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Abstract
We have calculated the long-range interaction potential curves of highly excited
Rydberg atom pairs for the combinations Li–Li, Na–Na, K–K, Rb–Rb and Cs–
Cs in a perturbative approach. The dispersion C-coefficients are determined for
all symmetries of molecular states that correlate to the ns–ns, np–np and nd–nd
asymptotes. Fitted parameters are given for the scaling of the C-coefficients
as a function of the principal quantum number n for all homonuclear pairs of
alkali metal atoms.

S This article has associated online supplementary data files

1. Introduction

With the development of modern laser cooling and trapping techniques the investigation
of Rydberg atoms has entered a new realm. Gases of Rydberg atoms can be prepared
at densities exceeding 1010 cm−3 and at temperatures in the micro-Kelvin range (‘frozen
Rydberg gas’ [1, 2]). In this regime, long-range van-der-Waals interactions are no longer
masked by thermal motion and even ultralong range Rydberg molecules may be created
[3]. The interaction between Rydberg atoms leads to density-dependent line broadening of
resonances [4, 6], modification of collisional processes [7] and molecular resonances due
to avoided crossings [8]. A spectacular consequence of the long-range Rydberg–Rydberg
interactions is the inhibition of Rydberg excitation in a confined gas of atoms [5, 6]. This
effect, coined ‘dipole blockade’, can be exploited to realize elements for quantum computation
[9] with particular emphasis on mesoscopic ensembles [10]. To make quantitative predictions
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Figure 1. Potential curves for the different symmetries of 70p–70p (solid lines), 70s–70s (dashed
line) and 69d–69d (dotted lines) of lithium. RLR denotes the Le Roy radius.

and to interpret measured data, one needs to obtain accurate values for the long-range
van-der-Waals interaction potentials. Interaction potentials for the np–np asymptotes of
states with low principal quantum numbers have been obtained in a perturbative approach by
Marinescu [11] based on asymptotic interaction terms described by Dalgarno et al [12]. This
approach has been extended to high Rydberg states in [3].

In this paper we present explicit expressions for long-range interaction potentials between
Rydberg atoms in s, p and d angular momentum states. We will focus on homonuclear
dimers where both atoms are in the same state. Rydberg atoms are the ideal candidate as
they have very large polarizabilities leading to pronounced van-der-Waals interaction between
mutually induced dipoles. We evaluate the three leading C-dispersion coefficients of the
asymptotic interaction potential V (R) given as an expansion of the interatomic distance R,
i.e. V (R) � −C6/R

6 − C8/R
8 − C10/R

10 (ns–ns asymptote), −C5/R
5 − C6/R

6 − C8/R
8

(np–np asymptote) and −C5/R
5 − C6/R

6 − C7/R
7 (nd–nd asymptote). Our calculations

are applied to alkali atoms, since most experiments with cold Rydberg gases use these
elements. As an example the potential curves for lithium around n = 70 are plotted in
figure 1. We give the values of the C-coefficients as a function of n in terms of simple fitting
parameters.

The paper is organized as follows: in section 2 we review the basic steps in the calculation
of the interaction potentials following the approach of Marinescu [11]. The unperturbed
wavefunctions for the ns–ns, np–np and nd–nd asymptotes are listed in section 3. Simple
fitting parameters are given for the coefficients for arbitrary symmetries and different alkali
metals. For some cases an additional resonance term is included. Concluding remarks are
made in section 4. A detailed description of the calculation of the radial wavefunctions for
alkali Rydberg atoms can be found in appendix A supplied as online supplementary data
(stacks.iop.org/JPhysB/38/S295). Explicit expressions for the van-der-Waals coefficients are
also supplied in appendix B as online supplementary data (stacks.iop.org/JPhysB/38/S295).
We have also set up a web interface where the reader can calculate interaction potentials for
cases not treated here [13].
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2. Theoretical concepts

2.1. Interaction potential

The interaction energy between two atoms separated by large internuclear distances R can be
expanded as an infinite sum of powers of 1/R [12]

V ( �r1, �r2) = −
∞∑

n=1

Cn

Rn
=

∞∑
�,L=1

V�L( �r1, �r2)

R�+L+1
(1)

with �r1 and �r2 the relative positions of each electron with respect to the atom core, and

V�L( �r1, �r2) = (−1)L4π√
(2� + 1)(2L + 1)

∑
m

√(
� + L

� + m

) (
� + L

L + m

)
r�

1r
L
2 Y�m(r̂1)YL−m(r̂2), (2)

where
(

n

k

) = n!/(k!(n − k)!) is the binomial coefficient and Y�m(r̂) are spherical harmonics.
In order for equations (1) and (2) to be valid, the electron wavefunctions of the two atoms
must not overlap so that exchange and charge overlap interactions can be neglected. This is
the case if R is larger than the Le Roy radius RLR [14]:

RLR = 2(〈n1�1|r2|n1�1〉1/2 + 〈n2�2|r2|n2�2〉1/2), (3)

where 〈n1�1|r2|n1�1〉 are the matrix elements of r2 between the radial wavefunctions belonging
to the valence electron of an alkali atom. Then the energy shift due to the long-range
interaction can be calculated by using perturbation theory, taking the interaction potential (1)
as a perturbation to the Hamiltonian for the noninteracting asymptotic case.

2.2. Symmetries

All geometric symmetry operations of homonuclear diatomic molecules form the point group
D∞h. The symmetry elements that we usually consider are rotations about the internuclear
axis, reflections (σν) through a plane containing the rotation axis and the inversion i of the
spatial coordinates at the centre point between both atom cores [15]. Multiple applications
of these symmetry operations generate the whole point group. The group symmetry gives
the classification of molecular states and some good quantum numbers. The molecular
wavefunctions are naturally expressed in the molecule-fixed coordinate system. The projection
of the total angular momentum M = m1 + m2 onto the molecular axis is conserved as a
consequence of the rotation symmetry. If M �= 0, reflections through a plane containing the
molecular axis change the sign of the projection of the angular momentum on the axis. For
M �= 0, the reflected molecular state has the same energy as the initial one. Consequently,
the (anti)symmetrization |M±〉 = (1 ± σν)/

√
2|M〉 of the M �= 0 states does not break the

degeneracy between the states with the same absolute value of M. Only for �-states (i.e.
M = 0) the (anti)symmetrization |�±〉 = (1±σν)/

√
2|�〉 can give nondegenerate states, and

thus the symmetry property under reflections can be used to distinguish different molecular
potentials. It turns out that the representation of the reflection operator σν in the molecule-
fixed coordinate system is not unique because the position of the symmetry axis of a linear
molecule is determined only by two Euler angles [16]. The absence of off-axis nuclei impedes
a unique definition of the way how the third Euler angle is transformed under the space-fixed
inversion giving an additional phase factor in the representation of σν . This factor is fixed by
an additional convention [16].

