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The purpose of these lectures is to study the fundamental principles of
Statistical Mechanics, also known as Statistical Physics, which govern the
behavior of macroscopic systems, i.e., systems composed by a large number
of atoms or molecules. Although large macroscopic systems are subject to
the same fundamental laws of quantum mechanics as small systems, their be-
havior follows new universal laws which are specific to the presence of a very
large number of degrees of freedom and to the boundary conditions imposed
by experiment. Instead of becoming increasingly intricate and obscure, new
regularities appear as the number of particles becomes very large which es-
cape a purely mechanical deterministic interpretation. These statistical laws
cannot be reduced to purely mechanical laws. New concept and principles
are required in order to derive them, which do not apply to small systems.

One of our first goals will be to understand why the laws of quantum me-
chanics (or classical mechanics) are not enough for understanding macroscopic
systems and to lay down the principles of statistical mechanics as clearly and
explicitly as possible. Many introductory courses and a number of remarkable
books on the theory of macroscopic systems (e.g., K. Huang, Statistical Me-
chanics, Wiley) follow the historical development. They start by formulating
the first and second laws of the thermodynamics and develop in length their
consequences by establishing relations between their mechanic magnitudes.
Important concepts like entropy, heat and temperature are introduced in an
ad hoc phenomenological way. The concepts of Statistical Mechanics are in-
troduced later in order to provide a microscopic justification or rationalization
of the thermodynamic principles. This is the pathway followed by R. Clau-
sius (1822-1888), J.C. Maxwell(1831-1879), L.E. Boltzmann (1844-1906) and
J.W. Gibbs (1839-1903). While such an evolution is understandable at a time
when no microscopic theory of matter was available, approaching the subject
in this way would be an anachronism. At present it is far more meaningful
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to set first of all the basis of Statistical Mechanics taking advantage of our
knowledge of classical and quantum mechanics and to derive thermodynamics
as a byproduct.

This approach, which will be adopted in the following, has a number if im-
portant advantages. From a conceptual perspective it is important to state
the principles of the theory of macroscopic systems in a clear transparent way,
so that we understand, where they are applicable, where they are not and
what kind of consequences to expect in borderline cases (e.g., nanoscale sys-
tems). In this way we set the focus on the general fundamental theory rather
than on the phenomenological consequences of it. Statistical mechanics is
free from a number of limitations of thermodynamics. For example, ther-
modynamics concerns systems in equilibrium leaving no room for thermal
fluctuations of the physical observables. It provides no microscopic explana-
tion of the observed behavior but simply general relations between different
measurable properties. Since no connection to quantum mechanics can be
established in thermodynamics, it is not possible to predict any observable
property (e.g., the melting point of a given metal or the Curie temperature
of ferromagnet). The equation of state of a material in a specific phase can
never arise from thermodynamics. Statistical mechanics shares with ther-
modynamics its universal character, since its principles and laws apply to
all systems alike. But in addition, it opens the possibility of a detailed the-
ory of matter including the calculation material-specific properties. Subtle
quantum-mechanical effects such as superconductivity, magnetism, metal in-
sulation transitions and all other condensed-matter properties can thus be
predicted. In fact, the rigorous bridge between quantum theory and macro-
scopic behavior has only been established thanks to Statistical Mechanics.
This allows a detailed comparison between microscopic theory and macro-
scopic experiments, the cornerstone of scientific progress.

Any theory of the properties of macroscopic systems has to be based, or
at least by consistent, with quantum mechanics (QM), which is our micro-
scopic theory of matter. QM defines very precise methods for determining the
eigenstates and eigenvalues of different observables, in particular the station-
ary states and eigenenergies. This is certainly not an easy task for systems
containing of the order of 1023 atoms. In addition, QM predicts the time
evolution of any given state |Ψ⟩. The same holds for a classical description,
whenever it is applicable. However, an atomistic deterministic mechanical
theory is not able to predict in which state a system will be found under
specified macroscopic constraints such as volume and total energy. Answer-
ing this question is one of the main goals of Statistical Mechanics. According
to deterministic dynamics the state of any system is unambiguously defined
by the initial conditions and the elapsed time. Moreover, different initial
conditions yield different microscopic states (time-inversion symmetry). In
contrast, from a statistical perspective an uncountable number of different
microscopic initial states lead to the same macroscopic equilibrium variables
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such as temperature and pressure. A simple example, which I borrowed from
Erwin Müller-Hartmann, allows to clearly illustrate the different scopes of
deterministic and statistical mechanics: Consider a large number of H2O
molecules in a given volume. A typical statement of QM would be that water
and ice are possible states of the system. Based on this quantum mechanical
result statistical mechanics allows us to conclude that in summer one finds
water and in winter ice.

G. M. Pastor, WS 13/14, Kassel.
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1 Basic statistical concepts

A full mechanical description of the dynamics of a macroscopic system is both hopeless
and not very meaningful, since we lack the required precise information on the initial
conditions of all degrees of freedom and on the exact form of the Hamiltonian governing
the system and its environment. Moreover, for describing the equilibrium properties a
precise knowledge of all its constituents is not necessary at all. What we actually need to
know is only the probability of finding the macroscopic system in each one of its possible
microscopic states. It is the goal of statistical mechanics to provide such an inherently
probabilistic description of macroscopic systems. This motivates a brief discussion of
some basic concepts of probability theory.

The sections marked with an asterisk (∗) in this chapter are not needed for under-
standing the rest of the notes. They may be skipped without consequences.

1.1 Random variables and probabilities

Variables whose outcome cannot be predicted with certainty are usually known as random
variables. We consider a random variable x with a set of possible outcomes S, which may
be discrete (e.g., S = {x1, x2, . . .}) or continuous (e.g., S ≡ R).

An eventE is a subset of outcomesE ⊆ S, for example, E = {even result of a dice throw}
= {2, 4, 6}. To each event E ⊆ S we assign a probability P (E) with the following three
fundamental properties:

i) Positive definiteness: P (E) ≥ 0.

ii) Additivity: P (E1) + P (E2) = P (E1 ∪ E2) if E1 ∩ E2 = ∅ and E1, E2 ⊆ S.
E1 and E2 are said to be disconnected events.

iii) Normalization: P (S) = 1.

Probabilities may be assigned in two ways:

i) Experimentally as

P (E) = lim
N→∞

NE

N
,

where NE is the number of actual occurrences of the event E after N “throws” or
outcomes.

ii) Theoretically by means of an estimation, which is based on the determination of
the set of outcomes S, and some hypothesis about the relative probabilities for
a complete set of events. For instance, knowing that S = {1, 2, 3, 4, 5, 6} for a
dice and assuming equal probabilities P (i) = 1/6 ∀ i ∈ S, we conclude that
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P (even) = 3 · 1/6 = 1/2. Due to the lack of knowledge of the precise mechanical
properties of the dice (i.e., the system) and the way of throwing it (i.e., the initial
condition and the Hamiltonian including the environment) and in the absence of
any reason to believe that the dice is biased, we assume that all six possibilities of
the elements in S (i.e., the states of the system) are equally probable.

All probability assignments in statistical mechanics are theoretical or “subjective"
(as opposed to “objective” in i). Their validity needs to be verified by contrasting
them to experiment.

1.2 A single continuous random variable

We consider a continuous random variable x ∈ R. The cumulative probability function
(CPF) is defined as the probability P (x) for any outcome x′ to be smaller than x:

P (x) = prob
(
x′ ∈ [−∞, x]

)
.

The basic properties of a CPF are

i) P (−∞) = 0.

ii) P (x) is monotonically increasing, i.e,

P (x+∆) = P (x) + prob
(
x′ ∈ [x, x+∆]

)
≥ P (x),

since any probability satisfies additivity and positiveness.

iii) Finally, the normalization condition implies P (+∞) = 1.

The probability density function (PDF) is defined as p(x) =
dP

dx
. Consequently,

p(x) dx = prob
(
x′ ∈ [x, x+ dx]

)
.

Notice that, in contrast to probabilities satisfying P (x) ≤ 1, there is no upper bound for
p(x).

Very often we are interested in analyzing the statistical behavior of properties which
depend on random variables. If x is a random variable, any function F (x) of x is also a
random variable with its own PDF which is given by

pF (f) df = prob (F (x) ∈ [f, f + df ]) .

Let xi with i = 1, . . . ν be the solutions of F (xi) = f , we have

pF (f) df =
ν∑

i=1

p(xi) dxi

⇒ pF (f) =

ν∑
i=1

p(xi)

∣∣∣∣ dxdF
∣∣∣∣
x=xi=F−1(f).

(1.1)
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Notice that |dx/dF | is the Jacobian for the change of variables. Eq. (1.1) may be written
as

pF (f) =

ν∑
i=1

p
(
xi = F−1(f)

) 1∣∣dF
dx

∣∣
x=xi=F−1(f).

(1.2)

Such a change of variables may lead to divergencies in pF (f) which remain of course
integrable, as one may easily verify by changing variables back to x.

Exercise 1.1:
A metastable nucleus decays through β emission. What is the probability density p(φ, θ)
for the electron to be emitted with a polar angle θ (relative to the z axis) and azimuthal
angle φ? Imagine the nucleus at the coordinate origin and consider

p(φ, θ) dφ dθ = prob {emission with angle θ ∈ [θ, θ + dθ] and angle φ ∈ [φ,φ+ dφ]} .

Exercise 1.2: Consider the Gaussian distribution

p(x) =
1√

2π σ2
e−x2/2σ2

with x ∈ R and f = F (x) = x2. Show that pF (f) =
1√

2π σ2
e−f/2σ2

√
f

for f > 0 and

pF (f) = 0 for f < 0. Verify the normalization of pF (f).

1.2.1 Moments of a PDF

The expectation value of a function F (x) of the random variable x is given by the known
expression

⟨F (x) ⟩ =
∫ +∞

−∞
F (x) p(x) dx.

Particularly important expectation values are the moments of the PDF

⟨xn ⟩ =
∫
xn p(x) dx

and the characteristic function χ(k)

χ(k) = ⟨ e−i k x ⟩ =
∫

e−i k x p(x) dx,
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which is just the Fourier transform of the PDF. Note that χ(0) = 1.

The characteristic function is the generator of the moments:

χ(k) =

〈
+∞∑
n=0

(−i k)n

n!
xn

〉
=

+∞∑
n=0

(−i k)n

n!
⟨xn ⟩, (1.3)

= 1− i k ⟨x ⟩ − 1

2
k2 ⟨x2 ⟩+ . . .

from which we obtain
in

dnχ(k)

dkn

∣∣∣∣
k=0

= ⟨xn ⟩.

The PDF can be recovered from χ(k) by the inverse transformation

p(x) =
1

2π

∫
ei k x χ(k) dk. (1.4)

One can also easily obtain the moments around any other point x0 from

ei k x0 χ(k) = ⟨ e−i k (x−x0) ⟩ =
+∞∑
n=0

(−i k)n

n!
⟨ (x− x0)

n ⟩.

It is clear that the knowledge of all the moments of a PDF defines it univocally, since
⟨xn⟩ defines χ(k), from which p(x) can be obtained. See Eqs. (1.3) and (1.4).

1.2.2 Cumulants of a PDF∗

The logarithm of the characteristic function χ(k) is known as the cumulant generating
function

lnχ(k) =

+∞∑
n=1

(−i k)n

n!
⟨xn ⟩c

= −i k ⟨x ⟩c −
1

2
k2 ⟨x2 ⟩c + . . . (1.5)

The cumulants are defined implicitly by means of the previous series expansion of lnχ(k).
Note that lnχ(k = 0) = ln 1 = 0.

The cumulants and the moments are of course related, since they derive from the same
p(x) and χ(k). One can obtain the cumulants from the following comparison. On the
one hand we have

χ(k) = 1 +
+∞∑
n=1

(−i k)n

n!
⟨xn ⟩︸ ︷︷ ︸

ε

, (1.6)
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where ε = −i k ⟨x ⟩ − 1
2 k

2 ⟨x2 ⟩+ . . .. And on the other we have

lnχ(k) = ln(1 + ε) =

+∞∑
l=1

(−1)l+1 ε
l

l

= ε− ε2

2
+ . . . (1.7)

Using the implicit definition (1.5) of the cumulants and replacing ε from (1.6) in (1.7)
we have

−i k ⟨x ⟩c −
1

2
k2 ⟨x2 ⟩c + . . . = −i k ⟨x ⟩ − 1

2
k2
(
⟨x2 ⟩ − ⟨x ⟩2

)︸ ︷︷ ︸
=σ2

+ . . . , (1.8)

or in a general form valid for all n,

+∞∑
n=1

(−i k)n

n!
⟨xn ⟩c =

+∞∑
l=1

(−1) l+1

l

(
+∞∑
m=1

(−i k)m

m!
⟨xm ⟩

)l

.

This leads to

⟨x ⟩c = ⟨x ⟩ mean

⟨x2 ⟩c = ⟨x2 ⟩ − ⟨x ⟩2 variance

⟨x3 ⟩c = ⟨x3 ⟩ − 3 ⟨x2 ⟩ ⟨x ⟩+ 2 ⟨x ⟩3 skewness

⟨x4 ⟩c = ⟨x4 ⟩ − 4 ⟨x3 ⟩ ⟨x ⟩ − 3 ⟨x2 ⟩2 + 12 ⟨x2 ⟩ ⟨x ⟩2 − 6 ⟨x ⟩4 kurtosis (or kurtosis).

A PDF can be described indistinctively in terms of its cumulants or of its moments.

1.2.3 Computation of moments in terms of cumulants∗

Theorem: The m-th moment ⟨xm ⟩ is obtained by considering all possible subdivisions of
m points in pn groups or connected clusters of n points each. Of course

∑
n pn n = m.

Each possible subdivision contributes with the product of the cumulants ⟨xn ⟩c associated
with the connected cluster having n points.

Examples:

⟨x ⟩ = (•) = ⟨x ⟩c

⟨x2 ⟩ = (•) (•) + (• •) = ⟨x ⟩2c + ⟨x2 ⟩c

⟨x3 ⟩ = (•) (•) (•) + 3 (•) (• •) + (• • •) = ⟨x ⟩3c + 3 ⟨x ⟩c ⟨x2 ⟩c + ⟨x3 ⟩c
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Exercise 1.3:
Obtain the expression for ⟨x4 ⟩ in terms of ⟨xl ⟩c and l = 1–4. Deduce ⟨xl ⟩c in terms of
⟨xl ⟩ for l ≤ 4.

The theorem can be demonstrated by noting that

χ(k) =

+∞∑
m=0

(−i k)m

m!
⟨xm ⟩ = exp {lnχ(k)}

= exp

{
+∞∑
n=1

(−i k)n

n!
⟨xn ⟩c

}

=
+∞∏
n=1

exp
{
(−i k)n

n!
⟨xn ⟩c

}

=

+∞∏
n=1

 +∞∑
pn=0

(−i k)n pn

(n!)pn
⟨xn ⟩pnc
pn!

 .
Matching the coefficients of the powers of (i k)m with all the possibilities yielding

∑
n pn =

m we have

⟨xm ⟩
m!

=
∑
{pn}

∏
n

⟨xn ⟩pnc
pn! (n!)pn

(1.9)

where the sum runs over all the possibilities of forming subgroups with
∑

pn
n = m.

After rewriting Eq. (1.9) as

⟨xm ⟩ =
∑
{pn}

∏
n

(
m!

pn! (n!)pn
⟨xn ⟩pnc

)

we can identify the different variables and factors as follows:

n: number of points in one cluster.

pn: number of clusters with the same number n of points inside.

m!: number of permutations of all the m points.

