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We observe the phase space trajectory of an entangled wave packet of a trapped ion with high
precision. The application of a spin dependent light force on a superposition of spin states allows
for coherent splitting of the matter wave packet such that two distinct components in phase space
emerge. We observe such motion with a precision of better than 9% of the wave packet extension in
both momentum and position, corresponding to a 0.8 nm position resolution. We accurately study
the effect of the initial ion temperature on the quantum entanglement dynamics. Furthermore, we
map out the phonon distributions throughout the action of the displacement force. Our investigation
shows corrections to simplified models of the system evolution. The precise knowledge of these
dynamics may improve quantum gates for ion crystals and lead to entangled matter wave states
with large displacements.
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Quantum entanglement of matter is a fascinating sub-
ject to study, as the most fundamental features of quan-
tum physics become apparent, and as its observation in
modern experimental realizations of former Gedanken ex-
periments forces us to totally abandon any classical imag-
ination of solid particles, or even of matter waves.

Beyond this fundamental interest, quantum entangle-
ment is a useful resource for many important tasks, in-
cluding information processing, communication, and pre-
cision measurements. In the last decade we have wit-
nessed a rapid growth of experiments with well-defined
atomic quantum systems, the most prominent among
them being two-level atomic quantum systems denoted
as qubits [1–3]. Quantum tomography is a diagnostic
tool for investigating such quantum states, and has been
used for systems of up to eight entangled ions [4–6]. For
trapped ions, entangling quantum gates are based on the
transient entanglement between internal qubit and exter-
nal motional degrees of freedom, which is finally mapped
back onto the qubit state, such that the motion is disen-
tangled from the qubit after the operation. High fidelity
gate operations are only possible if not the slightest trace
of information is left in the motional degrees of freedom.
Therefore, a high degree of control over the motion is re-
quired, for which in turn it is of fundamental interest to
precisely monitor the dynamics of spin and motion.

The focus of this letter is the entanglement of the
spin degree of freedom of a trapped ion with its mo-
tional quantum state under the dynamics of laser driven
displacement operations [7–10]. We present an analy-
sis of the laser-driven dynamics in both phase space and
Hilbert space. We sense higher-order terms of the ion-
light interaction Hamiltonian, and we are able to reveal
experimentally why quantum superpositions of coherent
states are increasingly difficult to prepare when the dis-
placement magnitude becomes larger. As the demon-
strated tomography scheme is applicable to determine

the coherence of the entangled state [11] - here for the
fundamental system of a trapped ion crystal interact-
ing with laser pulses for quantum gate operations - it is
of fundamental importance for the investigation of the
scalability of quantum information processing based on
trapped ions.
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FIG. 1. Time evolution of entanglement and disentanglement
for a ground state wave packet: (a) Experimental pulse se-
quence, see text. b) The phase contrast as measured versus
duration of the displacement pulse taken for a ground state
and (c) a Doppler cooled ion. The solid lines result from a fit
to Eq. 3. For the Doppler cooled ion, the fit parameters are
identical to the ground state case except that a thermal mean
phonon number n̄ ≈ 20 is assumed and thermal averaging
was performed according to Eq. 4. The dashed line indicates
the prediction of Eq. 2 in Ref.[8], neglecting the nonclassical
dependence of the force magnitude on the motional state.
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This paper is organized as follows: after a brief in-
troduction to our specific toolbox of ion quantum state
preparation, we describe how to generate and manipu-
late entangled quantum states. We then present data
which elucidates the role of the initial state preparation
e.g. the ion temperature, for the dynamics caused by the
spin-dependent force. We show complementary ways to
analyze the dynamics of the optically driven ion; one be-
ing the measurement of the motional state by mapping
out phonon distributions, i.e. we look at the dynamics in
Hilbert space in Fock representation. A second approach
maps out the dynamics in phase space, i.e. we follow the
ion’s trajectory with extremely high precision.

