Torsion, Localization and Applications

Viktor Levandovskyy (joint with Johannes Hoffmann (Aachen, Saarbrücken))

University of Kassel, Germany

21.06.2021, Kassel

Contents

Appetizer

- 2 Classical localization of commutative domains
- Ore localization of non-commutative domains
- 4 Left saturation closure: a canonical form of left Ore sets
- 5 Left saturation closure: the local closure problem
- 6 Constructive arithmetics in OLGAs

Contents

Appetizer

- 2 Classical localization of commutative domains
- 3 Ore localization of non-commutative domains
- 4 Left saturation closure: a canonical form of left Ore sets
- 5 Left saturation closure: the local closure problem
- 6 Constructive arithmetics in OLGAs

The system of OD equations
$$\begin{cases} \ddot{x} + \ell_1 \ddot{\theta}_1 + g \theta_1 = 0 \\ \ddot{x} + \ell_2 \ddot{\theta}_2 + g \theta_2 = 0 \end{cases}$$
 is rewritten in the new variables $x_1 = x + \ell_1 \theta_1, x_2 = x + \ell_2 \theta_2, u = x$ in the matrix form.

$$\begin{bmatrix} d_t^2 + \frac{g}{\ell_1} & 0 & -\frac{g}{\ell_1} \\ 0 & d_t^2 + \frac{g}{\ell_2} & -\frac{g}{\ell_2} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ u \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

y: this system does not depend on the masses m_i !

Notabl

Since g is the gravitarional constant and ℓ_1, ℓ_2 are fixed, we treat them as *parameters*, i.e. our ground field is $\mathbb{Q}(g, \ell_1, \ell_2)$.

Since nothing depends on time t, we have a system of ODEs with *constant* coefficients, rewritten as a matrix over the algebra of operators $\mathbb{Q}(g, \ell_1, \ell_2)[d_t]$.

Computations show that the system is (strongly) controllable; and there's the left inverse matrix of the so-called image representation of the system:

$$\begin{bmatrix} \frac{\ell_1}{g^2(\ell_1 - \ell_2)} & -\frac{\ell_2}{g^2(\ell_1 - \ell_2)} & 0 \end{bmatrix}$$

We see that the result is valid, provided $\ell_1 \neq \ell_2$!

Let us rerun the computation for the case $\ell_1 = \ell_2 =: \ell!$

Over system, written as a matrix over the algebra of operators $\mathbb{Q}(g, \ell)[d_t]$.

$$\begin{bmatrix} d_t^2 + \frac{g}{\ell} & 0 & -\frac{g}{\ell} \\ 0 & d_t^2 + \frac{g}{\ell} & -\frac{g}{\ell} \end{bmatrix}$$

is not controllable anymore: there is a nonzero torsion submodule!

It is annihilated by the ideal $\langle \ell d_t^2 + g \rangle$ meaning there are **autonomous** elements like the difference $x_1 - x_2$ of the positions of the pendula (relative to the bar).

Recall some results from Algebra

Let R be a ring (associative, with 1).

- A free module R^m : set of (column) vectors of length m with entries from $R \ v = [r_1, \ldots, r_m]^T = \sum r_i e_i$, where $\{e_i\}$ form a basis of Ranalogy with vector spaces: R^m is closed under addition and under the multiplication by "scalar" elements from R.
- A submodule of R^m is an analogue to the subspace: if it is generated by the finite set of vectors; put them into a matrix U.
 Pass to the factor-module M = R^m/U, which is *finitely generated* by [e₁],..., [e_m] with [e] = e + U.

If R = K is a field, we are back in the course of *linear algebra* Every nonzero submodule is free; every nonzero factor-module is free.

Over a general ring R:

 $\mathsf{Free} \Rightarrow \mathsf{stably free} \Rightarrow \mathsf{projective} \Rightarrow \mathsf{flat} \Rightarrow \mathsf{torsion}\mathsf{-}\mathsf{free}.$

The first appearance of torsion

Let R be a PID (principal ideal domain) like \mathbb{Z} or K[x]: there are no zero-divisors except 0.