(n!)pn : permutations of the points within each cluster.

pn!: number of permutations of the clusters with n points among them.
m!

pn! (n!)pn
: number of ways of splitting m points in {pn} subgroups with n points each.
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1.3 The Gaussian or normal distribution

The Gaussian distribution is given by

p(x) =
1√

2π σ2
e−

(x−λ)2

2σ2 ,

where λ = ⟨x⟩ is the mean value and σ2 = ⟨x2⟩− ⟨x⟩2 is the variance. The characteristic
function

χ(k) =
1√

2π σ2

∫
dx e−

(x−λ)2

2σ2 −i k x

has also a Gaussian form. In order to prove it we set ξ = x−λ and rewrite the exponent
as

(x− λ)2

2σ2
+ i k x =

ξ2

2σ2
+ i k ξ + i k λ

=
(ξ + i σ2 k)2

2σ2
+
σ2 k2

2
+ i k λ .

One obtains

χ(k) = e−i k λ− k2σ2

2
1√

2π σ2

∫ +∞

−∞
dξ e−

(ξ+i σ2 k)2

2σ2︸ ︷︷ ︸
=1

= e−i k λ− k2σ2

2 .

In the last step we have applied Cauchy’s residue theorem and the fact that the expo-
nential function is analytic in all C. The cumulant generating function is thus simply
given by

lnχ(k) = −i k λ− k2 σ2

2
, (1.10)

which implies

⟨x ⟩c = ⟨x ⟩ = λ,

⟨x2 ⟩c = ⟨x2⟩ − ⟨x⟩2 = σ2,

and

⟨xn ⟩c = 0 for n ≥ 3.

This makes the calculations using the cluster expansion particularly simple, since the
graphical expansions involve only one- and two-point clusters (see Sec. 1.2.3). Conversely,
if all the higher cumulants ⟨xn ⟩c with n ≥ 3 vanish (or can be asymptotically neglected)
the underlying PDF is a Gaussian (or tends asymptotically to it). This property will be
exploited in the derivation of the central limit theorem.
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1.4 Many random variables

For more than one variable x⃗ = (x1, . . . xN ) ∈ Rn the set of outcomes S ⊆ Rn. The joint
probability distribution function (PDF) is defined by

p(x⃗)

N∏
i=1

dxi = prob
{
event x⃗ ′ in xi < x′i < xi + dxi ∀ i

}
.

It represents the probability per unit volume in Rn that the random variable x⃗ ′ takes a
value x⃗ in a volume element dx⃗ =

∏
i dxi centered at x⃗ and satisfies the normalization

condition ∫
p(x⃗) dNx = 1.

If, and only if, the variables are statistically independent we have p(x⃗) =
∏N

i=1 pi(xi),
where pi(x) is the PDF of the random variable xi. In this case one also says that the
variables xi are uncorrelated.

The unconditional probability density for a subset of random variables x1, . . . xm is
given by

p(x1 . . . xm) =

∫
p(x1, . . . xm, xm+1, . . . xN )

N∏
i=m+1

dxi.

It describes the behavior of the variables x1, . . . xm irrespective of all the others. For
instance p(x⃗) =

∫
d3v p(x⃗, v⃗) gives the particle density (i.e., probability distribution for

the position) irrespective of the velocity v⃗.

The conditional PDF p(x1 . . . xm |xm+1 . . . xN ) describes the behavior of some variables
x1 . . . xm, subject to the constraint that the other variables xm+1 . . . xN have specified
values. For example, one may search for the velocity distribution at a given point x⃗,
which we denote by p(v⃗ | x⃗).

The joint probability is given by

p(x1 . . . xm, xm+1 . . . xN ) = p(xm+1 . . . xN ) p(x1 . . . xm |xm+1 . . . xN ),

where p(xm+1 . . . xN ) is the unconditional probability density for xm+1 . . . xN , irrespec-
tively of the other variables x1 . . . xm, and p(x1 . . . xm |xm+1 . . . xN ) is the probability of
x1 . . . xm given the values xm+1 . . . xN . Thus

p(x1 . . . xm |xm+1 . . . xN ) =
p(x1 . . . xN )

p(xm+1 . . . xN )
,

where p(x1 . . . xN ) is the number of events x1 . . . xm, xm+1 . . . xN (divided by the number
N of trials) and p(xm+1 . . . xN ) is the number of events xm+1 . . . xN (divided by the
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number N of trials). An example would be the velocity distribution at point x⃗, namely,
p(v⃗|x⃗) = p(x⃗, v⃗)/p(x⃗).

The expectation values of some function F (x⃗) is calculated as usual from

⟨F (x⃗) ⟩ =
∫

p(x⃗) F (x⃗) dNx.

Thus, the joint characteristic function is given by the Fourier transform

χ(k⃗) =

∫
dx⃗ e−i k⃗·x⃗ p(x⃗)

= ⟨ e−i
∑N

j=1 kj xj ⟩

and the joint cumulant generating function is lnχ(k⃗). In the particular case of inde-
pendent variables we have p(x⃗) =

∏N
i=1 pi(xi), which implies χ(k⃗) =

∏N
i=1 χi(ki) and

lnχ(k⃗) =
∑N

i=1 lnχi(ki), where χi(k) is the characteristic function of the probability
distribution of the variable i.

The joint moments and joint cumulants are then obtained from

⟨xn1
1 . . . xnN

N ⟩ = ∂ n1

∂(−i k1)
. . .

∂ nN

∂(−i kN )
χ(k⃗)

∣∣∣∣
k⃗=0

and

⟨xn1
1 ∗ . . . ∗ xnN

N ⟩c =
∂ n1

∂(−i k1)
. . .

∂ nN

∂(−i kN )
lnχ(k⃗)

∣∣∣∣
k⃗=0

.

The graphical relation between moments and cumulants, that was demonstrated for one
variable, also applies to N variables. For instance,

⟨x1 x2 ⟩ =
(
•
1

) (
•
2

)
+
(
•
1
•
2

)
= ⟨x1 ⟩c ⟨x2 ⟩c + ⟨x1 ∗ x2 ⟩c

or

⟨x21 x2 ⟩ =
(
•
1

) (
•
2

) (
•
1

)
+
(
•
1
•
1

) (
•
2

)
+ 2

(
•
1
•
2

) (
•
1

)
+
(
•
1
•
2
•
1

)
= ⟨x1 ⟩2c ⟨x2 ⟩c + ⟨x21 ⟩c ⟨x2 ⟩c + 2 ⟨x1 ∗ x2 ⟩c ⟨x1 ⟩c + ⟨x21 ∗ x2 ⟩c.

1.4.1 Joint cumulants of independent random variables∗

It is easy to see that ⟨xαxβ ⟩ = ⟨xα ⟩⟨xβ ⟩ and ⟨xα ∗ xβ ⟩c = 0, if xα and xβ are
independent random variables. Let the PDF be of the form

p(x⃗) = p1(x1 . . . xm) p2(xm+1 . . . xN ) ,
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where 1 ≤ α ≤ m and m+ 1 ≤ β ≤ N . Then

χ(k⃗) =

∫
dx⃗ e−i k⃗·x⃗ p(x⃗)

= ⟨ e−i
∑m

j=1 kj xj ⟩1 ⟨ e−i
∑N

j=m+1 kj xj ⟩2

= χ1(k⃗1) χ2(k⃗2).

The joint moment is given by

⟨xα xβ ⟩ =
∂χ1

∂(−i kα)
∂χ2

∂(−i kβ)
= ⟨xα ⟩1 ⟨xβ ⟩2

for 1 ≤ α ≤ m and m+ 1 ≤ β ≤ N . It follows that

lnχ(k⃗) = lnχ1(k⃗1) + lnχ2(k⃗2)

and consequently

⟨xα ∗ xβ ⟩c =
∂

∂kα

∂

∂kβ
lnχ(k⃗) = 0

if 1 ≤ α ≤ m and m + 1 ≤ β ≤ N . The joint cumulant ⟨xα ∗ xβ ⟩c is also known as
the connected correlation. It can be regarded as a measure of the correlation or mutual
dependence between the variables xα and xβ .

1.5 The Gaussian distribution for many variables∗

The generalization to N variables of the normal distribution has the form

p(x⃗) =
1√

(2π)N det(Σ)
exp

{
− 1

2

∑
mn

(
Σ−1

)
mn

(xm − λm) (xn − λn)
}
,

where Σ is a positive-definite symmetric matrix and Σ−1 refers to its inverse. Note that
Σ−1 is also positive definite. In other words, the argument of the exponential is an
arbitrary positive-definite quadratic form.

The characteristic function is given by

χ(k⃗) =

∫
dx⃗ e−i k⃗·x⃗ e−

1
2
(x⃗−λ⃗)·Σ−1 (x⃗−λ⃗) 1√

(2π)N det(Σ)
,

where we have introduced k⃗ = (k1, . . . kN ) and λ⃗ = (λ1, . . . λN ).

One may easily verify the normalization of p(x⃗) and compute χ(k⃗) by changing vari-
ables to y⃗ = x⃗ − λ⃗, so that the Gaussian distribution is centered at the origin of

16



the coordinate system, and by performing an orthogonal transformation U such that
U tΣ−1 U = σ−2

m δmn is diagonal (Σ−1 is symmetric). The Jacobian of the orthogonal
transformation being equal to 1 (detU = 1) and denoting the eigenvalues of Σ−1 by
1/σ2m > 0 we have (

U tΣ−1 U
)
mn

= δmn
1

σ2m
with U t U = 1

and (
U tΣU

)
mn

= δmn σ
2
m.

Setting Uξ⃗ = y⃗ = (x⃗− λ⃗) we have

χ(k⃗) =
e−i k⃗·λ⃗√

(2π)N det(Σ)

∫
dξ⃗ e−i k⃗·Uξ⃗ exp

{
− 1

2

(
Uξ⃗
)
· Σ−1 Uξ⃗︸ ︷︷ ︸

ξ⃗·Ut Σ−1 Uξ⃗

}
.

If we set for a moment k⃗ = 0 to verify the normalization, we see that the integral splits
in a product of N one-dimensional Gaussians each yielding an integral

√
2π σ2m, so that∏

m

(√
2π σ2m

)
=
√

(2π)N det(Σ). The joint PDF is therefore properly normalized.

In order to compute χ(k⃗) one can use the result for one-dimensional Gaussians for

k⃗ ′ = U t k⃗ noting that (U tΣ−1 U)mn =
δmn

σ2m
. In this way one has

χ(k⃗) = e−i k⃗·λ⃗
∏
m

e−
k′ 2m σ2

m
2

= e−i k⃗·λ⃗ exp
{
− 1

2

∑
m

k′ 2m σ2m

}
.

Using that ∑
m

k′ 2m σ2m =
∑
m

k′m σ
2
m k

′
m = k⃗′ · U tΣU k⃗′ =

= U t k⃗ · U tΣ k⃗ = k⃗ · Σ k⃗ =
∑
mn

Σmn km kn,

we finally obtain

χ(k⃗) = e−i k⃗·λ⃗− 1
2
k⃗·Σ k⃗

= exp
{
− i

∑
m

km λm − 1

2

∑
mn

Σmn km kn

}
.
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Consequently,

lnχ(k⃗) = −i
∑
m

km λm − 1

2

∑
mn

Σmn km kn,

which implies

⟨xm ⟩c = λm,

⟨xm ∗ xn ⟩c = Σmn,

and all higher cumulants vanish.

In the special case of vanishing mean values, i.e., λm = 0∀m, we have that all odd
cumulants vanish. Thus, all odd moments vanish and any even moment is given by the
sum of the products of cumulants obtained from all possible ways of forming pairs of
variables. For instance,

⟨xα xβ xγ xδ ⟩ = ⟨xα ∗ xβ ⟩c ⟨xγ ∗ xδ ⟩c +

+ ⟨xα ∗ xγ ⟩c ⟨xβ ∗ xδ ⟩c

+ ⟨xα ∗ xδ ⟩c ⟨xβ ∗ xγ ⟩c.

This is analogous to Wick’s theorem in many-body Green’s function theory.

1.6 Probability distribution of a function on N random variables

We consider an arbitrary function f : RN → R of N random variables x⃗ = (x1, . . . , xN ).
The PDF p(f) for the variable f = f(x1, . . . , xN ) is given by

p(f ′) =

∫
dx1 . . . dxN p(x1, . . . xN ) δ

[
f ′ − f(x1, . . . , xN )

]
, (1.11)

where the delta function ensures that the integral sums up only the probability density
at the points x⃗ for which the function f(x⃗) yields the value f ′. In other words, the right
hand side can be interpreted as the sum over all possible values of the random variable x⃗
of the product of probability density of the variable x⃗ times the conditional probability
p(f ′|x⃗) that the random variable f(x⃗) takes the value f ′ for the given x⃗. The latter is
given by the delta function, since it vanishes for all f ′ ̸= f(x⃗) and its integral over all f ′

is equal to 1. The reader may wish to apply Eq. (1.11) to a one-variable function f(x)
and thus recover Eq. (1.2).

1.7 The central limit theorem

We consider the average x̄ = 1
N

∑N
ν=1 xν of N random variables x1, . . . xN having the

joint PDF p(x1, . . . xN ). These variables can be, for example, the kinetic energy p2ν/2m
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of the atoms in a classical gas or the pair interactions w(r⃗i, r⃗j) between pairs of molecules
in liquid (ν ≡ ij). In these cases the average x̄ represents the average kinetic energy,
respectively interaction energy, of the system. The PDF for the random variable x̄ is
obtained by integrating over all possible values of x1, . . . xN as

px̄(x) =

∫
dx1 . . . dxN p(x1, . . . xN ) δ

(
x− 1

N

N∑
ν=1

xν

)
. (1.12)

The corresponding characteristic function is

χx̄(k) =

∫
dx px̄(x) e

−i k x

=

∫
dx e−i k x

∫
dx1 . . . dxN p(x1, . . . xN ) δ

(
x− 1

N

∑
ν

xν

)

=

∫
dx1 . . . dxN p(x1, . . . xN ) e−i k

N

∑N
ν=1 xν

= χp

(
k1 =

k

N
, . . . kN =

k

N

)
, (1.13)

where χp(k⃗) is the characteristic function of the joint probability distribution p(x1 . . . xN ).
Let us recall that χp : R

N → R. Based on Eq. (1.13) one may already observe that for a
large number of variables N the properties of χx̄(k) and thus of px̄(x) are given by the
behavior of χp(k⃗) for k⃗ near the origin. They could thus be assessed by an appropriate
Taylor expansion.

Let us now assume that the xν are independent variables having all the same PDF p1(x).
A memorable example of random variables, which can be considered to be independent, is
the kinetic energy the particles in a classical gas at low densities, so that the interactions
among the particles can be neglected; the problem considered by Maxwell and Boltzmann
in their kinetic theory of gases. Other commonplace examples are the sex of the next
N children to be born, the outcomes of throwing a dice, the party voters will chose in
the next general election, the velocity of cars in a highway when traffic density is very
low, etc. As you can see, no assumption is made neither on the nature of the random
variable nor on the form discrete or continuous of the probability distribution p1(x).
Once statistical independence is granted the following considerations are universal. Our
purpose is to infer how the probability distribution px̄(x) of the average x̄ of N such
uncorrelated variables looks like.