For the experiments we use a micro-structured Paul
trap [12] which provides three dimensional harmonic con-
finement with frequencies of ω/(2π) = {1.35, 2.4, 3}MHz
for a single 40Ca+ ion, where the lowest frequency ωax
pertains to the axial vibrational mode. We apply Doppler
cooling on the S1/2 to P1/2 transition near 397 nm. A
magnetic field of about B = 0.4 mT splits both Zeeman
qubit-levels of the ground state S1/2, labeled {| ↑〉, | ↓〉},
by 18 MHz. We initialize the ion by sideband ground
state cooling [13, 14], followed by optical pumping to the
state | ↑〉. For coherent manipulations of the qubit we
drive stimulated Raman transitions: the ion is irradi-
ated with two laser beams near 397 nm at a detuning of
∆/(2π) = 40 GHz from the dipole transition. To per-
form different operations we utilize three different beam
geometries: (i) Two co-propagating beams, R1 and CC,
orthogonal to the direction of B with a relative detun-
ing resonant to the Zeeman splitting, drive single qubit
rotations without coupling to any motional degrees of
freedom. (ii) Two beams, R1 and R2, with R2 ⊥ R1 and
R2 ‖ B, where both are aligned at 45°with respect to the
axial trap direction. Thus, the k-vectors of R1 and R2
establish a difference vector, δk, along the trap axis used
for momentum transfer and excitation of axial vibration.
Spin qubit rotations may be driven with a coupling to
the ions axial mode, characterized by a Lamb-Dicke fac-
tor η = δk x0 ≈ 0.25, where x0 is the ground state wave
packet extension. This geometry is used for Raman side-
band cooling and to drive Rabi oscillations on motional
sidebands. (iii) A third pair of beams is comprised of R2
and CC, where only circular light polarization compo-
nents are present such that no coupling of the spin qubit
levels occurs, but axial ion motion can be excited via
an ac-Stark light force oscillating close to the vibrational
frequency. Phase and magnitude of this drive depend on
the spin state of the ion [8, 9]. After performing ma-
nipulations on the spin and the motional state, the spin
is read out by transferring the population from | ↑〉 to
the metastable D5/2 state via a rapid adiabatic passage
pulse [14, 16]. When illuminated with resonant light near
397 nm, the ion is measured to be in | ↓〉 if we detect fluo-
rescence, and it is measured to be in D5/2, corresponding
to | ↑〉, if it remains dark. We repeat the sequence 200

times to determine the spin occupation probabilities P↑
and P↓.

We generate entangled wave packets with the sequence
in Fig.1(a), where the spin echo sequence of π/2-pulse, π-
pulse, and π/2-pulse is formed with Raman interactions
of type (i) and the spin-dependent displacement employs
the Raman interaction of type (iii). With a relative de-
tuning of the R2 and CC beams of δR2,CC = ωax − δ,
acting for time t on a superposition state, the resulting
state is

|Ψf 〉 =
1√
2

(| ↑, α(t)〉+ i| ↓,−α(t)〉) , (1)

with the displacement [15]

α(t) = −η∆S

2δ
eiδt/2 sin

δt

2
, (2)

where ∆S is a differential ac-Stark shift arising from the
laser beams R2 and CC. When the concluding π/2-pulse
acts on this state, the spin will only flip completely into
| ↑〉 if no displacement was present, since this can be
seen as a which-path information, suppressing the spin
interference signal. The fringe contrast is given by the
overlap of the adjacently displaced ground state wave
packets:

C(t) = |〈−α(t)|α(t)〉|2 = e−2|α(t)|2 . (3)

Thus, the observed contrast serves as a measure of the
displacement magnitude. As the motion is driven slightly
off-resonant with δR2,CC , both spin components become
periodically entangled and disentangled, and we observe
the coherence decay and revive, correspondingly. The
data plotted in Fig. 1 (a) show the dynamics of P↑(t) at
the end of the sequence, indicating that the wave packets
of both spin components are driven back into the origin
after about 24 µs, and again near 48 µs, as expected from
δ = 2π · 42 kHz.

