∑
i=1

(Ni ln2 Ni −Ni)

= −N
M∑
i=1

Ni

N
ln2

Ni

N
= −N

M∑
i=1

pi ln2 pi

bits of information. As expected, we recover here the two limiting cases discussed above:
ln2 g = 0 for pi = 1 and pj = 0 ∀ j ̸= i and ln2 g = N ln2 M for pi = 1/M ∀ i (uniform
distribution). For any non-uniform probability distribution the information content of the
message ln2 g is smaller than N ln2M , which is the information content in the absence
of any information on the relative probabilities pi. One assigns this difference to the
information carried by the probability distribution {pi}. The information content of {pi}
is thus defined as

I{pi} = ln2M +
M∑
i=1

pi ln2 pi,

i.e., the reduction of information per unit message-length or transmitted token.

Introducing the definition of the entropy of a probability distribution

S{pi} = −
M∑
i=1

pi ln pi = −⟨ ln pi ⟩ ≥ 0 (0 ≤ pi ≤ 1)

we have

I{pi} = (Smax − S{pi}) / ln2,
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where

Smax = −
M∑
i=1

1

M
ln

1

M
= lnM

is the maximum of S{pi} corresponding to pi = 1/M . A distribution with maximum en-
tropy carries the least possible information. Therefore, S gives a measure of diversity of
the distribution. S is actually the logarithm of the number of possible microscopically dif-
ferent states (messages) that can be constructed with elements satisfying Ni/N = pi. For
the distribution pi = δij (for some j) there is only one possible microscopic configuration
or message (xj xj . . . xj). In this case, and only in this case, we have S = 0.

The entropy does not depend on the values of the random variables. Any one-to-one
mapping xi → fi = F (xi) leaves the entropy unchanged since p(xi) = p(fi). This implies
in particular that the (non-equilibrium) entropy of system of interacting particles (e.g., an

interacting electron gas) with occupation probabilities nk⃗ for each quasi-particle state k⃗ is
the same as the entropy of a non-interacting having the same nk⃗. The actual equilibrium
entropy at a given temperature T will of course be different, since in this case the entropy
corresponds to the maximum value of S{nk⃗} compatible with the constraint of fixed
average energy ⟨E ⟩.

In contrast, any many-to-one mapping will reduce the entropy of the probability distri-
bution, since it reduces its diversity or, in other words, it increases the definiteness or the
information content. For example, given p1 and p2, the mapping

x1

x2

→ f

gives

p(f) = p1 + p2.

The resulting change in the entropy reads

∆S = −p(f) ln p(f) + (p1 ln p1 + p2 ln p2)

= Sf − S1 2

= p1 ln
p1

p1 + p2
+ p2 ln

p2
p1 + p2

,

which is negative, provided that p2 ̸= 0 (or p1 ̸= 0). Conversely, removing a constraint in
a probability distribution systematically increases S.

The entropy S can also be used to infer subjective (theoretical) estimates of probability
distributions. For instance, in the absence of any information of pi the best unbiased
estimate of pi is that all possible outcomes M are equally probable, i.e., pi = 1/M . This
distribution maximizes the entropy, the diversity of the distribution and the number of
possible microscopic states for the given M available states or outcomes. One may also
say that this choice of pi minimizes the information content of {pi}.

If additional information is available the unbiased estimate for pi is obtained by maximiz-
ing S subject to the constraints imposed by the available information. As an example let
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us assume that we know the average value ⟨F (x) ⟩ = f of some function of the random
variable x. In this case we obtain the unbiased pi from the extremum of

L {pi} = S {pi}︸ ︷︷ ︸
−
∑M

i=1
pi ln pi

−α

(
M∑
i=1

pi − 1

)
− β

(
M∑
i=1

pi F (xi)− f

)
,

where α and β are Lagrange multipliers. Straightforward derivation yields

∂L

∂pi
= − ln pi − 1− α− βF (xi) = 0

⇒ pi = e−(1+α) e−βF (xi) α e−βF (xi)

⇒ pi =
e−βF (xi)∑M

i=1 e−βF (xi)
,

where β is such that f = ⟨F (x) ⟩ =
∑M

i=1 e−βF (xi) F (xi)∑
i e−βF (xi)

.

Excercise 1.6:
Find the unbiased probability p(xi) for a random variable xi (i = 1, . . .M)
knowing the first n moments of p(xi) (i.e., ⟨xn ⟩ = Mn). i) Show that p(xi) ∝

exp

(
n∑

ν=0

aν x
ν
i

)
with certain coefficients aν . ii) Consider the partition function

Z =
M∑
i=1

exp

{
n∑

ν=0

an x
n
i

}
and show that the coefficients are given by the equations

∂ lnZ

∂aν
= Mν .

In analogy with the discrete case we can define the entropy of a continuous probability
density distribution p(x⃗) as

S = −⟨ ln p(x⃗) ⟩ = −
∫
p(x⃗) ln p(x⃗) dx⃗.

However, notice that this definition does not have some of the nice properties of S =
−∑i pi ln pi for discrete random variables. For instance, for a uniform distribution in the
interval [a, b], i.e.,

p(x) =

1/(b− a) for a ≤ x ≤ b

0 elsewhere,

we have

S = −
∫ b

a

1

b− a
ln
(

1

b− a

)
= ln(b− a).

For large intervals this is positive and diverges logarithmically [S → +∞ for (b − a) →
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+∞]. In the opposite limit of a very narrow PDF around some point x0, we have

p(x) =

1/ε for x0 − ε/2 < x < x0 + ε/2

0 elsewhere,

and S → −∞ for ε → 0.

Notice that S can take negative values for very sharp p(x) ≃ δ(x) since p(x) is not
bounded. These situations, however, never appear in the description of macroscopic sys-
tems. It is interesting to observe that S decreases as the diversity of the distribution
decreases (e.g., S[δ(x)] → −∞) as in the case of discrete random variables.

In order to avoid this problem, or rather to understand the origin of the divergence in
⟨ ln p(x) ⟩ for p(x) = ∑

i δ(x−xi), it is useful to derive the expression for S for continuous
PDF starting from the expression for discrete variables

S = −
∑
i

pi ln pi

and introducing a finite lower bound or threshold ∆ below which two outcomes (differing
by less than ∆) are considered to be equivalent. With this coarse graining the logarithm
of the number of possible messages (i.e., the diversity of the probability distribution) is
given by

S = −
∑
i

P̃ (xi < x < xi +∆) ln
[
P̃ (xi < x < xi +∆)

]

where xi = i∆ (xi+1 = xi + ∆) and pi = P̃ (xi < x < xi +∆) is the probability for x to
lie in the interval [xi, xi +∆]. Using that

P̃ (xi < x < xi +∆) = P (xi +∆)− P (xi) =
∫ xi+∆

xi

p(x) dx,

where P (x) refers to the cumulative probability function and p(x) =
dP

dx
to the probability

density function, we have

S = −
∑
i

(∫ xi+∆

xi

p(x) dx

)
ln

(∫ xi+∆

xi

p(x) dx

)
≥ 0.

If the spectrum of outcomes is discrete or shows very narrow peaks (narrower than ∆) we
can still compute S and recover the limit of discrete random variables. However, if p(x)
is smooth we can write

S ∼= −
∑
i

(∫ xi+∆

xi

p(x) dx

)
ln [p(xi)∆]

∼= −
∑
i

(∫ xi+∆

xi

p(x) dx

)
[ln p(xi) + ln∆]

∼= −
∫
p(x) ln [p(x)] dx− ln∆.

The term ln∆ cancels the divergence of S = −⟨ ln p(x) ⟩ for p(x) → δ(x).
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Another problem of the definition

S = −
∫

p(x) ln [p(x)] dx

is that it is not invariant under any bijective mappings f = F (x). In fact one has

p(f) df = p(x) dx ⇒ p(f) = p(x)
1∣∣∣dF
dx

∣∣∣
and therefore

S [p(f)] = −
∫
p(f) ln p(f) df = −

∫
p(x)

[
ln p(x)− ln

∣∣∣∣∣dFdx
∣∣∣∣∣
]
dx

= −
∫
p(x) ln p(x) dx+

∫
p(x) ln

∣∣∣∣∣dFdx
∣∣∣∣∣ dx

= S [p(x)] +

⟨
ln

∣∣∣∣∣dFdx
∣∣∣∣∣
⟩
.