Concerning the joint PDF, statistical independence implies that it splits in the simple
product

p(x1, . . . xN ) =
N∏
ν=1

p1(xν) , (1.14)
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where the index 1 in p1(xν) indicates that only one variable is involved. The characteristic
function associated with p(x⃗) is therefore

χp(k⃗) =
N∏
i=1

χ1(ki) , (1.15)

where χ1(k) is the characteristic function of p1(x). The characteristic function χx̄(k) for
the PDF px̄(x) of x̄ takes then the form

χx̄(k) =
N∏
ν=1

(∫
dxν p1(xν) e

−i k
N

xν

)
=

[
χ1

(
k

N

)]N
,

where χ1 is the characteristic function of p1(x). This result can be obtained either directly
from the definition of χx̄(k) or by applying Eq. (1.13) to the particular case (1.15). The
corresponding cumulant generating function then reads

lnχx̄(k) = N lnχ1

(
k

N

)
. (1.16)

We can now expand χ1 or lnχ1 for small k/N , i.e., for large N , in terms of the cumulants
of the probability distribution for one variable as

lnχ1

(
k

N

)
= −i k

N
⟨x ⟩c −

1

2

(
k

N

)2
⟨x2 ⟩c +O(N−3) . (1.17)

Combining Eqs. (1.16) and (1.17) we finally have

lnχx̄(k) = −i k ⟨x ⟩c −
1

2
k2

⟨x2 ⟩c
N

+O(N−2)

= −i k ⟨x ⟩ − 1

2
k2
σ2

N
+O(N−2) .

Comparing this equation with the general expression 1.5 for lnχ in terms of the cumulants
one concludes that the average of x̄ is given by ⟨ x̄ ⟩ = ⟨x ⟩ and that its variance is given
by σ2x̄ = ⟨ x̄2 ⟩c = ⟨x2 ⟩c/N = σ2/N . That the averages coincide was certainly expected.
Far more remarkable is the fact that the variance of x̄ is reduced by a factor 1/N with
respect to the variance σ2 of the probability distribution p1(x) of a single event. In
particular σ2x̄ vanishes for N → ∞!

Fourier-transforming back in order to obtain px̄(x) we have asymptotically for large N
that

px̄(x) ∼=
1√
2π σ2x̄

exp
{
− 1

2σ2x̄
(x− ⟨x ⟩)2

}
with a variance σ2x̄ = σ2/N . Thus, in the limit of N → ∞, the probability density of
the average always follows a Gaussian distribution whose variance tends to zero. This
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important result is known as the central limit theorem. Notice that the theorem holds
independently of the form of the PDF of the random variable x, i.e., for any p1(x). The
details of the physics behind p1(x) are therefore irrelevant. In particular, it holds for both
continuous and discrete p1(x) alike. On the one hand, this stresses the universality of
the theorem and of the statistical approach for large number of variables. On the other,
however, it also implies that the distribution px̄(x) for large N gives no information on
the behavior of the single-event probability p1(x) from which x̄ is issued. Only ⟨x ⟩ and
σ2 can be inferred from px̄(x), provided that N is finite and known.

The reasoning used to derive px̄(x) also applies to the sum of N independent random
variables X =

∑
ν xν . In this case the average is ⟨X ⟩ = N⟨x ⟩ and the variance is

σ2X = ⟨X2 ⟩c = N⟨x2 ⟩c = Nσ2, so that the amplitude of the fluctuations around the
mean, as measured by the standard deviation σX =

√
⟨X2 ⟩c =

√
N σ, scales with√

N . The fact that the fluctuations of X increase monotonously with N is certainly
reasonable. However, notice that the increase of σX is much slower than the average
itself (⟨X ⟩ = N⟨x ⟩). As a result, the relative fluctuation vanishes for large N as
σX
⟨X ⟩

∼ 1√
N

→ 0 for N → ∞, provided that ⟨X ⟩ ̸= 0. This behavior is sometimes

referred to as self-averaging.

The consequences of the central limit theorem are far reaching, not only in physical
applications but in statistics in general. Consider an arbitrary macroscopic system, for
example, a gas, liquid or solid which is not isolated and can thus exchange energy with
its environment. As a result of the interactions with the environment the total energy
E of the system will fluctuate to some extent, i.e., it will not have a well defined sharp
value. The central limit theorem tells us how the probability distribution for the average
energy per atom looks like independently of the details of the interactions between the
system and its environment. Indeed, if the system is macroscopic, it contains of the
order of 1020 atoms and molecules. One may then divide it in a large number N of equal
subvolumes, which still contain a very large number of atoms and can thus be regarded
as essentially uncorrelated (e.g., N = 1010 subsystems each containing 1010 atoms). The
probability of finding the subsystems i = 1, . . . , N in some particular quantum states
q1, q2, . . . , qN is then given, to a very good approximation, by the product of probabilities
p(q1, q2, . . . , qN ) =

∏N
i=1 p1(qi), where p1(q) is the probability that a subsystem is in the

state q. In equilibrium, p1(q) is the same for all subsystems since homogeneity can be
assumed. This reasoning applies to the physics of macroscopic systems in general. The
hypothesis of the central limit theorem are then fulfilled.

Let us turn our attention to the probability distribution of the average energy per
atom ε̄ and total energy E in such an open macroscopic system. The energies per atom
εi of the different subsystems i = 1, . . . , N are independent random variables following
some probability distribution p1(ε). The energy per particle of the whole system is given
by the average ε̄ =

∑
i εi/N of the random variables εi. In the macroscopic limit both

the number N of subsystems and the size of them tend to infinity. The central limit
theorem implies —without any knowledge of the physics behind εi or p1(ε)— that the
energy per particle of any macroscopic system in equilibrium is normal distributed with
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a mean-square deviation which tends to zero as σε̄ ∝ 1/
√
N in the macroscopic limit,

i.e., when the number of subsystems N or system size tends to infinity. Concerning the
total energy E one concludes that it also follows a Gaussian distribution with a standard
deviation σE ∝

√
N . Note that the fluctuations of the total energy grow much more

slowly with system size than E, which is proportional to N , rendering the fluctuations
of the energy per atom negligible. The same reasoning applies to any other extensive
property such as the number of particles, volume, or magnetization. The fact that these
general conclusions are drawn independently of the nature of the system and of any details
about its internal interactions (gas, liquid, solid, metallic, insulating, etc.) demonstrates
the amazing universality of the statistical approach.

Exercise 1.4:
Calculate ⟨ x̄ ⟩ and σ2x̄ = ⟨ x̄2 ⟩− ⟨ x̄ ⟩2 in terms of ⟨x ⟩ and σ2 starting from Eqs. (1.12) and
(1.14) for arbitrary, not necessarily small N .

1.8 Information content of a probability distribution

Consider a random variable with a discrete set of outcomes S = {xi, i = 1, . . .M} having
the probabilities {pi}. Suppose we construct a message x1 . . . xN with N independent
outcomes of the random variable xi. We intend to quantify the possible information
content of such a message as a function of the probability distribution {pi, i = 1, . . .M}.
Analyzing the number of different possible messages will allow us to infer how much of
the apparent information content of the message is already contained in the probability
distribution. For instance, if the probability distribution is {p1 = 1 and pi = 0 ∀ i > 1}
there is just one possible message (x1 . . . x1) and actually no information can be conveyed.
All the information is in the probability distribution (PD). In the other extreme case,
where xi is uniformly distributed, the PD carries no information at all.

Let us first consider the case where the values of xi in the message x1 . . . xN can
be chosen at will. Since there are M possibilities for each xi, the number of different
messages is g =MN . The number of bits K necessary to transmit or store such messages
or, in other words, the number of bits required in order to distinguish one message from
the others, is

K = ln2 g = N ln2M . (1.18)

On the other hand, if the xi are taken from the probability distribution pi, the possible
choices of xi are limited. For instance, if p1 ≫ p2 it is unlikely to construct a message
with more occurrences of x2 than x1. In the limit of large number of message elements
N , the number of occurrences of xi in the message approaches asymptotically Ni = piN .
In fact the probability of finding |Ni − N pi| >

√
Ni becomes exponentially small as

N → ∞. Taking into account that the message contains nearly Ni occurrences of xi, the
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number of possible messages is reduced to

g =
N !∏M

i=1 Ni!
.

This corresponds to the number of different ways of arranging the N1, . . . NM occurrences
of the outcomes x1 . . . xM , where

∑
iNi = N . To specify the message we therefore need

K = ln2 g = ln2N !−
M∑
i=1

ln2Ni!

∼= N ln2N −N ln2 e−
M∑
i=1

(Ni ln2Ni −Ni ln2 e)

= −N
M∑
i=1

Ni

N
ln2

Ni

N

= −N
M∑
i=1

pi ln2 pi = −N⟨ ln2 p ⟩

bits of information.1 K gives a measure of the diversity of the probability distribution
{pi}. As expected, we recover here the two limiting cases discussed above: ln2 g = 0 for
pi = 1 and pj = 0 ∀ j ̸= i and ln2 g = N ln2M for pi = 1/M ∀ i (uniform distribution).
For any non-uniform probability distribution the information content of the message
ln2 g is smaller than N ln2M , which is the information content in the absence of any
information on the relative probabilities pi. One assigns this difference to the information
carried by the probability distribution {pi}. Consequently, the information content of
the probability distribution {pi} is given by

I({pi}) =
1

N
[Kmax −K({pi})]

= ln2M +
M∑
i=1

pi ln2 pi .

The information content represents the reduction of the logarithm of the number of
possible messages g that can be constructed out of {pi} in the limit of large N per
unit of message length. It is a property of the probability distribution and as such it is
independent N .

1In the limit of large N one may approximate lnN ! ≃ N lnN − N + ln(2πN)/2. Thus, taking into
account only the leading contributions, one may write lnN ! ≃ N lnN −N for N → ∞.
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1.9 Entropy of a probability distribution

In this context it is useful to introduce the entropy S of a probability distribution, which
is defined by

S({pi}) = −
M∑
i=1

pi ln pi = −⟨ ln pi ⟩ ≥ 0 (0 ≤ pi ≤ 1) .

In terms of S the information contents is given by

I({pi}) =
1

ln(2)
[Smax − S({pi})] ,

where

Smax = −
M∑
i=1

1

M
ln

1

M
= lnM

is the maximum of S({pi}) corresponding to pi = 1/M . A probability distribution with
maximum entropy carries the least possible information. Therefore, S gives a measure
of diversity of the distribution. Notice that S is equal to the logarithm of the number of
different messages or states that can be constructed with outcomes x1 . . . xM satisfying
Ni = Npi. For the distribution pi = δij (for some j) there is only one possible microscopic
configuration or message, namely, (xj xj . . . xj). In this case, and only in this case, we
have S = 0.

The entropy does not depend on the values or physical meaning of the random variables
xi. Any one-to-one mapping of the form xi → fi leaves the entropy unchanged since
p(xi) = p(fi). This implies in particular that the (non-equilibrium) entropy of a system
of interacting particles (e.g., an interacting electron gas) with occupation probabilities
n
k⃗

for each quasi-particle state k⃗ is the same as the entropy of a non-interacting system
having the same n

k⃗
. The actual equilibrium entropy will of course be different, since in

equilibrium the entropy corresponds to the maximum value of S({n
k⃗
}) compatible with

the constraint of a fixed total energy E.

In contrast, any many-to-one mapping reduces the entropy of the probability distribu-
tion, since it reduces its diversity or, in other words, it increases the definiteness or the
information content. For example, given p1 and p2, the mapping

x1
x2

}
→ f

gives

p(f) = p1 + p2.
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The resulting change in the entropy reads

∆S = Sf − S12

= −p(f) ln p(f) + (p1 ln p1 + p2 ln p2)

= p1 ln
p1

p1 + p2
+ p2 ln

p2
p1 + p2

,

which is negative, provided that p1 ̸= 0 and p2 ̸= 0. Conversely, removing a constraint
in a probability distribution systematically increases S.

1.9.1 Inferring unbiased probability distributions

The entropy S (or equivalently the information content) of a probability distribution can
also be used as a criterion to infer subjective (i.e., theoretical) estimates of probability
distributions. For instance, in the absence of any information or constraint on the pro-
cesses behind the individual events i, the best unbiased estimate of {pi} is that all possible
outcomes are equally probable, i.e., pi = 1/M for all i. The distribution maximizing S
has the largest diversity and therefore yields the largest number of messages or ‘states’
which are likely to be obtained as the outcomes of the probability distribution {pi} for
any given M . One may also say that this choice minimizes the information content of
the probability distribution {pi}.

If additional information is available the unbiased estimate for pi is obtained by maxi-
mizing S subject to the constraints imposed by the available information. As an example
let us assume that we know the average value ⟨F (x) ⟩ = f of some function F (x) of the
random variable x. In this case we obtain the unbiased pi from the extremum of

L({pi}) = S({pi})︸ ︷︷ ︸
−

∑M
i=1 pi ln pi

−α

(
M∑
i=1

pi − 1

)
− β

(
M∑
i=1

pi F (xi)− f

)
,

where α and β are Lagrange multipliers. Straightforward derivation yields

∂L

∂pi
= − ln pi − 1− α− βF (xi) = 0

⇒ pi = e−(1+α) e−βF (xi).

Imposing the normalization condition
∑

i pi = 1 we obtain e1+α =
∑

i e
−βF (xi) and thus

pi =
e−βF (xi)∑M
i=1 e−βF (xi)

, (1.19)

where β is such that

f = ⟨F (x) ⟩ =
∑M

i=1 e−βF (xi) F (xi)∑
i e−βF (xi)

. (1.20)
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Exercise 1.5:
Find the unbiased probability p(xi) for a random variable xi (i = 1, . . .M) knowing the
first n moments of p(xi) (i.e., ⟨xν ⟩ =Mν for ν ≤ n).

i) Show that p(xi) ∝ exp

(
n∑

ν=0

aν x
ν
i

)
with certain coefficients aν .

ii) Consider the partition function Z =
M∑
i=1

exp

{
n∑

ν=0

aν x
ν
i

}
and show that the coeffi-

cients are given by the equations
∂ lnZ

∂aν
=Mν .

1.9.2 Entropy of continuous probability densities

In analogy with the discrete case we can define the entropy of a continuous probability
density distribution p(x⃗) as

S = −⟨ ln p(x⃗) ⟩ = −
∫
p(x⃗) ln p(x⃗) dx⃗.

However, notice that this definition does not have some of the nice properties of S =
−
∑

i pi ln pi for discrete random variables. For instance, for a uniform distribution in
the interval [a, b], i.e.,

p(x) =

{
1/(b− a) for a ≤ x ≤ b

0 elsewhere,

we have

S = −
∫ b

a

1

b− a
ln

(
1

b− a

)
= ln(b− a).

For large intervals this is positive and diverges logarithmically [S → +∞ for (b − a) →
+∞]. In the opposite limit of a very narrow PDF around some point x0, we have

p(x) =

{
1/ε for x0 − ε/2 < x < x0 + ε/2

0 elsewhere.

Therefore, S = −⟨ ln p ⟩ = ln(ε), which tends to and −∞ for ε tending to 0. Notice that
S can take negative values for very sharp p(x) ≃ δ(x) since the probability density p(x)
is not bounded, in contrast to the probabilities pi of discrete variables. Such situations,
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however, never appear in the description of macroscopic systems in equilibrium. Despite
these diverging limits, it is interesting to observe that S always increases (decreases) as
the diversity of the distribution increases (decreases). Indeed, S → +∞ when the width
|b− a| of the accessible interval in a uniform distribution p(x) = 1/|b− a| diverges, and
S → −∞ when p(x) tends to a delta function.

In order to avoid the problem of the negative divergence of S for very sharp p(x), or
rather to understand its origin, it is useful to derive the expression for S for continuous
PDF by starting from the expression

S = −
∑
i

pi ln pi

for discrete variables. To this aim, a finite lower bound or threshold ∆ is introduced
on the continuous variable x, below which two outcomes (differing by less than ∆) are
considered to be equivalent. With this coarse graining the logarithm of the number of
possible messages (i.e., the diversity of the probability distribution) is given by

S = −
∑
i

P̃ (xi < x < xi +∆) ln
[
P̃ (xi < x < xi +∆)

]
where xi = i∆ and pi = P̃ (xi < x < xi+∆) is the probability for x to lie in the interval
[xi, xi +∆]. Using that

P̃ (xi < x < xi +∆) = P (xi +∆)− P (xi) =

∫ xi+∆

xi

p(x) dx,

where P (x) refers to the cumulative probability function and p(x) =
dP

dx
to the probability-

density function, we have

S = −
∑
i

(∫ xi+∆

xi

p(x) dx

)
ln

(∫ xi+∆

xi

p(x) dx

)
≥ 0.