For applications of the displacement operation, it is of
interest to investigate the effect of imperfect preparation
of the motional state, i.e. an initial thermal excitation.
Fig. 1 (b) shows the contrast signal for a Doppler cooled
ion with an average phonon number n̄ ≈ 20. In order to
accurately describe all features of this data, we develop a
model that includes the fact that the displacement force
also depends non-classically on the motional state. As
a result, the expression for the contrast that we obtain
by a thermal averaging of Eq. 3, includes displacements
αn(t) that depend explicitly on n:

C(t) =
∑
n

p(i)
n |〈n,−αn(t)|n, αn(t)〉|2. (4)

Here, p
(i)
n is the initial thermal phonon distribution, and

the state evolutions, αn(t), are determined by a quantum
dynamical simulation. The resulting average of Eq. 4 is
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FIG. 2. (Phonon distribution dynamics: a) The experimental measurement sequence, see text. b) Measured displacement
parameter versus displacement pulse time obtained from the measured phonon distributions, the solid line is a fit to Eq. 2. c)
Reconstructed phonon distributions from the blue sideband Rabi oscillations. The typical confidence intervals for the are up
to ±0.1 for the displaced states and about -0.05 for the states with small or no displacement.

plotted as the solid line in Fig. 1 (c), and is in very good
agreement with the experimental data. Previously used
models, such as the one in Ref. [8], do not include the
n-dependence of the displacement force, and we see from
the dashed line Fig. 1 (b) that such a model does not
reproduce all features of the data. In particular, the side
peaks next to the revival peaks can only be reproduced
by including the n-dependence. The consideration of the
dependence of the force magnitude on n is of importance
for multi-ion entangling gate operations in the thermal
regime [17, 18], where the thermal dispersion of trajecto-
ries can be among the main sources of infidelity.

The light-force mediated entanglement operation can
be investigated not only in terms of spin coherences, but
also by directly monitoring the motional degree of free-
dom. We drive the displacement dynamics and examine
the resulting motional state with the sequence in the in-
set of Fig. 2 by using the Raman beams in configuration
type (ii), where resonant Rabi oscillations on the blue
motional sideband (bsb) contain information on the mo-
tional state, i.e. the occupation probabilities, pn, of the
Fock states |n〉 [19, 20]. The anti-Jaynes-Cummings like
resonant bsb excitation for a time tp results in a signal

P|↓〉(tp) =
∑
n

pn
2

(
a e−t/τ cos (Ωn,n+1 tp) + 1

)
, (5)

from which we may obtain the pn as the spectral compo-
nents at Rabi frequencies Ωn,n+1 ≈ η

√
n+ 1 Ω0. As

a more precise way to obtain the pn along with the
parameters Ω0, a and the decoherence time τ , we em-
ploy a maximum-likelihood reconstruction by means of
a genetic algorithm. The resulting phonon distributions

for the various displacement pulse times can be fit to
distributions pertaining to a coherent state, pn(α) =

e−|α|
2 |α|2n/n!. The resulting values α(t) are shown in

Fig. 2 (a), where one can clearly observe the periodical
excursion of the wave packet. The measured phonon dis-
tributions in Fig. 2 (b) indicate even more strikingly how
the light force driven motion returns the ion back to the
vibrational ground state near times of 30 µs.

For an ultra-precise determination of the wave packet
dynamics, we employ a wave packet homodyning tech-
nique to map out the dynamics in phase space [9], see
Fig. 3(a). The spin superposition state formed by the
π/2-pulse is affected by the light force from the type (ii)
Raman interaction such that only the | ↓〉 component is
shifted by αe−iδt/2+φ1 while | ↑〉 remains at the origin
of phase space. The Raman type (i) driven π-pulse flips
both spin states, and now the displacement Raman type
(ii) light force acts on that wave packet component which
was left before at α=0. We have chosen the amplitudes
to be equal, but the phase φ2 of the second drive is varied
such that both spin components only partially overlap,
depending on the difference ∆φ = φ2 − φ1. When the
spin echo sequence is concluded by the last π/2-pulse, the
width and the phase of the interference pattern, Fig. 3(b),
allow for determining the magnitude and phase of α. The
upper spin state occupation probability finally reads [9]:

P↑(t) = 1
2

(
1− e−|α|

2(1−cosφ(t))−t/τ cos
(
|α|2 sinφ(t)

))
.