In the case of many random variables we define

S = −
∫
p(x⃗) ln p(x⃗) dx⃗

and consequently

S
[
p(f⃗)

]
= S [p(x⃗)] +

⟨
ln
∣∣∣J(f⃗)∣∣∣ ⟩,

where J(f⃗) =

∣∣∣∣∣ ∂fi∂xj

∣∣∣∣∣ is the Jacobian of the variable transformation fi = fi(x1, . . . xN).

The entropy is thus invariant under canonical transformations in classical mechanics and
unitary transformation in quantum mechanics, which have Jacobian equal to 1.

Excercise 1.7: Loaded dice
A dice is loaded such that p6 = n p1 (e.g., n = 2). In other words, six occurs n times
more often than 1.

i) Find the unbiased probabilities for the six faces of the dice.

ii) What is the information content of the probability distribution function pi
(i = 1–6) as a function of n?
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2 Stochastic dynamics

So far we have discussed the fundamental properties of probability distributions for both
discrete and continuous random variables from a static point of view. The purpose of this
chapter is to study how probability distributions evolve in time. After introducing some
useful definitions of probability theory, including now the time as explicit variable, we
derive the main equation governing the dynamics of probability distributions: the master
equation. In this context we discuss the concept of transition probabilities, transition
rates, and the notion of Markov process in which memory or inertial effects are neglected.
The master equation, which controls the dynamics of Markov processes, is one of the most
important equations in statistical physics. This is due to its simplicity and wide range of
applicability, for example in chemical reactions, relaxation dynamics of complex systems
such as glasses or spin glasses, the process of protein folding, population dynamics of
biological systems, data processing and data transfer in complex computer networks, etc.

Once the basic equations are derived we present some of the methods for its practical
solution in the context of complex energy landscapes. This includes the important case of
Markov chains, either by reducing the problem to eigenvalue equations using an exponen-
tial ansatz, or by the kinetic Monte Carlo algorithm. The master equation is, however,
useless without a sound theory of transition rates. This motivates the study of transition
state theory, first, in the framework of classical mechanics, and then in quantum mechan-
ics, under the simplifying assumption of separability of the Hamiltonian with respect to
the reaction coordinate.

2.1 Time-dependent probability distributions

We consider a system described by a random variable x, which can be a single variable
or more generally a vector [x ≡ (x1, x2 . . . xn)]. The following notions are introduced:

P1(x1, t) = probability density for the stochastic variable
x to have the value x1 at time t.

Pn(x1, t1; x2, t2; . . . xn, tn) = joint probability density that x has the values
x1 at t1, x2 at t2, . . . and xn at tn.

The joint probabilities can be reduced as

Pn−1(x1 t1; . . . ;xn−1, tn−1) =
∫
dxn Pn(x1 t1; . . . ;xn−1 tn−1; xn, tn). (2.1)

This relation, known as the Chapman-Kolmogorov equation, is central to probability the-
ory. Note that the actual value of the time variable tn is irrelevant, as well as the actual
variable (here xn) with respect to which one integrates. If x is a discrete variable, the
integrals are replaced by sums over the set of outcomes {x1, . . . xk}.

Of course, the Pn satisfy the usual properties of a probability density: Pn ≥ 0, additiveness
and normalization. For instance, ∫

dxP1(x, t) = 1 ∀ t.
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A process is said to be stationary if

Pn(x1, t1; . . . xn tn) = Pn(x1, t1 + τ ; . . . xn, tn + τ)

for all n and τ ≥ 0. Consequently, for a stationary process the probability density P1(x)
is independent of time:

P1(x, t) = P1(x).

All physical processes in equilibrium are stationary.

For the conditional probabilities we introduce the notation

P1|1(x1 t1 | x2 t2) = Probability density for the random variable
x to have the value x2 at time t2 given that it
had the value x1 at time t1 (usually t1 ≤ t2).

P1|1 is given by the relation

P2(x1 t1; x2 t2) = P1(x1 t1) P1|1(x1 t1 |x2 t2).

The reduction of P2 according to the Champan-Kolmogorov equation (2.1) yields the
important relation

P1(x2 t2) =
∫
P1(x1, t1) P1|1(x1, t1 |x2 t2) dx1.

Note that the fixed value of t1 at which P1(x1, t1) and P1|1(x1 t1, x2 t2) are evaluated is
irrelevant.

Conditional probabilities are of course normalized:∫
P1|1(x1 t1 |x2 t2) dx2 = 1 ∀x1, t1 and t2.

This can be easily demonstrated (if necessary) by integrating the previous relation.

It is also useful to introduce the joint conditional probability densities

Pk|l(x1 t1 . . . xk tk |x′
1 t

′
1 . . . x′

l t
′
l) = probability density that the random variable

x has the values x′
1 at t′1, x

′
2 at t′2, . . . and x′

l

at t′l given that it had the values x1 at t1, . . .
and xk at tk.

Pk|l describes correlations between the dynamics of the random variable at different times.
They are important if the variable x has memory effects, also known as inertial effects.

The dynamics and the form of Pk|l simplify considerably if the random variable has mem-
ory only of its immediate past, i.e., when the probability of finding the system in a given
configuration xn at time tn does not depend on the previous history, except for its last
configuration xn−1 at time tn−1. This is actually a good approximation when the pro-
cesses, which dynamics one is interested in, are rare events. By this we mean that the
typical time ∆t = tn − tn−1 involved in changes of state is much larger than the ther-
malization times, so that memory effects are washed away. This is actually the case in
a number of important slow relaxation processes, such as a thermally activated chemical
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reaction across an energy barrier ∆E ≫ kb T , where vibrational periods are much shorter
than transition times. Other physical situations, where the previous history can be safely
neglected, are the following:

• A 
 B unimolecular reaction
• Large molecule relaxations (e.g., protein folding)
• Proton transfer in proteins
• Magnetic relaxation of nanoparticle ensembles, where the precession of the nanoparticle
moments is much faster than the collective rearrangements of magnetic order of the
nanostructure as a whole.

• Domain wall motion, where the precession time of atomic spin is much shorter than the
typical times of domain-wall motion.

Let us consider a stochastic process or stochastic path, which can be mathematically defined
as a time-indexed collection of random variables:

(x1t1; x2t2; . . . xn−1tn−1) with t1 < t2 < . . . < tn−1.

The probability for the state xn at a subsequent time tn > tn−1 is formally given by

Pn−1|1(x1t1; x2t2; . . . xn−1tn−1|xntn).

We say that a process is Marcovian when the conditional probability for x to take the
value xn at tn is fully determined only by the value of xn−1 at tn−1. Formally, a Markov
process is definend by the condition

Pn−1|1(x1t1 . . . xn−1tn−1|xntn) = P1|1(xn−1tn−1|xntn).

The fundamental conditional probability

P1|1(x1t1|x2t2)

is known as the transition probability. A Markov process is completely defined by only
two functions

P1(x, t) and P1|1(x, t|x′, t′),

from which the probability for any stochastic process can be derived. For example,

P (x1t1; x2t2; x3t3) = P1(x1t1) P1|1(x1t1|x2t2) P1|1(x2t2|x3t3).

We can now eliminate x2t2 on the left-hand side by using the Chapman-Kolmogorov
relation

P (x1t1; x3t3) = P1(x1t1)
∫
P1|1(x1t1|x2t2) P1|1(x2t2|x3t3) dx2

which implies

P (x1t1; x3t3)

P1(x1t1)
= P1|1(x1t1|x3t3) =

∫
P1|1(x1t1|x2t2) P1|1(x2t2|x3t3) dx2.