Main Theorem on finitely generated modules over PID $\exists k \in \mathbb{N}_{0}, \exists t \in \mathbb{N}_{0} \quad \exists a_{1}, \dots, a_{k} \neq 0 \text{ such that } a_{1} \mid a_{2} \mid \dots \mid a_{k}$ $M \cong R/\langle a_{1} \rangle \times \dots \times R/\langle a_{k} \rangle \times R^{t}$ Let $D := \begin{bmatrix} a_{1} & \dots & 0 \\ \vdots & \dots & \vdots \\ 0 & \dots & a_{k} \end{bmatrix}$, then $M \cong R^{k}/D \oplus R^{t}$ and $t(M) := R^{k}/D$.

For a domain R, $m \in M$ is a torsion element, if $\exists 0 \neq r \in R : r \cdot m = 0_M$. The torsion submodule t(M) of M consists of torsion elements.

Dichotomy

M is called **torsion module**, if t(M) = M, and **torsion-free module**, if $t(M) = \{0\}$. (In System theory reflected by controllable/autonomous.)

Contents

Appetizer

2 Classical localization of commutative domains

3 Ore localization of non-commutative domains

4 Left saturation closure: a canonical form of left Ore sets

5 Left saturation closure: the local closure problem

6 Constructive arithmetics in OLGAs

Localization of commutative domains

Convention

From now on: let R be a domain (no zero-divisors).

Definition

A subset S of R is called a multiplicative set if

- $0 \notin S$,
- $1\in S$ and
- S is multiplicatively closed, that is, $\forall s, t \in S : s \cdot t \in S$.

Notation: [S] := the smallest multiplicative superset of S.

Construction

Theorem (Classical)

Let S be a multiplicative set in a commutative domain R. Then

$$S^{-1}R := \left\{\frac{r}{s} \mid s \in S, r \in R\right\} = \left\{s^{-1}r \mid s \in S, r \in R\right\}$$

is a commutative domain, where

•
$$\frac{r_1}{s_1} = \frac{r_2}{s_2}$$
 if and only if $s_1 r_2 = s_2 r_1$,
• $\frac{r_1}{s_1} + \frac{r_2}{s_2} = \frac{s_2 r_1 + s_1 r_2}{s_1 s_2}$,
• $\frac{r_1}{s_1} \cdot \frac{r_2}{s_2} = \frac{r_1 r_2}{s_1 s_2}$.

Example

$$R = \mathbb{Z}, S = \mathbb{Z} \setminus \{0\} \quad \Rightarrow \quad S^{-1}R = \left\{\frac{r}{s} \mid r, s \in \mathbb{Z}, s \neq 0\right\} = \mathbb{Q}$$

Commutative examples |

Let R be a commutative domain and K a field.

Quotient fields

- $S = R \setminus \{0\} \Rightarrow \operatorname{Quot}(R) := S^{-1}R = \left\{ rac{r}{s} \mid r, s \in R, s \neq 0
 ight\}$ is a field.
 - $\mathsf{Quot}(\mathbb{Z}) = \mathbb{Q}$
 - Quot(K[x]) = K(x)
 - Quot({holomorphic functions}) = {meromorphic functions}

Origin of the name: algebraic geometry

Let $a \in K^n$ and $\mathfrak{m} := \langle x_1 - a_1, \dots, x_n - a_n \rangle \subseteq K[x_1, \dots, x_n] =: P$. Then $S := R \setminus \mathfrak{m}$ is a multiplicative set in P and $P_\mathfrak{m} := S^{-1}P$ describes the "local" behavior near a.

Laurent polynomials

$$\mathsf{For}\;[x] = \left\{ x^k \mid k \in \mathbb{N}_0 \right\} : \quad [x]^{-1} \mathcal{K}[x] = \mathcal{K}[x, x^{-1}] \subsetneq \mathcal{K}(x)$$

Commutative examples II

Basic properties

Let S be a multiplicative set in a commutative domain R.

Lemma (a) $1_{S^{-1}R} = \frac{1}{1} = \frac{s}{s}$ for all $s \in S$. (b) $0_{S^{-1}R} = \frac{0}{1} = \frac{0}{2}$ for all $s \in S$. (c) $\frac{r}{s} = 1$ if and only if s = r. (d) $\frac{r}{c} = 0$ if and only if r = 0. (e) $\frac{r}{s} = \frac{tr}{ts}$ for all $t \in R$ such that $ts \in S$. (f) $-\frac{r}{c} = -\frac{r}{c}$. (g) $R \to S^{-1}R, r \mapsto \frac{r}{1}$ is an injective homomorphism. (h) $S^{-1}R$ is a domain. (i) Every ideal in $S^{-1}R$ is the extension of an ideal in R. If R is Noetherian/Artinian/PID, so is $S^{-1}R$. (k) { prime ideals in $S^{-1}R$ } $\stackrel{1:1}{\longleftrightarrow}$ { prime ideals in R which do not meet S }

The hierarchy of Ore localizations: localization of...