(6)
Here φ(t) = ∆φ + δt + δtw is the harmonic oscilla-

tor phase picked up during the driving(t) and idle(tw)
times in the sequence. We also empirically include
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FIG. 3. (a) Trajectory measurement pulse scheme, see text.
(b) Homodyne wave function beat signal, for a displacement
pulse of length t=60µs along with a fit to Eq. 6. (c) The
resulting phase space coordinates |α|eiφ inferred from fitting
the measured signals P↑(φ) to Eq. 6, along with the theoret-
ical trajectory Eq. 2. The outer dashed circle indicates the
trajectory that would be observed in the case of a spatially
homogeneous force. The circle around the origin indicates
the e−1/2 radius of the Wigner function, more than ten times
larger than our maximum measurement errors in α.

laser-induced decoherence by an exponential decay factor
exp(−t/τ), which is predominantly caused by the fluctu-
ating ac-Stark shift from intensity noise of the circularly
polarized R2 beam. Sets of P↑ were recorded for displace-
ment pulse durations ranging from 0 µs to 76 µs in steps
of 4 µs for varying beat phases ∆φ, and the measurement
data is fit to Eq. 6.

The resulting real and imaginary parts of the displace-
ment α(t) are plotted in Fig. 3(c). We can clearly iden-

tify deviations from the idealized dynamics, as the wave
packet excursion approaches the wavelength of the driv-
ing light wave and the Lamb-Dicke approximation fails.
The phase φ(t) is given by the center of the envelope in
the beat signal. From the time dependency of φ0(t), we
reveal the detuning, δ, with high precision, and it is found
to be 2π·5.237(27) kHz. Thus, we determine the vibra-
tional frequency with a relative accuracy on the order of
10−5. Our homodyne measurement scheme can be seen
as a continuous variable analog of Ramsey spectroscopy.
We reach a very high accuracy, and a comparable perfor-
mance with conventional Ramsey pulses would require
long delay times of tenths of ms.

From the data plotted in Fig. 3(c), one can clearly
recognize the deviation from the circular trajectory pre-
dicted by Eq. 2. This can be accounted for by empirically
introducing an effective return time teff

ret [10], correspond-
ing to an effective detuning δeff 6= δ in the argument of
the sine function in Eq. 2. A fit to the modified Eq. 2
reveals an effective detuning of δeff = 2π·6.63(10) kHz.
The trajectory can be reconstructed from the values for
|α(t)| and φ(t), as it is shown in Fig. 3, up to an unknown
angle of rotation around the origin. This angle is given
by the relative optical phase between the R2 and CC
beams at the ion location, which is varying from shot
to shot. The measurement accuracies along both axes
are much smaller than the dimension of the ground state
wave packet size. This does of course not violate the
Heisenberg uncertainty principle, as the measurement is
statistical and its accuracy relies on the shot-to-shot re-
producibility. The quantum simulation e.g. of quantum
random walks [21–23] or the Dirac equation [24] may ben-
efit from applying our method for a precise observation
of the wave packet dynamics.

In conclusion, we were able to precisely follow the
phase space trajectory of the entangled wave packets
and study in detail decoherence and dephasing effects
of such states. Our experimental investigation of quan-
tum interferences illustrates the sources which naturally
and quite in general limit the observation of quantum
entanglement. We could show that a significant contri-
bution to the wave packet dynamics comes from higher
order (non-homogeneous) terms of the interaction Hamil-
tonian. This leads to more complicated trajectories in
phase space, as seen by the deviation from the predicted
trajectory, and this behavior becomes increasingly im-
portant the larger the displacement is. In the future, we
plan to overcome such limits by applying a temporally
tailored light force which takes into account the system
evolution for creating highly non-classical entangled mat-
ter waves, by modulating the phase and amplitude of the
drive fields. Furthermore, in our experiments we could
show how the initial temperature of the system affects
the light-force drive and describe this by the correct the-
oretical model. This could be of crucial importance for
devising gate schemes which are more robust than the
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