Torsion, Localization and Applications

Viktor Levandovskyy (joint with Johannes Hoffmann (Aachen, Saarbrücken))

University of Kassel, Germany
21.06.2021, Kassel

Contents

(1) Appetizer
(2) Classical localization of commutative domains
(3) Ore localization of non-commutative domains
(4) Left saturation closure: a canonical form of left Ore sets
(5) Left saturation closure: the local closure problem
(6) Constructive arithmetics in OLGAs

Contents

(1) Appetizer

(2) Classical localization of commutative domains
(3) Ore localization of non-commutative domains

44 Left saturation closure: a canonical form of left Ore sets
(5) Left saturation closure: the local closure problem
6) Constructive arithmetics in OLGAs

The system of $O D$ equations $\left\{\begin{array}{l}\ddot{x}+\ell_{1} \ddot{\theta}_{1}+g \theta_{1}=0 \\ \ddot{x}+\ell_{2} \ddot{\theta}_{2}+g \theta_{2}=0\end{array}\right.$
is rewritten in the new variables $x_{1}=x+\ell_{1} \theta_{1}, x_{2}=x+\ell_{2} \theta_{2}, u=x$ in the matrix form.

$$
\left[\begin{array}{ccc}
d_{t}^{2}+\frac{g}{\ell_{1}} & 0 & -\frac{g}{\ell_{1}} \\
0 & d_{t}^{2}+\frac{g}{\ell_{2}} & -\frac{g}{\ell_{2}}
\end{array}\right] \cdot\left[\begin{array}{c}
x_{1} \\
x_{2} \\
u
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Notably: this system does not depend on the masses m_{i} !

Since g is the gravitarional constant and ℓ_{1}, ℓ_{2} are fixed, we treat them as parameters, i.e. our ground field is $\mathbb{Q}\left(g, \ell_{1}, \ell_{2}\right)$.

Since nothing depends on time t, we have a system of ODEs with constant coefficients, rewritten as a matrix over the algebra of operators $\mathbb{Q}\left(g, \ell_{1}, \ell_{2}\right)\left[d_{t}\right]$.

Computations show that the system is (strongly) controllable; and there's the left inverse matrix of the so-called image representation of the system:

$$
\left[\begin{array}{lll}
\frac{\ell_{1}}{g^{2}\left(\ell_{1}-\ell_{2}\right)} & -\frac{\ell_{2}}{g^{2}\left(\ell_{1}-\ell_{2}\right)} & 0
\end{array}\right]
$$

We see that the result is valid, provided $\ell_{1} \neq \ell_{2}$!

Let us rerun the computation for the case $\ell_{1}=\ell_{2}=: \ell$!
Over system, written as a matrix over the algebra of operators $\mathbb{Q}(g, \ell)\left[d_{t}\right]$.

$$
\left[\begin{array}{ccc}
d_{t}^{2}+\frac{g}{\ell} & 0 & -\frac{g}{\ell} \\
0 & d_{t}^{2}+\frac{g}{\ell} & -\frac{g}{\ell}
\end{array}\right]
$$

is not controllable anymore: there is a nonzero torsion submodule!
It is annihilated by the ideal $\left\langle\ell d_{t}^{2}+g\right\rangle$ meaning there are autonomous elements like the difference $x_{1}-x_{2}$ of the positions of the pendula (relative to the bar).

Recall some results from Algebra

Let R be a ring (associative, with 1).

- A free module R^{m} : set of (column) vectors of length m with entries from $R v=\left[r_{1}, \ldots, r_{m}\right]^{T}=\sum r_{i} e_{i}$, where $\left\{e_{i}\right\}$ form a basis of R analogy with vector spaces: R^{m} is closed under addition and under the multiplication by "scalar" elements from R.
- A submodule of R^{m} is an analogue to the subspace: if it is generated by the finite set of vectors; put them into a matrix U.
Pass to the factor-module $M=R^{m} / U$, which is finitely generated by $\left[e_{1}\right], \ldots,\left[e_{m}\right]$ with $[e]=e+U$.

If $R=K$ is a field, we are back in the course of linear algebra
Every nonzero submodule is free; every nonzero factor-module is free.

Over a general ring R :
Free \Rightarrow stably free \Rightarrow projective \Rightarrow flat \Rightarrow torsion-free.

The first appearance of torsion
Let R be a PID (principal ideal domain) like \mathbb{Z} or $K[x]$: there are no zero-divisors except 0 .
Main Theorem on finitely generated modules over PID
$\exists k \in \mathbb{N}_{0}, \exists t \in \mathbb{N}_{0} \quad \exists a_{1}, \ldots, a_{k} \neq 0$ such that $a_{1}\left|a_{2}\right| \ldots \mid a_{k}$

$$
\begin{aligned}
& \text { Let } D:=\left[\begin{array}{ccc}
a_{1} & \cdots & 0 \\
\vdots & \cdots & \vdots \\
0 & \cdots & a_{k}
\end{array}\right] \text {, then } M \cong R^{k} / D \oplus R^{t} \text { and } t(M):=R^{k} / D .
\end{aligned}
$$

For a domain $R, m \in M$ is a torsion element, if $\exists 0 \neq r \in R: r \cdot m=0_{M}$. The torsion submodule $t(M)$ of M consists of torsion elements.