Contents

Appetizer

2 Classical localization of commutative domains

Ore localization of non-commutative domains

- 4 Left saturation closure: a canonical form of left Ore sets
- 5 Left saturation closure: the local closure problem
- 6 Constructive arithmetics in OLGAs

Axiomatic definition of left Ore localization

Definition

Let S be a multiplicative set in R. A ring R_S and an injective homomorphism $\varphi: R \to R_S$ are a **left Ore localization** of R at S if:

(1) For all
$$s \in S$$
, $\varphi(s)$ is invertible in $S^{-1}R$.

(2) For all $x \in R_S$, there exist $s \in S$ and $r \in R$ such that $x = \varphi(s)^{-1}\varphi(r)$.

Theorem

Let S be a multiplicative set in R. If a left Ore localization of R at S exists, then it is unique up to isomorphism.

"Working" with non-commutative fractions

Let S be a multiplicative set in R such that the left Ore localization of R at S exists. For brevity we write a "left fraction" $\varphi(s)^{-1}\varphi(r)$ simply as $s^{-1}r$.

Multiplication

Take two left fractions $s_1^{-1}r_1, s_2^{-1}r_2 \in R_S$. Their product $s_1^{-1}r_1 \cdot s_2^{-1}r_2$ must again be writable as a left fraction, thus there exist $\tilde{s} \in S$ and $\tilde{r} \in R$ such that

$$r_1 s_2^{-1} = \tilde{\mathbf{s}}^{-1} \tilde{\mathbf{r}} \quad \Leftrightarrow \quad \tilde{\mathbf{s}} r_1 = \tilde{\mathbf{r}} s_2,$$

then we get

$$s_1^{-1}r_1s_2^{-1}r_2 = s_1^{-1}\tilde{s}^{-1}\tilde{r}r_2 = (\tilde{s}s_1)^{-1}\tilde{r}r_2.$$

Corollary

If the left Ore localization of R at S exists, then S is a left Ore set in R.

Left Ore sets

Definition

```
Let S be a subset of R.
```

• S satisfies the left Ore condition in R if

 $\forall s \in S, r \in R \qquad \exists \ \tilde{s} \in S, \tilde{r} \in R: \qquad \tilde{s}r = \tilde{r}s.$

Equivalently: $\forall s \in S, r \in R : Sr \cap Rs \neq \emptyset$.

• left Ore set := multiplicative set + left Ore condition

Consequences of the left Ore condition on S in R

- Any right fraction rs^{-1} can be rewritten as a left fraction $\tilde{s}^{-1}\tilde{r}$.
- Finitely many elements have a common left multiple in S.

Construction of the left Ore localization I

Theorem (Ore 1931)

Let S be a left Ore set in R.

(a) The following is an equivalence relation on $S \times R$:

 $(s_1, r_1) \sim (s_2, r_2) \Leftrightarrow \exists \tilde{s} \in S, \tilde{r} \in R : \tilde{s}s_2 = \tilde{r}s_1 \text{ and } \tilde{s}r_2 = \tilde{r}r_1$

Write the class of (s, r) wrt. to \sim again as (s, r) or as $s^{-1}r$. (b) $S^{-1}R := ((S \times R)/\sim, +, \cdot)$ is a ring with the operations

 $+: S^{-1}R \times S^{-1}R \to S^{-1}R, \ (s_1, r_1) + (s_2, r_2) := (\tilde{s}s_1, \tilde{s}r_1 + \tilde{r}r_2),$

where $\mathbf{\tilde{s}} \in S$ and $\mathbf{\tilde{r}} \in R$ satisfy $\mathbf{\tilde{s}}s_1 = \mathbf{\tilde{r}}s_2$, and

 $\cdot: S^{-1}R \times S^{-1}R \to S^{-1}R, \ (s_1, r_1) \cdot (s_2, r_2) := (\tilde{s}s_1, \tilde{r}r_2),$

where $\tilde{\mathbf{s}} \in S$ and $\tilde{\mathbf{r}} \in R$ satisfy $\tilde{\mathbf{s}}\mathbf{r}_1 = \tilde{\mathbf{r}}\mathbf{s}_2$.

