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Nanoscale Heat Engine Beyond the Carnot Limit
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We consider a quantum Otto cycle for a time-dependent harmonic oscillator coupled to a squeezed
thermal reservoir. We show that the efficiency at maximum power increases with the degree of
squeezing, surpassing the standard Carnot limit and approaching unity exponentially for large
squeezing parameters. We further propose an experimental scheme to implement such a model
system by using a single trapped ion in a linear Paul trap with special geometry. Our analytical
investigations are supported by Monte Carlo simulations that demonstrate the feasibility of our
proposal. For realistic trap parameters, an increase of the efficiency at maximum power of up to a
factor of four is reached, largely exceeding the Carnot bound.

PACS numbers: 37.10.Ty, 37.10.Vz, 05.70.-a

Heat engines are important devices that convert heat
into useful mechanical work. Standard heat engines run
cyclically between two thermal (equilibrium) reservoirs
at different temperatures T1 and T2. The second law of
thermodynamics restricts their efficiencies to the Carnot
limit, ηc = 1 − T1/T2 (T1 < T2) [1]. Triggered by the
pioneering study of Scovil and Schulz-DuBois on maser
heat engines [2] and boosted by the advances in nanofab-
rication, an intense theoretical effort has been devoted
to the investigation of their properties in the quantum
regime, see e.g. Refs. [3–11]. In particular, theoretical
studies have indicated that the efficiency of an engine
may be increased beyond the standard Carnot bound
by coupling it to an engineered (nonequilibrium) quan-
tum coherent [12] or quantum correlated [13] reservoir
(see also the related Refs. [14–17] for photocell heat en-
gines). These stationary nonthermal reservoirs are char-
acterized by a temperature as well as additional param-
eters that quantify the degree of quantum coherence or
quantum correlations. The maximum efficiency that can
be reached in this nonequilibrium setting is limited by a
generalized Carnot efficiency that can surpass the stan-
dard Carnot value [18]. Quantum reservoir engineering
techniques are powerful tools that enable the realization
of arbitrary thermal and nonthermal environments [19].
Those techniques have first been experimentally demon-
strated in ion traps [20]. Recently, they have been used
to produce nonclassical states, such as entangled states,
in superconducting qubits [21] and atomic ensembles [22],
as well as in circuit QED [23] and ion trap systems [24].

In this Letter, we develop a general theory of a quan-
tum heat engine coupled to a squeezed thermal bath. We
evaluate both the efficiency and the efficiency at maxi-
mum power of the engine. We show that the efficiency at
maximum power can be increased beyond the standard
Carnot limit by exploiting the nonthermal properties of
the reservoir, without questioning the universality of the
general framework of thermodynamics. Squeezing is a
general concept in quantum optics [25]. It may be char-

acterized by a parameter r such that the phase-space
quadratures of a state are, respectively, multiplied by er