Dichotomy

M is called torsion module, if $t(M)=M$, and torsion-free module, if $t(M)=\{0\}$. (In System theory reflected by controllable/autonomous.)

Contents

(1) Appetizer
(2) Classical localization of commutative domains
(3) Ore localization of non-commutative domains

4 Left saturation closure: a canonical form of left Ore sets
(5) Left saturation closure: the local closure problem
6) Constructive arithmetics in OLGAs

Localization of commutative domains

Convention

From now on: let R be a domain (no zero-divisors).

Definition

A subset S of R is called a multiplicative set if

- $0 \notin S$,
- $1 \in S$ and
- S is multiplicatively closed, that is, $\forall s, t \in S: s \cdot t \in S$.

Notation: $[S]:=$ the smallest multiplicative superset of S.

Construction

Theorem (Classical)
Let S be a multiplicative set in a commutative domain R. Then

$$
S^{-1} R:=\left\{\left.\frac{r}{s} \right\rvert\, s \in S, r \in R\right\}=\left\{s^{-1} r \mid s \in S, r \in R\right\}
$$

is a commutative domain, where

- $\frac{r_{1}}{s_{1}}=\frac{r_{2}}{s_{2}}$ if and only if $s_{1} r_{2}=s_{2} r_{1}$,
- $\frac{r_{1}}{s_{1}}+\frac{r_{2}}{s_{2}}=\frac{s_{2} r_{1}+s_{1} r_{2}}{s_{1} s_{2}}$,
- $\frac{r_{1}}{s_{1}} \cdot \frac{r_{2}}{s_{2}}=\frac{r_{1} r_{2}}{s_{1} s_{2}}$.

Example

$R=\mathbb{Z}, S=\mathbb{Z} \backslash\{0\} \quad \Rightarrow \quad S^{-1} R=\left\{\left.\frac{r}{s} \right\rvert\, r, s \in \mathbb{Z}, s \neq 0\right\}=\mathbb{Q}$

Commutative examples I

Let R be a commutative domain and K a field.

Quotient fields

$S=R \backslash\{0\} \Rightarrow \operatorname{Quot}(R):=S^{-1} R=\left\{\left.\frac{r}{s} \right\rvert\, r, s \in R, s \neq 0\right\}$ is a field.

- Quot $(\mathbb{Z})=\mathbb{Q}$
- Quot $(K[x])=K(x)$
- Quot(\{holomorphic functions\}) $=$ \{meromorphic functions $\}$

Origin of the name: algebraic geometry
Let $a \in K^{n}$ and $\mathfrak{m}:=\left\langle x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right\rangle \subseteq K\left[x_{1}, \ldots, x_{n}\right]=: P$. Then $S:=R \backslash \mathfrak{m}$ is a multiplicative set in P and $P_{\mathfrak{m}}:=S^{-1} P$ describes the "local" behavior near a.

Laurent polynomials
For $[x]=\left\{x^{k} \mid k \in \mathbb{N}_{0}\right\}: \quad[x]^{-1} K[x]=K\left[x, x^{-1}\right] \subsetneq K(x)$

Commutative examples II

$$
\begin{aligned}
R_{\mathfrak{p}}:= & \left\{\left.\frac{p}{q} \right\rvert\, p, q \in R, q \notin \mathfrak{p}\right\}, \mathfrak{p} \subseteq R \text { prime ideal } \\
& \Rightarrow R_{\mathfrak{p}}=S^{-1} R, \text { where } S=R \backslash \mathfrak{p}
\end{aligned}
$$

Example: $K[x]_{\langle x\rangle}=\left\{\left.\frac{f}{g} \in K(x) \right\rvert\, g(0) \neq 0\right\}$

$$
\begin{gathered}
\text { Quot }(R):=\left\{\left.\frac{p}{q} \right\rvert\, p, q \in R, q \neq 0\right\} \\
\Rightarrow \text { Quot }(R)=S^{-1} R, \\
\text { where } S=R \backslash\{0\} \\
\text { Example: } \operatorname{Quot}(K[x])=K(x)
\end{gathered}
$$

$$
\begin{aligned}
R_{f}:= & \left\{\left.\frac{p}{f^{k}} \right\rvert\, p \in R, k \in \mathbb{N}_{0}\right\}, f \in R \backslash\{0\} \\
& \Rightarrow R_{f}=S^{-1} R, \text { where } S=[f] \\
& \text { Example: } K[x]_{x}=K\left[x, x^{-1}\right]
\end{aligned}
$$

Basic properties

Let S be a multiplicative set in a commutative domain R.