Construction of the left Ore localization II

Definition

The map

$$\rho_{S,R}: R \to S^{-1}R, \quad r \mapsto (1,r),$$

is called structural homomorphism or localization map of $S^{-1}R$.

Lemma

The pair
$$(S^{-1}R, \rho_{S,R})$$
 is the left Ore localization of R at S.

Corollary

Let S be a multiplicative subset of R. The following are equivalent:

- (1) The left Ore localization of R at S exists.
- (2) S is a left Ore set in R.

Basic properties

The old good Weyl algebra

The 1st polynomial Weyl algebra

$$A_1(K) = K \langle x, \partial \mid \partial x = x \partial + 1 \rangle$$

or, stressing that we work over the ring of polynomial coefficients

$$\mathcal{K}[x]\langle \partial \mid \partial x = x\partial + 1 \rangle = \mathcal{K}[x][\partial; 1, \frac{\partial}{\partial x}]$$

where the latter is the formulation via Ore extension.

Note that A_1 is a Noetherian domain.

The 1st rational Weyl algebra

$$B_1(K) = K(x) \langle \partial \mid \partial x = x \partial + 1 \rangle = K(x) [\partial; 1, \frac{\partial}{\partial x}]$$

It is the **Ore localization** of A_1 at the Ore set $S = K[x] \setminus \{0\}$, and thus $B_1 \cong S^{-1}A_1$.

The old good Weyl algebra I

Lemma

The following are left Ore sets in A_1 : • $S = K[x] \setminus \{0\}$ and $K[\partial] \setminus \{0\}$ $\Rightarrow S^{-1}A_1 = B_1 := K(x) \langle \partial | \partial f = f \partial + \frac{df}{dx}$ for all $f \in K(x) \rangle$

• [x] and [
$$\partial$$
]
 \Rightarrow [x]⁻¹ $A_1 \cong K\langle x, x^{-1}, \partial | \partial x = x\partial + 1, \partial x^{-1} = x^{-1}\partial + x^{-2}\rangle$
(the first "Laurent Weyl algebra")

• $V := [x, \partial] = [[x] \cup [\partial]]$

Dimension of the space of holomorphic solutions

Theorem (Cauchy-Kowalewska-Kashiwara)

Let $K = \mathbb{C}$, $D = A_n(\mathbb{C})$ the n-th Weyl algebra, $\mathcal{I} \subset D$ a left ideal such that D/\mathcal{I} is a holonomic D-module (i. e. $GKdimD/\mathcal{I} = n$). Moreover, let $Sing(\mathcal{I})$ be the singular locus of \mathcal{I} and U a simply connected domain in $\mathbb{C}^n \setminus Sing(\mathcal{I})$. Consider the system of differential equations $\{\mathfrak{o} \bullet f = 0 \mid \mathfrak{o} \in I\}$ for holomorphic functions f on U. Then the dimension of the complex vector space of solutions to this system is equal to the holonomic rank of D/\mathcal{I} .

... where the **holonomic rank** of D/\mathcal{I} (or of a fin. pres. *D*-module) is nothing else but

$$\dim_{\mathcal{K}(x)} S^{-1}D/S^{-1}\mathcal{I} = \dim_{\mathcal{K}(x)} B_n/B_n\mathcal{I}$$

for $S = K[x] \setminus \{0\}$. This value is computable as well as Sing (\mathcal{I}) .

Contents

Appetizer

- 2 Classical localization of commutative domains
- 3 Ore localization of non-commutative domains
- 4 Left saturation closure: a canonical form of left Ore sets
- 5 Left saturation closure: the local closure problem
- 6 Constructive arithmetics in OLGAs

Multiplicative inverses

Let $(s,r) \in S^{-1}R$, then its additive inverse is given by (s,-r).

What about multiplication?