and e−r [26]. Squeezed ground states of the harmonic os-
cillator were first observed in photonic systems [27] and
extensively studied in Ref. [28]. Additionally, phononic
[29], number state [30] and spin state [31] squeezing were
respectively observed in ion systems and Bose-Einstein
condensates. Squeezed states are important tools in high-
precision spectroscopy [32], quantum information [33],
quantum cryptography [34], and the detection of grav-
itational waves [35, 36]. The properties of squeezed ther-
mal states were theoretically examined in Refs. [37–42].
The first experimental realization of squeezed thermal
noise using a Josephson parametric amplifier was re-
ported in Ref. [43]. However, the use of squeezed ther-
mal baths in quantum thermodynamics has been largely
unexplored. In the following, we investigate an Otto
cycle based on a time-dependent harmonic oscillator, a
paradigm of quantum heat engines (see Refs. [6–10] and
references therein). To analyze the effect of squeezing, we
couple the engine to a high-temperature squeezed ther-
mal reservoir, while the low-temperature reservoir is still
purely thermal. We find that the efficiency at maximum
power rises exponentially with the squeezing parameter
r, surpassing the standard Carnot limit and converging
towards unity exponentially. To illustrate our results, we
apply our general formalism to a single-ion heat engine
in a specially designed linear Paul trap coupled to laser
reservoirs [44]. We further present for the first time a
concrete experimental scheme to mimic the interaction
with a squeezed thermal reservoir by combining reser-
voir and state engineering methods [45]. Monte Carlo
simulations with realistic trap parameters and laser in-
teraction demonstrate the experimental realizability of
such a scheme with current technology. We show that
the single-ion engine can run at maximum power up to
an efficiency which is four times larger than the efficiency
obtained with two thermal reservoirs and a factor of two
above the standard Carnot bound.
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FIG. 1. Efficiency at maximum power η∗, Eq. (6), of the
Otto engine plotted as a function of the squeezing parameter
r. Black, red and blue lines (bottom to top) correspond to
the temperature ratio β2/β1 = 0.9, 0.6, and 0.3, respectively.
The dashed lines in the corresponding color denote the stan-
dard Carnot efficiency for each temperature ratio. The in-
set shows the energy-frequency diagram of an idealized Otto
cycle. Squeezing is applied during the hot bath interaction
between points B and C, leading to an increase of η∗ with r,
approaching unity exponentially.

Otto engine with squeezed reservoir. We consider a
quantum Otto cycle for a time-dependent harmonic os-
cillator that consists of four consecutive steps (expansion-
heating-compression-cooling) [6–10], as shown in the in-
set of Fig. 1. During the expansion and compression
phases, the frequency of the oscillator is modulated be-
tween ω1 and ω2 > ω1. Heating and cooling result from
the coupling to two heat baths at inverse temperatures
βi = 1/(kBTi), (β1 > β2), where kB is the Boltzmann
constant and Ti the corresponding temperature. The cy-
cle starts in a thermal state A, at ω1 and at cold inverse
temperature β1, with an average energy,

〈H〉A =
~ω1

2
coth

(
β1 ~ω1

2

)
. (1)

During the initial isentropic compression from A to B,
the frequency increases from ω1 to ω2. This transforma-
tion is unitary for an isolated system and the von Neu-
mann entropy is constant. The mean energy at point B
can be calculated by solving the Schrödinger equation for
the driven quantum oscillator and is given by [46, 47],

〈H〉B =
~ω2

2
Q∗1 coth

(
β1 ~ω1

2

)
, (2)

where the parameter Q∗1 characterizes the speed of
the transformation. The system is then coupled to a
squeezed thermal reservoir at hot inverse temperature β2
and squeezing parameter r, and, as a result, relaxes to a
nondisplaced squeezed thermal state with mean phonon
number, 〈n(β2, r)〉 = 〈n〉+ (2 〈n〉+ 1) sinh2(r) [41],

where 〈n〉 = [exp(~β2ω2) − 1]−1 is the thermal occupa-
tion number. We assume the duration of this interaction
to be much shorter than the duration of the isentropic
process, and thus the frequency stays constant (corre-
sponding to an isochoric process). The mean energy at
point C, 〈H〉C = ~ω2 〈n(β2, r)〉, is increased to [41],

〈H〉C =
~ω2

2
coth

(
β2 ~ω2

2

)
∆H(r), (3)

where ∆H(r) = 1 + (2 + 1/ 〈n〉) sinh2 r. In the following,
we will keep the inverse temperature β2 constant and vary
the amount of squeezing r, hence the energy of the state
C (see Fig. 2). During the following isentropic expansion,
the frequency is brought back to its initial value ω1, and
the mean energy at point D reads,

〈H〉D =
~ω1

2
Q∗2 coth

(
β2 ~ω2

2

)
∆H(r). (4)

The cycle is closed by coupling the system to the cold
thermal bath. Because of the stochastic nature of this
process (which is again isochoric), it destroys any phase
relation and thus thermalizes the squeezed state. We
stress that the above expressions are valid for arbitrary
frequency modulations: Q∗i = 1 for adiabatic and Q∗i > 1
for nonadiabatic compression/expansion [46–48].