If the spectrum of outcomes is discrete or shows very narrow peaks (narrower than ∆)
we can still compute S and recover the limit of discrete random variables. In contrast, if
p(x) is smooth we can write

S ∼= −
∑
i

(∫ xi+∆

xi

p(x) dx

)
ln [p(xi)∆]

∼= −
∑
i

(∫ xi+∆

xi

p(x) dx

)
[ln p(xi) + ln∆]

∼= −
∫
p(x) ln [p(x)] dx− ln∆ .
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The term ln∆ cancels the divergence of S = −⟨ ln p(x) ⟩ for p(x) → δ(x).

Another potential problem of the definition

S = −
∫
p(x) ln[p(x)] dx

is that it is not necessarily invariant under a bijective mapping f = F (x). In fact, one
has

p(f) df = p(x) dx ⇒ p(f) = p(x)
1∣∣dF
dx

∣∣
and therefore

S [p(f)] = −
∫
p(f) ln p(f) df = −

∫
p(x)

[
ln p(x)− ln

∣∣∣∣dFdx
∣∣∣∣ ] dx

= −
∫
p(x) ln p(x) dx+

∫
p(x) ln

∣∣∣∣dFdx
∣∣∣∣ dx

= S [p(x)] +

〈
ln

∣∣∣∣dFdx
∣∣∣∣
〉
.

A simple change of scale, i.e., f = αx, would thus change the value of S. An expansion
(α > 1) increases S, since it increases the diversity, while a compression (α < 1) reduces
S since it flattens the variations of the random variable.

In the case of many random variables we define S analogously as

S = −⟨ln p(x⃗)⟩ = −
∫
p(x⃗) ln p(x⃗) dx⃗.

Following a change of variables x⃗→ f⃗ we have

S
[
p(f⃗)

]
= S [p(x⃗)] +

〈
ln
∣∣J(f⃗)∣∣ 〉,

where J(f⃗) =

∣∣∣∣ ∂fi∂xj

∣∣∣∣ is the Jacobian of the variable transformation fi = fi(x1, . . . xN ).

The entropy is thus invariant under canonical transformations in classical mechanics and
unitary transformation in quantum mechanics, since in these cases the Jacobian equal to
1.
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Exercise 1.6: Loaded dice
A dice is loaded such that p6 = n p1 (e.g., n = 2). In other words, six occurs n times more
often than 1.

i) Find the unbiased probabilities for the six faces of the dice. How are pi for i = 2–4
related? Is this reasonable according to the notion of unbiased probability distribu-
tion?

ii) Find {pi, i = 1–6} in the limit n → ∞ and analyze the results for the different i.
Compare pi for i = 2–4, p6 and p1+p6 in this limit with the unloaded n = 1 case. Are
the results reasonable from the physical or mechanical perspective of a real loaded
dice?

iii) Analyze the information content of the probability distribution function {pi, i = 1–6}
as a function of n?
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2 Mixed states, density matrices and distribution functions

2.1 Introduction

The usual point of view in mechanics, either quantum or classical, is to predict the state
of a system at a given time t provided that one knows the state of the system at a
previous time t0 < t and that one know the exact form of the Hamiltonian. This is
actually the scope of any deterministic mechanical theory. The information required to
define a state, the very nature of it, and its connection to the observable properties is
very different in the quantum and classical cases. Still, the time evolution is in both
cases deterministic. While we all agree that QM should be the basis of any theory of
matter, it is easy to see that a deterministic approach to macroscopic systems is neither
practical nor meaningful. From a practical perspective first, it is clear that we can never
succeed in recording all the information needed to determine the initial state of a system
composed of 1020 atoms. Even the exact form of the Hamiltonian governing the system
and its environment is, strictly speaking, inaccessible. Needless to say that solving the
time evolution of such a system is impossible both analytically or numerically. The other
important reason not to pursue the deterministic perspective is understanding. Suppose
we would be able to propagate during 1 µs a wave function, also known as pure state,
depending on 1020 coordinates. What would we do with all these numbers?2 From an
experimental perspective we are only interested in mean values, either within an interval
of time, or in space, or both. The information consisting of the complete wave function
(or of the coordinates and momenta of all particles in the classical case) as a function of
time does not provide any understanding.

In order to successfully approach this problem a change of perspective is needed. In-
stead of following the dynamics of a given system having a given initial state as a function
of time, it is far more meaningful to consider a large number of equivalent systems, which
have a wide variety of initial states, ideally all possible states compatible with the global
boundary conditions and constants of motion. This ensemble of systems should be dis-
tributed across the accessible states with some initial probability distribution. Actually,
only the probability of finding a system in a given state is needed in order to compute any
average value. Notice that with average values we not only mean global properties of the
system (e.g., total energy, kinetic energy, magnetization, equilibrium volume, etc.) but
also the most detailed microscopic information, such as, spin-polarized density distribu-
tion, density and spin correlation functions including their dependence on experimentally
tunable external fields. The challenge is then to determine the time evolution of the prob-
ability distribution when the initial distribution has been given. This is the perspective
of statistical mechanics as proposed by Maxwell, Boltzmann and Gibbs. The properties

2The reader may wish to estimate the number of bits needed to store the wave function of a system
containing N = 1020 particles (just at a single time t) and compare it with the total number of
particles in the universe (∼ 1080) or estimate the time needed to go through all of them once at the
clock rate of the fastest CPUs (∼ 10GHz) and compare it with the current estimation of the age of
the universe (∼ 1010 years).
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of such statistical ensembles of systems is characterized by density operators ρ̂ in quan-
tum mechanics and by statistical distribution functions ρ(p, q) in classical mechanics. In
the following we shall review the properties of ρ̂ and ρ(p, q). A rigorous justification of
the ensemble or mixed state approach to macroscopic systems will be given later on. As
we shall see, mixed states and ensembles appear quite naturally once the crucial, even if
very weak, coupling between the system and its environment is taken into account.

2.2 Mixed states

The fundamental principles of quantum mechanics establish that the state of any system
is characterized by an element |Ψ⟩ of a vector space or Hilbert space V. The superposition
principle implies that the set of all possible states form a vector space, since ∀ |Ψ1⟩ and
|Ψ2⟩ ∈ V, we have a|Ψ1⟩+ b|Ψ2⟩ ∈ V for all a, b ∈ C. These states are called pure states
or microstates in the broader context of statistical mechanics. In order to characterize
|Ψ⟩ one usually expands it in a basis of states having well-defined values of a complete
set of compatible observables f :

|Ψ⟩ =
∑
n

an |fn⟩+
∫
af |f⟩ df .

It is clear that knowing all these expansion coefficient is impossible in practice, except
for very small systems (atoms and small molecules). Strictly speaking, all possible states
of the system at any time t are pure states, i.e., an element of V. Nevertheless, this is
not the only physical situation that one may encounter. In many cases of interest, and
in particular in the study of macroscopic systems, one has to deal with an incoherent
superposition of microstates |αi⟩ each having a probability wi but baring no correlation
whatsoever. Such ensembles of microstates are called mixed states or mixed ensembles.

2.2.1 Statistically independent systems

Mixed states are necessary in order to describe the properties of ensembles of physically
equivalent, statistically independent systems, each being in a state |αi⟩ with probability
wi. The reader is probably familiar with calculating the properties of a beam of atoms
coming out of an oven in the context of the Stern-Gerlach experiment. In the case of a
macroscopic system it is reasonable to regard a large system (containing for example 1020

particles) as an ensemble of N subsystems each containing a large number of particles as
well (for example, 1010 subsystems with 1010 particles each). In the macroscopic limit
the subsystems are also macroscopic, and the interaction between them are weak, so that
their states can be regarded as statistically independent. The surface to volume ratio of
the subsystems tends to zero as the size tends to infinity. It is important to note that
full statistical independence requires the system to be open or that it is part of a much
larger closed system, since in the case of closed system the subsystems must satisfy the
usual conservation laws. For example, the sum of all the energies of the subsystems of a
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closed system must be constant. In any case it is clear that the predictions of a theory
of macroscopic systems must be the same, whether we consider fewer larger systems or
a larger number of smaller subsystems, provided that they remain macroscopic.

We consider an ensemble of systems distributed over the pure states |αi⟩ with proba-
bility wi. The fractional population of the states |αi⟩ satisfy the normalization condition∑

i

wi = 1

The pure states |αi⟩ are properly normalized

⟨αi|αi⟩ = 1 ∀i

However, the different |αi⟩ need not be orthogonal to each other. In fact, the states
of different subsystems bare no correlation to each other and therefore need not be
orthogonal.

The average of any observable Â when a large number of measurements is performed
on the ensemble is

⟨Â⟩ =
∑
i

wi ⟨αi|Â|αi⟩

Notice that ⟨Â⟩ involves the usual quantum mechanical average of the observable Â in
the pure state |αi⟩ weighted by the probability wi of finding the systems in |αi⟩.

2.2.2 A single quasi-closed system and its environment

It is interesting to observe that ensemble averages also appear when one considers the
properties of a single isolated system, which has interacted with the environment prior
to isolation. This is the most relevant situation we encounter in real experiments, since
preparing a macroscopic system in a given state requires that some interactions with the
environment have taken place, whose details cannot all be controlled. We consider a
system, which is characterized by a complete set of orthonormal states {|ϕn⟩}, and its
environment, which is characterized by the orthonormal basis set {|χm⟩}. The entity
‘system plus environment’ (S⊕E) is assumed to be strictly isolated. Thus, according to
the laws of quantum mechanics, S⊕E must be in a well-defined pure state of the form

|Ψ⟩ =
∑
mn

amn |χm⟩ |ϕn⟩ ,

even though we are unable to know the precise values of the expansion coefficients anm ∈
C (
∑

mn |amn|2 = 1).

We would like to compute the average value of an operator Â, which concerns some
property of the system and thus affects only the variables |ϕn⟩. To this aim we rewrite
|Ψ⟩ in the form

|Ψ⟩ =
∑
m

|χm⟩
∑
n

amn|ϕn⟩ (2.1)
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and define the normalized states of the system |αm⟩ and the amplitudes bm by

bm|αm⟩ =
∑
n

amn|ϕn⟩ , (2.2)

with
⟨αm|αm⟩ = 1 ∀m. (2.3)

Let us remark that ⟨αm|αm′⟩ ̸= 0 for m ̸= m′ in general. Using Eqs. (2.2) and (2.3) one
obtains

|bm|2 =
∑
n,n′

a∗mn′amn⟨ϕn′ |ϕn⟩ =
∑
n

|amn|2 .

Assuming for simplicity that bm ∈ R, we have

|αm⟩ =
∑

n amn|ϕn⟩√∑
n |amn|2

.

Notice that |bm|2 represents the probability of finding the environment in the state |χm⟩,
when the system plus environment is in the pure state |Ψ⟩ given by Eq. (2.1). We may
actually write

|Ψ⟩ =
∑
m

bm|χm⟩|αm⟩ .

The normalization of |Ψ⟩ and of |αm⟩ for all m imply∑
m

|bm|2 = 1 .

We may now compute ⟨Ψ|Â|Ψ⟩ for any operator concerning the system, i.e., acting
only on the variables |ϕn⟩ or |αm⟩:

⟨Ψ|Â|Ψ⟩ =
∑
m,m′

b∗m′bm ⟨χm′ |χm⟩︸ ︷︷ ︸
δmm′

⟨αm′ |Â|αm⟩ =
∑
m

|bm|2⟨αm|Â|αm⟩ .

Remarkably, this takes the same form as the ensemble average with wm = |bm|2, even
though the state of the system plus environment is pure. Moreover, this expression holds
for all times, since the eigenstates of the environment remain orthogonal to each other
once the system and environment are decoupled. In practice it is impossible to keep
a system decoupled from its environment for a very long time. All idealized isolated
systems are in reality quasi-closed at best. One can imagine that the system and the
environment interact from time to time. This corresponds to a change or redefinition of
the expansion coefficients amn defining the global state |Ψ⟩. Consequently, the interaction
with the environment implies sampling different states |αm⟩ and weights wm = |bm|2. It
is precisely the system-environment interaction, however weak, what ultimately explains
the establishment of thermodynamic equilibrium.
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It is important to note that the weights wm = |bm|2 are independent of time as long as
the system remains perfectly isolated from the environment, i.e., as long as the system and
the environment do not interact. Indeed, a lack of interaction means that the Hamiltonian
takes the form Ĥ = Ĥenv + Ĥsys where Ĥsys (Ĥenv) acts only on the variables of the
system (environment). The states |ϕn⟩ and |χm⟩ remain eigenstates of the system and
environment if no interaction is present:

Ĥenv|χm⟩ = Em|χm⟩

and
Ĥsys|ϕn⟩ = εn|ϕn⟩

Consequently,
|Ψ(t)⟩ =

∑
mn

amne
− i

ℏ (Em+εn)t︸ ︷︷ ︸
amn(t)

|χm⟩|ϕn⟩

and
|bm(t)|2 =

∑
n

|amn(t)|2 =
∑
n

|amn|2

is independent of time. This implies that for a strictly isolated system all the time
dependence of a mixed state must be ascribed to the time dependence of the states |αm⟩.
As we shall see, this leads to the Liouville equation of motion of the density operator ρ̂.

Summarizing, mixed states or mixed ensembles provide a more general perspective to
quantum mechanical systems, which includes pure states as a particular case (wm = 1 for
a given m) and which allows us to describe macroscopic systems from two complementary
perspectives:

i) Macroscopic systems can be regarded as a statistical ensemble of a large number
of macroscopic subsystems, and

ii) macroscopic systems can be regarded as quasi-closed systems having a very weak
though non-vanishing interaction with the environment.

2.3 Density matrix

The expression for the average value of an operator in a mixed state

⟨Â⟩ =
∑
i

wi⟨αi|Â|αi⟩

has a very clear physical interpretation. However one would like to express ⟨Â⟩ in an in-
variant form, which clearly separates the factors that depend on the ensemble from those
that depend on the property under study. To this aim we introduce the completeness

34



relation
∑
n
|n⟩⟨n| = 1 and obtain

⟨Â⟩ =
∑
i

wi⟨αi|Â

(∑
n

|n⟩⟨n|

)
|αi⟩

=
∑
n

∑
i

⟨n|αi⟩wi⟨αi|Â|n⟩ =
∑
n

⟨n|

(∑
i

|αi⟩wi⟨αi|

)
Â|n⟩

= Tr

{(∑
i

|αi⟩wi⟨αi|

)
Â

}
.

This can be written as

⟨Â⟩ = Tr
{
ρ̂Â
}
, (2.4)

where we have introduced the density-matrix operator or density operator (DO)

ρ̂ =
∑
i

|αi⟩wi⟨αi| .

The DO depends only on the considered mixed state, since it is given by the participating
pure states |αi⟩ and the corresponding probabilities or weights wi. As we shall see, ρ̂
defines the mixed state completely, i.e., the knowledge of ρ̂ at a time t not only allows to
determine the average value ⟨Â⟩ and probability distribution PA(a) for any observable Â
at the given time t, but it also univocally defines ρ̂ at any other subsequent time t′. In
the case of mixed states, it takes the role played by the wave function for pure states. Of
course, ρ̂ is independent of the observable Â under consideration. Equation (2.4) applies
to the average of any observable.