In case M = m1 = m2 = 0 for the n�–n� asymptotes there can exist only �+ states,
as it follows from equation (4). The inversion operation i inverts the single electronic state
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relative to the respective atom core and then translates the state to the other atom core so
that the first electron is located near the second atom core and vice versa. As i × i = 1 the
eigenvalues p of i must be either +1 or −1. Molecular states which do not change the sign of
the spatial wavefunction under this symmetry operation are labelled gerade states and those
that change sign are labelled ungerade states. To fulfil the condition that the total electronic
wavefunction is antisymmetric under exchange of both electrons, the spatial part of the total
wavefunction must be symmetric for the antisymmetric singlet spin state, and antisymmetric
for the symmetric triplet spin states.

Defining σ = (−1)S with the total spin S, the proper symmetrized spatial part of the
electronic wavefunction of the homonuclear atom pair has the following asymptotic form:∣∣n1l1m1
n2l2m2

,M; σ ;p
〉 � {[|n1l1m1; �R1〉|n2l2m2; �R2〉 + σp(−1)l1+l2 |n2l2m2; �R1〉|n1l1m1; �R2〉]

+ (−1)l1+l2p[|n1l1m1; �R2〉|n2l2m2; �R1〉
+ σp(−1)l1+l2 |n2l2m2; �R2〉|n1l1m1; �R1〉]}, (4)

where n1 and n2 are the principal quantum number, l1 and l2 the angular momentum quantum
numbers, and m1 and m2 the separate projections of the angular momentum of each atom
onto the molecular axis satisfying the constraint M = m1 + m2. In our notation, the ket
|nilimi;Rk〉|nj ljmj ;Rk′ 〉 means that the first electron is in state n = ni, l = li and m = mi

while the second electron is in state n = nj , l = lj and m = mj . Rk and Rk′ are the positions
of the two nuclei k and k′ (with k, k′ = 1, 2). It is further understood in the following way by
letting the bra 〈 �r1|〈 �r2| act from the left:

〈 �r1|nilimi; �Rk〉〈 �r2|nj ljmj ; �Rk′ 〉 = �nilimi
( �r1 − �Rk)�nj lj mj

( �r2 − �Rk′), (5)

with �r1 and �r2 denoting the absolute position vectors to the first and second electrons and
�nlm (�r) = Rnl(r)Ylm(r̂) being the spatial wavefunction for the electron of an single atom,
where Rnl(r) represents its radial wavefunction and the spherical harmonic Ylm(r̂) its angular
wavefunction. In the appendix, we give a detailed description on the calculation of the radial
wavefunctions for alkali Rydberg atoms.

2.3. Expressions for C-coefficients

In order to obtain the expressions for the C-coefficients, perturbation theory is applied. The
interaction potential V ( �r1, �r2) in equation (1) is taken as a perturbation to the Hamiltonian of
a noninteracting atom pair, H0. The total Hamiltonian H has the following form:

H = H0 + V ( �r1, �r2). (6)

As unperturbed zero order molecular wavefunctions, the asymptotic expressions (4) of the
preceding sections are used. The first-order energy shift for nondegenerate states is obtained
by calculating the expectation values of V defined in equation (1) with respect to the selected
state

�E(1) = 〈n1�1,m1

n2�2,m2,M; σ ;p
∣∣V ∣∣n1�1,m1

n2�2,m2
,M; σ ;p

〉
. (7)

Symmetry considerations show that M, σ and p are good quantum numbers which are not
mixed by Hamiltonian (6) even when looking at higher order perturbation terms. If R > RLR

the electron wavefunctions for each atom do not overlap so that mutual terms between the
first square bracket and the second square bracket of equation (4) are zero. Additionally
perturbation terms evaluated for the first square bracket are the same as for the second square
bracket since the only difference in the states is a permutation of the position vectors of the
two nuclei. As a consequence we can further simplify the expression for the unperturbed
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zero order wavefunction (4) by reducing it to the proper normalized first square bracket. This
greatly simplifies the calculations and therefore equation (7) can be rewritten as

1
2

[〈n1�1m1

n2�2m2

∣∣ + σp(−1)�1+�2
〈n2�2m2

n1�1m1

∣∣]V [∣∣n1�1m1

n2�2m2

〉
+ σp(−1)�1+�2

∣∣n2�2m2

n1�1m1

〉]
, (8)

with M = m1 + m2 and the notation∣∣n1�1m1

n2�2m2

〉
:= |n1�1m1〉|n2�2m2〉. (9)

From equation (8) we can see a twofold degeneracy between singlet gerade and triplet ungerade
states and between singlet ungerade and triplet gerade states as the Hamiltonian (6) is spin
independent and no matrix elements depend separately on σ and p but only on the product
σp. This degeneracy is removed at closer distances since the mutual contributions of the two
square brackets of equation (4) are not negligible and the matrix elements of (6) start to depend
on p and pσ . Under the condition R > RLR we can take equation (8) so that we have to sum
matrix elements of the following form,

〈n′
1�

′
1m

′
1

n′
2�

′
2m

′
2

∣∣V�L|n1�1m1
n2�2m2

〉 = (−1)L4π√
(2� + 1)(2L + 1)

∑
m

√(
� + L

� + m

) (
� + L

L + m

)

×〈n′
1�

′
1|r�|n1�1〉〈n′

2�
′
2|rL|n2�2〉〈�′

1m
′
1|Y�m|�1m1〉〈�′

2m
′
2|YL−m|�2m2〉, (10)

where 〈n′�′|rk|n�〉 is the matrix element of rk

〈n′�′|rk|n�〉 =
∫ ∞

0
Rn′�′(r)rkRn�(r)r

2 dr, (11)

and 〈�′m′|YLM |�m〉 is the matrix element of the spherical harmonics which can be expressed
as [11]

〈�′m′|YLM |�m〉 =
∫

Y ∗
�′m′(r̂)YLM(r̂)Y�m(r̂) d�

= (−1)m
′
√

(2�′ + 1)(2L + 1)(2� + 1)

4π

(
�′ L �

0 0 0

)(
�′ L �

−m′ M m

)
, (12)

where the two terms in brackets are the Wigner 3j symbols defined in [17, 18] and can be
calculated by using the Racah formula [19].