Lemma

(a) $1_{S_{-1} R}=\frac{1}{1}=\frac{s}{s}$ for all $s \in S$.
(b) $0_{S^{-1} R}=\frac{0}{1}=\frac{0}{s}$ for all $s \in S$.
(c) $\frac{r}{s}=1$ if and only if $s=r$.
(d) $\frac{r}{s}=0$ if and only if $r=0$.
(e) $\frac{r}{s}=\frac{t r}{t s}$ for all $t \in R$ such that $t s \in S$.
(f) $-\frac{r}{s}=\frac{-r}{s}$.
(g) $R \rightarrow S^{-1} R, r \mapsto \frac{r}{1}$ is an injective homomorphism.
(h) $S^{-1} R$ is a domain.
(i) Every ideal in $S^{-1} R$ is the extension of an ideal in R.
(j) If R is Noetherian/Artinian/PID, so is $S^{-1} R$.
(k) $\left\{\right.$ prime ideals in $\left.S^{-1} R\right\} \stackrel{1: 1}{\longleftrightarrow}$ \{prime ideals in R which do not meet $\left.S\right\}$

The hierarchy of Ore localizations: localization of. . .

Contents

(1) Appetizer
(2) Classical localization of commutative domains
(3) Ore localization of non-commutative domains

4 Left saturation closure: a canonical form of left Ore sets
(5) Left saturation closure: the local closure problem
6) Constructive arithmetics in OLGAs

Axiomatic definition of left Ore localization

Definition

Let S be a multiplicative set in R. A ring R_{S} and an injective homomorphism $\varphi: R \rightarrow R_{S}$ are a left Ore localization of R at S if:
(1) For all $s \in S, \varphi(s)$ is invertible in $S^{-1} R$.
(2) For all $x \in R_{S}$, there exist $s \in S$ and $r \in R$ such that $x=\varphi(s)^{-1} \varphi(r)$.

Theorem
 Let S be a multiplicative set in R. If a left Ore localization of R at S exists, then it is unique up to isomorphism.

"Working" with non-commutative fractions

Let S be a multiplicative set in R such that the left Ore localization of R at S exists. For brevity we write a "left fraction" $\varphi(s)^{-1} \varphi(r)$ simply as $s^{-1} r$.

Multiplication

Take two left fractions $s_{1}^{-1} r_{1}, s_{2}^{-1} r_{2} \in R$. Their product $s_{1}^{-1} r_{1} \cdot s_{2}^{-1} r_{2}$ must again be writable as a left fraction, thus there exist $\tilde{s} \in S$ and $\tilde{r} \in R$ such that

$$
r_{1} s_{2}^{-1}=\tilde{s}^{-1} \tilde{r} \quad \Leftrightarrow \quad \tilde{s} r_{1}=\tilde{r} s_{2}
$$

then we get

$$
s_{1}^{-1} r_{1} s_{2}^{-1} r_{2}=s_{1}^{-1} \tilde{s}^{-1} \tilde{r} r_{2}=\left(\tilde{s} s_{1}\right)^{-1} \tilde{r} r_{2} .
$$

Corollary
If the left Ore localization of R at S exists, then S is a left Ore set in R.

Left Ore sets

Definition

Let S be a subset of R.

- S satisfies the left Ore condition in R if

$$
\forall s \in S, r \in R \quad \exists \tilde{s} \in S, \tilde{r} \in R: \quad \tilde{s} r=\tilde{r} s .
$$

Equivalently: $\forall s \in S, r \in R: S r \cap R s \neq \emptyset$.

- left Ore set $:=$ multiplicative set + left Ore condition

Consequences of the left Ore condition on S in R

- Any right fraction $r s^{-1}$ can be rewritten as a left fraction $\tilde{s}^{-1} \tilde{r}$.
- Finitely many elements have a common left multiple in S.

Construction of the left Ore localization I

Theorem (Ore 1931)

Let S be a left Ore set in R.
(a) The following is an equivalence relation on $S \times R$:

$$
\left(s_{1}, r_{1}\right) \sim\left(s_{2}, r_{2}\right) \Leftrightarrow \exists \tilde{s} \in S, \tilde{r} \in R: \tilde{s} s_{2}=\tilde{r} s_{1} \text { and } \tilde{s} r_{2}=\tilde{r} r_{1}
$$

Write the class of (s, r) wrt. to \sim again as (s, r) or as $s^{-1} r$.
(b) $S^{-1} R:=((S \times R) / \sim,+, \cdot)$ is a ring with the operations

$$
+: S^{-1} R \times S^{-1} R \rightarrow S^{-1} R,\left(s_{1}, r_{1}\right)+\left(s_{2}, r_{2}\right):=\left(\tilde{s} s_{1}, \tilde{s} r_{1}+\tilde{r} r_{2}\right),
$$

where $\tilde{s} \in S$ and $\tilde{r} \in R$ satisfy $\tilde{s} s_{1}=\tilde{r} s_{2}$, and

$$
\cdot S^{-1} R \times S^{-1} R \rightarrow S^{-1} R,\left(s_{1}, r_{1}\right) \cdot\left(s_{2}, r_{2}\right):=\left(\tilde{s} s_{1}, \tilde{r} r_{2}\right),
$$

where $\tilde{s} \in S$ and $\tilde{r} \in R$ satisfy $\tilde{s}_{1}=\tilde{r} s_{2}$.