Let us recall some properties of the trace of an operator

Tr
{
Â
}
=
∑
n

⟨n|Â|n⟩,

where {|n⟩} is a complete orthonormal basis. It is easy to see that

Tr
{
ÂB̂
}
= Tr

{
B̂Â
}

for any operators Â and B̂. This also implies that Tr{Â} is independent of the orthonor-
mal basis used for performing the sum. If Û is a unitary transformation (Û †U = 1) such
that

|un⟩ = Û |n⟩

we have ∑
n

⟨un|Â|un⟩ =
∑
n

⟨n|U †ÂU |n⟩ = Tr
{
U †ÂU

}
= Tr

{
Â
}
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Finally, it is also useful to recall that

Tr{|α⟩⟨α|} =
∑
n

|⟨n|α⟩|2 = 1

for any state |α⟩ whose norm ⟨α|α⟩ = 1.

The density operator ρ̂ has the following important properties:

i) Hermiticity:
ρ̂† = ρ̂ since wi ∈ R

ii) Normalized trace:
Tr {ρ̂} = 1 since

∑
i

wi = 1

iii) Since ρ̂† = ρ̂, it is diagonalizable. Thus, ρ̂ has a spectral representation of the form

ρ̂ =
∑
k

ρk|Ψk⟩⟨Ψk|

where ρ̂|ψk⟩ = ρk|ψk⟩, ρk ∈ R and ⟨ψk|ψk′⟩ = δkk′ . The eigenstates of ρ̂ form a
complete orthonormal basis. Notice that the weights wi entering the definition of
ρ̂ are not necessarily the eigenvalues of ρ̂, since in general ⟨αi|αj⟩ ≠ δij .

iv) The eigenvalues of ρ̂ satisfy 0 ≤ ρk ≤ 1. Let us first show that ρ̂ is positive
semi-definite:

⟨Ψ|ρ̂|Ψ⟩ =
∑
i

wi|⟨Ψ|αi⟩|2 ≥ 0

for any state |Ψ⟩. This implies that the eigenvalues ρk ≥ 0. In addition, since∑
k

ρk = Trρ̂ = 1 we must have ρk ≤ 1.

v) The square of ρ̂ satisfies
Tr
{
ρ̂2
}
≤ 1.

This is easily proven by noting that

1 = (Tr {ρ̂})2 =

(∑
k

ρk

)2

=
∑
k

ρ2k +
∑
k ̸=l

ρkρl.

Since
∑
k ̸=l

ρkρl ≥ 0, we have

Tr
{
ρ̂2
}
=
∑
k

ρ2k ≤ 1.

vi) Pure-state characterization:

Tr
{
ρ̂2
}
= 1 ⇔ ρ̂ = |Ψk⟩⟨Ψk|
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for some k. In other words, Tr
{
ρ̂2
}
= 1 if and only if ρ̂ describes a pure state.

The proof follows by noting that

Tr
{
ρ̂2
}
=
∑
k

ρ2k = 1 ⇔
∑
k ̸=l

ρkρl = 0 ⇔ ρkρl = 0 ∀k ̸= l.

Therefore, only one eigenvalue ρk can be different from zero, which must then be
equal to one. Consequently, ρ̂ = |ψk⟩⟨ψk| and ρ̂2 = ρ̂. We conclude that Tr{ρ̂2}
allows us to distinguish mixed states from pure states.

vii) Tr{ρ̂2} is not only independent of the representation but also independent of time.
This implies that pure states can never evolve into mixed states, and vice versa, as
long as the system is perfectly isolated. The reason for this is that the dynamics of
a system, which is perfectly decoupled from the environment, follows the unitary
time-evolution operator Û(t, t0). The proof is straightforward by noting that

ρ̂2 =
∑
ij

|αi⟩wi ⟨αi|αj⟩wj ⟨αj |

and thus

Tr
{
ρ̂2
}
=
∑
n
ij

⟨n|αi⟩wi ⟨αi|αj⟩wj ⟨αj |n⟩

=
∑
ij

wiwj |⟨αi|αj⟩|2 .

Since Û(t, t0) is unitary, the time evolution |αi, t⟩ = Û(t, t0)|αi, t0⟩ does not modify
the scalar products ⟨αi|αj⟩. Consequently, Tr

{
ρ̂2
}

is independent of time in an
isolated system.

Summarizing so far, we may say that the set of all operators of the form

ρ̂ =
∑
i

wi|αi⟩⟨αi| (2.5)

with ⟨αi|αi⟩ = 1∀i, and the set of all hermitic, positive semi-definite operators with trace
equal one are identical. However, notice that the representation of ρ̂ in the form (2.5)
is not unique, since the |αi⟩ are not necessarily orthogonal to each other. This means
that mixed states, which may look different in terms of {|αi⟩} and {wi}, may have the
same density operators ρ̂ and may thus be physically identical. On the other side ρ̂
characterizes a physical state fully and univocally concerning the results of every possible
measurement. The knowledge of ρ̂ defines not only the average value of any observable
Â through

⟨Â⟩ = Tr
{
ρ̂ Â
}

but also the average
⟨F (Â)⟩ = Tr

{
ρ̂ F (Â)

}
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of any function of it.

Consequently, ρ̂ defines the probability density distribution PA(a) that the result of a
measurement of Â yields the value a. This probability density is given by

PA(a) = ⟨δ(a− Â)⟩ = Tr
{
ρ̂ δ(a− Â)

}
. (2.6)

Therefore, the knowledge of ρ̂ gives the most complete experimentally accesible informa-
tion on any observable.

Exercise 2.7: Show the validity of the above expression (2.6) for PA(a) knowing that, by
definition, the probability distribution PA(a) satisfies ⟨F (Â)⟩ =

∫
PA(a)F (a) da for any

function F of the observable Â.

From a more mathematical perspective it is interesting to note that the set of all
density operators is convex. Let ρ̂1 and ρ̂2 be two density operators describing two
different (mixed) states. Then the operator

ρ̂ = α1ρ̂1 + α2ρ̂2

with α1 + α2 = 1 (αi ≥ 0) is also a density operator describing a possible mixed state.

Pure states are particular cases of the more general concept of mixed states, which can
be perfectly described with density operators. It is easy to see that a density operator
ρ̂ corresponds to a pure state if an only if any of the following equivalent conditions is
satisfied:

i) There is a state |α⟩ such that ρ̂ = |α⟩⟨α|.

ii) ρ̂2 = ρ̂,

iii) Tr
{
ρ̂2
}
= 1,

iv) Tr {ρ̂ ln ρ̂} = ⟨ln ρ̂⟩ = 0, or

v) ρ̂ cannot be written as the combination of two different ρ̂1 and ρ̂2, i.e., there exist
no density operators ρ̂1 ̸= ρ̂2 such that ρ̂ = α1ρ̂1 + α2ρ̂2 with α1 + α2 = 1 and
αi > 0.

Exercise 2.8: Prove the above mentioned equivalent characterizations of a pure state.

2.4 Time dependence of the density operator of isolated systems

We consider here the time dependence of the density operator of strictly isolated systems,
for which we know that the weights wi of the states |αi⟩ building the mixed state are
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independent of time. The quantum states |αi⟩ follow the Schrödinger equation. We
consider ρ̂(t) in the Schrödinger picture:

ρ̂s(t) =
∑
i

wi |αi, t⟩⟨αi, t| ,

where the Schrödinger kets |αi, t⟩ = Û(t, t0)|αi, t⟩ satisfy the Schrödinger equation

iℏ
∂

∂t
|αi, t⟩ = Ĥ|αi, t⟩

or equivalently

−iℏ ∂
∂t

⟨αi, t| = ⟨αi, t|Ĥ

The Hamilton operator Ĥ(t) may depend on time. It is of course hermitic, since |αi⟩
preserves its norm as a function of time. We then have

iℏ
∂ρ̂s
∂t

=
∑
i

wi

(
Ĥ|αit⟩⟨αit| − |αit⟩⟨αit|Ĥ

)
or equivalently

iℏ
∂ρ̂s
∂t

=
[
Ĥ, ρ̂s

]
. (2.7)

This is known as Liouville’s equation. It describes the time dependence of the operator
ρ̂s in the Schrödinger picture, which originates in the time dependence of the Schrödinger
kets |αi⟩. As already said, the density operator plays the role of the wave function for pure
states in the more general case of mixed states. It depends on time in the Schrödinger
picture and is, as we shall see, independent of time in the Heisenberg picture. It is worth
noting that Eq. (2.7) is not the equation of motion of an operator ÂH(t) in the Heisenberg
picture: ∂ÂH(t)/∂t = (i/ℏ)[Ĥ, ÂH(t)]. It is the analog (or extension) of the Schrödinger
equation iℏ ∂|Ψ⟩/∂t = Ĥ|Ψ⟩, which holds pure states |Ψ⟩, in the case of mixed states.

An important consequence can be drawn from the fact that Liouville’s equation (2.7)
is a first-order differential equation: The knowledge of ρ̂ at any time defines ρ̂ at all other
times. Moreover, knowing that ρ̂ allows us to calculate the outcome of any experiment
[e.g., by using the probability distribution PA(a) given by Eq. (2.6)] we conclude that ρ̂
defines the state of the system very much like the wave function or ket |Ψ⟩ does in the
case of pure states. Although ρ̂ is an hermitic operator, it is not an observable. Just as
the wave function, it is not directly measurable.

The thermodynamic equilibrium is defined by requiring that the macrostate of the
system is independent of time. This is equivalent to requiring that ∂ρ̂s

∂t = 0, since ρ̂s
defines the state of the system. The Liouville equation implies that in thermodynamic
or statistical equilibrium we have [

Ĥ, ρ̂s

]
= 0.
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In this case the eigenstates |ψk⟩ of ρ̂s can be chosen to be eigenstates of Ĥ. This is a
very important hint for our search of the form of ρ̂s describing equilibrium.

An alternative to Liouville’s differential equation is to express ρ̂s using the time-
evolution operator:

|αi, t⟩ = Û(t, t0)|αi, t0⟩

and
⟨αi, t| = ⟨αi, t0|Û †(t, t0).

In this way we have
ρ̂s(t) = Û(t, t0) ρ̂s(t0) Û

†(t, t0) .

Notice that the time evolution of the operator ρ̂s(t) corresponds simply to a unitary trans-
formation (Û Û † = 1). This form of ρ̂s(t) is particularly useful in order to demonstrate
the time independence of Tr{ρ}, Tr{ρ2} and of the eigenvalues ρk of ρ̂.

Exercise 2.9:

i) Find the density matrix operator ρ̂H(t) in the Heisenberg picture. Verify that it is
independent of time.

ii) Verify the equivalence of the average values of any operator Â in the Schrödinger
and Heisenberg picture.

Exercise 2.10: The entropy of a mixed state is defined by S = −kB⟨ln ρ̂⟩ = −kB
∑

k ρk ln ρk,
where kB is the Boltzmann constant having units of energy divided by temperature. Show
that S is independent of time for strictly isolated systems (i.e., following Liouville’s equa-
tion). As we shall see, this implies that an isolated system can never reach equilibrium on
its own, i.e., without a however weak interaction with the environment.

Before closing this section it is probably useful to recall that the time derivative of an
operator f̂ in quantum mechanics is defined by the condition〈

ψ

∣∣∣∣∣df̂dt
∣∣∣∣∣ψ
〉

=
d

dt

〈
ψ
∣∣∣f̂ ∣∣∣ψ〉

for any |ψ(t)⟩. It follows that

df̂

dt
=
∂f̂

∂t
+
i

ℏ

[
Ĥ, f̂

]
.
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Notice that df̂/dt is the operator of a new physical observable in the Schrödinger picture
(e.g., the velocity v̂x = dx̂/dt). Calculating the time derivative of the density operator
we have

dρ̂s
dt

=
∂ρ̂s
∂t

+
i

ℏ

[
Ĥ, ρ̂

]
= 0 ,

where the second equality follows from the Liouville equation (2.7). This means that
ρ̂s is a constant of motion for strictly isolated systems, even though it depends ex-
plicitly on time (∂ρ̂s/∂t ̸= 0) in the most general out-of-equilibrium case. In other
words, the propagation of the kets |ψ(t)⟩ = Û(t, t0)|ψ(t0)⟩ and the time dependence of
ρ̂(t) = Û(t, t0)ρ(t0)Û

†(t, t0) is such that any average ⟨ψ(t)|ρ̂(t)|ψ(t)⟩ involving ρ̂ or of any
function of ρ̂ is independent of time (i.e., ⟨ψ(t)|ρ̂(t)|ψ(t)⟩ = ⟨ψ(t0)|ρ̂(t0)|ψ(t0)⟩ for all t).
We can also say that all eigenstates |ψk⟩ of ρ̂(t0) at a given time t0 remain eigenstates at
any subsequent time t. This remarkable conservation law holds in general. In equilibrium
we have in addition that ∂ρ̂/∂t = 0 and therefore [Ĥ, ρ̂] = 0. In this case ρ̂ is a constant
of motion in the usual most strict sense.

2.5 The statistical distribution function

We would like to transpose the concepts of statistical ensembles and density operator
to systems which can be described by classical mechanics. A detailed formal derivation
of the classical limit of quantum statistical mechanics will be presented later on. The
dynamic state of a classical system with s degrees of freedom is known to be defined by its
generalized coordinates q = (q1, . . . , qs) and conjugated momenta p = (p1, . . . , ps). Each
point (p, q) represents a state of the entire macroscopic N -particle system (s = 3N). As
in the quantum case we refer to these states, which contain the most detailed information
on the system, as microstates or pure states. The 2s dimensional space containing all
the microstates (p, q) = (p1, . . . , ps, q1, . . . , qs) is known as Γ-space or phase space of
the system. As in the quantum case it is meaningful to change the perspective of the
mechanical description from the deterministic dynamics of a single system in a precisely
defined state (p, q) to the dynamics of the probability distribution of a large ensemble of
systems distributed throughout all possible microstates. This broader physical situation
is described by the statistical distribution function or simply distribution function

ρ(p, q) = ρ(p1, . . . , ps, q1, . . . , qs),

which represents the joint probability-density function for finding the system in the mi-
crostate (p, q) = (p1, . . . , ps, q1, . . . , qs). In other words

ρ(p, q) dpdq = ρ(p1, . . . , ps, q1, . . . , qs) dp
sdqs

is the probability of finding the system in the phase-space volume element dpsdqs centered
at the point (p, q). As any joint probability function, ρ(p, q) satisfies ρ(p, q) ≥ 0 and∫
ρ(p, q) dp dq = 1. These conditions correspond to wi ≥ 0 and

∑
i
wi = 1 in the quantum

case.
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The physical properties of classical systems are given by functions A(p, q) of the gen-
eralized coordinates and momenta. The corresponding average value and variance are
given by

⟨A⟩ =
∫
dpdq A(p, q) ρ(p, q)

and
∆A2 = ⟨(A− ⟨A⟩)2⟩ = ⟨A2⟩ − ⟨A⟩2 ⩾ 0.

The motivations for considering statistical ensembles in order to describe macroscopic
systems are the same as in the quantum case:

i) One may regard a macroscopic system as an ensemble of equivalent, statistically
independent subsystems each occupying a state (pi, qi). It is the distribution of the
microstates of the subsystems throughout Γ space what is described by the joint
probability distribution function ρ(p, q).

ii) Alternatively, one may follow the time evolution of a system, or of any macroscopic
part of a larger system, and record the state (pi, qi) of the system at a large number
of equally spaced instants ti. From this perspective ρ(p, q) corresponds to the
probability of finding the system in the state (p, q) averaged over a large period of
time. The average of observables corresponds then to time averages.

iii) Another complementary perspective is to consider the system as being quasi-closed,
i.e., almost perfectly isolated, thus experiencing relatively rare weak interactions
with the environment. These lead to changes of state beyond the time dependence
of (p, q) corresponding to a strictly isolated system. Again, the actual microstate
of the system cannot be known with certainty. Thus, the notions of statistical
ensemble and probability distribution ρ(p, q) prevail.