For degenerate zero-order molecular states |M(i)〉, degenerate perturbation theory has to
be applied. In order to find the correct eigenvectors the following matrix has to be diagonalized:


〈M(1)|V |M(1)〉 〈M(1)|V |M(2)〉 . . .

〈M(2)|V |M(1)〉 〈M(2)|V |M(2)〉 . . .

...
...

. . .


 .

The eigenvalues are the first-order energy shifts and the eigenvectors are the zero-order basis
states. We obtain molecular states of the same symmetry and asymptotic energies but with
different interaction potentials.

The energy correction in the second-order perturbation has the form

�E(2) =
∑
φi

〈n1�1m1

n2�2m2
,M; σ ;p

∣∣V |φi〉〈φi |V
∣∣n1�1m1

n2�2m2
,M; σ ;p

〉
EM − EMi

, (13)

where the sum is over a complete orthogonal basis set. Like in the first-order case, we have to
sum matrix elements of the following form,
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Table 1. Unperturbed molecular states for different symmetries according to Wigner and Witmer
[20]. States with equal |M| and symmetry are asymptotically degenerate and are obtained by
degenerate perturbation theory.

|M| Symmetry Representation for the ns–ns asymptote
0 1�+

g , 3�+
u

∣∣n00
n00

〉
|M| Symmetry Representation for the np–np asymptote

2 1�g,
3�u

∣∣n11
n11

〉
1 1
u,

3
g
1√
2

(∣∣n11
n10

〉 − ∣∣n10
n11

〉 )
1 1
g,

3
u
1√
2

(∣∣n11
n10

〉
+

∣∣n10
n11

〉 )
0 1�−

u , 3�−
g

1√
2

(∣∣n11
n1−1

〉 − ∣∣n1−1
n11

〉 )
0 1�+

g , 3�+
u

√
2
3

∣∣n10
n10

〉
+ 1√

6

∣∣n11
n1−1

〉
+ 1√

6

∣∣n1−1
n11

〉
0 1�+

g , 3�+
u − 1√

3

∣∣n10
n10

〉
+ 1√

3

∣∣n11
n1−1

〉
+ 1√

3

∣∣n1−1
n11

〉
|M| Symmetry Representation for the nd–nd asymptote

4 1�g,
3�u

∣∣n22
n22

〉
3 1�u,

3�g
1√
2

(∣∣n22
n21

〉 − ∣∣n21
n22

〉 )
3 1�g,

3�u
1√
2

(∣∣n22
n21

〉
+

∣∣n21
n22

〉 )
2 1�u, 3�g

1√
2

(∣∣n22
n20

〉 − ∣∣n20
n22

〉 )
2 1�g, 3�u

√
8
19

∣∣n22
n20

〉
+

√
8
19

∣∣n20
n22

〉
+

√
3
19

∣∣n21
n21

〉
2 1�g, 3�u −

√
3
38

∣∣n22
n20

〉 − √
3
38

∣∣n20
n22

〉
+ 4√

19

∣∣n21
n21

〉
1 1
u, 3
g

√
1
4 + 7

4
√

55

(∣∣n21
n20

〉 − ∣∣n20
n21

〉 )
+

√
1
4 − 7

4
√

55

(∣∣n22
n2−1

〉 − ∣∣n2−1
n22

〉 )
1 1
u, 3
g

√
1
4 − 7

4
√

55

(−∣∣n21
n20

〉
+

∣∣n20
n21

〉 )
+

√
1
4 + 7

4
√

55

(∣∣n22
n2−1

〉 − ∣∣n2−1
n22

〉 )
1 1
g, 3
u

√
1
4 − 5

4
√

79

(−∣∣n21
n20

〉 − ∣∣n20
n21

〉 )
+

√
1
4 + 5

4
√

79

(∣∣n22
n2−1

〉
+

∣∣n2−1
n22

〉 )
1 1
g, 3
u

√
1
4 + 5

4
√

79

(∣∣n21
n20

〉
+

∣∣n20
n21

〉 )
+

√
1
4 − 5

4
√

79

(∣∣n22
n2−1

〉
+

∣∣n2−1
n22

〉 )
0 1�−

u , 3�−
g

1√
5+

√
5

(∣∣n21
n2−1

〉 − ∣∣n2−1
n21

〉 )
+ 1√

5−√
5

(∣∣n22
n2−2

〉 − ∣∣n2−2
n22

〉 )
0 1�−

u , 3�−
g

1√
5−√

5

(−∣∣n21
n2−1

〉
+

∣∣n2−1
n21

〉 )
+ 1√

5+
√

5

(∣∣n22
n2−2

〉 − ∣∣n2−2
n22

〉 )
0 1�+

g , 3�+
u 0.4121

(∣∣n21
n2−1

〉
+

∣∣n2−1
n21

〉 )
+ 0.5204

(∣∣n22
n2−2

〉
+

∣∣n2−2
n22

〉 )
+ 0.3445

∣∣n20
n20

〉
0 1�+

g , 3�+
u −0.1316

(∣∣n21
n2−1

〉
+

∣∣n2−1
n21

〉 ) − 0.2064
(∣∣n22

n2−2

〉
+

∣∣n2−2
n22

〉 )
+ 0.9382

∣∣n20
n20

〉
0 1�+

g , 3�+
u −0.5593

(∣∣n21
n2−1

〉
+

∣∣n2−1
n21

〉 )
+ 0.4320

(∣∣n22
n2−2

〉
+

∣∣n2−2
n22

〉 )
+ 0.0331

∣∣n20
n20

〉

∑
ni limi

nj lj mj

〈n′
1l

′
1m

′
1

n′
2l

′
2m

′
2

∣∣V ∣∣ni limi

nj lj mj

〉〈nj lj mj

ni limi

∣∣V ∣∣n1l1m1

n2l2m2

〉
(
En1l1 + En2l2

) − (
Enili + Enj lj

)