Work is done by the oscillator during the compression
and expansion phases, whereas heat is exchanged with
the reservoirs during the thermalization steps. These
quantities can be computed using Eqs. (1)-(4) by evalu-
ating the energy differences during each individual stroke
[44]. The efficiency η of the engine is defined as the ratio
of the net work produced per cycle to the energy absorbed
from the hot reservoir. Using Eqs. (1)-(4), we find,

η = 1− ω1

ω2

coth
(
β1~ω1

2

)
−Q∗2 coth

(
β2~ω2

2

)
∆H(r)

Q∗1 coth
(
β1~ω1

2

)
− coth

(
β2~ω2

2

)
∆H(r)

. (5)

Expression (5) is exact and valid for any temperature,
squeezing, and adiabatic or nonadiabatic frequency mod-
ulation [44]. In the remainder, we will focus on adiabatic
modulation, Q∗i = 1, which lead to the highest efficien-
cies. Note that the efficiency (5) is unaffected by the
squeezing in this situation. This is not the case for the
efficiency at maximum power which we determine next.

Since the power of an engine vanishes at maximum
efficiency, the efficiency at maximum power is the quan-
tity of prime interest for practical applications [1]. We
maximize the power, given by the work produced by the
engine divided by the cycle time, with respect to the
frequency difference ∆ω = ω2 − ω1; we keep all other
parameters, such as inverse temperatures β1,2, squeezing
parameter r, cycle time τ and the initial frequency ω1,
constant. In the high-temperature limit, ~βiωi � 1, we
find that power is maximum when the frequencies satisfy



3

the condition: ω2/ω1 =
√
β1(1 + 2 sinh2 r)/β2. As a re-

sult, the efficiency at maximum power η∗ for adiabatic
compression/expansion is given by,

η∗ = 1−

√
β2

β1(1 + 2 sinh2 r)
, (6)

an expression which depends explicitly on the degree of
squeezing. For thermal reservoirs (r = 0), we recover the
Curzon-Ahlborn efficiency, ηCA = 1−

√
β2/β1 [49]. Re-

markably, the efficiency at maximum power η∗ rises with
increasing squeezing r; it approaches unity exponentially
for large squeezing parameter (r � 1),

η∗ ' 1−

√
2
β2
β1

exp(−2r). (7)

Figure 1 shows the enhancement of the efficiency at maxi-
mum power with increasing squeezing r for different tem-
perature ratios. While the Curzon-Ahlborn efficiency
ηCA is smaller than the Carnot limit (indicated by dashed
lines), we observe that η∗ may surpass it even at mod-
erate squeezing values. However, it does not exceed the
generalized Carnot efficiency [18, 50] (see Fig. 3),

ηgenC = 1− β2

β1(1 + 2 sinh2(r))
, (8)

which follows from the second law of thermodynamics
applied to this nonequilibrium situation. The latter can
be understood by noting that the standard Carnot effi-
ciency is an expression of the second law for one particu-
lar nonequilibrium configuration: two thermal reservoirs
at two different temperatures. Equation (8) extends this
result to a more general nonequilibrium setting that in-
volves one thermal and one nonthermal reservoir.