2.6 Time dependence of ρ(p, q): Liouville theorem

We would like now to investigate the time dependence of ρ(p, q) assuming that the system
is isolated. More generally, we consider a system that is quasi-closed and analyze its time
evolution between two interactions with the environment. In this case, the generalized
coordinates of each element in the ensemble follow Hamilton equations

ṗi = −∂H
∂qi

and
q̇i =

∂H

∂pi

for i = 1, . . . , s, whereH = H(p, q) is the Hamilton function of the isolated system. These
equations describe how each microstate, also known as representative point, moves in Γ
space as a function of time. Knowing that (p, q) defines the mechanical state completely,
one may consider any point [p(t0), q(t0)] in the trajectory as initial condition. In this way
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one always obtains the same distinct trajectory, i.e., the same unique (since deterministic)
curve connecting the points (p, q) at subsequent or past instants t. This implies that a
trajectory (p, q) in Γ space can never cross itself or another distinct trajectory, since in this
case the crossing point (p0, q0) would not define the mechanical state unambiguously. A
trajectory can be a simple closed loop, which corresponds to a periodic motion. However,
neither two trajectories can merge into one, nor a trajectory can evolve into a closed loop.
The latter would imply that there is a point with reversed momenta (−p0, q0) in Γ space,
where the trajectory bifurcates, which again contradicts the deterministic character of
classical motion.

In order to demonstrate the last statement we observe that Hamilton’s equations are
invariant upon time reversal. More precisely, let [p(t), q(t)] be a solution of Hamilton’s
equations and consider the trajectory q′(t) = q(2t0 − t) and p′(t) = −p(2t0 − t), which
reverses the path along the same coordinates with reversed momenta. Should H depend
explicitly on time, which is of course not the case in an isolated system, one would also
need to inverse its time dependence as H ′(p, q, t) = H(p, q, 2t0 − t). Notice that the
locations of the points (p, q) and (p′, q′) are different due to the momentum reversals. It
is easy to see that

dq′i
dt

(t) = −dqi
dt

(2t0 − t) = −∂H
∂pi

(2t0 − t) = −∂H
′

∂pi
(t) =

∂H ′

∂p′i
(t)

and
dp′i
dt

(t) =
dpi
dt

(2t0 − t) = −∂H
∂qi

(2t0 − t) = −∂H
′

∂qi
(t) = −∂H

′

∂q′i
(t) ,

which implies that (p′, q′) is also a valid trajectory in Γ space. In the reverse-time evo-
lution merging becomes bifurcation. Therefore, we conclude that merging of trajectories
in Γ space is not possible. Consequently, the trajectories must preserve their identity
at all times. It is therefore reasonable to expect that along the time evolution each
point in Γ space will carry along its local probability density ρ(p, q), so that the total
derivate dρ/dt = 0. This statement, known as Liouville’s theorem, shall be rigorously
demonstrated in the following.

2.6.1 Total time derivative of classical observables

As a preliminary calculation, let us consider some physical property f , which is given by
a function f(p, q, t) of the coordinates, momenta and time, and compute its total time
derivative along the classical trajectory:

df

dt
=
∂f

∂t
+
∑
k

(
∂f

∂qk
q̇k +

∂f

∂pk
ṗk

)
.
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Using Hamilton’s equations we have

df

dt
=
∂f

∂t
+
∑
k

(
∂H

∂pk

∂f

∂qk
− ∂f

∂pk

∂H

∂qk

)
=
∂f

∂t
+ {H, f} , (2.8)

where we have introduced the Poisson bracket

{f, g} =
∑
k

(
∂f

∂pk

∂g

∂qk
− ∂g

∂pk

∂f

∂qk

)
between any two functions f and g of (p, q). Poisson brackets are bilinear functions of
f and g, which have very similar algebraic properties as the commutator between two
operators:

{αf1 + βf2, g} = α {f1, g}+ β {f2, g} ,
{f, g} = −{g, f} ,

and

{f1f2, g} = f1 {f2, g}+ {f1, g} f2 .

Notice the analogy between Eq. (2.8) and the time derivative of observables in quantum
mechanics:

df̂

dt
=
∂f̂

∂t
+
i

ℏ

[
Ĥ, f̂

]
.

One may also say that df/dt and df̂/dt are connected by the correspondence relation
{H, f} ↔ i

ℏ

[
Ĥ, f̂

]
.

Applying Eq. (2.8) for df/dt to the distribution function ρ we have

dρ

dt
=
∂ρ

∂t
+ {H, ρ} , (2.9)

which is known as Liouville’s equation.

2.6.2 The continuity equation in n dimensions

We would like to extend the continuity equation, well-known from electromagnetism,
to the density fields and associated velocity fields in Rn. Let ρ(x⃗) : Rn → R be the
density distribution of some fictitious particles moving in Rn, and let v⃗(x⃗) : Rn → Rn be
the velocity field corresponding to these particles. The current density is then given by
j⃗ = ρv⃗. For any arbitrary volume V ⊂ Rn, the rate of change in the number of particles
inside V per unit time can be calculated in two ways:

d

dt

(∫
V
ρ(x⃗) dnx

)
= −

∫
S(V )

j⃗ · n̂ da . (2.10)
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The left-hand side is the straightforward derivate of the number of particles inside V .
And the right-hand side is the flux of the current density across the surface S(V ) of
the volume V . As usual, the normal n̂ to the surface points in the outwards direction.
Notice that we have taken into account that there are no external sources or drains of
particles, so that the change in the number of particles within V can only result from
particles actually crossing the surface S(V ). Using Gauss’ theorem on the right-hand
side of Eq. (2.10) we have ∫

V

(
∂ρ

∂t
+ ∇⃗ · j⃗

)
dnx = 0 ,

where ∇⃗ =
(

∂
∂x1

, . . . , ∂
∂xn

)
stands for the nabla operator in Rn. Since this holds for any

V we obtain
∂ρ

∂t
+ ∇⃗ · j⃗ = 0 . (2.11)

This continuity equation simply expresses the conservation of the number of particles
underlying the density ρ(x⃗) and moving according to the velocity field v⃗(x⃗).

2.6.3 Time dependence of ρ(p, q, t)

In order to investigate the time dependence of ρ(p, q, t) it is useful to regard ρ(p, q) as
the density of representative points in Γ space, whose motion leads to the current density
j⃗ = ρv⃗. Since ρ depends on (p, q) the velocity field is given by

v⃗ = (ṗ1, ṗ2, . . . , ṗs, q̇1, . . . , q̇s) ∈ R2s .

In a more compact form we may write

v⃗ = (ṗ, q̇) =

(
−∂H
∂q

,
∂H

∂p

)
.

It is easy to see that the velocity field v⃗ associated with the motion of the representative
points in Γ space (microstates of the ensemble) is divergenceless:

∇⃗ · v⃗ =

s∑
k=1

(
− ∂

∂pk

∂H

∂qk
+

∂

∂qk

∂H

∂pk

)
= 0 ,

where we have used the definition

∇⃗ =

(
∂

∂p1
, . . . ,

∂

∂ps
,
∂

∂q1
, . . .

∂

∂qs

)
.

of the nabla operator in Γ space (R2s). The divergence of the current density j⃗ = ρv⃗ is
then simply

∇⃗ · j⃗ = ∇⃗ · (ρv⃗) = v⃗ · ∇⃗ρ+ ρ ∇⃗ · v⃗ = v⃗ · ∇⃗ρ .
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Developing v⃗ · ∇⃗ρ we have

∇⃗ · j⃗ =
s∑

k=1

(
ṗk

∂ρ

∂pk
+ q̇k

∂ρ

∂qk

)
=

s∑
k=1

(
∂H

∂pk

∂ρ

∂qk
− ∂ρ

∂pk

∂H

∂qk

)
= {H, ρ} . (2.12)

Replacing Eq. (2.12) in the the expression (2.9) for the total time derivative of ρ, and
using the continuity equation (2.11) we finally obtain

dρ

dt
=
∂ρ

∂t
+ {H, ρ} =

∂ρ

∂t
+ ∇⃗ · j⃗ = 0 .

This result, known as Liouville’s theorem, tells us that the total derivative of ρ vanishes
at all times. In other words, each representative point carries the probability density
around it all along its trajectory in phase space. The result holds, of course, provided
that the time evolution follows from the Hamilton function of an isolated system.

We arrive to the important conclusion that ρ is a constant of motion, even though
∂ρ/∂t ̸= 0. One also says that the flow of the fluid associated with the motion of the
microstates in a statistical ensemble is incompressible. Notice that the flow is always
incompressible but not the fluid, since ∂ρ/∂t ̸= 0 in general. However, in the partic-
ular case of thermodynamic equilibrium we have ∂ρ/∂t = 0, since the very notion of
equilibrium implies time independence. Therefore, in equilibrium, we find

{H, ρ} = 0 .

In this case the distribution function ρ is a constant of motion in the narrow sense, very
much like the total energy, momentum, or angular momentum of a closed system. As
in quantum mechanics, this gives us a very important hint in order to derive the actual
expression of the equilibrium ρ as a function of (p, q).

2.6.4 A note on ergodicity and relaxation times

Since ρ(p, q) is the same for all the microstates visited along a phase-space trajectory, one
may be tempted to conclude that ρ should be constant within the hypersurface in Γ space
containing all the points that are compatible with the given set of constants of motion
(e.g., energy, number of particles and volume). This actually holds for ergodic systems,
i.e., systems in which the representative points (p, q) as a function of time cover the
entire accessible phase space. More precisely, the ergodic condition requires that if one
waits long enough time, any representative point (p, q) must eventually come arbitrarily
close to any other point in the accessible part of the Γ space. It is important to remark
that an arbitrarily long time Terg might be required for the system to reach a state that
is arbitrarily close to some point (p′, q′). For instance, a single particle traveling at the
speed of light would need about 10000 years to come within 1 Å of every point in 1 m3.
However, this long time Terg has nothing to do with the time that the system needs to
reach equilibrium. The latter, known as relaxation time τrel, is a well defined property of
every macroscopic system, which is not only much shorter, but also much more important
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physically. τrel is independent of any particular choice of the initial and target states.
However, it depends on the system size. Short range equilibrium is reached in a much
shorter time than across long distances. Moreover, different relaxation times often apply
to different degrees of freedom (e.g., translational and spin electronic degrees of freedom,
lattice-vibrational degrees of freedom, etc.) or to different properties (e.g., the density
of particles and the chemical composition in thermally activated chemical reactions).

The above suggested equal a priori probability of all accessible states is physically
correct. It constitutes in fact the fundamental principle of statistical mechanics. However,
its validity does not rely on the ergodic hypothesis but on quantum mechanics and
statistical independence arguments in the macroscopic limit.

2.7 Entropy conservation in strictly isolated classical systems

It is interesting to observe that the entropy

S = −⟨ln ρ⟩ = −
∫
ρ(p, q) ln[ρ(p, q)] dpdq

of the statistical distribution ρ(p, q) of a strictly isolated system, i.e., a system following
a deterministic Hamiltonian dynamics for which Liouville theorem holds, is independent
of time.

A brute force proof could follow the lines

∂S

∂t
= −

∫
dpdq

(
∂ρ

∂t
ln ρ+

∂ρ

∂t

)
= −

∫
dpdq

∂ρ

∂t
ln ρ ,

where we have used that
∫
dpdq ρ(p, q) = 1 at all times. However, a far more elegant

proof can be achieved by using some previous results on the entropy of continuous proba-
bility distributions and the properties of canonical transformations in classical mechanics.
Consider the entropy

S(τ) =

∫
ρτ (p, q) ln ρτ (p, q) dpdq , (2.13)

where ρτ (p, q) is the statistical distribution at time τ . Liouville’s theorem, i.e., dρ/dt = 0,
implies

ρτ (pτ , qτ ) = ρ0(p0, q0) , (2.14)

where (pτ , qτ ) follows from (p0, q0) as a result of the classical deterministic time evolution.
Obviously, (pτ , qτ ) is a well-defined function of initial state (p0, q0). The transformation{

pτ = pτ (p0, q0)
qτ = qτ (p0, q0)

and its inverse {
p0 = p0(pτ , qτ )
q0 = q0(pτ , qτ )
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are canonical transformations, since a displacement in time does not alter the form of
Hamilton’s equations. Moreover, the Jacobian J

[
∂(p0,q0)
∂(pτ ,qτ )

]
= 1, as in any canonical

transformation [see, for instance, L.D. Laudau and E.M. Lifshitz, Mechanics, 3rd ed.
(Elsevier, Amsterdam, 1976), p. 143 ff.]. Instead of averaging ln ρτ as a function of (p, q)
at an arbitrary time τ , we may integrate ρ0 as a function of the initial point (p0, q0)
which evolves into (p, q) at time τ . Note that (p0, q0) is common to all (pτ , qτ ) belonging
to this trajectory. Replacing Eq. (2.14) in Eq. (2.13) we may then write

S(τ) =

∫
ρ0[p0(p, q), q0(p, q)] ln{ρ0[p0(p, q), q0(p, q)]} dpdq. (2.15)

It is now meaningful to change variables as p′ = p0(p, q) and q′ = q0(p, q). The volume
elements, in general related by

dp′dq′ = J

[
∂(p′, q′)

∂(p, q)

]
dpdq ,

are in the present case the same since the Jacobian J = 1. Replacing with (p′, q′) in
Eq. (2.15) we obtain

S(τ) =

∫
ρ0(p

′, q′) ln[ρ0(p
′, q′)] dp′dq′ = S(0).

Therefore, the entropy of a strictly isolated system is not altered by time evolution as in
the quantum case.

In order to discuss the consequences of dS/dt = 0 in strictly isolated systems, two
different situations should be considered. If the system is in equilibrium, ∂ρ/∂t = 0
and ρ(p, q) does not depend explicitly on time at any representative point (p, q). It
is clear that S also remains constant as a function of time. However, if the system
is out of equilibrium, with some value of S that is different from the equilibrium one,
the above result implies that either no equilibrium is reached, no matter how large the
system is, or that S remains constant along the equilibration process. This would be
physically wrong and in contradiction with experimental observations. The reason for
this apparent conceptual problem is that we have completely neglected the interaction
with the environment. Physically, the interaction with the environment can never be
avoided over a long period of time, even if the system can be considered to be closed
and the allowed physical processes do not involve energy, particle or volume exchange.
We conclude, as in the quantum case, that the environment plays a crucial role in the
process of reaching equilibrium. These interactions cause changes in ρ(p, q) which do not
result from the dynamics of the isolated system alone. In fact, it can be shown, by using
time-dependent perturbation theory in quantum mechanics and taking into account the
transitions induced by the interaction with the environment, that dS/dt ≥ 0 in closed
systems. Processes in which S is conserved are reversible, while the others, having
dS > 0, are irreversible (i.e., they cannot occur spontaneously in reverse direction).
Consequently, the equilibrium states of isolated systems, not only have dS/dt = 0, but
are such that the entropy takes the maximum value compatible with the given boundary
conditions and constants of motion.
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3 Equilibrium statistical ensembles

3.1 Statistical independence of macroscopic subsystems

The purpose of this chapter is to set the foundations of equilibrium statistical mechanics
by introducing the basic physical hypothesis behind its validity and by deriving the
form of the density operator ρ̂ and the classical statistical distribution function ρ(p, q)
which define the equilibrium state. To get started we discuss in this section how ρ̂ and
ρ(p, q) of a macroscopic system can be expressed in terms of the ρ’s of the numerous
parts in which it can be divided. We consider a macroscopic system composed of a
large number N of particles and divide it in a large but finite number M of subsystems
which in the limit of very large N are macroscopic themselves. Since the interface to
volume ratio of the subsystems decreases as 1/ 3

√
N and the effective interactions at

the interfaces decrease rapidly as a function of distance (limited interaction range) the
coupling between the different subsystems becomes less and less important as the size
of the system increases (N → ∞). Therefore, in the macroscopic limit, the microstates
of the different subsystems become statistically independent from each other. For any
two subsystems 1 and 2, the probability of finding subsystem 1 in a given quantum state
|αn⟩ [or in a classical representative point (pα, qα)] is independent of the state |βm⟩ [or
(pβ, qβ)] which the subsystem 2 might take. In other words, the subsystem 1 can take
a variety of different states |αn⟩ without taking care of, or having any influence on the
subsystem 2.