=
∞∑

l,L,l′,L′=1

1

Rl+L+l′+L′+2

∑
ni limi

nj lj mj

〈n′
1l

′
1m

′
1

n′
2l

′
2m

′
2

∣∣Vl′L′
∣∣ni limi

nj lj mj

〉〈ni limi

nj lj mj

∣∣VlL

∣∣n1l1m1

n2l2m2

〉
(
En1l1 + En2l2

) − (
Enili + Enj lj

) (14)

and the sum is over all possible intermediate states. To simplify the notation, we define the
following matrix:

〈n′
1l

′
1m

′
1

n′
2l

′
2m

′
2

∣∣Wl′L′
lL

∣∣n1l1m1

n2l2m2

〉 =
∑
ni limi

nj lj mj

〈n′
1l

′
1m

′
1

n′
2l

′
2m

′
2

∣∣Vl′L′
∣∣ni limi

nj lj mj

〉〈ni limi

nj lj mj

∣∣VlL

∣∣n1l1m1

n2l2m2

〉
(
En1l1 + En2l2

) − (
Enili + Enj lj

) . (15)
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Table 2. Dispersion coefficients of high Rydberg states for the ns–ns, np–np and nd–nd asymptotes
of Li–Li. The coefficients are scaled by their major dependence on n and the residual dependence
is fitted using three fitting parameters as indicated in the table.

ns–ns C6 = n11(c0 + c1n + c2n
2) C8 = n15(c0 + c1n + c2n

2) C10 = n22(c0 + c1n + c2n
2)

c0 c1 c2 c0 c1 c2 c0 c1 c2

Symmetry (×101) (×10−1) (×10−4) (×101) (×10−2) (×10−4) (×10−3) (×10−5) (×10−7)
1�+

g , 3�+
u −1.594 −1.045 5.690 5.039 −2.935 1.207 −2.501 4.376 −2.189a

np–np C5 = n8(c0 + c1n + c2n
2) C6 = n11(c0 + c1n + c2n

2) C8 = n15(c0 + c1n + c2n
2)

c0 c1 c2 c0 c1 c2 c0 c1 c2

Symmetry (×100) (×10−2) (×10−4) (×100) (×10−1) (×10−3) (×101) (×100) (×10−2)
1�g,

3�u −1.190 −0.539 0.293 −2.806 −1.220 0.623 −0.669 −0.721 0.365
1
u,

3
g Vanishes −2.147 −1.264 0.648 −5.381 −3.450 1.750
1
g,

3
u 4.778 2.128 −1.167 −6.177 −2.193 1.123 3.187 −0.979 0.476b

1�−
u , 3�−

g Vanishes −4.763 −1.692 0.862 −2.789 −1.518 0.768
1�+

g , 3�+
u −7.168 −3.192 1.750 9.326 −1.852 0.932 7.914 −3.963 1.953c

1�+
g , 3�+

u Vanishes −2.105 −1.161 0.599 −0.166 −0.990 0.506

nd–nd C5 = n8(c0 + c1n + c2n
2) C6 = n11(c0 + c1n + c2n

2) C7 = n12(c0 + c1n + c2n
2)

c0 c1 c2 c0 c1 c2 c0 c1 c2

Symmetry (×100) (×10−4) (×10−5) (×102) (×10−1) (×10−3) (×101) (×10−2) (×10−4)
1�g,

3�u −3.011 −11.670 0.710 1.307 0.716 −0.448 0.787 0.382 −0.232
1�u,

3�g −1.506 −5.836 0.355 1.356 0.722 −0.453 −0.197 −0.095 0.058
1�g,

3�u 4.517 17.510 −1.064 2.973 1.707 −1.062 −3.345 −1.622 0.985
1�u,

3�g 3.513 13.620 −0.828 2.719 1.545 −0.962 1.181 0.572 −0.348
1�g,

3�u 3.262 12.650 −0.769 4.229 0.391 −0.298 4.226 2.048 −1.244
1�g,

3�u −1.506 −5.829 0.353 2.043 −0.022 −0.021 0.104 0.050 −0.030
1
u,

3
g −2.112 −8.186 0.498 2.835 −0.685 0.361 −1.675 −0.812 0.493
1
u,

3
g 1.610 6.241 −0.379 2.785 0.858 −0.554 −1.277 −0.619 0.376
1
g,

3
u 2.481 9.618 −0.585 2.464 1.384 −0.863 0.508 0.246 −0.150
1
g,

3
u −1.979 −7.673 0.466 6.314 −2.499 1.390 −0.311 −0.151 0.092
1�−

u , 3�−
g −4.872 −18.890 1.148 4.772 −1.749 0.968 2.848 1.381 −0.838

1�−
u , 3�−

g 1.861 7.214 −0.439 2.476 1.139 −0.717 1.088 0.527 −0.320
1�+

g , 3�+
u −5.728 −22.200 1.350 5.951 −3.028 1.711 0.887 0.430 −0.261

1�+
g , 3�+

u −2.650 −10.270 0.624 3.500 −1.182 0.647 −3.751 −1.818 1.104
1�+

g , 3�+
u 0.850 3.293 −0.200 2.403 0.643 −0.421 −1.071 −0.519 0.315

a The following resonance term has to be added to the polynomial:
C10 = n22(c0 + c1n + c2n

2 + 1.493 × 10−2/(n − 22.91)).
b The following resonance term has to be added to the polynomial:
C8 = n15(c0 + c1n + c2n

2 + 3.377 × 101/(n − 38.50) + 8.523/(n − 44.49)).
c The following resonance term has to be added to the polynomial:
C8 = n15(c0 + c1n + c2n

2 + 1.012 × 102/(n − 38.50) + 2.561 × 101/(n − 44.49)).