Numerical simulations. To support our analytical
findings, we consider the realistic proposal for an Otto
heat engine presented in Ref. [44]. This engine consists
of a single ion confined in a linear Paul trap and cou-
pled to laser reservoirs. In contrast to conventional Paul
traps, the radiofrequency electrodes that create the con-
fining potential are tilted towards the trap axis with an
angle θ. Due to this geometry, the axial frequency ωax
of the ion is fixed, while the radial frequency ωrad(z) is
a function of the axial position z. The latter property is
used to implement compression and expansion phases in
the radial direction, while the ion moves back and forth
along the trap axis. On the other hand, the work gener-
ated by the engine is stored in the axial oscillation. We
have performed semiclassical Monte-Carlo simulations of
the Otto cycle using a partitioned Runge-Kutta integra-
tor [51], including laser interaction (we used the typical
realistic values: ωrad ∼ 3(2π) MHz, ωax ∼ 36(2π) kHz
and θ = 20◦). The dynamics of the ion’s phase-space
distribution are obtained by simulating an ensemble of
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FIG. 2. Comparison of a thermal Otto cycle of the single ion
heat engine (red, bottom) and a cycle with a hot squeezed
thermal state (blue). The corresponding phase-space distri-
butions of the ion are sketched next to points A,B’,C and D,
showing the change in temperature of a thermal state (rota-
tional symmetric Gaussian distribution) and the squeezing of
those states (ellipses). The interactions with the hot thermal
bath (BB′) and the squeezing operation (B′C) are performed
sequentially to discriminate both effects in their dynamics.
The squeezing leads to a significant increase of the produced
work (area of the enclosed region). Inset: Squeezing operation
applied between points B′ and C. The radial trap frequency
ωrad is parametrically switched to higher and lower values.

several hundreds of classical trajectories, which follow
the expected thermal phase distribution caused by the
stochastic nature of photon scattering. To drive the heat
engine, the ion is coupled alternatingly to a hot and a
cold heat bath, realized by velocity dependent scattering
forces of laser beams with different detuning. An ex-
ample of a cycle obtained with two thermal reservoirs is
shown in Fig. 2 (red cycle), as a function of the axial fre-
quency of the ion and its radial position (which is exper-
imentally accessible). In the presence of a hot squeezed
thermal bath, the state of the ion equilibrates to the tem-
perature of the bath, but is additionally squeezed during
the interaction [39]. We mimic the coupling to such a
squeezed thermal reservoir by combining reservoir engi-
neering (for the thermal component) and state engineer-
ing (for the squeezed component) [52]. Squeezing of the
state of the ion is implemented by modulating the radial
confining potential at double the trap frequency [53, 54].
To ensure that an increase of efficiency can only be at-
tributed to the squeezed state, the squeezing operation is
performed in such a manner that the mean value of the
potential energy is not affected. To this aim, the radial
trap frequency ωrad is first increased to ω′rad = ωrad+∆ω
for a quarter of a radial oscillation period. Then the fre-
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quency is lowered to ω′′rad = ωrad−∆ω for a quarter of a
radial oscillation period, before it is returned to its initial
value ωrad (see inset in Fig. 2). Since the total frequency
change is zero, no work is performed by the squeezing op-
eration [55]. We numerically simulate engine cycles with
different ∆ω to achieve different squeezing parameters r
of the state of the ion. In order to analyze the influence
of the thermal and the nonthermal part of the reservoir
interaction separately, we simulated the coupling to the
squeezed thermal bath in two consecutive steps: first by
heating the state of the ion, followed by a squeezing op-
eration. This leads to cyclic processes as shown in Fig. 2,
where a cycle including a squeezed thermal bath (blue cy-
cle) is compared to that employing a thermal bath with
the same temperature ratio (red cycle), demonstrating
the increase in energy due to the squeezing operation.
Figure 3 shows the resulting efficiencies, computed with
Eq. (5) with frequencies obeying the optimality condi-
tion, for different squeezing parameters at a ratio of the
bath temperatures of β1/β2 = 0.88: good agreement with
the theoretical prediction for maximum power (6) is at-
tained. We observe that for a squeezing parameter of
0.4 the efficiency is quadrupled, while reaching an effi-
ciency two times higher than the standard Carnot limit.
To achieve comparable values with a thermal bath in-
teraction, while maintaining a maximized power output,
an increase of the temperature ratio by 70 % would be
needed, while having a power output still 35 % lower than
the engine employing squeezing.