Construction of the left Ore localization II

Definition

The map

$$
\rho_{S, R}: R \rightarrow S^{-1} R, \quad r \mapsto(1, r),
$$

is called structural homomorphism or localization map of $S^{-1} R$.

Lemma

The pair $\left(S^{-1} R, \rho_{S, R}\right)$ is the left Ore localization of R at S.

Corollary

Let S be a multiplicative subset of R. The following are equivalent:
(1) The left Ore localization of R at S exists.
(2) S is a left Ore set in R.

Basic properties

Lemma

(a) $1_{S^{-1} R}=(1,1)=(s, s)$ for all $s \in S$.
(b) $0_{S^{-1} R}=(1,0)=(s, 0)$ for all $s \in S$.
(c) $(s, r)=1$ if and only if $s=r$.
(d) $(s, r)=0$ if and only if $r=0$.
(e) $(s, r)=(t s, t r)$ for all $t \in R$ such that $t s \in S$.
(f) $-(s, r)=(s,-r)$.
(g) $R \rightarrow S^{-1} R, r \mapsto(1, r)$ is an injective homomorphism.
(h) $S^{-1} R$ is a domain.
(i) Every left ideal in $S^{-1} R$ is the extension of a left ideal in R.
(j) If R is left Noetherian/Artinian/PID, so is $S^{-1} R$.

The old good Weyl algebra

The 1st polynomial Weyl algebra

$$
A_{1}(K)=K\langle x, \partial \mid \partial x=x \partial+1\rangle
$$

or, stressing that we work over the ring of polynomial coefficients

$$
K[x]\langle\partial \mid \partial x=x \partial+1\rangle=K[x]\left[\partial ; 1, \frac{\partial}{\partial x}\right]
$$

where the latter is the formulation via Ore extension.
Note that A_{1} is a Noetherian domain.
The 1st rational Weyl algebra

$$
B_{1}(K)=K(x)\langle\partial \mid \partial x=x \partial+1\rangle=K(x)\left[\partial ; 1, \frac{\partial}{\partial x}\right]
$$

It is the Ore localization of A_{1} at the Ore set $S=K[x] \backslash\{0\}$, and thus $B_{1} \cong S^{-1} A_{1}$.

The old good Weyl algebra I

Lemma

The following are left Ore sets in A_{1} :

- $S=K[x] \backslash\{0\}$ and $K[\partial] \backslash\{0\}$

$$
\left.\Rightarrow S^{-1} A_{1}=B_{1}:=K(x)\langle\partial| \partial f=f \partial+\frac{d f}{d x} \text { for all } f \in K(x)\right\rangle
$$

- [x] and [$\partial]$
$\Rightarrow[x]^{-1} A_{1} \cong K\left\langle x, x^{-1}, \partial \mid \partial x=x \partial+1, \partial x^{-1}=x^{-1} \partial+x^{-2}\right\rangle$
(the first "Laurent Weyl algebra")
- $V:=[x, \partial]=[[x] \cup[\partial]]$

Dimension of the space of holomorphic solutions

```
Theorem (Cauchy-Kowalewska-Kashiwara)
Let }K=\mathbb{C},D=\mp@subsup{A}{n}{}(\mathbb{C})\mathrm{ the n-th Weyl algebra, }\mathcal{I}\subsetD\mathrm{ a left ideal such
that D/\mathcal{I}}\mathrm{ is a holonomic D-module (i. e. GKdimD/I = n).
Moreover, let Sing(\mathcal{I})\mathrm{ be the singular locus of }\mathcal{I}\mathrm{ and }U\mathrm{ a simply connected} domain in \(\mathbb{C}^{n} \backslash \operatorname{Sing}(\mathcal{I})\). Consider the system of differential equations \(\{\mathfrak{o} \bullet f=0 \mid \mathfrak{o} \in I\}\) for holomorphic functions \(f\) on \(U\). Then the dimension of the complex vector space of solutions to this system is equal to the holonomic rank of \(D / \mathcal{I}\).
```

... where the holonomic rank of D / \mathcal{I} (or of a fin. pres. D-module) is nothing else but

$$
\operatorname{dim}_{K(x)} S^{-1} D / S^{-1} \mathcal{I}=\operatorname{dim}_{K(x)} B_{n} / B_{n} \mathcal{I}
$$

for $S=K[x] \backslash\{0\}$. This value is computable as well as $\operatorname{Sing}(\mathcal{I})$.