In the case of isolated systems, the fundamental conservation laws, which apply to the
system as a whole, must be taken into account. For example, if we divide an isolated
system in M parts, the states of these parts can be regarded as independent provided
that the sums of all their energies, linear and angular momenta, number of particles, and
any other constants of motion remain constant. This means that the global conservation
laws preclude the system from assuming any microstate in which the constants of motion
deviate from some predefined values. Thus, the conservation laws limit the number and
nature of the accessible states. Consequently, the statistical independence of the different
subsystems applies within the vector space defined by the system’s accessible states.
Notice that these restrictions do not apply to fully open systems, which can exchange
constants of motion with the environment following no conservation constraints, or to
subsystems which are a small part of a much larger isolated system.

As already discussed in Chapter 1, the statistical independence between any two events
α and β means that the conditional probability p(α|β) for the event α to occur given the
event β is equal to the unconditional probability p(α) of finding α. Knowing that

p(α|β) = p(α, β)

p(β)
,

where p(α, β) is the joint probability of finding α and β, we obtain that statistically
independent events are characterized by the relation

p(α, β) = p(α) p(β) .
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Concerning the mixed state of the joint system 1+2, the statistical independence of
the subsystems 1 and 2 implies that the probability density ρ12(pα, pβ, qα, qβ) of finding
1+2 in the state in which subsystem 1 occupies the representative point (pα, qα) and
subsystem 2 the representative point (pβ, qβ) is given by

ρ12(p
α, pβ, qα, qβ) = ρ1(p

α, qα) ρ2(p
β, qβ),

where ρ1 and ρ2 are the distribution functions of the subparts. The converse is of course
also true. In fact, if ρ12 is given by the product of two distributions, each depending
only on the variables of a subsystem, then the states of the subsystems are statistically
independent random variables.

The same simple product relation holds for the density operators in the quantum case.
Let

ρ̂12 =
∑
mn

w12
mn |αm⟩|βn⟩ ⟨βn|⟨αm|

be the density operator of the 1+2 system, where w12
mn is the probability of finding

subsystem 1 in state |αm⟩ and subsystem 2 in state |βn⟩. The statistical independence
of the parts 1 and 2 implies that

w12
mn = w1

mw
2
n with

∑
m

w1
m =

∑
n

w2
n = 1 .

Consequently,

ρ̂12 =

(∑
m

w1
m |αm⟩⟨αm|

)(∑
n

w2
n |βn⟩⟨βn|

)
= ρ̂1 ρ̂2.

Note that ρ̂1 (ρ̂2) acts only on the variables of subsystem 1 (2) and therefore [ρ̂1, ρ̂2] = 0.

3.2 The statistical independence of extensive additive properties

The statistical independence of the subsystems of macroscopic system has far reaching
consequences. For example, for any two physical observables f̂1 and f̂2 concerning,
respectively, the subsystems 1 and 2, the mean value of the product is given by

⟨f̂1f̂2⟩ = Tr{ρ̂12 f̂1f̂2} =

(∑
m

w1
m⟨αm|f̂1|αm⟩

)(∑
n

w2
n⟨βn|f̂2|βn⟩

)
= ⟨f̂1⟩1 ⟨f̂2⟩2 .

Let us now focus on an additive (also known as extensive) property f̂ of a macroscopic
system, which we imagine divided in a large number N of statistically independent sub-
systems. Let f̂i be the operator of this property in the subsystem i. The additivity of f̂
implies that for the whole system we have

F̂ =

N∑
i=1

f̂i.
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If the subsystems are equivalent (same composition and size) the probability distribution
Pf̂i

(f) for the values of f̂i is the same in all subsystems, i.e.,

Pf̂i
(f) = ⟨δ(f̂i − f)⟩i = p(f)

is independent of i. The joint probability of measuring f1, . . . , fn in the various subsys-
tems is then

P (f1, . . . , fN ) =
N∏
i=1

p(fi).

Thus, the hypotheses of the central limit theorem are fulfilled, since the values of f in the
various subsystems are independent random variables governed by the same probability
density function. It follows that the value of F̂ in the whole system, the sum of the f̂i,
follows a Gaussian distribution with average

⟨F̂ ⟩ =
N∑
i=1

⟨fi⟩ = N⟨f⟩

and variance

⟨(F̂ − ⟨F̂ ⟩)2⟩ =
N∑
i=1

⟨(f̂i − ⟨f̂i⟩)2⟩+
∑
i ̸=j

⟨(f̂i − ⟨f̂i⟩)︸ ︷︷ ︸
=0

⟩⟨(f̂j − ⟨f̂j⟩)︸ ︷︷ ︸
=0

⟩

⟨∆F 2⟩ = N⟨∆f2⟩.

Consequently, the relative fluctuation of F̂ in the entire macroscopic system, as measured
by the relative mean-square deviation, is given by√

⟨∆F 2⟩
⟨F̂ ⟩

=
1√
N

√
⟨∆f2⟩
⟨f⟩

,

which vanishes for N → ∞. One concludes that the relative fluctuation of any additive
property of a macroscopic system decreases as 1/

√
Np, where Np refers to the number

of particles in the system. When the body is macroscopic and Np → ∞, the extensive
quantities practically do not fluctuate in relative terms, even if they are not strictly
conserved. The absolute fluctuations

√
⟨∆F 2⟩ actually increase with size, although much

more slowly than the average value, such that the relative fluctuations vanish. Notice
that this holds even if the system is open with respect to exchanges of F . For instance,
if a macroscopic system can exchange energy through a thermal contact, its energy per
particle can be regarded as practically conserved in average. Indeed, the probability of
observing a value of an additive property F that differs from the average per particle is
negligibly small. More precisely, the probability of observing a relative deviation ∆f =
(F−⟨F̂ ⟩)/|⟨F̂ ⟩| which is larger than any whatever small amount δ decreases exponentially
as N increases, since the standard deviation σN of the Gaussian distribution of ∆f
decreases as σN = σ/

√
N for N ≫ 1. In terms of the error function erf(x) and its
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approximation for large x one may write Prob(|∆f | ≥ δ) = 1 − erf(δ/
√
2σN ) = 1 −

erf(δ
√
N/

√
2σ) ≃ (

√
2σ/

√
πδ

√
N) exp{−δ2N/2σ2}, which tends rapidly to zero forN →

∞.

In conclusion, one may note that the previous considerations hold for any additive
property F and for any form of its statistical distribution p(f), provided that it is the same
in all subsystems (central limit theorem). This implies that the equilibrium properties
of closed and open macroscopic bodies are physically equivalent, even if the different
boundary conditions on the microstates accessible to the system, namely, conservation
versus exchange of F , certainly lead to different statistical distributions.

3.3 The importance of additive constants of motion

From now on we focus on conservative systems, i.e., systems whose Hamiltonian does not
depend on time. Our purpose is to derive the form of ρ(p, q) and ρ̂ in thermodynamic
equilibrium, i.e., when ρ(p, q) and ρ̂ do not depend explicitly on time. Constants of
motion play a central role in both classical and quantum mechanics. They are extremely
important in statistical mechanics as well.

From mechanics we know that the constants of motion reflect fundamental symmetries
of the physical laws, for instance, the homogeneity of space and time and the isotropy
of space. They allow us to classify the classical trajectories and the quantum station-
ary states according to their values and are therefore important for understanding the
physical behavior. Having said this, it is clear that it makes no sense to consider all
possible constants of motion, since they are infinite. Any linear combination, product
or function of constants of motion is obviously a constant of motion too. In fact, it is
sufficient to consider a complete set of linearly independent additive constants of motion,
since all other constants of motion can be expressed in terms of them. In the following
we denote by {Fi, with i = 1, . . . , s} the complete set of linearly independent additive
constants of motion of the system. In classical mechanics the observable Fi is a function
Fi(p, q) of the generalized coordinates and conjugated momenta of the particles, while in
quantum mechanics Fi is characterized by the hermitic operator F̂i with eigenvalues fi.

The additive constants of motion are well known from mechanics:

i) The total energy H(p, q) or Ĥ, which reflects the homogeneity of time, i.e., the
invariance of the physical laws with respect to translations in time,

ii) the total linear momentum P⃗ = (px, py, pz), which reflects the homogeneity of
space, i.e., the invariance with respect to translations of the system as a whole, and

iii) the total angular momentum J⃗ = (Jx, Jy, Jz), which reflects the isotropy of space
and the invariance with respect to rotations.

To these seven fundamental additive integrals of motion we should add

iv) the volume V of the system, and
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v) the total number of particles N . In multi-component systems, the number Ni of
each type of particle is conserved. Moreover, under certain circumstances (neglect
of spin-orbit interactions) the number of electrons with spin up and spin down are
separately conserved.

Notice that the last two constants of motion are actually parameters that define the
system. They are not operators in the usual sense and in classical mechanics they do not
depend on the generalized coordinates (p, q). Still, in quantum mechanics the particle
number N̂ becomes an operator when the second-quantization formalism is used.

In almost all cases of experimental interest, one considers macroscopic bodies which
are at rest and do not rotate.3 One can therefore imagine the system being in a fixed
box or volume which is at rest. In this case P⃗ and J⃗ are no longer constants of motion,
which leaves us with E, N and V as the only additive linearly independent constants
of motion. Whether one only needs to consider E, N and V or a larger set {Fi, with
i = 1, . . . , s} of additive constant of motion (including for example the magnetization
M⃗ , the number of up-spin and down-spin electrons, or the total angular momentum)
depends on the problem under study. However, it is in all cases important to realize
that any other constant of motion is necessarily a function of the complete set of linearly
independent ones.

Constants of motion are characterized by having a vanishing Poisson bracket or com-
mutator with the Hamiltonian. As stated by the Liouville and von Neumann theorems,
the distribution function ρ(p, q) and the density operator ρ̂ in equilibrium (∂ρ̂/∂t = 0)
fulfill this condition and are thus constants of motion. Furthermore, the statistical in-
dependence of subsystems implies that ln ρ̂ is and additive constant of motion. Indeed,
ρ̂12 = ρ̂1ρ̂2 and [ρ̂1, ρ̂2] = 0 imply

ln ρ̂12 = ln(ρ̂1ρ̂2) = ln ρ̂1 + ln ρ̂2

for any two sufficiently large and thus statistically independent parts of a macroscopic
system.4 Also in the classical limit we have

ln ρ12(p1, p2, q1, q2) = ln[ρ1(p1, q1)ρ2(p2, q2)] = ln[ρ1(p1, q1)] + ln[ρ2(p2, q2)] .

Consequently, the equilibrium ln ρ̂ must be a linear combination of the linearly indepen-
dent additive constants of motion F1, . . . , Fs (i.e., Fi ≡ E, P⃗ , L⃗, V , N):

ln ρ̂ =
s∑

i=1

λi F̂i , (3.1)

or in classical mechanics

ln ρ(p, q) =
s∑

i=1

λi Fi(p, q) , (3.2)

3The reader may wish to examine the Einstein-de Haas effect for a remarkable exception. A. Einstein
and W.J. de Haas, Verh. Dtsch. Phys. Ges. 17, 152 (1915); 18, 173 (1916).

4Notice that [ρ̂1, ρ̂2] = 0, since the kets of the two subsystems are orthogonal to each other. This is a
necessary condition for the validity of the operator relation ln(ρ̂1ρ̂2) = ln ρ̂1 + ln ρ̂2.
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with some real coefficients λi. This is the central expression for the density operator in
equilibrium. In particular it implies that the equilibrium density operator and distri-
bution function can only depend on the dynamical variables (p, q) through the additive
constants of motion. All microstates having the same additive constants of motion are
equally probable!

The physical meaning of the coefficient λi associated with the constant of motion Fi

in the linear combinations (3.1) and (3.2) will be discussed in detail later on. Since ln ρ
is an additive or extensive property, i.e., ln[ρ(αF1, . . . , αFs)] = α ln[ρ(F1, . . . , Fs)], we
may already anticipate that λ1, . . . , λs do not change when all Fi are scaled by the same
factor α. Such properties are called intensive. We shall see that they are related to the
temperature, pressure and chemical potential of the system.

3.4 The density operator: General formulation

In the following we derive the general form of the density operator describing mixed
states in different equilibrium situations ranging from complete isolation —in which case
all the additive constants of motion F̂1, . . . F̂s have the same well-defined values f1 . . . fs
in all microstates— to complete openness —in which case the system can exchange
freely all its additive constants of motion with the environment and only the average
values f1 = ⟨F̂1⟩ . . . fs = ⟨F̂s⟩ are well defined. The formulation is admittedly somewhat
abstract. For instance, the conserved quantities are denoted by F̂i with i = 1, . . . , s,
instead of referring to them explicitly as energy E, volume V , particle number N , et
cetera. This has the advantage of stressing the universal validity of the approach, making
it easier to apply the formalism to any specific situation, for example, spin-polarized
or multicomponent systems. Moreover, in this way we emphasize the analogies and
differences between the various usually encountered physical situations including the
corresponding statistical ensembles. The explicit form of the density operator in the
most usual cases of physical interest is given in Sec. 3.5.

3.4.1 The microcanonical ensemble

First of all we consider systems which are closed with respect to all constants of motion
F1, . . . Fs. In order to obtain ρ̂ one could take the exponential of ln ρ̂ as given by Eqs. (3.1)
and (3.2) and impose the necessary constraints on the conserved quantities F1, . . . , Fs.
However, in the case of closed systems a much more direct derivation is possible. In
isolated systems the constants of motion have precise values fi for all i = 1, . . . , s.
Consequently, the probability of finding the system in a microstate having Fi ̸= fi for
some i is strictly zero. The classical ρ(p, q) = 0 for all (p, q) having Fi(p, q) ̸= fi for some
i ∈ [1, s]. The same holds in quantum mechanics: wn = 0 for all states |αn⟩ for which
F̂i|αn⟩ ̸= fi|αn⟩ for some i. In addition, we know that the integral or trace of ρ̂ over
all possible states must be 1. The only function satisfying these conditions is the delta
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function. It follows that the microcanonic density matrix is given by

ρ̂mc =
1

Zmc

s∏
i=1

δ(F̂i − fi) , (3.3)

where the normalization divisor

Zmc = Tr

{
s∏

i=1

δ(F̂i − fi)

}
, (3.4)

ensures that Tr{ρ̂} = 1. Zmc is known as the microcanonical partition function. In the
classical case we have

ρmc(p, q) =
1

Zmc

s∏
i=1

δ[Fi(p, q)− fi] (3.5)

with

Zmc =

∫
dp dq

s∏
i=1

δ[Fi(p, q)− fi] . (3.6)

Notice that the mixed state describing equilibrium, i.e., the macrostate, is fully charac-
terized by the very few numbers f1, . . . , fs. Out of the 1020 degrees of freedom needed to
characterize a single microstate, we are left with typically 3, or only 9 variables at most!
The statistical ensemble characterized by ρ̂mc or ρmc(p, q) as given by Eqs. (3.3)–(3.6)
is known as the microcanonical ensemble. For closed systems, ρ̂mc and Zmc are defined
by the values f1, . . . , fs of the constants of motion F̂1 . . . F̂s in the particular macrostate
under consideration.