The calculational effort is simplified by the following symmetry properties:

〈n′
1�

′
1m

′
1

n′
2�

′
2m

′
2

∣∣V�L

∣∣n1�1m1

n2�2m2

〉 = (−1)�+L
〈n′

2�
′
2m

′
2

n′
1�

′
1m

′
1

∣∣VL�

∣∣n2�2m2

n1�1m1

〉
= 〈n′

1�
′
1−m′

1

n′
2�

′
2−m′

2

∣∣V�L

∣∣n1�1−m1

n2�2−m2

〉
= 〈n1�1m1

n2�2m2

∣∣V�L

∣∣n′
1�

′
1m

′
1

n′
2�

′
2m

′
2

〉
. (16)

Also,
〈n′

1�
′
1m

′
1

n′
2�

′
2m

′
2

∣∣V�L

∣∣n1�1m1

n2�2m2

〉 = 0 if at least one of the following conditions is true:
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Table 3. Dispersion coefficients of high Rydberg states for the ns–ns, np–np and nd–nd asymptotes
of Na–Na. The coefficients are scaled by their major dependence on n and the residual dependence
is fitted using three fitting parameters as indicated in the table.

ns–ns C6 = n11(c0 + c1n + c2n
2) C8 = n15(c0 + c1n + c2n

2) C10 = n22(c0 + c1n + c2n
2)

c0 c1 c2 c0 c1 c2 c0 c1 c2

Symmetry (×100) (×100) (×10−3) (×100) (×100) (×10−3) (×10−2) (×10−4) (×10−6)
1�+

g , 3�+
u 8.586 −1.464 5.820 −5.315 −1.357 6.757 −1.435 3.343 −2.022

np–np C5 = n8(c0 + c1n + c2n
2) C6 = n11(c0 + c1n + c2n

2) C8 = n15(c0 + c1n + c2n
2)

c0 c1 c2 c0 c1 c2 c0 c1 c2

Symmetry (×100) (×10−2) (×10−4) (×100) (×10−2) (×10−4) (×101) (×100) (×10−3)
1�g,

3�u −0.974 −0.895 0.483 −0.014 −1.999 1.053 −1.325 −0.520 2.726
1
u,

3
g Vanishes 1.267 −1.177 0.608 −3.427 −1.510 7.896
1
g,

3
u 3.895 3.582 −1.931 −1.672 −4.771 2.527 −1.556 −0.624 3.261
1�−

u , 3�−
g Vanishes −1.483 −3.796 2.013 −0.987 −0.463 2.416

1�+
g , 3�+

u −5.819 −5.484 2.995 138.900 4.101 −2.313a −1.238 −1.414 7.436
1�+

g , 3�+
u Vanishes 1.090 −1.175 0.617 −2.118 −0.953 5.049

nd–nd C5 = n8(c0 + c1n + c2n
2) C6 = n11(c0 + c1n + c2n

2) C7 = n12(c0 + c1n + c2n
2)

c0 c1 c2 c0 c1 c2 c0 c1 c2

Symmetry (×100) (×10−4) (×10−5) (×101) (×10−1) (×10−3) (×101) (×10−2) (×10−4)
1�g,

3�u −2.993 −14.930 0.888 2.571 0.522 −0.503 0.780 0.509 −0.301
1�u,

3�g −1.496 −7.464 0.444 3.164 0.540 −0.522 −0.195 −0.127 0.075
1�g,

3�u 4.489 22.390 −1.331 4.005 1.193 −1.145 −3.314 −2.162 1.280
1�u,

3�g 3.492 17.410 −1.035 4.062 1.090 −1.047 1.170 0.763 −0.452
1�g,

3�u 3.242 16.170 −0.961 5.527 1.645 −1.573 4.187 2.731 −1.617
1�g,

3�u −1.496 −7.464 0.444 4.369 0.786 −0.756 0.103 0.067 −0.040
1
u,

3
g −2.099 −10.470 0.622 5.349 1.075 −1.031 −1.659 −1.082 0.641
1
u,

3
g 1.600 7.981 −0.475 4.148 1.098 −1.053 −1.265 −0.825 0.489
1
g,

3
u 2.466 12.300 −0.731 3.908 0.987 −0.949 0.503 0.328 −0.194
1
g,

3
u −1.967 −9.812 0.583 8.193 2.376 −2.265 −0.308 −0.201 0.119
1�−

u , 3�−
g −4.842 −24.150 1.436 6.051 1.800 −1.716 2.822 1.841 −1.090

1�−
u , 3�−

g 1.850 9.225 −0.549 4.076 0.985 −0.946 1.078 0.703 −0.416
1�+

g , 3�+
u −5.693 −28.390 1.688 7.510 2.223 −2.117 0.878 0.573 −0.339

1�+
g , 3�+

u −2.633 −13.130 0.781 6.032 1.320 −1.263 −3.716 −2.424 1.435
1�+

g , 3�+
u 0.844 4.211 −0.250 4.065 0.944 −0.906 −1.061 −0.692 0.410

a The following resonance term has to be added to the polynomial:
C6 = n11(c0 + c1n + c2n

2 + 6.736 × 103/(n − 55.49)).

�′
1 + �1 + � = (odd), �′

2 + �2 + L = (odd)

m′
1 + m′

2 �= m1 + m2, (17)

� < |�′
1 − �1|, � > �′

1 + �1, L < |�′
2 − �2|, L > �′

2 + �2.

The symmetry properties of
〈n′

1�
′
1m

′
1

n′
2�

′
2m

′
2

∣∣W�′L′
�L

∣∣n1�1m1

n2�2m2

〉
are

〈n′
1�

′
1m

′
1

n′
2�

′
2m

′
2

∣∣W�′L′
�L

∣∣n1�1m1

n2�2m2

〉 = (−1)�+�′+L+L′ 〈n′
2�

′
2m

′
2

n′
1�

′
1m

′
1

∣∣WL′�′
L�

∣∣n2�2m2

n1�1m1

〉
= 〈n′

1�
′
1−m′

1

n′
2�

′
2−m′

2

∣∣W�′L′
�L

∣∣n1�1−m1

n2�2−m2

〉
= 〈n1�1m1

n2�2m2

∣∣W�L
�′L′

∣∣n′
1�

′
1m

′
1

n′
2�

′
2m

′
2

〉
. (18)
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Table 4. Dispersion coefficients of high Rydberg states for the ns–ns, np–np and nd–nd asymptotes
of K–K. The coefficients are scaled by their major dependence on n and the residual dependence
is fitted using three fitting parameters as indicated in the table.