Contents

(1) Appetizer
(2) Classical localization of commutative domains
(3) Ore localization of non-commutative domains
(4) Left saturation closure: a canonical form of left Ore sets
(5) Left saturation closure: the local closure problem
6) Constructive arithmetics in OLGAs

Multiplicative inverses

Let $(s, r) \in S^{-1} R$, then its additive inverse is given by $(s,-r)$.
What about multiplication?
How can we describe $U\left(S^{-1} R\right):=\left\{a \in S^{-1} R \mid a\right.$ invertible/unit $\}$? Some immediate sufficient conditions:

- If $r \in S$, then (s, r) is invertible with $(s, r)^{-1}=(r, s)$.
- If r is a unit in R, then (s, r) is invertible with $(s, r)^{-1}=\left(1, r^{-1} s\right)$. But $S^{-1} R$ may contain more units:

Example

Let K be a field. Consider $\frac{x}{1}$ in $\left[x^{2}\right]^{-1} K[x]$. Now $x \notin\left[x^{2}\right]$ and x is not a unit in $K[x]$, but $\frac{x}{1}$ is invertible with $\left(\frac{x}{1}\right)^{-1}=\frac{x}{x^{2}}$.

Left saturation closure

Definition

Let P be a subset of R.

- P is called left saturated if for all $a, b \in R: a b \in P \Rightarrow b \in P$.
- The left saturation closure of P in R is

$$
\operatorname{LSat}(P):=\{r \in R \mid \exists w \in R: w r \in P\} \supseteq P .
$$

Lemma
(a) P is left saturated $\Leftrightarrow P=\operatorname{LSat}(P)$.
(b) If $P \neq \emptyset: U(R) \subseteq \operatorname{LSat}(P)$.

The old good Weyl algebra II
Consider the first polynomial Weyl algebra $A_{1}=K\langle x, \partial \mid \partial x=x \partial+1\rangle$. Note that $U\left(A_{1}\right)=K \backslash\{0\}$ is contained in any of the following closures, but is sometimes omitted for brevity.

Example
$\operatorname{LSat}\left(\left[x^{n}\right]\right)=\operatorname{LSat}([x])=[x]$ and $\operatorname{LSat}(K[x] \backslash\{0\})=K[x] \backslash\{0\}$.

Definition

The Euler operator in A_{1} is $\theta:=x \partial=\partial x-1$.

Example

Let $V:=[x, \partial]$ and $\Theta:=[\theta+\mathbb{Z}]=[\{x \partial+z \mid z \in \mathbb{Z}\}]$.
(a) V and Θ are left Ore sets in A_{1}.
(non-trivial)
(b) $\operatorname{LSat}(V)=\operatorname{LSat}(\Theta)$.
(easy)
(c) $\operatorname{LSat}(V)=[(\theta+\mathbb{Z}) \cup\{x, \partial\}]$.
(\subseteq highly non-trivial)

The units of the localized ring

Note that $(s, r)=(s, 1) \cdot(1, r)$.
Theorem
Let $(s, r) \in S^{-1} R$. The following are equivalent:
(1) $(s, r) \in U\left(S^{-1} R\right)$.
(2) $(1, r) \in U\left(S^{-1} R\right) \Leftrightarrow r \in \rho^{-1}\left(U\left(S^{-1} R\right)\right)$.
(3) $r \in \operatorname{LSat}(S) \Leftrightarrow \exists w \in R: w r \in S$.
(4) $\operatorname{Rr} \cap S \neq \emptyset$.
$\Rightarrow \operatorname{LSat}(S)$ is the set of all elements of R that become invertible in the localization $S^{-1} R$

Localization at left saturation

Reminder

$$
\operatorname{LSat}(S):=\{r \in R \mid \exists w \in R: w r \in S\}
$$

Lemma

If S is a left Ore set in R, then $\operatorname{LSat}(S)$ is a saturated left Ore set in R.
Theorem
$S^{-1} R \cong \operatorname{LSat}(S)^{-1} R$ as rings (and K-algebras, if applicable) via

$$
S^{-1} R \rightarrow \operatorname{LSat}(S)^{-1} R, \quad(s, r) \mapsto(s, r)
$$

$\Rightarrow \operatorname{LSat}(S)$ is the canonical representative of the localization at S

The old good Weyl algebra III

Definition

The skew field of fraction of the Weyl algebra is

$$
D_{1}=\left(A_{1} \backslash\{0\}\right)^{-1} A_{1}=\left\{\left.\frac{p}{q} \right\rvert\, p \in A_{1}, q \in A_{1} \backslash\{0\}\right\}
$$