This is known as Chapman-Kolmogorov equation for Markov processes. It allows to split
the transition probability for x1t1 → x3t3 into two successive steps x1t1 → x2t2 and
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x2t2 → x3t3 involving all possible intermediate states x2t2. The Markov character of
the dynamics is reflected by the fact that the probability of the two successive steps is
given by the product of the probabilities of the individual steps. In a Markov process
the successive transitions are statistically independent, i.e., the transition probability for
x2t2 → x3t3 is not affected by the nature of the previous transition x1t1 → x2t2. We can
iterate the Chapman-Kolmogorov relation at will by introducing an arbitrary number k
of intermediate times t1 ≤ t′1 ≤ . . . ≤ t′k < t3 and write

P1|1(x1t1|x3t3) =
∫
dx′

1 . . . dx
′
k P1|1(x1t1|x′

1t
′
1) P1|1(x

′
1t

′
1|x′

2t
′
2) . . . P1|1(x

′
kt

′
k|x3t3).

This allows us to split a complex evolution into the succession of elementary (statisti-
cally independent) processes, for example, by allowing to sum over different competing
pathways, or eventually by going all over to a continuous functional-integral formulation.

In order to illustrate the functional-integral formulation of the stochastic dynamics we
express the transition probability from the state xk at time tk to a state xk+1 at an
arbitrarily close time tk+1 = tk + ∆t in terms of the change of an auxiliary function
∆S(xk, tk; xk+1, tk+1), which can be regarded as an action:

P1|1(xktk|xk+1tk+1) = e−∆S(xk,tk;xk+1,tk+∆t).

In the limit of small time steps ∆t → 0 we can regard xk as a function of t and associate
xk = x(t) and x′

k+1 = x(t+∆t), so that ∆S becomes a function of x(t), t, x(t+∆t) and
∆t. Assuming that x(t) is a differentiable function of t, ∆S can be considered to be a
function of x(t), t, ẋ(t) and ∆t. Taking into account that P1|1(xk, tk, xk, tk) = 1 we must
have ∆S = 0 for ∆t = 0 and therefore

∆S = ∆S
(
x(t), x(t+∆t), t, ∆t

)
= s

(
x(t), ẋ(t), t

)
∆t (∆t > 0),

where s
(
x(t), ẋ(t), t

)
reprensents the rate of change of S. Consequently, we can write P1|1

as a functional integral of the form

P1|1(x1t1|x3t3) =
∫
D[x(t)] e

−
∫ t3
t1

s(x,ẋ,t) dt

with the constraints x(t1) = x1 and x(t3) = x3.

2.2 The Master equation

Let us return to the relation

P (x1t1; x3t3) = P1(x1t1)
∫
P1|1(x1t1|x2t2) P1|1(x2t2|x3t3) dx2

and integrate it with respect to x1. In this way one recovers the known expression

P1(x3t3) =
∫

P1(x1t1) P1|1(x1t1|x3t3) dx1 ∀ t1

which can be rewritten as

P1(x, t) =
∫

P1(x
′, t′) P1|1(x

′t′|x t) dx′ ∀ t′. (2.2)

24



In order to derive the equation for the time dependence of P (x, t), we consider its change
after a time increment ∆t. This is given by

P (x, t+∆t)− P (x, t) =
∫

P1(x
′, t′)

[
P1|1(x

′t′|x, t+∆t)− P1|1(x
′, t′|x, t)

]
dx′,

where the conditional probability P1|1(x
′t′|x, t+∆t) can be expanded for small ∆t. First

of all, for ∆t = 0 and t′ = t we have

P1|1(x
′t|x t) = δ(x− x′) ∀ t.

In order to infer the form of P1|1(x
′, t|x, t + ∆t) for ∆t > 0 one must consider the cases

x = x′ and x ̸= x′ separately. For x ̸= x′ it is useful to introduce the transition probability
per unit time k(x′, x, t) for the system to change from the state x′ to the state x. In terms
of k the conditional probability can be expanded as

P1|1(x
′, t|x, t+∆t) = k(x′, x, t)∆t+O(∆t2).

The quantity k(x′, x, t) is known as transition rate or rate constant for the transition from
x′ to x, which in the most general case k depends on t. The conditional probability for
x = x′, i.e., the probability density that no transition occurs, can be obtained from the
normalization condition ∫

P1|1(x
′, t′|x t) dx = 1

applied to the first order approximation of P1|1(x
′t|x, t +∆t). The total probability that

the system changes its state from x′ to any other state x is equal to

∆t
∫
k(x′, x) dx+O(∆t2), (2.3)

which is smaller than 1 since ∆t → 0. Here and in the following we drop for simplicity
the time dependence of k. From Eq. (2.3) it follows that the probability that the random
variable x remains equal to x′ is equal to 1−∆t

∫
k(x′, x) dx. Summarizing, the conditional

probability density that the random variable has the value x at time t+∆t, given that it
had the value x′ at time t, reads

P1|1(x
′, t|x, t+∆t) = δ(x− x′)

(
1−

∫
dy k(x, y)∆t

)
+∆t k(x′, x) +O(∆t2).

Knowing that a Markov process is fully defined by P (x, t) and P1|1(x
′t′|x t), one concludes

that for short times ∆t → 0 the dynamics is controlled by the transition rate k(x′, x, t).

Let us now return to the fundamental relation (2.2) and determine the time derivative of
P1(x, t):

P1(x, t) =
∫
P1(x

′, t′) P1|1(x
′t′|x, t) dx′

dP1(x, t)

dt
=
∫
P1(x

′, t′)
d

dt
P1|1(x

′t′|x, t) dx′

=
∫
P1(x

′, t)
[
k(x′, x)− δ(x− x′)

∫
dy k(x, y)

]
dx′

=
∫
P1(x

′, t) k(x′, x) dx′︸ ︷︷ ︸
Total probability of going
from any x′ to x.

− P1(x, t)
∫

k(x, y) dy.︸ ︷︷ ︸
Total probability of changing
from x to some y ̸= x.
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In conclusion we obtain the master equation

dP1(x, t)

dt
=
∫
[P1(x

′, t) k(x′, x)− P1(x, t) k(x, x
′)] dx′, (2.4)

which governs the dynamics of Markov processes. The physics of the problem is contained
in the transition rates k(x′, x), which give the transition probability per unit time that
the system changes its state to x at time t+∆t given that it was in the state x′ at time t.

2.3 Fokker-Planck and diffusion equations

For continuous random variables x, for which the elementary changes of state along the
Markov dynamics take place by small jumps ξ = x − x′, we can derive a differential
equation for P (x, t) known as Fokker-Planck equation. If the transitions occur by small
jumps ξ, this means that the transition rate k(x′, x) for x = x′ + ξ decreases rapidly with
increasing |ξ| = |x−x′|. It is then useful to change the variables of k by replacing k(x′, x)
by k(x′, ξ) = k(x − ξ, ξ) for the transition x′ → x = x′ + ξ. Note that the rate constant
for the reverse process x → x′ = x − ξ is now given by k(x,−ξ). We can then write the
master equation

∂P (x, t)

∂t
=
∫
dx′ k(x′, x)P (x′, t)− P (x, t)

∫
dx′ k(x, x′)

as

∂P (x, t)

∂t
=
∫

dξ k(x− ξ, ξ)P (x− ξ, t)− P (x, t)
∫
dξ k(x,−ξ). (2.5)

We now expand the product k(x−ξ, ξ′)P (x−ξ, t) appearing in the first integral in powers
of ξ for ξ → 0 (i.e., |ξ| ≪ |x|) and any value of the size of the jump ξ′, which is the second
variable of k:

k(x− ξ, ξ′)P (x− ξ, t) = k(x, ξ′)P (x, t)− ξ
∂

∂x
[k(x, ξ′)P (x, t)]

+
1

2
ξ2

∂2

∂x2
[k(x, ξ′)P (x, t)] +O(ξ3). (2.6)

For many variables, i.e., x ≡ x⃗ we have

k(x⃗− ξ⃗, ξ⃗ ′)P (x⃗− ξ⃗, t) = k(x⃗, ξ⃗ ′)P (x⃗, t)− ξ⃗ · ∇⃗x⃗

[
k(x⃗, ξ⃗ ′)P (x⃗, t)

]
+

1

2

∑
ij

ξi ξj
∂2

∂xi ∂xj

[
k(x⃗, ξ⃗ ′)P (x⃗, t)

]
+O(ξ3).

