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Dynamical control and novel quantum phases in impurity doped linear ion crystals
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We explore the behavior of the phonon number distribution in an heterogeneous linear ion crystal.
The presence of ion species with different masses changes dramatically the transverse energy spec-
trum, in such a way that two eigenfrequencies become non-analytic functions of the mass ratio in the
form of a sharp cusp. This non-analyticity induces a quantum phase transition between condensed
and conducting phase of the transverse local phonons. In order to continuously vary the mass ratio
we adiabatically modify a locally applied laser field, exerting optical dipole forces which reduces the
effective mass.

PACS numbers: 03.67.Ac, 37.10.Ty, 64.70.Tg, 73.43.Nq

Trapped ions are one of the most attractive physical
systems for implementing quantum computation [1] and
quantum simulation [2]. The ability to control and mea-
sure the internal and external degrees of freedom with
high accuracy allows for experimental implementations
of various quantum gates [3–6] and quantum comput-
ing protocols [7–9]. Trapped ions represent a convenient
system for the simulation of many-body effects, such as
quantum phase transitions in spin systems [10, 11], atoms
in optical lattices [12] and coupled cavity arrays [13]. Re-
cently, a simulation of the Dirac equation for a free spin-
1/2 particle [14] has been successfully performed with a
single trapped ion [15].

While small, homogeneous ion crystals have been ex-
tensively studied, the novelty of this Letter is elucidating
the richness of quantum phases in ion crystals doped with
a second ion species. Depending on the mass ratio, the
crystal allows for the observation of two quantum phases
of the transverse local phonon number distribution. For
a heavy impurity ion all phonons are absorbed by the
latter and the variance of the transverse local phonon
distribution remains non-zero. At the same time zero
average phonons with vanishing variance and correlation
are observed at all other sites. In the following this state
is referred to as the quantum condensed phase. In the op-
posite case, if a lighter impurity ion is added, the system
is in a quantum conducting phase [12] where the phonons
are redistributed among all ions showing non-zero vari-
ance and correlation, while the average phonons of the
impurity ion is significantly reduced. There are two ways
to vary the mass ratio in heterogeneous ion crystal. The
first one is by doping a mono-species ion crystal with
one impurity ion, a technique which has been applied
for ion frequency standards [16], sympathetic cooling of
molecular ions [17], and for deterministic ion implanta-
tion [18]. The second scheme overcomes this discrete,
stepwise variation and uses optical dipole forces by non-
resonant tightly focused laser beams [19] (Fig. 1). It
is still advantageous to use heavier doping ions because
the dipole force can only reduce the effective mass but
to observe the phase transition the critical point of unity
mass ratio has to be crossed. Current ion trap technology

FIG. 1: (color online). Impurity-doped linear ion crystal con-
sisting of ions with mass m and an impurity ion with mass
M . The mass ratio µ = M/m determines the two quantum
phases. Applying a tightly focused laser field to the impurity
ion in the transverse x direction makes it possible to continu-
ously vary the effective mass ratio. Increasing the magnitude
of the light field leads to a decrease of the effective mass.

allows to implement all crucial elements of the proposal:
preparation of the initial state, laser-ion interaction driv-
ing the dynamics required for the quantum phase transi-
tion, and readout of the phonon distribution.

In the following we first consider a harmonically con-
fined ion crystal with N − 1 ions of mass m and one
impurity ion of mass M at position jM without any fo-
cused laser field. If the radial confinement is stronger
than the axial one then ions are arranged in a linear ion
crystal along the axial z axis and occupy equilibrium po-
sitions z0i . Since the axial trap potential is independent
of the mass, the equilibrium positions z0i = lui of the
ions are independent of the composition of the ion crys-
tal. Here l is the natural length scale and ui are dimen-
sionless equilibrium positions [20]. The transverse, dy-
namic Paul confinement along x and y directions is gen-
erated by an applied radio frequency (RF) quadrupole
field. In the following we only consider one transverse
direction x. The oscillation frequency in x direction is
ω0
x = |e|URFcx/(

√
2mΩRF), where URF is the amplitude

of the RF voltage with frequency ΩRF, e is the electron
charge and cx is a geometry factor. The transverse os-
cillation frequency is additionally reduced by the axial
trap frequency ωz according to ωx = ω0

x(1 − α2/2)1/2,
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in lowest-order approximation, where α = ωz/ω
0
x [21].