How can we describe $U(S^{-1}R) := \{a \in S^{-1}R \mid a \text{ invertible/unit}\}$? Some immediate sufficient conditions:

• If $r \in S$, then (s, r) is invertible with $(s, r)^{-1} = (r, s)$.

• If r is a unit in R, then (s, r) is invertible with $(s, r)^{-1} = (1, r^{-1}s)$. But $S^{-1}R$ may contain more units:

Example

Let K be a field. Consider $\frac{x}{1}$ in $[x^2]^{-1}K[x]$. Now $x \notin [x^2]$ and x is not a unit in K[x], but $\frac{x}{1}$ is invertible with $(\frac{x}{1})^{-1} = \frac{x}{x^2}$.

Left saturation closure

Definition

Let P be a subset of R.

- *P* is called **left saturated** if for all $a, b \in R : ab \in P \Rightarrow b \in P$.
- The left saturation closure of P in R is

$$\mathsf{LSat}(P) := \{ r \in R \mid \exists w \in R : wr \in P \} \supseteq P.$$

Lemma

- (a) P is left saturated $\Leftrightarrow P = \text{LSat}(P)$.
- (b) If $P \neq \emptyset$: $U(R) \subseteq LSat(P)$.

The old good Weyl algebra II

Consider the first polynomial Weyl algebra $A_1 = K \langle x, \partial | \partial x = x \partial + 1 \rangle$. Note that $U(A_1) = K \setminus \{0\}$ is contained in any of the following closures, but is sometimes omitted for brevity.

Example

 $\mathsf{LSat}([x^n]) = \mathsf{LSat}([x]) = [x] \quad \text{and} \quad \mathsf{LSat}(\mathcal{K}[x] \setminus \{0\}) = \mathcal{K}[x] \setminus \{0\}.$

Definition

The **Euler operator** in A_1 is $\theta := x\partial = \partial x - 1$.

Example

Let
$$V := [x, \partial]$$
 and $\Theta := [\theta + \mathbb{Z}] = [\{x\partial + z \mid z \in \mathbb{Z}\}].$
(a) V and Θ are left Ore sets in A_1 . (non-trivial)
(b) $LSat(V) = LSat(\Theta)$. (easy)
(c) $LSat(V) = [(\theta + \mathbb{Z}) \cup \{x, \partial\}]$. (\subseteq highly non-trivial)

The units of the localized ring

Note that
$$(s,r)=(s,1)\cdot(1,r).$$

Theorem

Let $(s, r) \in S^{-1}R$. The following are equivalent:

(1)
$$(s, r) \in U(S^{-1}R).$$

(2) $(1, r) \in U(S^{-1}R) \quad \Leftrightarrow \quad r \in \rho^{-1}(U(S^{-1}R)).$
(3) $r \in LSat(S) \quad \Leftrightarrow \quad \exists w \in R : wr \in S.$

(4) $Rr \cap S \neq \emptyset$.

 \Rightarrow LSat(S) is the set of all elements of R that become invertible in the localization $S^{-1}R$

).

Localization at left saturation

Reminder

$$\mathsf{LSat}(S) := \{ r \in R \mid \exists w \in R : wr \in S \}$$

Lemma

If S is a left Ore set in R, then LSat(S) is a saturated left Ore set in R.

Theorem

$$S^{-1}R \cong \mathsf{LSat}(S)^{-1}R$$
 as rings (and K-algebras, if applicable) via

$$S^{-1}R
ightarrow \mathsf{LSat}(S)^{-1}R, \quad (s,r)\mapsto (s,r).$$

 \Rightarrow LSat(S) is the canonical representative of the localization at S

The old good Weyl algebra III

Definition

The skew field of fraction of the Weyl algebra is

$$D_1 = (A_1 \setminus \{0\})^{-1}A_1 = \left\{ rac{p}{q} \mid p \in A_1, \ q \in A_1 \setminus \{0\}
ight\}.$$

Theorem (Makar-Limanov 1983)

 D_1 contains a free algebra generated by $(\partial x, 1)$ and $(\partial x, 1) \cdot (1 - \partial, 1)$.