26



Replacing Eq. (2.6) in the master equation (2.5) and neglecting the higher-order terms
beyond ξ2 we obtain

∂P (x, t)

∂t
=
∫
dξ k(x, ξ)P (x, t)−

∫
ξ

∂

∂x
[k(x, ξ)P (x, t)] dξ

+
1

2

∫
ξ2

∂2

∂x2
[k(x, ξ)P (x, t)] dξ − P (x, t)

∫
dξ k(x,−ξ)

= −
∫
ξ

∂

∂x
[k(x, ξ)P (x, t)] dξ +

1

2

∫
ξ2

∂2

∂x2
[k(x, ξ)P (x, t)] dξ

= − ∂

∂x

{
P (x, t)

∫
ξ k(x, ξ) dξ

}
+

1

2

∂2

∂x2

{
P (x, t)

∫
ξ2 k(x, ξ) dξ

}
.

Introducing the n-th order jump moments

αn(x) =
∫

ξn k(x, ξ) dξ

the master equation takes the form

∂P (x, t)

∂t
= − ∂

∂x

(
α1(x)P (x, t)

)
+

1

2

∂2

∂x2

(
α2(x)P (x, t)

)
, (2.7)

which is known as Fokker-Planck equation. It is important to recall that in order that
the Fokker-Planck equation is applicable, the random variable must be truly continuous,
and the transitions must occur by infinitesimally small steps. However, very often the
physically relevant changes of state or rare events, to which the Markovian hypothesis
applies, involve discrete, non-infinitesimal changes of the random variables. This is for
example the case when a molecule changes its conformation between two local energy
minima across an energy barrier.

If the system is isotropic, k(x, ξ) = k(x,−ξ), i.e., left and right jumps are equally probable,
the odd-order jump moments and in particular α1(x) vanish. Moreover, if the system is
homogeneous, all values of the random variable are equivalent and therefore k(x, ξ) is
independent of x. In this case α2 is also independent of x and the Fokker-Planck equation
takes the form

∂P (x, t)

∂t
= D

∂2

∂x2
P (x, t), (2.8)

where D = α2/2 > 0 is the diffusion coefficient. The solution of the diffusion equation can
be easily obtained by applying the usual methods for linear differential equations. One
can write

P (x, t) =
∫ +∞

−∞
ei k x p̃(k, t) dk ⇔ p̃(k, t) =

1

2 π

∫ +∞

−∞
e−i k x p(x, t) dx

and replace it in the diffusion equation to obtain

∂p̃(k, t)

∂t
= −Dk2 p̃(k, t).

Straightforward integration yields

p̃(k, t) = p̃(k, 0) e−Dk2 t,
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so that, after Fourier back transformation, the probability distribution is given by

P (x, t) =
∫ +∞

−∞
ei k x p̃(k, 0) e−Dk2 t dk.

As an example, let us consider the distribution P (x, 0) = δ(x) as initial condition; which
corresponds to the particle at the origin. In this case p̃(k, 0) = 1/2 π and

P (x, t) =
1

2 π

∫ +∞

−∞
ei k x e−Dk2 t dk

=
1

2 π

∫ +∞

−∞
e−(Dk2 t−i k x) dk.

Completing the square of a binomial as

Dk2 t− i k x = Dt

[
k2 − i 2 k

x

2Dt
+
(

ix

2Dt

)2
−
(

ix

2Dt

)2]

= Dt
(
k − ix

2Dt

)2
+

x2

4Dt
,

and integrating the Gauss function in the complex plane

P (x, t) = e−
x2

4Dt
1

2π

∫ +∞

−∞
e−Dt(k− ix

2Dt)
2

dk,︸ ︷︷ ︸
√
2π σ=

√
π
Dt

=
√

π
α

one obtains

P (x, t) =
1√

4πDt︸ ︷︷ ︸√
2π σ2

e−
x2

4Dt .

The solution is therefore a Gaussian distribution with a time-independent mean value
x = 0 and a square mean deviation σ =

√
2D t that increases monotonously with t.

Excercise 2.1:
Starting from the corresponding equations (2.4), (2.7) and (2.8), show that the
master, Fokker-Planck and diffusion equations preserve the norm of the probability
distribution P (x, t). If necessary, state any conditions on k(x, x′) or αn(x) for the
norm to be independent of t.

2.4 Discretization of complex energy landscapes

In order to motivate the physical background behind some of the theoretical methods to
be discussed below it is useful to make a small digression and to discuss how the energy
landscape of complex systems can be simplified in a way that allows one to focus on the
relevant dynamical processes of physical interest.

We consider a system described by a configurational coordinate x⃗. This can be, for ex-
ample, a molecule or cluster where x⃗ refers to the coordinates of the atoms, a magnetic
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nanostructure composed of an ensemble of nanospins where x⃗ stands for the ensemble
of polar and azimuthal angles defining the direction of the magnetization of each parti-
cle, or a magnetic material undergoing a magnetization reversal process (e.g., a domain
wall motion) where x⃗ refers to the size and orientation of the local magnetic moment at
each atom. In the following we assume that we know the energy V (x⃗) of the system as a
function of the configuration of x⃗ and that we are equally able to calculate the gradient−−→
∇V and if necessary the Hessian matrix at each point. Except for very small systems
consisting of a few degrees of freedom, it is clear that a full description of the dynamics
in the continuum is hopeless. It is therefore important to identify the degrees of freedom
that are really relevant for the dynamical process of interest and, in a way, integrate out
the other degrees of freedom which may vary too rapidly to be considered explicitly.

Suppose you want to describe a chemical reaction

A+B 
 C.

It is clearly uninteresting to follow the position of each atom through every possible reac-
tive trajectory. One would rather like to identify and understand the physically relevant
reaction path or paths. Which are the parts of the molecules that actually interact? How
does the reaction depend on temperature? What are the intermediate transition states?
Are there several competing reaction paths? Following atomic vibrations in detail is obvi-
ously irrelevant for this, although the entropy associated to vibrations is likely to condition
the actual pathway or rate. The same holds for a number of magnetic relaxation processes
where the precession of individual spins is too fast compared to domain-wall motion or to
the changes in the relative orientation of the nanoparticle moments in a nanostructure.
In these cases, it is neither possible nor meaningful to consider the short-time dynamics
explicitly.

The solution to the problem is to focus on the stationary states of the system, namely,
the local minima of V (x⃗) and the transition states or first-order saddle-points connecting
them. The local minima are actually the regions of configurational space where the system
spends most of the time and where the thermalizations occuring between the transition
between the minima occur. The first-order saddle-points define the bottlenecks through
which the relatively rare elementary transition processes take place. This Markovian ap-
proach based on stationary points is expected to work as long as the temperature or
average energy is smaller than the energy barriers, so that the residing time in each min-
imum allows for a thermalization which washes away any memory effects. The idea is to
discretize the energy surface V (x⃗) by the following transformation

Ṽ (x⃗) = min{V (x⃗)}, (2.9)

where min{. . .} refers to the local minimization following the gradient at the point x⃗.
The ensemble of points in configuration space that lead to a given minimum is called the
catchment volume of the given minimum.

The idea of attaching all points that fall to the same minimum to this minimum seems
to leave away the transition states, which belong to the surfaces separating the different
catchment volumes. Transition states are, however, important and need to be recovered
for the calculation of transition rates and in order to understand the dynamics. In the
context of global optimization methods the transformation (2.9) of V (x⃗) leads to the bassin
hopping method. Notice, for example, that a transition x1 → x2 is highly improbable if
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the true energy difference ∆V = V (x2) − V (x1) is taken into account (kBT ≪ ∆V ),
but that it becomes extremely favourable in terms of ∆Ṽ . Quenching the configuration
to the nearest minimum allows to explore large volumes in configurational space and to
efficiently localize the lowest energy configurations. A huge amount of computer time is
saved by increasing the acceptance rate of configurations located on the other side of
potentially large energy barriers, which leads to true configurational changes. In practice,
the most effective approach appears to be to relax the structure to the new minimum
configuration (Li and Scheraga, see Wales p. 342 and refs. 669 + 670 therein). In this way
the cooling down to the new minimum is accelerated.