For a small displacement the motional degrees of free-
dom in x, y and z direction are decoupled. The normal
mode eigenfrequencies ωk = ω0

x

√
λk and eigenvectors bkj

are obtained from the diagonalization of a matrix Bij

with
∑

iBijb
k
i = λkb

k
j , where ω0

x is the transverse fre-
quency of a single ion with mass m. The real and sym-
metric N -dimensional matrix Bij is determined by the
harmonic expansion of the external trapping potential
and the Coulomb interaction between the ions; it reads
[22]

Bij =





1− α2

2
− α2

∑N
p=1
p6=j

1

|uj − up|3
, (i = j, j 6= jM ),

1

µ2
− α2

2µ
− α2

µ

∑N
p=1
p6=j

1

|uj − up|3
, (i = j = jM ),

α2

|ui − uj |3
, (i 6= j 6= jM ),

α2

√
µ|ui − uj|3

, (i 6= j = jM ),

(1)
where µ = M/m denotes the mass ratio of both ion

species. By expressing the position operator ˆ̃xj =∑
k b

k
j X̂k and the momentum operator ˆ̃pj =

∑
k b

k
j P̂k

in terms of normal phonon modes, the Hamiltonian
takes the form Ĥ0 =

∑
k ~ωk(N̂k + 1/2). Here X̂k =√

~/2mωk(â
†
k + âk) is the normal mode position opera-

tor and P̂k = i
√
~mωk/2(â

†
k − âk) is the normal mode

momentum operator, while â†k and âk are the phonon
creation and annihilation operators of the kth collective

phonon mode and N̂k = â†kâk is the respective collective

phonon number operator. At the site of the impurity ion
the normalization of the momentum and position opera-

tors requires ˆ̃pjM = p̂jM /
√
µ and ˆ̃xjM =

√
µx̂jM .

In order to visualize the transverse mode we plot in
Fig. 2 the eigenfrequencies ωk for a string of six ions, with
an impurity ion at position jM = 2 when the mass ra-
tio is varied. As µ increases beyond unity, the frequency
spacing between the lowest-lying energy mode (LL) with
frequency ωN and all other modes increases, while for
µ < 1 it tends towards degeneracy. In the transverse
direction the highest energy mode, the center-of-mass
mode (COM) with frequency ω1, is nearly degenerate
for µ > 1. When µ decreases below the value µ = 1
the frequency spacing between COM mode and all other
modes increases. In real experiments the mass ratio can
only be changed to discrete values as shown in Fig. 2.
However, later in the paper we show how to overcome
this limitation by optical forces.

As α is decreased towards the critical value αcr the
gap at the avoided level-crossing (µ = 1) between the
modes vanishes. In the thermodynamic limit (number of
ions tend to infinity) the critical value αcr goes to zero.
Moreover, LL and COM modes develop a cusp at µ = 1.
At the critical value of α the eigenfrequencies ωk behave
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FIG. 2: (color online). Normalized transverse eigenfrequen-
cies ωk/ω

0
x =

√
λk when µ is varied. The highest en-

ergy center-of-mass (COM) and the lowest-lying (LL) modes
are shown. Different ion species are depicted as follows:
µ1 =9Be+/24Mg+, µ2 =24Mg+/40Ca+, µ3 =40Ca+/43Ca+

and µ4 =40Ca+/27Al+. b) Decreasing α the LL and COM
modes develop a cusp at µ = 1.

as follows

ω1 → ωx

µ
ωn6=1 → ωx

}
for µ < 1,

ωn6=N → ωx

ωN → ωx

µ

}
for µ > 1.

This implies that the COM frequency ω1 and the LL fre-
quency ωN , respectively, have discontinuous derivatives
at µ = 1. Therefore, the non-analyticity of the ground
state energy indicates a quantum phase transition [23].
We will exemplify the properties of the two quantum
phases by calculating the phonon number distribution, its
variance and correlation. These quantities are all experi-
mentally accessible by laser-spectroscopy measurements.
The characteristic feature of the quantum phase tran-

sition is expressed clearly by the behavior of the local

phonon number operator

n̂j =
mω0

x

2~
ˆ̃x
2

j +
1

2~mω0
x

ˆ̃p
2

j −
1

2
. (2)

Initially the mixed ion crystal is prepared by laser-ion
interactions in the state with n phonons in the LL collec-
tive mode and the other modes are cooled to the ground
state, achieving the state |Ψ〉 = |00 . . . n〉. We find that
the average local phonons per site (per ion) is given by

〈n̂j〉 =
n(bNj )2

2

(
ωN

ω0
x

+
ω0
x

ωN

)
+
1

4

N∑

k=1

(bkj )
2

(
ωk

ω0
x

+
ω0
x

ωk

)
−1

2
.