Concept of the experimental realization. Let us now de-
scribe how the squeezed thermal state simulated above
could be realized experimentally in an ion trap. Thermal
reservoirs at different temperatures can be engineered via
Doppler cooling, the Doppler temperature being adjusted
by employing electromagnetically induced transparency
cooling and changing the lineshape through tuning of the
laser parameters [56, 57]. Tailored electrical noise on the
trap electrodes can also be employed to efficiently heat
the ion [58]. Squeezing of the ground-state wave func-
tion of a trapped ion was first demonstrated using re-
solved sideband excitation on the second motional side-
band [29]. However, this approach requires a system ini-
tially in the ground state and long interaction times. As
described above, another way to realize squeezing is to
change suddenly the harmonic potential at double the
trap frequency [53, 54]. This leads to an elliptical de-
formation of the phase space distribution of the thermal
state (see Fig. 2) and thus squeezes the state of the ion.

To our knowledge, such a scheme to achieve squeezed
states has never been implemented experimentally. We
propose to make use of the tapered geometry of our setup,
as it allows to change the radial confinement by shut-
tling the ion in axial direction. Thus, to squeeze the
radial state of the ion, the latter can be driven along the
trap axis at double the radial trap frequency. Recent
studies have shown that fast transport of an ion along
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FIG. 3. Efficiency at maximum power η∗ given by the general-
ized Curzon-Ahlborn efficiency (6) as a function of the squeez-
ing parameter r (red line). The region below the red dashed
line corresponds to all possible efficiencies in agreement with
the standard Carnot limit. The results of the Monte-Carlo
simulations (black dots) demonstrate within the given trap
geometry that by squeezing the thermal state with r ≤ 0.4,
the efficiency can be increased by a factor of four, which
is two times higher than the corresponding Carnot bound.
The black dotted line shows the generalized Carnot limit (8)
for an engine interacting with a hot squeezed thermal bath.
The results shown are performed at a temperature ratio of
β2/β1 = 0.88.

the trap axis on a sub-µs timescale is possible without
additional heating [59]. As the frequency of this modu-
lation is two orders of magnitude higher than the axial
resonant frequency, the two oscillations can be easily sep-
arated. The proposed procedure avoids the use of an ad-
ditional static potential to change the radial confining, as
it could lead to parametric excitation of coherent oscilla-
tions. Those oscillations would indeed hide the signature
of the squeezed state and perturb the experimental se-
quence for the heat engine cycle.

In order to run at maximum power, the engine should
obey the optimality condition relating the frequencies of
the oscillator to the temperatures of the reservoirs. The
maximum ratio ω2/ω1 is limited by the opening angle θ
of the funnel shaped potential and by a maximum ampli-
tude a for the axial coherent oscillation. Considering re-
alistic trapping potentials, this amplitude is chosen to be
smaller than a < 1 mm [60]. These constraints limit the
achievable squeezing parameters to r < 0.6 at maximum
power. For the characterization of the resulting squeezed
states, we may employ side-band spectroscopy and Ra-
man transitions with standing light fields [29, 61, 62].
The efficiency can be obtained from measuring the vi-
brational energy in the axial mode.

Conclusions. We have shown that the efficiency at
maximum power of a quantum Otto engine can be dra-
matically enhanced by coupling it to a squeezed ther-
mal reservoir. While standard heat engines interact with
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thermal baths which are only characterized by their re-
spective temperatures, the use of nonthermal baths offers
more degrees of control and manipulation, such as the
amount of squeezing, that can be exploited to increase
the work produced. Our findings pave the way for a first
experimental demonstration of the usefulness of reservoir
and state engineering techniques in quantum thermody-
namics and the realization of more efficient nano-engines.

We thank C.T. Schmiegelow for comments and ac-
knowledge support by the Volkswagen-Stiftung, the
DFG-Forschergruppe (FOR 1493), the EU-project DIA-
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