The bassin hopping global optimization algorithm can be summarized as follows:

i) Given a configuration at a minimum X⃗old with energy Vold, propose a rearrangement
Markov step by perturbing the configuration and minimizing to obtain the new mini-
mum energy Vnew. Large displacements are used here, since the idea is to hop between
different attraction bassins. Typical maximum displacements are about 30% of the
NN distance with an acceptance rate of about 0.5.

ii) Accept the move if Vnew < Vold or if e−(Vnew−Vold/kBT ) is larger than a random number
in the interval [0,1]. In this context the temperature T is the only parameter of the
simulation. The maximum step size can be adjusted dynamically to a fixed acceptance
rate.

iii) Usually the structure is relaxed to the current (accepted) minimum.

The idea of attaching the same minimum energy to the whole catchment area of a mini-
mum suggests to split the configuration space in these zones and to calculate the thermo-
dynamic properties or even the long-time dynamic properties in terms of the contributions
from the different local minima. For thermodynamics we can split the configuration space
in the catchment bassins Ai associated to each minimum i. The density of states can be
written as

Ω(E) =
∑
i

Ωi(E)

and the partition function

Z(T ) =
∫

dE e−βE Ω(E) =
∑
i

Zi(T ).

The microcanonical and canonical probabilities of finding the system in the catchment
bassin i are given by

Pi(E) =
Ωi(E)

Ω(E)
=

Ωi(E)∑
i Ωi(E)

and

Pi(T ) =
Zi(T )

Z(T )
.

It should be, however, noted that the properties are not always the weighted average of
the properties corresponding to each minimum. The entropy S(E) = kB lnΩ(E) is an
interesting example in this context. The entropy associated to minimum i is given by
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Si = kB lnΩi(E) and the microcanonic average over all minima reads∑
Vi<E

Pi(E)Si(E) = kB
∑
Vi<E

Pi(E) lnΩi(E).

Using that

∑
i

Pi(E) lnΩi(E) = lnΩ(E) +
∑
i

Pi(E) ln

[
Ωi(E)

Ω(E)

] (∑
i

Pi = 1

)
= lnΩ(E) +

∑
i

Pi(E) lnPi(E)

we have

S(E) = kB lnΩ(E) =
∑
i

Pi(E)Si(E)− kB
∑
i

Pi(E) lnPi(E). (2.10)

The first term on the right-hand side of Eq. (2.10) represents the entropy within each
bassin, while the second term represents the entropy associated to the different occupa-
tions of the bassins. The latter term takes into account the entropy of mixing throughout
the different minima. It vanishes when only one bassin is occupied.

2.5 Marcovian dynamics based on stationary points

A knowledge of the local minima and the development of V (x⃗) in its environment allows
to determine equilibrium properties including possible anharmonicity effects. If we want
to get insight in the dynamics we need to take into account the transition states that
connect the various minima with each other.

The dynamics of an elementary transition between two nearby minima i and j is character-
ized by the rate constant for the transtion A → B. This rate constant can be determined
in the framework of transition state theory and is given by

kji(T ) =
kBT

2 π ~
Q∗(T )

Qi(T )
, (2.11)

where Q∗(T ) is the canonical partition function at the transition state, and Qi(T ) is the
partition function at the initial minimum i. Qi(T ) can be determined by expanding the
potential at minimum i in the harmonic approximation. Q∗(T ) is obtained in the same
way as Qi(T ) under the constraint that the system is at the hypersurface separating the
two minima, which goes through the saddle point. The basic assumption of transition
state theory is that in the time evolution of the system there are no recrossings of the
hypersurface separating the two minima. This implies that the flux from “left to right”, i.e.,
from i to j through the dividing surface S is equal to the number of transitions from i to j.
In other words, the possibility that a trajectory starting at minimum i crosses the dividing
surface from the i-side to the j-side and then returns to minimum i is neglected. A clear
derivation of kji(T ) is given by Miller [Acc. Chem. Res. 26 (1993)] and shall be reviewed
briefly later on. For the moment we will content ourselves with the fact that kji(T ) can
be determined from local properties of V (x⃗) and with its physical interpretation. Indeed,
Eq. (2.11) shows that kji(T ) depends on the probability that the system finds a channel
to get through the hypersurface S dividing the minima, which is proportional to Q∗(T ),
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relative to the probability of finding the system in minimum i, which is proportional to
Qi(T ).

Besides these elementary transitions we must take into account the probability of finding
the system in each local minima and the transitions between different local minima.
This problem can be handled by the master equation by assuming that each minimum
corresponds to one of the possible values of the random variable x. In the following
we discuss some important properties of the Markov processes taking Markov chains as
particularly relevant example. The general solution of the master equation is discussed at
a second step under the assumption of detailed balance.

2.6 Markov chains

One of the simplest examples of a Markov process is the Markov chain, which can be
characterized by two main assumptions: i) The random variable takes discrete values
x1, x2, . . . xM , which presupposes a discrete set of outcomes, and ii) the transitions occur
at a discrete set of times t = sτ , where τ is some characteristic time interval and s ∈ N.
For the moment we can picture τ as a measure of the typical vibrational or precession
period in the system. Later on we shall either solve the master equation as a function of
time as a continuous variable or replace τ by the actual waiting time between transitions
in the kinetic Monte Carlo method.

Given the initial probability distribution P1(xi, 0) at time t = 0 (i = 1, . . .M), the prob-
ability distribution at time τ (time step 1) is given by

P1(xi, τ) =
M∑
j=1

P1(xj, 0)P1|1(xj, 0|xi, τ), (2.12)

where, as usual, P1|1(xj, 0|xi, τ) gives the probability for a transition to the state xi at a
time τ given that the system is at state xj at time 0. We will simplify the notation by
introducing

Pi(s) = P1(xi, t = sτ)

and

Qij = P1|1(yj, 0|yi, τ) = P1|1
(
yj, sτ |yi, (s+ 1)τ

)
,

where the last equality expresses the assumed time independence of Qij. Note that Qij

is the transition probability from j to i. Let us recall that the usual normalization of
conditional probabilities involves a sum over the final states and therefore reads

1 =
∑
i

P1|1(yj, t|yi, t′) ⇒
∑
i

Qij = 1 ∀ j.

The sum of probabilities over the final states i is 1 irrespectively of the initial state j.

We can then write Eq. (2.12) as

Pi(1) =
∑
j

Qij Pj(0)
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or, introducing the column vector P⃗ (s) = [P1(s), P2(s) . . . PM(s)], as

P⃗ (1) = QP⃗ (0),

where Q is the M ×M matrix Qij. Note that Qij ̸= Qji. After s time steps we have

P⃗ (s) = QsP⃗ (0) (Q indep. of s).

It is easy to see that
∑

i Qij = 1 ∀ j implies that the normalization is preserved, since

∑
i

Pi(1) =
∑
i

∑
j

Qij Pj(0) =
∑
j

Pj(0) = 1.

2.6.1 Some properties of Q

The matrix Qij is, according to our convention, a left stochastic matrix. Mathematically,
this is defined as a square matrix whose columns consist of positive real numbers summing
up to 1 (i.e.,

∑
i Qij = 1 ∀ j). The columns of the left stochastic matrix are also called

stochastic vectors, having positive components that sum up to 1. The set S of all non-
singular stochastic matrices forms a group, namely, the stochastic group. The fundamental
group properties are easily demonstrated:

1) Closure: Let Q and P be stochastic matrices, then∑
i

(QP )ij =
∑
ik

Qik Pkj =
∑
k

(∑
i

Qik

)
︸ ︷︷ ︸

=1

Pkj = 1.

2) Existence of neutral element: 1 ∈ S.