ns–ns C6 = n11(c0 + c1n + c2n
2) C8 = n15(c0 + c1n + c2n

2) C10 = n22(c0 + c1n + c2n
2)

c0 c1 c2 c0 c1 c2 c0 c1 c2

Symmetry (×100) (×10−1) (×10−3) (×100) (×10−1) (×10−3) (×10−3) (×10−4) (×10−6)
1�+

g , 3�+
u 1.827 −4.352 2.054 2.955 3.950 −2.016 −9.594 2.115 −1.234

np–np C5 = n8(c0 + c1n + c2n
2) C6 = n11(c0 + c1n + c2n

2) C8 = n15(c0 + c1n + c2n
2)

c0 c1 c2 c0 c1 c2 c0 c1 c2

Symmetry (×100) (×10−2) (×10−4) (×101) (×10−1) (×10−3) (×101) (×100) (×10−2)
1�g,

3�u −0.571 −1.508 0.794 −0.012 −3.592 1.680 0.610 1.704 −0.811
1
u,

3
g Vanishes 0.015 −7.296 3.388 1.950 −0.358 0.139
1
g,

3
u 2.284 6.031 −3.177 −0.056 −1.910 0.923 0.716 3.082 −1.456
1�−

u , 3�−
g Vanishes −0.047 −0.900 0.447 1.165 0.662 −0.342

1�+
g , 3�+

u −3.426 −9.046 4.766 2.698 −4.285 2.154 6.016 −5.126 2.227
1�+

g , 3�+
u Vanishes 0.012 −6.510 3.024 1.509 0.763 −0.396

nd–nd C5 = n8(c0 + c1n + c2n
2) C6 = n11(c0 + c1n + c2n

2) C7 = n12(c0 + c1n + c2n
2)

c0 c1 c2 c0 c1 c2 c0 c1 c2

Symmetry (×100) (×10−3) (×10−5) (×101) (×10−1) (×10−4) (×101) (×10−1) (×10−4)
1�g,

3�u −2.645 −7.505 4.154 −0.381 −0.423 2.301 0.646 0.279 −1.537
1�u,

3�g −1.322 −3.753 2.077 −0.628 −0.643 3.497 −0.162 −0.070 0.384
1�g,

3�u 3.967 11.260 −6.231 −0.004 −0.207 1.115 −2.747 −1.187 6.531
1�u,

3�g 3.086 8.756 −4.846 −0.190 −0.353 1.911 0.970 0.419 −2.305
1�g,

3�u 2.865 8.131 −4.500 0.412 −0.396 2.206 3.471 1.500 −8.249
1�g,

3�u −1.322 −3.753 2.077 −0.574 −0.901 4.933 0.085 0.037 −0.202
1
u,

3
g −1.855 −5.264 2.913 −0.349 −1.014 5.584 −1.376 −0.594 3.270
1
u,

3
g 1.414 4.013 −2.221 −0.069 −0.417 2.285 −1.049 −0.453 2.493
1
g,

3
u 2.179 6.184 −3.423 −0.277 −0.413 2.241 0.417 0.180 −0.992
1
g,

3
u −1.739 −4.934 2.731 1.152 −0.827 4.674 −0.256 −0.110 0.608
1�−

u , 3�−
g −4.280 −12.140 6.721 0.914 −0.556 3.154 2.339 1.011 −5.560

1�−
u , 3�−

g 1.635 4.638 −2.567 −0.309 −0.497 2.707 0.893 0.386 −2.124
1�+

g , 3�+
u −5.031 −14.280 7.902 1.297 −0.750 4.267 0.728 0.315 −1.731

1�+
g , 3�+

u −2.327 −6.604 3.655 −0.104 −1.048 5.793 −3.081 −1.331 7.323
1�+

g , 3�+
u 0.746 2.117 −1.172 −0.275 −0.566 3.096 −0.880 −0.380 2.091

Again,
〈n′

1�
′
1m

′
1

n′
2�

′
2m

′
2

∣∣W�′L′
�L

∣∣n1�1m1

n2�2m2

〉 = 0 if at least one of the following conditions is true:

�1 + �′
1 + � + �′ = (odd), �2 + �′

2 + L + L′ = (odd)

m′
1 + m′

2 �= m1 + m2

|�′
1 − �′| > �1 + �, |�1 − �

∣∣ > �′
1 + �′

|�′
2 − L′| > �2 + L, |�2 − L| > �′

2 + L′.

(19)

3. Evaluation of potentials

In what follows, the interaction potentials for Rydberg states correlated to the ns–ns, np–np
and nd–nd asymptotes of alkali atoms are obtained by taking equation (1) as a perturbation.
In our approach, the fine structure is neglected, and we choose the centre of gravity as the
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Table 5. Dispersion coefficients of high Rydberg states for the ns–ns, np–np and nd–nd asymptotes
of Rb–Rb. The coefficients are scaled by their major dependence on n and the residual dependence
is fitted using three fitting parameters as indicated in the table. All nd–nd C6 coefficients show
resonances. They have to be differently calculated as indicated in the table with n0 = 35.14.

ns–ns C6 = n11(c0 + c1n + c2n
2) C8 = n15(c0 + c1n + c2n

2) C10 = n22(c0 + c1n + c2n
2)

c0 c1 c2 c0 c1 c2 c0 c1 c2

Symmetry (×101) (×10−1) (×10−3) (×100) (×10−1) (×10−3) (×10−4) (×10−6) (×10−9)
1�+

g , 3�+
u 1.197 −8.486 3.385 −7.303 8.068 −3.792 −5.546 5.242 −3.154

np–np C5 = n8(c0 + c1n + c2n
2) C6 = n11(c0 + c1n + c2n

2) C8 = n15(c0 + c1n + c2n
2)

c0 c1 c2 c0 c1 c2 c0 c1 c2

Symmetry (×100) (×10−2) (×10−2) (×10−1) (×10−1) (×10−4) (×101) (×100) (×10−2)
1�g,