The two generators are also contained in $LSat(S)^{-1}A_1$, where

$$S := [\Theta \cup \{\partial - 1\}] = [(\theta + \mathbb{Z}) \cup \{\partial - 1\}] = [(x\partial + \mathbb{Z}) \cup \{\partial - 1\}].$$

For all $i \in \mathbb{Z}$ we have

$$(\theta + i + 1)(x\partial^2 - x\partial + (i + 2)\partial - i) = (\partial - 1)(\theta + i)(\theta + i + 1) \in S,$$

thus LSat(S) contains the (irreducible) element $x\partial^2 - x\partial + (i+2)\partial - i$. Viktor Levandovskyy (Uni Kassel) Torsion, Localization and Applications 21.06.2021, Kassel 33

Contents

Appetizer

- 2 Classical localization of commutative domains
- Ore localization of non-commutative domains
- 4 Left saturation closure: a canonical form of left Ore sets
- 5 Left saturation closure: the local closure problem
 - 6 Constructive arithmetics in OLGAs

Local closure

Definition

Let S be a left Ore set in R and L a left ideal in R. Then

$$S^{-1}L := ig\{(s,r)\in S^{-1}R\mid r\in Lig\}$$

is the **localization** of L at S.

Definition

The local closure or S-closure of a left ideal L in R is

$$L^{S} := \rho^{-1}(S^{-1}L).$$

Lemma

$$L^{S} = \{r \in R \mid \exists s \in S : sr \in L\} =: \mathsf{LSat}_{S}(L).$$

Application of local closure

Weyl algebra vs. differential equations

$$r := \sum_{i=0}^{n} p_i \partial^i \in A_1 \text{ with } p_i \in K[x] \quad \iff \quad \text{ODE } \sum_{i=0}^{n} p_i f^{(i)}(x) = 0$$

A solution f of such an ODE can only have a singularity at roots of p_n . But: there can be roots of p_n where no solution is singular (**apparent singularities**).

Desingularization

Find $t \in \langle r \rangle^{\mathcal{K}[x] \setminus \{0\}}$ such that as many apparent singularities of r as possible are no longer apparent singularities of t.

Example (Barkatou, Maddah 2015)

$$r = x\partial^2 - (x+2)\partial + 2 \in A_1(\mathbb{Q}) \quad \Rightarrow \quad \langle r
angle^{\mathcal{K}[x] \setminus \{0\}} = \langle r, \partial^4 - \partial^3
angle$$

Partial classification of Ore localizations

Most common types of Ore localizations

Let K be a field, R a K-algebra and S a left Ore set in R. The set S (and $S^{-1}R$) is called...if...

Monoidal: S is generated as a monoid by countably many elements Example: $[x + 1] \subseteq K[x]$, $\Theta = [\theta + \mathbb{Z}] \in A_1$.

Geometric: Let $K[\underline{x}] = K[x_1, \dots, x_n]$, $\mathfrak{p} \subseteq K[\underline{x}]$ prime, $S = K[\underline{x}] \setminus \mathfrak{p}$ Example: $K[x] \setminus \langle x \rangle \subseteq K[x] \subseteq A_1$.

Rational: $T \subseteq R$ is a K-subalgebra, $S = T \setminus \{0\}$ Special case: R is generated by $\underline{x} = \{x_1, \dots, x_n\}$ and T is generated by a subset of $\underline{x} \Rightarrow S$ is essential rational Example: $K[x] \setminus \{0\} \subseteq K[x, y] \subseteq A_2$.

Example: local closure at Θ in A_1

Task

Let *L* be a left ideal in A_1 . Determine L^{Θ} , where $\Theta = [\theta + \mathbb{Z}] = [x\partial + \mathbb{Z}]$.

Lemma

Let S be a left Ore set in R and I a left ideal in R, then

$$I^S = I^{\operatorname{LSat}(S)}.$$

$$\Rightarrow L^{\Theta} = L^{[x,\partial]} \text{ since } \mathsf{LSat}([x,\partial]) = \mathsf{LSat}(\Theta).$$

New Task

Let L be a left ideal in A_1 . Determine L^V , where $V = [x, \partial]$.

Thank you for your attention!

The latest version of SINGULAR (including olga.lib) is available at: http://www.singular.uni-kl.de

Example: local closure at Θ in A_1

Task

Let L be a left ideal in A_1 . Determine L^V , where $V = [x, \partial]$.

Knowledge from D-module theory

Determining $L^{[x]}$ is algorithmic (Oaku, Takayama, Walther 1999).