3) Existence of inverse: Let Q be a non-singular stochastic matrix and Q−1 denote its
inverse: (QQ−1) = 1 ⇒

∑
k

Qik Q
−1
kj = δij. It follows that

∑
i

(∑
k

Qik Q
−1
kj

)
= 1 ⇒

∑
k

(∑
i

Qik

)
︸ ︷︷ ︸

=1

Q−1
kj =

∑
k

Q−1
kj = 1.

Consequently, Q−1 ∈ S.

2.6.2 The limit of large s: Equilibrium

The behaviour of the probability distribution for large times (s → ∞) depends on the
structure of the transition matrix Q. We are particularly interested in regular or ergodic
transition matrices Q. These are characterized by the property that for some power k all
elements of Qk are non-negative, i.e.,

(Qk)ij > 0 ∀ ij for some k ≥ 1. (2.13)
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This is equivalent to requesting that for every pair of states i and j there is a path that
connects i and j through a finite number k of transitions:

(Qk)ij =
∑
l1

∑
l2

. . .
∑
lk−1

Qil1 Ql1l2 Ql2l3 . . . Qlk−1j (2.14)

with all matrix elements of Q strictly positive.

If (Qk)ij > 0 ∀ ij for some k we can apply the Perron-Frobenius theorem which states
that the largest eigenvalue of Q is equal to 1, and that this eigenvalue is non-degenerate.
This implies that all other eigenvalues λ have |λ| < 1. The eigenvector corresponding to
λ = 1 satisfies

QΠ⃗ = Π⃗

and describes the equilibrium state. The Perron-Frobenius theorem also ensures that Πj >
0 ∀ j, which means that the probability of finding the system in any of its states is finite.
This justifies denoting the underlying transition matrix Q as ergodic. Moreover, one can
show that

lim
s→∞

Qs P⃗ (0) = Π⃗

for any starting configuration P⃗ (0).

For the mathematical demonstration of this important statement we expand P⃗ (0) =∑M
i=1 αi ν⃗i, where ν⃗i is the ith vector of the Jordan basis of the matrix Q (ν⃗1 = Π⃗). Note

that Q need not be diagonalizable, but that it can always be brought into the Jordan form.
Applying Qs P⃗ (0) and taking the limit of s → +∞, only the non-degenerate eigenvector

Π with the largest eigenvalue survives, since |λ| < 1 for all ν⃗i ̸= Π⃗. Consequently, if the

transition matrix is ergodic, the equilibrium state Π⃗ is unique and independent of the
initial state.

Transition matrices that are regular (or ergodic) are also said to be irreducible. Actually,
it is the Markov chain and the directed graph associated to Q that are irreducible, when
all the possible states of the system are connected under Q. In the directed graph derived
from Q there is a connection from state j to i whenever Qij ̸= 0. The irreducibility of
a directed graph means that all states i can be reached starting from any state j [see
Eqs. (2.13) and (2.14)]. In our physical problem of the dynamics of a system in an energy
landscape, this implies that the ensemble of local minima and intermediate transition
states forms a connected set.

2.6.3 Reducible transition matrices and absorbing states

Examples of reducible or non-ergodic transition matrices are matrices that are lower or
upper diagonal, or that can be brought to this form by a simple reordering of the states.
Another situation in which Q is reducible is when Q can be brought to a block diagonal
form. In this case one has more than one equilibrium state. The probability distribution
in the limit for s → +∞ depends on the initial state, since no transitions between the
blocks are possible.
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In this context it is interesting to introduce the concept of absorbing states, which are
states from which the system cannot escape (e.g., extinction in the case of a population).
Let us consider, for instance, the matrix

Q =


1/2 1/3 0

1/2 1/3 0

0 1/3 1


for which the state x3 is absorbing. In fact, Q32 = 1/2, but Qi3 = 0 ∀ i ̸= 3. One never

gets out of the state 3. In this example there is a unique equilibrium state Π⃗ = (0, 0, 1).
However, the system is obviously not ergodic.

2.7 Master equation dynamics

The master equation we derived for a continuous random variable x reads

P1(x, t) =
∫
[P1(x

′, t) k(x′, x)− P (x, t) k(x, x′)] dx′.

We focus now on a discrete random variable with a discrete set of outcomes x1, x2, . . . xM .
Each value of xi corresponds, for example, to one of the minima of our energy surface.
We then have

∂P1

∂t
(xi, t) =

M∑
j=1

P1(xj, t) k(xj, xi)− P1(xi, t) k(xi, xj),

where k(xj, xi) is the transition rate for going from state xj to state xi. Let us recall that
k(xj, xi) represents the probability per unit time of making a transition to xi at time
t+∆t given that the system is in the state xj at time t. Let us simplify the usual notation
as Pi(t) = P1(xi, t) and kij = k(xj, xi) and rewrite the master equation as

dPi(t)

dt
=

M∑
j=1

[kij Pj(t)− kji Pi(t)] . (2.15)

Notice that the term with j = i in the sum cancels out, although kii is not defined. The
“process” that consists in making no transition does not affect Pi(t) and therefore does
not contribute to dPi/dt. The following simple rearrangements allow us to bring Eq. (2.15)
in a compact form:

dPi

dt
=

M∑
j=1
j ̸=i

(kij Pj)− Pi

 M∑
l ̸=i

kli



or equivalently,

dPi

dt
=

M∑
j=1

(1− δij) kij − δij

 M∑
l ̸=i

kli


︸ ︷︷ ︸

Wij

Pj,
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where we identify

Wii = −
∑
l ̸=i

kli

as the total rate out of state i and

Wij = kij

as the rate from j to i (i ̸= j). With this definition of the transition matrix W , the master
equation can be written as

dPi

dt
=

M∑
j=1

Wij Pj,

or in vector form as

dP⃗

dt
= WP⃗ .

If the matrix kij is regular or ergodic, the matrix W is also ergodic, i.e., it cannot be
decomposed into blocks.

Notice that

∑
i

Wij =
∑
i

(1− δij) kij − δij

∑
l ̸=i

kli


=
∑
i̸=j

kij −
∑
l ̸=j

klj = 0 ∀ j.

Therefore, the matrix Q = 1 + αW for some small α > 0 has all the properties of a
stochastic matrix. First, we have Wij = kij ≥ 0 ∀ i ̸= j. Second, concerning the diagonal
terms, we can always choose a sufficiently small α, or scale the unit of time, so that∑

l ̸=j klj ≤ 1 ∀ j in order that Qjj ≥ 0 for all j.

We can then apply the Perron-Frobenius theorem and conclude that W has a unique
eigenvalue equal to zero and that all other eigenvalues are negative. One can write Q =
1 + αW with α > 0 (usually 0 < α < 1). If qi are the eigenvalues of Q, we have
−1 ≤ qi ≤ 1 with q1 = 1 being the largest eigenvalue (Perron-Frobenius theorem). Thus,
the eigenvalues λi of W satisfy −2 ≤ qi − 1 ≤ 0 ⇒ −2/α ≤ λi ≤ 0, with λ1 = 0 a
non-degenerate eigenvalue and all other eigenvalues being strictly negative.

Let us first consider the equilibrium configuration Π⃗ = P⃗eq. It is given by the condition

dP⃗eq

dt
= 0 ⇔ WP⃗eq = 0.

Π⃗ = P⃗eq is the eigenvector with vanishing eigenvalue. The Perron-Frobenius theorem
assets that this eigenvalue always exists and that all the components Πi = P eq

i of the
unique eigenvector are strictly positive. In terms of the rate constants kij the equilibrium
condition reads ∑

j

(kij Πj − kjiΠi) = 0 ∀ i. (2.16)
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In most cases of interest the equilibrium is established between every possible pair of
states of the system, for example, between every two nearby minima. This is the so-called
detailed balance condition

kij Πj = kji Πi for all i and j.

In other words, each term in the sum vanishes separately. This is a stronger condition
than the general equilibrium condition (2.16). It excludes the possibility of three-state
equilibrium. However, in the problems of physical interest we have that each pair of
minima equilibrates through one or more connecting transition states. In particular the
rate constants kij derived from transition-state theory satisfy detailed balance.