Theorem (Makar-Limanov 1983)

D_{1} contains a free algebra generated by $(\partial x, 1)$ and $(\partial x, 1) \cdot(1-\partial, 1)$.
The two generators are also contained in $\operatorname{LSat}(S)^{-1} A_{1}$, where

$$
S:=[\Theta \cup\{\partial-1\}]=[(\theta+\mathbb{Z}) \cup\{\partial-1\}]=[(x \partial+\mathbb{Z}) \cup\{\partial-1\}] .
$$

For all $i \in \mathbb{Z}$ we have

$$
(\theta+i+1)\left(x \partial^{2}-x \partial+(i+2) \partial-i\right)=(\partial-1)(\theta+i)(\theta+i+1) \in S
$$

thus LSat (S) contains the (irreducible) element $x \partial^{2}-x \partial+(i+2) \partial-i$.

Contents

(1) Appetizer

(2) Classical localization of commutative domains
(3) Ore localization of non-commutative domains

4 Left saturation closure: a canonical form of left Ore sets
(5) Left saturation closure: the local closure problem

6 Constructive arithmetics in OLGAs

Local closure

Definition

Let S be a left Ore set in R and L a left ideal in R. Then

$$
S^{-1} L:=\left\{(s, r) \in S^{-1} R \mid r \in L\right\}
$$

is the localization of L at S.

Definition

The local closure or S-closure of a left ideal L in R is

$$
L^{S}:=\rho^{-1}\left(S^{-1} L\right) .
$$

Lemma

$$
L^{S}=\{r \in R \mid \exists s \in S: s r \in L\}=: \operatorname{LSat}_{S}(L) .
$$

Application of local closure

Weyl algebra vs. differential equations

$$
r:=\sum_{i=0}^{n} p_{i} \partial^{i} \in A_{1} \text { with } p_{i} \in K[x] \quad \text { ODE } \sum_{i=0}^{n} p_{i} f^{(i)}(x)=0
$$

A solution f of such an ODE can only have a singularity at roots of p_{n}. But: there can be roots of p_{n} where no solution is singular (apparent singularities).

Desingularization

Find $t \in\langle r\rangle^{K[x] \backslash\{0\}}$ such that as many apparent singularities of r as possible are no longer apparent singularities of t.

Example (Barkatou, Maddah 2015)
$r=x \partial^{2}-(x+2) \partial+2 \in A_{1}(\mathbb{Q}) \quad \Rightarrow \quad\langle r\rangle^{K[x] \backslash\{0\}}=\left\langle r, \partial^{4}-\partial^{3}\right\rangle$

Partial classification of Ore localizations

Most common types of Ore localizations

Let K be a field, R a K-algebra and S a left Ore set in R. The set S (and $S^{-1} R$) is called. . . if. ..
Monoidal: S is generated as a monoid by countably many elements Example: $[x+1] \subseteq K[x], \Theta=[\theta+\mathbb{Z}] \in A_{1}$.
Geometric: Let $K[\underline{x}]=K\left[x_{1}, \ldots, x_{n}\right], \mathfrak{p} \subseteq K[\underline{x}]$ prime, $S=K[\underline{x}] \backslash \mathfrak{p}$
Example: $K[x] \backslash\langle x\rangle \subseteq K[x] \subseteq A_{1}$.
Rational: $T \subseteq R$ is a K-subalgebra, $S=T \backslash\{0\}$
Special case: R is generated by $\underline{x}=\left\{x_{1}, \ldots, x_{n}\right\}$ and T is generated by a subset of $\underline{x} \Rightarrow S$ is essential rational
Example: $K[x] \backslash\{0\} \subseteq K[x, y] \subseteq A_{2}$.

Example: local closure at Θ in A_{1}

Task
Let L be a left ideal in A_{1}. Determine L^{Θ}, where $\Theta=[\theta+\mathbb{Z}]=[x \partial+\mathbb{Z}]$.

Lemma

Let S be a left Ore set in R and I a left ideal in R, then

$$
I^{S}=I^{\operatorname{LSat}(S)} .
$$

$\Rightarrow L^{\Theta}=L^{[x, \partial]}$ since $\operatorname{LSat}([x, \partial])=\operatorname{LSat}(\Theta)$.
New Task
Let L be a left ideal in A_{1}. Determine L^{V}, where $V=[x, \partial]$.

Thank you for your attention!

《SINGULAR

plural

The latest version of Singular (including olga.lib) is available at: http://www.singular.uni-kl.de

Example: local closure at Θ in A_{1}

Task

Let L be a left ideal in A_{1}. Determine L^{V}, where $V=[x, \partial]$.