(3)
We discuss the properties of Eq. (3) in the two limits
µ > 1 and µ < 1, respectively. For a heavy impurity ion

and in the limit α → αcr we find bNjM = 1 and bk 6=N
jM

= 0

using Eq. (1). This implies that the heavy ion is oscillat-
ing while the others are at rest. The average number of
transversal phonons is given by

〈n̂j 6=jM 〉 = 0, 〈n̂jM 〉 = 1 + µ2

2µ

(
n+

1

2

)
− 1

2
. (4)
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Thus, for a heavy impurity ion, increasing the number of
collective phonons in the LL mode leads to an increase of
the average number of local phonons at the impurity site
whereas all other ions remain in the vibrational ground
state. Hence, the heterogeneous ion crystal is in a quan-
tum condensed phase where any transversal quantized
energy is absorbed by the heavy ion.
In the opposite limit of a lighter impurity ion we derive

from Eq. (1) that b1jM = 1, bk 6=1
jM

= 0. Because now only
the LL modes are excited, the oscillations of the impurity
ion are suppressed and the average number of phonons is

〈n̂j 6=jM 〉 = n(bNj )2, 〈n̂jM 〉 = (1− µ)2

4µ
. (5)

Hence, the lighter impurity ion spreads the phonons to
all other ions, such that the heterogeneous ion crystal is
in a quantum conducting phase [12].
The different quantum phases become evident also

from the variance of the local phonon number operator
δnj = (〈n̂2

j 〉) − 〈n̂j〉2)1/2. For the heavy impurity case
(µ > 1) we derive

δnj 6=jM = 0, δnjM =
µ2 − 1

2
√
2µ

√
n2 + n+ 1. (6)

We see that although all collective phonons are absorbed
by the heavy ion, its variance does not vanish because |Ψ〉
is not an eigenstate of n̂jM . This is a major difference
to the case of bosonic cold atoms in the Mott insulating
state, where the variance of bosons is zero for all sites
[24]. If the impurity ion is lighter (µ < 1) we obtain

δnj 6=jM =
√
n(bNj )2 − n(bNj )4, δnjM =

1− µ2

2
√
2µ

. (7)

Now the variance increases with the amount n of phonons
in the LL mode for all ions except for the impurity ion.
The phonon distribution and its variance are shown in
Fig. 3, where both phases are exemplified for the system
of a mixed 43Ca+/40Ca+ crystal.
Finally, we demonstrate the quantum phases by con-

sidering correlations in the number of phonons Cij =
〈n̂in̂j〉−〈n̂i〉〈n̂j〉. Since in the quantum condensed phase
(µ > 1) the local phonons are localized at the impurity
ion we find that the correlation Cij for any i and j van-
ishes. In the quantum conducting phase (µ < 1) the
local phonons at the impurity ion are independent of the
number of collective LL phonons and therefore the cor-
relation CijM remains zero. However, for all other ions
the correlation is Cij = −n(bNi bNj )2.
In the following, we show how to employ an optical

dipole force in order to change the effective mass of the
impurity ion. In this way µ can be continuously swept
through the quantum phase transition. Additionally to
the trapping potential an optical dipole force is applied
to the impurity ion in the transverse x direction. This
force creates a harmonic potential Vd = Mω2

s x̂
2
jM /2 with

frequency ωs. The total potential is the sum of the two
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FIG. 3: Average phonon number distribution and its variance
as described by Eqs. (3), (6), and (7). The impurity ion
is placed in the center of a string of N = 15 ions, i.e. at
position jM = 8. The quantum condensed phase is observed
in a heterogeneous ion crystal with fourteen 40Ca+ ions and
one 43Ca+ impurity ion, where n = 2 collective phonons are
condensed at the impurity site (a) with non-zero variance (c).
For µ = 40/43 corresponding to fourteen 40Ca+ ions and one
43Ca+ impurity ion the system is in a quantum conducting
phase with non zero phonon distribution (b) and variance (d).

trapping potentials and the Coulomb interaction between
the ions. The Hamiltonian for the transverse ion motion
is given by

Ĥ(t) = Ĥ0+
1

2

N∑

k,q=1

[
mRkqX̂kX̂q + Skq(P̂kX̂q − X̂kP̂q)

]
.