Detailed balance can be used to bring W to a symmetric form and to solve the master
equation analytically. We shall assume detailed balance in the following and define

W̃ij =

√
Πj

Πi

Wij Πi > 0 ∀ i (Perron-Frobenius)

=

√
Πj

Πi

(1− δij) kij − δij

∑
l ̸=i

kli

 .
Since kij Πj = kjiΠi, we have kij

√
Πj

Πi

√
Πj

Πi
= kji ⇔ kij

√
Πj

Πi
= kji

√
Πi

Πj
and therefore

W̃ij = W̃ji.

Introducing P̃i(t) = Pi(t)/
√
Πi we have

dPi

dt
=
∑
j

Wij Pj ⇔ dP̃i

dt
=
∑
j

1√
Πi

Wij

√
Πj

1√
Πj

Pj

⇔ dP̃i(t)

dt
=
∑
j

W̃ij P̃j(t).

Since W̃ is real and symmetric, it is diagonalizable. Let ν⃗α be the αth eigenvector of W̃

with eigenvalue λα, and let us expand the vector ⃗̃P in the form

⃗̃P (t) =
∑
α

pα(t) ν⃗α (2.17)

with pα ∈ R. From Eq. (2.17) it follows that

d ⃗̃P

dt
=
∑
α

pα(t)W ν⃗α =
∑
α

pα(t)λα ν⃗α.

Comparison with the straightforward differentiation of Eq. (2.17) implies

∑
α

dpα
dt

ν⃗α =
∑
α

pα(t)λα ν⃗α.

This system of first-order linear differential equations is solved by the usual exponential
ansatz

pα(t) = pα(0) e
λα t.
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Replacing in Eq. (2.17) one obtains

⃗̃P (t) =
∑
α

pα(0) ν⃗α eλα t

with λ1 = 0 and λα < 0 ∀α ≥ 2. Notice that the coefficients pα(0) are given by the initial

condition ⃗̃P (0). They are obtained by expanding the latter in terms of the eigenvectors

ν⃗α, namely, pα(0) =
⃗̃P (0) · ν⃗α. If one wishes to abandon the compact vector notation in

favor of the more explicit component form, one may write ν⃗α = (ν1α, ν2α, . . . νMα) and

P̃i(t) =
∑
α

pα(0) νiα eλα t.

Finally, the solution of the Master equation reads

Pi(t) =
√
Πi

∑
α

pα(0) νiα eλα t.

Since all eigenvalues are negative except λ1 = 0, it is clear that for t → ∞ we have
P⃗ (t) → ν⃗1 = Π⃗ for any initial condition. In this context it is important to remark that
p1(0) > 0 for all initial conditions Pi(0). In fact, the probabilities Pi(0) ≥ 0, which implies
P̃i(0) ≥ 0 for all i. Since the components of the equilibrium state Πi = νi1 are all strictly

positive (Perron-Frobenius theorem), we always have p1(0) = ⃗̃P (0) · ν⃗1 > 0. In other
words, ergodicity implies that all initial states have a non-vanishing projection on the
equilibrium state. Let us finally point out that the eigenvalues of W and W̃ are the same
since ∑

j

W̃ij P̃j = λ P̃i ⇒
∑
j

W̃ij Pj/
√
Πj = λPi/

√
Πi ⇒

∑
j

Wij Pj = λPj.

The analytical solution of the master equation requires the diagonalization of W̃ . It has the
advantage that, once W̃ is diagonalized, all possible initial conditions can be propagated
at a low computational cost. If the size of the problem is too large, i.e., for a too large
number M of local minima, one can take advantage of the sparse character of W and use
propagation methods. First of all the Lanczos method can be applied to the matrix W̃
in order to estimate the eigenvalue with the largest |λc|. At a second step the relevant
spectrum for long times, i.e., |λc| → 0, can also be computed with the Lanczos method
after introducing an appropriate spectral shift so that the smallest eigenvalue has the
largest absolute value. If the spectrum of eigenvalues of W̃ is wide, very fast and very slow
processes are present. In this case it is advisable to introduce a variable time-integration
step size to account for fast initial relaxation followed by slower processes until equilibrium
is reached.

2.8 The stationary point network

In order to understand the dynamics of a complex system it is important to determine
the connectivity of the network of local minima. This information is of course contained
in the matrix of transition rates kmn. It is clear that systems with similar distributions of
local minima and barrier energies can have very different dynamical properties depending
on how the minima are linked together. A practical strategy to sample the stationary
points (minima and saddles) is discussed in the following.
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2.8.1 Sampling stationary points

For the dynamics we need a set or network of minima that is connected through saddle
points. One can follow the following scheme:

i) Starting from a given minimum one searches for the “closest” saddle point (SP)
starting along the direction of the eigenvector of the Hessian matrix with the lowest
frequency. It is along this direction that one can reasonably expect to find the lowest
energy barrier or the most important relaxation (i.e., change of configuration) for a
given barrier height.

ii) Once the SP is found, one follows the gradient starting from the SP along the two
opposite directions defined by the eigenvector with negative frequency (ê1 and −ê1).
This provides the minimum energy path (MEP) which contains the physically rele-
vant information on the relaxation mechanism, the path length and barrier height
(compare with catastrophe theory). In this way one usually finds two different min-
ima. However, in some cases (for example when the landscape looks like a mexican
hat) the MEP starting along e⃗1 and −e⃗1 might lead to the same initial minimum.
These rather rare situations are of course irrelevant for the relaxation.

iii) There are several possibilities after step ii):

a) One or both of the minima found are already known. For example, one of the
ends of the MEP is likely to be the minimum from which we started. If one of
the minima is new, this is added to the list of minima. Then, either we keep on
searching SPs from the minimum where we were at i), or we move to another
minimum. This decision will actually be taken at step iv).

b) Both minima M1 and M2 found from the SP are new. In this case one adds them
to the list. At the end one checks if they get connected to the network. If not,
one may try to connect them by force with double-ended techniques such as the
nudged elastic band method.

c) One or both of the minima are already known, but they are not the starting min-
imum at i). In this case one attaches the link to the list of transitions, provided
the saddle point is new.

iv) To follow the search and in order to explore the landscape systematically one may
search along the two directions of the normal mode with lowest frequency at the
minimum and then follow systematically with increasing vibrational frequency. A
full search of all normal modes is neither feasible nor really necessary. One may
then conceive different criteria for stopping the search on one minimum and move to
another one. These are dictated by the physical problem and the available resources.
For example, one may stop once the barriers found are beyond a given threshold,
hoping that the other modes will lead to higher barriers and lower rates, or one
may search preferentially in a given “direction”, i.e., one may bias the search in the
spirit of forward flux approaches. For instance, if the dynamics of a magnetization
reversal process is investigated, one may search preferentially in directions where the
projection of the total magnetization along the applied field increases. Calculating
projections along a given direction or distance in configurational space provides a
means of quantifying a physically motivated bias.

39



As in any simulation, an exhaustive search of stationary points is not necessary to predict
the results with a given accuracy. One actually expects that the dynamics of the phe-
nomenon under study can be understood by identifying the most relevant relaxation mech-
anisms. However, it is also clear that as the temperature increases, incomplete searches
will systematically underestimate the relaxation rates. A partial remedy for this can be
to reweight the superposition sums [Energy Landscapes, D. J. Wales, Cambridge Univer-
sity Press, Cambridge/UK, 2003]. In any case the sampling strategy has to cope with
the compromise between exploring some part of the landscape more exhaustively or to
explore larger regions more superficially. The appropriate choice depends of course on the
specific problem under study.

2.9 Kinetic Monte Carlo method

The kinetic Monte Carlo (KMC) scheme provides an alternative solution of the master
equation. In the approaches discussed so far, which were based on the eigenvalues and

eigenvectors of W̃ or on the numerical propagation of P⃗ using
˙⃗
P = WP⃗ , one needs to

determine the relevant set of starting points and rate constants prior to the simulation.
The KMC method allows one to perform propagations by determining the rate constants
and the visited minima “on the flight,” thereby avoiding the exploration of large domains
of the energy landscape, which might not be visited when the simulation starts with the
initial conditions of actual experimental or theoretical interest.