Knowledge from D-module theory

Determining $L^{[x]}$ is algorithmic (Oaku, Takayama, Walther 1999).
Together with the Fourier automorphism $\mathcal{F}: A_{1} \rightarrow A_{1}$ induced by $x \mapsto-\partial$ and $\partial \mapsto x$, determining $L^{[\partial]}$ is also algorithmic via

$$
L^{[\partial]}=\mathcal{F}^{-1}\left(\mathcal{F}(L)^{[x]}\right) .
$$

Goal

Reduce the computation of L^{V} to computations of the form $L^{[x]}$ and $L^{[\partial]}$.

Example: local closure at Θ in A_{1}

Lemma

Let S and T be left Ore sets in R and L a left ideal in R. Then $[S \cup T]$ is a left Ore set in R and

$$
L=L^{[S \cup T]} \Leftrightarrow \quad \Leftrightarrow=L^{S} \text { and } L=L^{T} \text {. }
$$

Corollary

Let R be Noetherian, then in the chain of left ideals

$$
L \subseteq L^{S} \subseteq\left(L^{S}\right)^{T} \subseteq\left(\left(L^{S}\right)^{T}\right)^{S} \subseteq \ldots \subseteq L^{[S \cup T]} .
$$

there can only be finitely many strict inclusions. By the lemma above, at the first non-strict inclusion we have already reached $L^{[S U T]}$.

Contents

(1) Appetizer

(2) Classical localization of commutative domains
(3) Ore localization of non-commutative domains

4 Left saturation closure: a canonical form of left Ore sets
(5) Left saturation closure: the local closure problem
(6) Constructive arithmetics in OLGAs

Localization: the paradox of theory vs practice

In theory, localization makes life easier:

- a localized ring is bigger and contains more invertible elements than the original ring, thus less proper ideals
- a localized ring is deeply connected to the original ring via $\rho_{S, R}$
- the structure of the category of $S^{-1} R$-modules is much easier than the structure of the category of R-modules
In practice (i.e. computer algebra) manipulations with objects in the localization $S^{-1} R$ are generally much more complicated than with objects in R.

Proof by bad example.
What is $3+5$? What is $\frac{1}{3}+\frac{1}{5}$? See.
G-algebras (PBW algebras, algebras of solvable type)

Definition

For a field $K, n \in \mathbb{N}$ and $1 \leq i<j \leq n$ consider the constants $c_{i, j} \in K^{*}$ and polynomials $d_{i, j} \in K\left[x_{1}, \ldots, x_{n}\right]$. The K-algebra

$$
A:=K\left\langle x_{1}, \ldots, x_{n} \mid\left\{x_{j} x_{i}=c_{i, j} x_{i} x_{j}+d_{i, j}: 1 \leq i<j \leq n\right\}\right\rangle
$$

is called a \boldsymbol{G}-algebra, if:
(1) there exists a monomial total well-ordering $<$ on $K\left[x_{1}, \ldots, x_{n}\right]$ such that for any $1 \leq i<j \leq n$ either $d_{i, j}=0$ or the leading monomial of $d_{i, j}$ with respect to $<$ is smaller than $x_{i} x_{j}$.
(2) $\left\{x_{1}^{\alpha_{1}} \cdot \ldots \cdot x_{n}^{\alpha_{n}} \mid \alpha_{i} \in \mathbb{N}_{0}\right\}$ is a K-basis of A.

Remark

- G-algebras are Noetherian domains.
- There exists a Gröbner basis theory for G-algebras plus implementation (most extensive in Singular:Plural).

Examples of G-algebras

- Weyl algebras $\left(K\left\langle x_{1}, \ldots, x_{n}, \partial_{1}, \ldots, \partial_{n} \mid \forall i: \partial_{i} x_{i}=x_{i} \partial_{i}+1\right\rangle\right)$
- Shift algebras $\left(K\left\langle x_{1}, \ldots, x_{n}, s_{1}, \ldots, s_{n} \mid \forall i: s_{i} x_{i}=\left(x_{i}+1\right) s_{i}\right\rangle\right)$
- q-Weyl algebras $\left(K\left\langle\underline{x}, \underline{\partial} \mid \forall i \exists q_{i} \in K^{*}: \partial_{i} x_{i}=q_{i} x_{i} \partial_{i}+1\right\rangle\right)$
- q-Shift algebras $\left(K\left\langle\underline{x}, \underline{s} \mid \forall i \exists q_{i} \in K^{*}: s_{i} x_{i}=q_{i} x_{i} s_{i}\right\rangle\right)$
- Integration algebras ($\left.K\left\langle\underline{x}, \underline{I} \mid \forall i: I_{i} x_{i}=x_{i} l_{i}+I_{i}^{2}\right\rangle\right)$
- Universal enveloping algebras of finite-dimensional Lie algebras
- Many quantum groups
- Tensor products of G-algebras over the common ground field

Recent results (Heinle, Levandovskyy, Bell)

Factorization in G-algebras is possible (finitely many cases) and implemented in ncfactor.lib in Singular:Plural.