3�u −0.231 −1.976 0.010 3.620 −0.579 2.778 1.199 −0.624 0.250
1
u,

3
g Vanishes 6.070 −1.273 6.157 1.173 0.010 −0.069
1
g,

3
u 0.922 7.903 −0.041 3.575 −0.183 0.816 2.973 −2.281 0.990
1�−

u , 3�−
g Vanishes 2.373 −0.034 0.107 2.176 −1.711 0.747

1�+
g , 3�+

u −1.383 −11.850 0.061 43.010 3.575 −1.714a 5.359 −3.984 1.729
1�+

g , 3�+
u Vanishes 5.461 −1.133 5.476 0.712 0.244 −0.162

nd–nd C5 = n8(c0 + c1n + c2n
2) C6 = n11

(
c0 + c1n + c−1

n−n0

)
C7 = n11(c0 + c1n + c2n

2)

c0 c1 c2 c0 c1 c−1 c0 c1 c2

Symmetry (×100) (×10−2) (×10−4) (×101) (×10−2) (×100) (×101) (×10−1) (×10−1)
1�g,

3�u −1.445 −2.731 1.477 2.603 1.454 66.310 0.235 0.920 −0.487
1�u,

3�g −0.722 −1.366 0.738 4.124 2.475 105.000 −0.059 −0.230 0.122
1�g,

3�u 2.167 4.097 −2.215 0.643 −0.273 16.570 −0.997 −3.911 2.069
1�u,

3�g 1.686 3.186 −1.723 1.730 0.525 44.200 0.352 1.380 −0.730
1�g,

3�u 1.565 2.959 −1.600 0.571 −0.584 14.650 1.260 4.940 −2.614
1�g,

3�u −0.722 −1.366 0.738 5.157 3.032 131.200 0.031 0.121 −0.064
1
u,

3
g −1.013 −1.915 1.036 5.157 2.864 131.200 −0.499 −1.958 1.036
1
u,

3
g 0.773 1.460 −0.789 1.789 0.563 45.640 −0.381 −1.493 0.790
1
g,

3
u 1.191 2.250 −1.217 2.217 0.916 56.570 0.151 0.594 −0.314
1
g,

3
u −0.950 −1.795 0.971 0.907 −0.779 22.990 −0.093 −0.364 0.193
1�−

u , 3�−
g −2.338 −4.419 2.389 0.274 −0.870 6.928 0.849 3.330 −1.762

1�−
u , 3�−

g 0.893 1.688 −0.913 2.676 1.229 68.210 0.324 1.272 −0.673
1�+

g , 3�+
u −2.748 −5.195 2.809 0.298 −1.100 7.455 0.264 1.037 −0.548

1�+
g , 3�+

u −1.271 −2.403 1.299 4.755 2.449 120.900 −1.118 −4.386 2.320
1�+

g , 3�+
u 0.408 0.771 −0.417 2.942 1.436 74.940 −0.319 −1.252 0.663

a The following resonance term has to be added to the polynomial:
C6 = n11(c0 + c1n + c2n

2 + 6.931 × 102/(n − 29.5)).

energy of n� states. The np–np case has already been extensively discussed and analysed in
[3, 11]. The nd–nd symmetries have also a C7 coefficient arising from the first order-correction
to the energy. The determination of the C5 and C7 coefficients, as well as the higher order
corrections, is facing additional difficulties from the asymptotic degenerate states for which
the C7 does not vanish. In these cases, even the zeroth-order wavefunctions depend on the
internuclear distance R. In order to get C5 and C7 for those states, one needs to diagonalize
the matrix of the first-order correction to the energy and then expand its eigenvalues in powers
of 1/R. The matrices are of the following type,

R−5(M0 + R−2M1), (20)

where equation (20) represents the right-hand side of equation (1) in the set of the degenerate
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Table 6. Dispersion coefficients of high Rydberg states for the ns–ns, np–np and nd–nd asymptotes
of Cs–Cs. The coefficients are scaled by their major dependence on n and the residual dependence
is fitted using three fitting parameters as indicated in the table.

ns–ns C6 = n11(c0 + c1n + c2n
2) C8 = n15(c0 + c1n + c2n

2) C10 = n22(c0 + c1n + c2n
2)

c0 c1 c2 c0 c1 c2 c0 c1 c2

Symmetry (×101) (×10−1) (×10−3) (×101) (×100) (×10−2) (×10−3) (×10−5) (×10−7)
1�+

g , 3�+
u 1.064 −6.249 2.330 −3.019 3.777 −1.581 3.190 −5.920 3.022

np–np C5 = n8(c0 + c1n + c2n
2) C6 = n11(c0 + c1n + c2n

2) C8 = n15(c0 + c1n + c2n
2)

c0 c1 c2 c0 c1 c2 c0 c1 c2

Symmetry (×100) (×10−2) (×10−4) (×10−1) (×10−1) (×10−3) (×101) (×100) (×10−2)
1�g,

3�u −0.070 −1.973 0.940 −2.886 0.571 −0.268 −0.774 1.044 −0.445
1
u,

3
g Vanishes −0.738 0.346 −0.168 −4.270 4.239 −1.793
1
g,

3
u 0.279 7.893 −3.759 −8.121 1.349 −0.625 0.402 −0.093 0.031
1�−

u , 3�−
g Vanishes −6.577 1.072 −0.496 0.031 0.088 −0.042

1�+
g , 3�+

u −0.418 −11.840 5.638 133.400 6.850 −3.074a −1.569 1.747 −0.765
1�+

g , 3�+
u Vanishes −0.839 0.337 −0.163 −2.671 3.045 −1.289

nd–nd C5 = n8(c0 + c1n + c2n
2) C6 = n11(c0 + c1n + c2n

2) C7 = n12(c0 + c1n + c2n
2)

c0 c1 c2 c0 c1 c2 c0 c1 c2

Symmetry (×100) (×10−2) (×10−4) (×100) (×10−1) (×10−3) (×100) (×10−1) (×10−3)
1�g,