Together with the Fourier automorphism $\mathcal{F} : A_1 \to A_1$ induced by $x \mapsto -\partial$ and $\partial \mapsto x$, determining $\mathcal{L}^{[\partial]}$ is also algorithmic via

$$L^{[\partial]} = \mathcal{F}^{-1}(\mathcal{F}(L)^{[x]}).$$

Goal

Reduce the computation of L^V to computations of the form $L^{[X]}$ and $L^{[\partial]}$.

Example: local closure at Θ in A_1

Lemma

Let S and T be left Ore sets in R and L a left ideal in R. Then $[S \cup T]$ is a left Ore set in R and

$$L = L^{[S \cup T]} \Leftrightarrow L = L^S \text{ and } L = L^T.$$

Corollary

Let R be Noetherian, then in the chain of left ideals

$$L \subseteq L^{S} \subseteq (L^{S})^{T} \subseteq ((L^{S})^{T})^{S} \subseteq \ldots \subseteq L^{[S \cup T]}$$

there can only be finitely many strict inclusions. By the lemma above, at the first non-strict inclusion we have already reached $L^{[S \cup T]}$.

Contents

Appetizer

- 2 Classical localization of commutative domains
- 3 Ore localization of non-commutative domains
- 4 Left saturation closure: a canonical form of left Ore sets
- 5 Left saturation closure: the local closure problem
- Constructive arithmetics in OLGAs

Localization: the paradox of theory vs practice

In theory, localization makes life easier:

- a localized ring is bigger and contains more invertible elements than the original ring, thus less proper ideals
- ullet a localized ring is deeply connected to the original ring via $ho_{S,R}$
- the structure of the category of $S^{-1}R$ -modules is much easier than the structure of the category of R-modules

In practice (i.e. computer algebra) manipulations with objects in the localization $S^{-1}R$ are generally **much more complicated** than with objects in R.

```
Proof by bad example.
```

```
What is 3 + 5? What is \frac{1}{3} + \frac{1}{5}? See.
```

G-algebras (PBW algebras, algebras of solvable type)

Definition

For a field K, $n \in \mathbb{N}$ and $1 \le i < j \le n$ consider the constants $c_{i,j} \in K^*$ and polynomials $d_{i,j} \in K[x_1, \ldots, x_n]$. The K-algebra

$$A := K \langle x_1, \ldots, x_n \mid \{ x_j x_i = c_{i,j} x_i x_j + d_{i,j} : 1 \le i < j \le n \} \rangle$$

is called a **G-algebra**, if:

(1) there exists a monomial total well-ordering < on $K[x_1, \ldots, x_n]$ such that for any $1 \le i < j \le n$ either $d_{i,j} = 0$ or the leading monomial of $d_{i,j}$ with respect to < is smaller than $x_i x_j$.

(2)
$$\{x_1^{\alpha_1} \cdot \ldots \cdot x_n^{\alpha_n} \mid \alpha_i \in \mathbb{N}_0\}$$
 is a *K*-basis of *A*.

Remark

- G-algebras are Noetherian domains.
- There exists a Gröbner basis theory for *G*-algebras plus implementation (most extensive in SINGULAR: PLURAL).

Examples of G-algebras

- Weyl algebras $(K\langle x_1, \ldots, x_n, \partial_1, \ldots, \partial_n \mid \forall i : \partial_i x_i = x_i \partial_i + 1 \rangle)$
- Shift algebras $(K\langle x_1, \ldots, x_n, s_1, \ldots, s_n \mid \forall i : s_i x_i = (x_i + 1)s_i\rangle)$
- *q*-Weyl algebras $(K\langle \underline{x}, \underline{\partial} \mid \forall i \exists q_i \in K^* : \partial_i x_i = q_i x_i \partial_i + 1 \rangle)$
- q-Shift algebras $(K\langle \underline{x}, \underline{s} \mid \forall i \exists q_i \in K^* : s_i x_i = q_i x_i s_i \rangle)$
- Integration algebras $(K\langle \underline{x}, \underline{l} \mid \forall i : I_i x_i = x_i I_i + I_i^2)$
- Universal enveloping algebras of finite-dimensional Lie algebras
- Many quantum groups
- Tensor products of G-algebras over the common ground field

• . . .

Recent results (Heinle, Levandovskyy, Bell)

Factorization in *G*-algebras is possible (finitely many cases) and implemented in ncfactor.lib in SINGULAR:PLURAL.