Types of computable Ore localizations

At the moment we can deal with the following situations:
Let K be a field and R a G-algebra over K, S a left Ore set in R.
Monoidal: S is generated as a monoid by finitely many elements contained in a commutative polynomial subring of R generated by a subset of the variables
Examples: $[x]^{-1} A_{1},[\partial-1]^{-1} A_{1}$, not $[x, \partial]^{-1} A_{1}$
Geometric: Let $T=K\left[x_{1}, \ldots, x_{n}\right] \subseteq R, \mathfrak{p} \subseteq T$ prime, $S=T \backslash \mathfrak{p}$
Example: $(K[x] \backslash\langle x-42\rangle)^{-1} A_{1}$
Rational: $T \subseteq R$ is a sub- G-algebra generated by a subset of the variables, $S=T \backslash\{0\}$
Example: $(K[x] \backslash\{0\})^{-1} A_{1}$

Algorithmic framework for algebras of operators

OLGA $=$ Ore-localized G-algebra

```
olga.lib for SingulAR:
locStatus(int, def)
testLocData(int, def)
isInS(poly, int, def)
fracStatus(vector, int, def)
testFraction(vector, int, def)
leftOre(poly, poly, int, def)
rightOre(poly, poly, int, def)
convertRightToLeftFraction(vector, int, def)
convertLeftToRightFraction(vector, int, def)
addLeftFractions(vector, vector, int, def)
multiplyLeftFractions(vector, vector, int, def)
areEqualLeftFractions(vector, vector, int, def)
isInvertibleLeftFraction(vector, int, def)
invertLeftFraction(vector, int, def)
```

Available as part of the Singular distribution.

Examples I

Left-to-right conversion in the second rational q-shift algebra A :

```
LIB "olga.lib";
ring Q = (0,q),(x,y,Qx,Qy),dp; // commutative polynomial ring
matrix C[4][4] = UpOneMatrix(4); // defines a matrix of
C[1,3] = q; C[2,4] = q; // non-commutative relations
def A = nc_algebra(C,0); // creates A from Q
setring A;
intvec v = 1,2; // rational localization at K[x,y]\{0}
poly f = Qx+Qy; poly g = x^2+1;
vector frac = [g,f,0,0];
vector result = convertLeftToRightFraction(frac,2,v);
print(result);
-> [x^2+1,Qx+Qy,(q^4)*x^2*Qx+x^2*Qy+(q^2)*Qx+(q^2)*Qy, x^4+(q^2+1)*x^2+(q^2)]
```

Now result contains the left representation $\left(x^{2}+1\right)^{-1}\left(Q_{x}+Q_{y}\right)$ of frac as well as its newly computed right representation $\left(q^{4} x^{2} Q_{x}+x^{2} Q_{y}+q^{2} Q_{y}\right) \cdot\left(x^{4}+\left(q^{2}+1\right) x^{2}+q^{2}\right)^{-1}$. Plausibility check:

```
f * result[4] == g * result[3];
-> 1
isInS(result[4],2,v);
-> 1
```


Examples II

Basic arithmetic with two left fractions in a monoidal localization of the second Weyl algebra A_{2} :

```
LIB "olga.lib";
ring R = O,(x,y,Dx,Dy),dp; // commutative polynomial ring
def A2 = Weyl(); setring A2; // creates A2 from R
poly g1 = x+3; poly g2 = x*y+y; list L = g1,g2;
vector frac1 = [g1,Dx,0,0]; vector frac2 = [g2,Dy,0,0];
vector result = addLeftFractions(frac1, frac2, 0, L); print(result);
-> [x^2*y+4*x*y+3*y,x*y*Dx+y*Dx+x*Dy+3*Dy]
```

Thus, the sum is $\left(x^{2} y+4 x y+3 y\right)^{-1}\left(x y \partial_{x}+y \partial_{x}+x \partial_{y}+3 \partial_{y}\right)$.

```
result = multiplyLeftFractions(frac1, frac2, 0, L); print(result);
-> [x^3*y^2+5*x^2*y^2+7*x*y^2+3*y^2,x*y*Dx*Dy+y*Dx*Dy y y*Dy]
```

This product is $\left(x^{3} y^{2}+5 x^{2} y^{2}+7 x y^{2}+3 y^{2}\right)^{-1}\left(x y \partial_{x} \partial_{y}+y \partial_{x} \partial_{y}-y \partial_{y}\right)$.

```
result = multiplyLeftFractions(frac2, frac1, 0, L); print(result);
-> [x^2*y+4*x*y+3*y,Dx*Dy]
```

In this order, the product is $\left(x^{2} y+4 x y+3 y\right)^{-1}\left(\partial_{x} \partial_{y}\right)$.

《SINGULAR

plural

The latest version of Singular (including olga.lib) is available at: http://www.singular.uni-kl.de