3�u −0.710 −3.483 1.725 0.712 −0.257 0.108 0.271 1.062 −0.504
1�u,

3�g −0.355 −1.742 0.863 1.003 −0.151 0.053 −0.068 −0.266 0.126
1�g,

3�u 1.065 5.225 −2.588 0.641 −1.013 0.460 −1.151 −4.515 2.143
1�u,

3�g 0.828 4.064 −2.013 0.798 −0.834 0.374 0.406 1.593 −0.756
1�g,

3�u 0.769 3.774 −1.869 0.569 −1.834 0.845 1.454 5.703 −2.707
1�g,

3�u −0.355 −1.742 0.863 1.161 −0.515 0.221 0.036 0.140 −0.066
1
u,

3
g −0.498 −2.443 1.210 1.147 −0.999 0.448 −0.576 −2.260 1.073
1
u,

3
g 0.380 1.862 −0.922 0.721 −0.982 0.445 −0.439 −1.723 0.818
1
g,

3
u 0.585 2.870 −1.422 0.843 −0.704 0.313 0.175 0.686 −0.325
1
g,

3
u −0.467 −2.290 1.134 0.439 −3.284 1.527 −0.107 −0.420 0.199
1�−

u , 3�−
g −1.149 −5.636 2.792 0.274 −2.491 1.159 0.980 3.844 −1.825

1�−
u , 3�−

g 0.439 2.153 −1.066 0.896 −0.715 0.318 0.374 1.468 −0.697
1�+

g , 3�+
u −1.350 −6.626 3.282 0.217 −3.262 1.521 0.305 1.197 −0.568

1�+
g , 3�+

u −0.625 −3.065 1.518 1.068 −1.428 0.650 −1.290 −5.063 2.403
1�+

g , 3�+
u 0.200 0.983 −0.487 0.872 −0.747 0.334 −0.368 −1.446 0.686

asymptotic states. The C5 and C7 in these cases are

C5 = 〈ni |M0|ni〉, (21)

C7 = 〈ni |M1|ni〉,
where |ni〉 are the eigenstates of M0. Note that the R−5 and R−7 interaction terms with the
C5 and C7 given by (21) might be significantly less accurate than the eigenvalues of (20)
themselves at shorter distances when R reaches the Le Roy radius RLR .

Following the classification of molecular states by Wigner and Witmer [20], the molecular
states are denoted by capital Greek letters (�,
,�,�, . . . for M = 0, 1, 2, 3, . . .). 1M and
3M represent singlet and triplet states respectively and Mg and Mu represent gerade and
ungerade states respectively. The values for the C-coefficients are extracted by collecting
terms with equal power of R. The explicit expressions of the perturbation terms are quite
lengthy and are supplied as online supplementary data (stacks.iop.org/JPhysB/38/S295). Here
we give a list of the unperturbed molecular states in table 1 for the ns–ns, np–np and nd–nd



S306 K Singer et al

asymptotes. The first column denotes the projection M of the total angular momentum on
the internuclear axis. In the second column we give the molecular symmetry, and in the next
column, the state itself.

In tables 2–6, we give the C6, C8 and C10 coefficients for the ns–ns asymptotes, the
C5, C6 and C8 coefficients for the np–np asymptotes and the C5, C6 and C7 coefficients for
the nd–nd asymptotes of high Rydberg states of all alkali atoms. The C5, C6, C7, C8 and
C10 coefficients are scaled by their major dependence on n which is n8, n11, n12, n15 and n22,
respectively. The residual dependence on n is fitted for 30 � n � 95 to a polynomial of the
form a + bn + cn2 + · · ·, and the fitting parameters are presented in tables 2–6. A specific
example is given in figure 1 where the calculated interaction potentials for Li–Li pairs near
the n ∼ 70 manifold are shown.

In a few cases, for some symmetries and some n, the two-atom levels are very close to each
other and the second-order correction (13) gives large values. For these cases perturbation
theory fails. We have added a resonance term of the form c−1/(n − n0) to the polynomial in
order to simplify the presentation of the data away from the resonance by the fitted polynomial.
To check the validity of the potentials at a certain interatomic distance R we have calculated
the Le Roy radius RLR for different effective quantum numbers and different alkali atoms.
For all alkali atoms, the Le Roy radius RLR is approximately RLR ∼ 5n2.

4. Conclusion

In this paper, we have calculated the long-range potential curves between Rydberg atoms
correlated to ns–ns, np–np and nd–nd asymptotes, for all alkali atoms. We have given
expressions for the dispersion coefficients as well as fitting parameters for the dependence of
the C-coefficients on the principal quantum number. We have tested the numerical accuracy
of our radial wavefunctions with respect to their truncation at small distance by comparing
them with wavefunctions obtained using model potentials where the core is taken into account
(see appendix A supplied as online supplementary data (stacks.iop.org/JPhysB/38/S295)). We
also tested the convergence of our results as a function of the number of intermediate states
(n′) included, and found that convergence to the five significant digit was attained by taking
n−20 � n′ � n+ 20 (n being the principal quantum number of the state under consideration).

The results presented here do not take into account corrections due to spin–orbit coupling
(fine structure). These effects appear as differences in the quantum defect of p1/2 and p3/2, or
d3/2 and d5/2, and may play a role especially for Rb and Cs. For these two species, we used
the centre-of-gravity for the energy level entering the second-order perturbation expressions,
and the quantum defect of j = � − 1/2 for the radial matrix elements of the various multipole
moments (which are not very sensitive to the j component used). As an estimate of the error
introduced by neglecting the spin–orbit interaction we performed calculations replacing the
centre-of-gravity energy by the energy of one of the fine structure components. At n = 60
for rubidium some C6 dispersion coefficients obtained by second-order perturbation theory
deviate by a factor of 3–5. It should also be noted that the resonance is shifted from n = 35
to n = 38. We intend to tackle this issue in a future work.

We have found that in most cases, the dispersion coefficients follow simple scaling
behaviours, the variation from those being well fitted by simple polynomials. However, in a
few instances, we found divergent coefficients near some accidental degeneracies of energy
levels. This is especially noticeable for the C6 coefficient of Rb near n = 35. Even though in
those cases perturbation theory fails we have added a resonance term to simplify our fitting
procedure for coefficients far from those resonances where our calculation is valid. In future
work, we intent to take into account other coupling schemes, such as Hund’s case (c) instead
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of (a), and include other interactions, such as exchange energies for separations smaller than
the Le Roy radius, or retardation effects at very large separations.
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Lett. 93 063001
[6] Singer K, Reetz-Lamour M, Amthor T, Marcassa L G and Weidemüller M 2004 Phys. Rev. Lett. 93 163001
[7] Oliveira A L, Mancini M W, Bagnato V S and Marcassa L G 2003 Phys. Rev. Lett. 30 143002
[8] Farooqi S M et al 2003 Phys. Rev. Lett. 91 183002
[9] Jaksch D, Cirac J I, Zoller P, Rolston S L, Côté and Lukin M D 2000 Phys. Rev. Lett. 85 2208
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