Consider a system in a minimum i. The total rate or probability per unit time for the
system to jump to another minimum is

k =
∑
j ̸=i

kji,

provided that all possible transitions from minimum i to another minimum j are indepen-
dent processes. This presupposes that the resident time at minimum i is large enough, so
that any memory or inertial effects are washed out. In other words, we assume that the
system is thermalized at minimum i, which is quite reasonable for the rare processes we
are interested in.

The transition out of minimum i is a Poisson process or continuous-time Markov process.
It can occur at any time, just the probability for its occurrence per unit time k is known.
What is then the probability that the transition to some other minimum occurs between
the times t and t + ∆t? This defines the so-called waiting time probability density P (t)
and can be calculated as follows:

P {decay within [t, t+∆t]} = P (t)∆t = (1− p)Np,

where N =
t

∆t
and p = k∆t =

kt

N
. Then we have

P (t)∆t =

(
1− kt

N

)N
k∆t

N→∞−−−→ e−kt k∆t.

Notice that P (t) is properly normalized, since∫ +∞

0
P (t) dt = k

∫ +∞

0
e−kt dt = 1.
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The average waiting time τ is therefore given by

τ =
∫ +∞

0
t P (t) =

∫ +∞

0
t k e−kt dt =

1

k

∫ +∞

0
x e−x dx =

1

k
.

The KMC method simulates the succession of Markov processes as follows:

i) Starting from a given minimum i, calculate the rates kji for all significant escape
routes out of i. In practice, one computes the total rate k =

∑
j kji until it con-

verges within a predefined reasonable accuracy. This yields the average waiting time
τ = 1/k. Notice that omitting a significant relaxation channel, i.e., omitting some
kji > 0, systematically implies an underestimation of k and thus an overestimation
of τ .

ii) Choose randomly one of the escape channels j according to the probability

pj =
kji∑
j kji

= τ kji.

iii) Draw randomly a waiting time t ≥ 0 according to the probability density function
for the waiting time P (t) = k e−kt.

iv) Move the system to the minimum j drawn in step iii) and advance the time of the
simulation by the time t drawn from the Poisson distribution in iii). Finally, go back
to i).

How to obtain random numbers with a probability distribution P (t) = k e−kt? We seek
for a function t = t(x) such that P (t) = k e−kt when x is uniformly distributed in the
interval [0,1]. For this we must have

P (t) dt = p(x) dx = dx,

where we have used that p(x) = 1 for 0 ≤ x ≤ 1. Substituting one obtains

k e−kt dt = dx ⇔ dt

dx
=

1

k
e+kt.

This equation can be easily solved by the method of separation of variables:∫
k e−kt dt =

∫
dx ⇒ −e−kt = x− x0 ⇒ −kt = ln(x0 − x)

t = −1

k
ln(x0 − x)

x = 0 for t = 0 ⇒ x0 = 1

x → 1 ⇒ t → +∞

Finally, one obtains

t = −1

k
ln(1− x) =

1

k
ln

1

1− x
.

Since 1− x is uniformly distributed, one can also use t = −(1/k) ln x.

The KMC algorithm provides a formally exact solution of the master equation provided
that all the transition processes are taken into account. As in the exponential solution,
the limitation comes from the detail with which the landscape is described. One expects
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that the dynamics will not be distorted significantly if some rare processes (with small
k) are neglected unless these rare processes are very numerous. However, this situation
can be encountered in glassy systems or in other highly connected networks of low-energy
local minima.

It is interesting to compare the transition rates kij corresponding to the different saddle
points i surrounding a given minimum j in the framework of transition-state theory. These
are given by

kij =
kBT

2π~
Q∗

ij(T )

Q(j)(T )
,

where Q∗
ij is the partition function at the saddle point connecting j to i. Thus, for a given

starting minimum j, kij ∝ Q∗
ij(T ) and the probability of escaping from j through the

saddle point leading to minimum i (channel i) is given by

pi =
Q∗

ij(T )∑
j Q

∗
ij(T )

.

It is tempting to explore the possibility of avoiding the calculation of “all” (in practice
many) relaxation channels and their rates before doing a move. Instead, one could search
for a saddle point starting from j along a random direction, find the neighboring minimum
i and calculate the rate kij. One could argue that the resulting probabilities of escaping
through channel i would roughly correspond to pi ∝ Q∗

ij(T ), since Q
∗
ij(T ) gives a measure

of the catchment area of the saddle point i. The rate kij is, however, much smaller than
the total escape rate k =

∑
i kij. Consequently, the escape time τi = 1/kij is much longer

than the actual escape time τ = 1/k. It is therefore not reasonable to advance the time by
τi = 1/kij. In fact, other faster mechanisms could largely dominate the dynamics in this
time scale. Without a knowledge of the dominant channels, it is possible that the system
escapes with a large probability in some other minimum different from the one found
by starting in a randomly chosen direction. One would then have to take a small time
step ∆t, and make the jump to i on the basis of the rate kij using that for ∆t ≪ 1/kij
the probability of jumping is kij ∆t. The consequence would be a very small acceptance
rate for the jump to i. One would then search another direction until

∑
i kij converges.

The method is no better than the original KMC, actually worse, since in KMC one would
search systematically in the directions that are likely to yield the largest kij (low frequency
eigenmodes). In addition, one can bias the search on physical grounds taking into account
the magnetization relaxation or in general the distance to the product, if known.

2.10 Time dependence of the configurational entropy

The configurational or mixing entropy S resulting from the distribution of the system
throughout its stationary states is given by

S = −kB
∑
i

Pi lnPi, (2.18)

where the sum runs over all local minima. This represents the logarithm of the num-
ber of accessible states for a given probability distribution Pi. Eq. (2.18) holds both at
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equilibrium and out of equilibrium, at any time t. The time dependence of S is given by

dS

dt
= −kB

∑
i

(
dPi

dt
lnPi −

dPi

dt

)
.

Since
∑

i Pi = 1 ∀ t, the sum of the last terms vanishes. It follows that

dS

dt
= −kB

∑
i

dPi

dt
lnPi. (2.19)

According to the master equation, i.e., assuming a Markovian dynamics without memory
effects, we have

dPi

dt
=
∑
j

(kij Pj − kji Pi) . (2.20)

Replacing Eq. (2.20) in (2.19) we obtain

dS

dt
= −kB

∑
ij

(kij Pj − kji Pi) lnPi

or equivalently

dS

dt
= −kB

2

∑
ij

(kij Pj − kji Pi) (lnPi − lnPj) .

In general kij ̸= kji and consequently
dS

dt
does not have a defined sign. Therefore, S needs

not to increase monotonously with time. This should be clear since the assumption of
Markovian dynamics does not exclude, for example, the presence of absorbing states for
which the equilibrium configuration π⃗ has zero entropy (πi = δi0, where 0 is the absorbing
state). This is not in contradiction with Boltzmann’s H-theorem, since the configurational
or mixing entropy does not take into account the change in the entropy associated to the
other degrees of freedom. In particular the change in phase space due to the change in
kinetic energy is ignored in Eq. (2.18).

However, in a microscopic quantum theory we know from Fermi’s golden rule that the
transition rate

kij =
(
2π

~

)
|Vij|2 δ(Ei − Ej)

is symmetric (kij = kji, since Vij = V ∗
ji). In this case (kij = kji) we have

dS

dt
= −kB

2

∑
ij

kij (Pj − Pi) (lnPi − lnPj).

Since ln(x) is a monotonously increasing function, (lnPi − lnPj) has always the opposite

sign as (Pj−Pi). Consequently
dS

dt
≥ 0 ∀ t and ∀Pi(t). The assumption of symmetric rates

(kij = kji) and of Markovian dynamics (master equation) implies that the time evolution
always leads to an increase of the entropy of the system.
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2.11 Transition state theory

We follow here an article by W. H. Miller [Acc. Chem. Res. 26, 174 (1993)] to which the
reader should refer for further details.
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