Types of **computable** Ore localizations

At the moment we can deal with the following situations: Let K be a field and R a G-algebra over K, S a left Ore set in R. Monoidal: S is generated as a monoid by finitely many elements contained in a commutative polynomial subring of R generated by a subset of the variables Examples: $[x]^{-1}A_1$, $[\partial - 1]^{-1}A_1$, not $[x, \partial]^{-1}A_1$ Geometric: Let $T = K[x_1, \ldots, x_n] \subseteq R$, $\mathfrak{p} \subseteq T$ prime, $S = T \setminus \mathfrak{p}$ Example: $(K[x] \setminus \langle x - 42 \rangle)^{-1} A_1$ Rational: $T \subseteq R$ is a sub-G-algebra generated by a subset of the variables, $S = T \setminus \{0\}$ Example: $(K[x] \setminus \{0\})^{-1}A_1$

Algorithmic framework for algebras of operators

OLGA = Ore-localized G-algebra

olga.lib for SINGULAR:

```
locStatus(int, def)
testLocData(int, def)
isInS(poly, int, def)
fracStatus(vector, int, def)
testFraction(vector, int, def)
leftOre(poly, poly, int, def)
rightOre(poly, poly, int, def)
convertRightToLeftFraction(vector, int, def)
addLeftFractions(vector, vector, int, def)
multiplyLeftFractions(vector, vector, int, def)
areEqualLeftFraction(vector, int, def)
invertLeftFraction(vector, int, def)
```

Available as part of the ${\rm SINGULAR}$ distribution.

Examples I

Left-to-right conversion in the second rational q-shift algebra A:

```
LIB "olga.lib";
ring Q = (0,q), (x,y,Qx,Qy), dp;
                                      // commutative polynomial ring
matrix C[4][4] = UpOneMatrix(4); // defines a matrix of
C[1,3] = q; C[2,4] = q;
                                 11
                                              non-commutative relations
def A = nc_algebra(C, 0);
                              // creates A from Q
setring A;
intvec v = 1, 2;
                                        // rational localization at K[x,y] \setminus \{0\}
poly f = Qx+Qy; poly g = x^2+1;
vector frac = [g, f, 0, 0];
vector result = convertLeftToRightFraction(frac,2,v);
print(result):
-> [x<sup>2</sup>+1,Qx+Qy,(q<sup>4</sup>)*x<sup>2</sup>*Qx+x<sup>2</sup>*Qy+(q<sup>2</sup>)*Qx+(q<sup>2</sup>)*Qy,x<sup>4</sup>+(q<sup>2</sup>+1)*x<sup>2</sup>+(q<sup>2</sup>)]
```

Now result contains the left representation $(x^2 + 1)^{-1}(Q_x + Q_y)$ of frac as well as its newly computed right representation $(q^4x^2Q_x + x^2Q_y + q^2Q_y) \cdot (x^4 + (q^2 + 1)x^2 + q^2)^{-1}$. Plausibility check:

```
f * result[4] == g * result[3];
-> 1
isInS(result[4],2,v);
-> 1
```

Examples II

Basic arithmetic with two left fractions in a monoidal localization of the second Weyl algebra A_2 :

Thus, the sum is
$$(x^2y + 4xy + 3y)^{-1}(xy\partial_x + y\partial_x + x\partial_y + 3\partial_y)$$

result = multiplyLeftFractions(frac1, frac2, 0, L); print(result); -> [x^3*y^2+5*x^2*y^2+7*x*y^2+3*y^2,x*y*Dx*Dy+y*Dx*Dy-y*Dy]

This product is $(x^3y^2 + 5x^2y^2 + 7xy^2 + 3y^2)^{-1}(xy\partial_x\partial_y + y\partial_x\partial_y - y\partial_y)$.

result = multiplyLeftFractions(frac2, frac1, 0, L); print(result); -> [x^2*y+4*x*y+3*y,Dx*Dy]

In this order, the product is $(x^2y + 4xy + 3y)^{-1}(\partial_x\partial_y)$.

Viktor Levandovskyy (Uni Kassel) Torsion, Localization and Applications

The latest version of SINGULAR (including olga.lib) is available at: http://www.singular.uni-kl.de