(8)
The new eigenfrequencies ωk and eigenvectors bkj are

obtained by diagonalization of a matrix B̃ij = Bij +
β2δijM δjjM , with β = ωs/ω

0
x. Due to the time-dependent

optical dipole interaction the normal modes and mo-

menta are connected by the couplings Rkq =
∑N

j=1 ḃ
k
j ḃ

q
j

and Skq =
∑N

j=1 b
k
j ḃ

q
j . Here we denote with dot the time

derivative, occurring because the magnitude of the dipole
force is varied in time.

The experimental scheme starts by preparing the crys-
tal in state |Ψ〉 = |00 . . . n〉. During an adiabatic in-
crease of the trap potential created by the optical dipole
force the normal modes become coupled. In order to
suppress non-adiabatic transitions to the other modes
we require the adiabatic condition to be fulfilled at any
instant of time, |Skq| ≪ |ωk(t) − ωq(t)|. Then the cou-
plings Rkq and Skq can be neglected such that the Hamil-
tonian (8) describes N uncoupled harmonic oscillators
with time-dependent frequencies ωk. We assume that
the frequency of the tightly focused laser field is vary-
ing as ωs = ω0

s

√
t. The energy spectrum of the linear

ion string is now represented by the Demkov-Osherov
model [25], which describes the interaction betweenN−1
stationary states and one state varying linearly in time.
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FIG. 4: (color online). (a) The transverse eigenfrequencies
ωk for COM and LL modes as a function of the optical-dipole
frequency ωs for a heterogeneous ion crystal consisting of five
40Ca+ ions and one 43Ca+ impurity ion at the second po-
sition. A quantum phase transition is observed by adiabat-
ically sweeping ωs to higher values. (b) The local average
phonon distribution for each ion 〈n̂i〉 = ni (i = 1, 2 . . . , 6)
as a function of ωs. As the magnitude of ωs is changed the
mass ratio is reduced and reaches a critical point µeff = 1 at
which the system undergoes a quantum phase transition from
the quantum condensed phase to the quantum conducting
phase. The quantum phase transition occurs approximately
at ωs = 0.37ω0

x.

This allows us to approximate the adiabatic condition as
(ω0

s/ω
0
x)

2 . |ωk − ωq|2T . This condition implies that the
temporal energy change should be smaller than the split-
ting to the next level to avoid transitions. Then the ion
crystal remains in the initially prepared state |Ψ〉 during
the adiabatic change of the optical dipole force. To il-
lustrate the effect of the optical force on the transverse
spectrum we plot in Fig. 4a the eigenfrequencies ωk for
the COM and LL modes as a function of ωs for five

40Ca+

ions and one 43Ca+ impurity ion at jM = 2. In the limit
α → αcr we obtain from the diagonalization of the matrix

B̃ij that the optical dipole force reduces the mass ratio

as µeff = ((ωs/ω
0
x)

2 + 1/µ2)−1/2. As the magnitude of
µeff is changed, the system reaches a critical point µ = 1
for which the system undergoes a quantum phase transi-
tion from the quantum condensed phase to the quantum
conducting phase (see Fig. 4b). Here we assume that the
heterogeneous crystal is prepared in a state with n = 2
LL collective phonons. In the quantum condensed phase
these phonons are absorbed by the impurity ion with no
phonons at the other sites. For sufficiently small α the
adiabatic condition requires a long interaction time and
high value of ωs. To avoid this problem we could increase
α to 0.1. Then the quantum phase transition occurs ap-
proximately at ωs = 2π×0.4 MHz and the adiabatic con-
dition is fulfilled within 60 µs. The optical dipole trap
can be created by laser detuning up to ∆ = −2π × 300
GHz red of the resonance of the S1/2 ↔ P1/2 transition of
43Ca+. The frequency ωs can be achieved by laser power
around 350 mW with waist radius of w0 = 5 µm.

In concussion we have presented a realistic scheme for
observation of phonon condensation and quantum phase
transition of the transverse local phonons in a hetero-
geneous ion crystal. Critical behavior appears when the
effective mass ratio is changed continuously, which can be
achieved by application of light-induced dipole force. The
features of the phase transition are clearly visible even for
a small number of ions, realizable with the current ion
trap technology. Impurity-doped ion crystals offer the
advantage that the laser light can be made to interact
only with the impurity ion. Moreover, the local phonon
mode readout of the impurity ion can be improved by us-
ing laser frequencies selectively addressing its sidebands
and internal electronic states [13]. The future extension
of the proposed technique may use multiple impurity ions
for heat, excitation and entanglement transport measure-
ments, investigations of artificial Josephson junctions and
separation of phases.
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