The expressions given above are valid for any physical system and any set of linearly
independent additive constants of motion. They can be significantly simplified in the
most usual situation where P⃗ = 0 and L⃗ = 0. For any fixed volume V and number of
particles N we may write

ρ̂mc =
1

Zmc
δ(Ĥ − E)

with the microcanonical partition function

Zmc = Tr
{
δ(Ĥ − E)

}
.

Here we have implicitly assumed that the Hilbert space in which the trace is calculated
contains only states having N particles in a volume V . ρ̂mc and Zmc depend thus on E,
V and N .

For the sake of completeness, and in view of later comparison, let us mention that one
can start from the general expression (3.3) for ln ρ̂ and express the density operator of a
closed system as

ρ̂mc = e
∑s

i=1 λiF̂i

s∏
j=1

δ(F̂j − fj) ,
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where the product of delta operators plays the role of projector ensuring that no mi-
crostates involved in ρ̂mc has F̂j ̸= fj for some j. Since F̂j = fj for all j we may replace
the operators in the exponential by the corresponding eigenvalues. In this way we obtain

ρ̂mc = e
∑s

i=1 λifi

s∏
j=1

δ(F̂j − fj) ,

which we can write as

ρ̂mc =
1

Zmc

s∏
i=1

δ(F̂i − fi) , (3.7)

where we have identified the microcanonical partition function

Zmc = e−
∑s

i=1 λifi .

Knowing that Tr{ρ̂mc} = 1 and applying it to Eq. (3.7), we recover Eq. (3.4).

3.4.2 The grand canonical ensemble

We now turn our attention to systems that are open with respect to exchange of all
additive constants of motion. These systems can be regarded as parts of a much larger
system which can be isolated or not. The statistical ensemble describing completely
open systems is known as the grand canonical ensemble. By completely open we mean
that none of the constant of motion F1 . . . Fs is fixed in the system. For example, energy,
particles and even accessible volume can be exchanged with the environment. The role of
the environment is only to define the average values ⟨F̂i⟩ = fi in the system (i = 1, . . . , s).
In this case there are no restrictions on the values that the constants of motion F̂i can
take in the microstates involved in the mixed state ρ̂. Taking the exponential of Eq. (3.1)
we obtain the density operator

ρ̂gc = e
∑s

i=1 λiF̂i . (3.8)

The grand canonical ensemble or mixed state ρ̂gc is defined by the coefficients λ1, . . . , λs.
In particular they determine the average values

fi = ⟨F̂i⟩ = Tr
{
ρ̂gc F̂i

}
= Tr

{
e
∑s

i=1 λiF̂i F̂i

}
(3.9)

of all the additive constants of motion F̂i (i = 1, . . . , s). Alternatively, one may consider
that the averages of F̂i take some predefined values f1, . . . , fs and solve for the λ1, . . . , λs
which satisfy the coupled Eqs. (3.9) for all i .

An important relation between the λi follows from Eq. (3.8) and the normalization of
ρ̂gc:

Tr{ρ̂gc} = Tr{e
∑s

i=1 λiF̂i} = 1. (3.10)

Thus, the coefficients λi (i = 1, . . . , s) are not all independent from each other, even
in a completely open system. In this context it is important to keep in mind that the

56



operators F̂i describing the linearly independent additive constants of motion (i.e., the
Hamiltonian Ĥ, momentum operator ˆ⃗

P , etc.) do not depend at all on λi. Their average
values do. Later on, we shall see that the λi are intensive (i.e., size-scaling independent)
properties of the system such as temperature, pressure or density. The normalization
condition (3.10) expresses a relation between all the λi, which is known as the equation
of state of the material.

3.4.3 The canonical ensemble

The canonical ensemble describes the most general intermediate situation in which the
system is open with respect to the first r additive constants of motion F1, . . . , Fr and
closed with respect to the remaining ones Fr+1, . . . , Fs. Concerning the constants of mo-
tion F1, . . . , Fr, for which exchange is allowed, only the corresponding averages f1, . . . , fr
can be known. As in the grand canonical case there are no restrictions on the values
that these constants of motion can take in the ensemble. Concerning the constants of
motion Fr+1, . . . , Fs, with respect to which no exchange is possible, we must impose, as
in the microcanonical case, that they take the precise values fr+1, . . . , fs. The canonical
density operator is therefore given by

ρ̂c = e
∑s

i=1 λiF̂i

s∏
j=r+1

δ(F̂j − fj) ,

where we have used Eq. (3.1) and imposed the lack of fluctuations of F̂r+1, . . . , F̂s by
means of the delta operators. Since ρ̂ = 0 unless F̂j = fj for r + 1 ≤ j ≤ s we may
replace the operators F̂r+1, . . . , F̂s in the exponential by the corresponding eigenvalues
and obtain

ρ̂c = e
∑r

i=1 λiF̂i

s∏
j=r+1

δ(F̂j − fj) e
∑s

j=r+1 λjfj .

Using that Tr{ρ̂c} = 1, we can express the multiplying constant as

e−
∑s

j=r+1 λjfj = Tr

e
∑r

i=1 λiF̂i

s∏
j=r+1

δ(F̂j − fj)

 .

This allows us to write the canonical density operator in the more compact form

ρ̂c =
1

Zr
e
∑r

i=1 λiF̂i

s∏
j=r+1

δ(F̂j − fj) , (3.11)

where

Zr = Tr

e
∑r

i=1 λiF̂i

s∏
j=r+1

δ(F̂j − fj)

 (3.12)

= e−
∑s

j=r+1 λjfj (3.13)
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is the canonical partition function.

Zr has a great practical importance in statistical mechanics, since it can be directly
related to the thermodynamic potential or state function of the corresponding physical
situation. Both Zr and ρ̂c, as well as the mixed state they represent, are determined
by the parameters λ1, . . . , λr together with the constants of motion fr+1, . . . , fs that
delimit the Hilbert or phase space of accessible microstates [see Eqs. (3.11) and (3.12)].
Neither Zr nor ρ̂c depend on the parameters λr+1, . . . , λs associated with the quantities
F̂r+1, . . . , F̂s with respect to which the system is closed [see Eqs. (3.11) and (3.12)]. One
should, however, mention the useful relation lnZr = −

∑s
j=r+1 λjfj , which follows from

Eq. (3.13) and which we shall exploit systematically later on.

Once the natural variables λ1, . . . , λr and fr+1, . . . , fs of the canonical ensemble are
given it is straightforward to the determine the mean values

⟨Fi⟩ = Tr{ρ̂c F̂i} = fi (3.14)

of the constants of motion F̂i for which fluctuations and exchanges with the environment
are possible (i = 1, . . . , r). Alternatively, one may consider that the Eqs. (3.14) express
the conditions that λ1, . . . , λr must satisfy in order that the averages of F̂1 . . . F̂r take
some predefined values f1, . . . , fr for the given fixed values fr+1, . . . , fs of the remaining
constants of motion.

The expressions (3.11) and (3.12) for ρ̂c and Zr describe the most general density
operator in thermal equilibrium. They include the grand canonical ensemble (r = s) and
the microcanonical ensemble (r = 0) as particular cases. In the grand canonical ensemble
we have simply

Zs = 1 ,

and in the microcanonical ensemble we have

Z0 = Zmc = Tr


s∏

j=1

δ(F̂j − fj)

 .

3.5 Explicit forms of the density operator

After having discussed the general formulation, we would like to apply the formalism to
the most important cases of physical interest. Before doing that let us recall that the
additive constants of motion in mechanics are

i) the energy E given by Ĥ,

ii) the linear momentum P⃗ ,

iii) the angular momentum L⃗,

iv) the number of particles N (eventually Ni for different components) and

v) the volume V.
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Each one of these properties is clearly related to a particular symmetry of the physical
laws or to a boundary condition. In the following we focus on the most usual exper-
imental situation in which the system is at rest, so that ⟨P⃗ ⟩ = 0 and ⟨L⃗⟩ = 0. This
is experimentally realized by keeping the system in a fixed container. Under these cir-
cumstances the total P⃗ and L⃗ are no longer conserved due to the collisions and external
constraints at the boundary of the volume. Although the system is open with respect
to linear and angular momentum, no net transfer of linear or angular momentum takes
place with the environment, since ⟨P⃗ ⟩ = 0 and ⟨L⃗⟩ = 0. Moreover, symmetry requires
the probability of the microstates having a nonvanishing P⃗ or L⃗ to be independent of
their orientation in space. This can only be achieved if the coefficients λi associated
with P⃗ and L⃗ are all zero [see Eqs. (3.1) and (3.2)]. Thus, the terms involving P⃗ and L⃗
disappear altogether from ρ̂.

3.5.1 Microcanonical ensemble

The ensemble corresponding to a system which is closed with respect to all remaining
additive constants of motion E, N and V , is known as microcanonical ensemble. The
microcanonical density operator can be written as

ρ̂mc =
1

Zmc
δ(Ĥ − E)

with
Zmc = Tr{δ(Ĥ − E)},

where it is understood that the Hilbert space on which ρ̂ acts, and within which the
partition function Zmc is calculated, contains only states having a fixed volume V and a
fixed number of particles N . ρ̂mc and Zmc depend thus on E, V and N .

Let us discuss the physical meaning of Zmc. The number of states having an energy
lower than E is given by

Σ(E) =
∑
n

θ(E − En) = Tr{θ(E − Ĥ)}, (3.15)

where θ(x) is the Heaviside function [θ(x) = 1 for x > 0 and θ(x) = 0 for x < 0] with
dθ/dx = δ(x). The number of states Γ(E) having an energy in the interval [E,E +∆] is

Γ(E) = Σ(E +∆)− Σ(E) =
dΣ

dE
∆+O(∆2) = Ω(E)∆ +O(∆2) ,

where we have introduced the density of states of the system Ω(E) = dΣ/dE at the
energy E and assumed ∆ → 0. Ω(E) represents the number of accessible states at the
energy E per unit energy, i.e., the number of states per unit energy in the spectrum of
the system at the energy E. From Eq. (3.15) it is clear that

Ω(E) =
dΣ

dE
= Tr{δ(Ĥ − E)} = Zmc(E) .
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The microcanonical partition function Zmc represents the density of accessible states at
the energy E for the given total volume V and particle number N . Note that Zmc is a
function of E, V and N , which reflects the nature of the system under study through
the eigenvalue spectrum of the Hamiltonian Ĥ and its dependence on V and N .

In the microcanonical ensemble all the states having the same energy E are equally
probable. In classical mechanics all the states (p, q) belonging to the hypersurface
H(p, q) = E are equally probable. The latter is of course consistent with ρ being a
constant of motion and with the ergodic hypothesis. Notice, however, that we didn’t in-
voke any ergodic hypothesis in order to derive ρ(p, q) but simply the concept of statistical
independence of the subsystems in the macroscopic limit.

Exercise 3.11: Compute the density of states Ω(E) of a system of N independent iden-
tical particles of mass m in a volume V = LD in D dimensions. Suppose that
each particle has the energy εi (

∑
i εi = E) and calculate the number of states

σ(εi) for one particle having the energy ε < εi. Derive then total number of states
Σ(ε1, . . . , εN ) for the case when the individual particles have the energies ε1, ε2, . . . , εN .
How would this expression be modified, if you take into account the principle of in-
distinguishability of identical particles? Maximize Σ(ε1, . . . , εN ) under the total en-
ergy constraint

∑
i εi = E and approximate Σ(E) by the maximum value. De-

rive Ω(E) and analyze the dependence of Σ and Ω on E, V , N and v = V/N .

3.5.2 Canonical ensemble

A system having a fixed volume V and a fixed number of particles N , which can exchange
energy with environment is described by the canonical ensemble in a narrow sense. In
these cases one says that the system has a heat contact with the environment. In fact,
the energy exchanged in this way, by keeping V and N fixed, is commonly known as heat.
The canonical density operator is given by

ρ̂c =
1

Zc
e−βĤ

with
Zc = Tr{e−βĤ} ,

where we have implicitly assumed that the Hilbert space in which the trace is calculated
consists of all the microstates having N particles in the volume V . Thus, ρ̂c and Zc

depend on β, V and N . The parameter β defines, together with N and V , the average
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energy E of the system:

E(β) = ⟨Ĥ⟩ = Tr{ρ̂c Ĥ}

=
Tr{Ĥe−βĤ}
Tr{e−βĤ}

= − ∂

∂β
lnZc .

It is important to note that the converse is also true. The condition that the average
energy ⟨Ĥ⟩ takes the value E, for the given V and N , defines β univocally, since E(β) =
⟨Ĥ⟩ is a strictly monotonically decreasing function of β:

∂E

∂β
=
∂⟨Ĥ⟩
∂β

= −Tr{Ĥ2e−βĤ}Tr{e−βĤ} − (Tr{Ĥe−βĤ})2

(Tr{e−βĤ})2

= −⟨Ĥ2⟩+ ⟨Ĥ⟩2 = −
〈
(Ĥ − ⟨Ĥ⟩)2

〉
= −∆H2 < 0 .

The variance ∆H2 is always strictly positive and tends to zero only for β → ∞. Thus,
the relation between E and β is bijective.

In the canonical ensemble the total energy E of the system is not fixed, since the
system is open with respect to energy exchange. In the corresponding mixed state, only
the average value ⟨Ĥ⟩ is well defined. The statistical distribution w(E) of E, i.e., the
probability density w(E) of finding the energy E in the system, is given by

w(E) = ⟨δ(E − Ĥ)⟩

=
1

Zc
Tr{e−βĤ δ(E − Ĥ)} =

1

Zc
Tr{e−βE δ(E − Ĥ)}

=
1

Zc
e−βE Ω(E). (3.16)

In words, the probability of measuring the value E of the total energy is equal to the
probability e−βE/Zc of finding the system in a microstate of energy E multiplied by the
number of states Ω(E) having this energy. Again, in equilibrium, all microstates having
the same energy are equally probable.

The canonical partition function Zc can be readily related to the microcanonical par-
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tition function Zmc(E) = Ω(E) by noting that

Zc = Tr{e−βĤ}

= Tr
{
e−βĤ

∫
dE δ(E − Ĥ)

}
=

∫
dE Tr

{
e−βĤ δ(E − Ĥ)

}
=

∫
dE e−βE Tr{δ(E − Ĥ)}

=

∫
dE e−βE Ω(E) . (3.17)

Notice that this could have been directly inferred from Eq. (3.16) by recalling that the
probability density w(E) is normalized.

In the canonical ensemble the total energy E of the system does not have well defined
value. It is therefore very interesting to analyze its probability distribution w(E) in order
to assess quantitatively the importance of energy fluctuations. In the following we will
show that w(E) is very sharply peaked at the average value. To this aim let us first note
that the density of states Ω(E) of a macroscopic system increases extremely rapidly with
E. We already know from our discussion the of statistical independence of subsystems
that lnΩ is an additive property. We may therefore write

lnΩ(E) = N ln

[
ω

(
E

N
,
V

N

)]
⇔ Ω(E) = ω

(
E

N
,
V

N

)N

,

where ω(ε, v) is some increasing function of the energy per particle ε = E/N representing
the density of states per particle or per subsystem. We conclude that the probability
density distribution w(E) for the total energy E is the product of the very rapidly
increasing function Ω(E) and the very rapidly decreasing function e−βE [see Eq. (3.16)].
Consequently, w(E) shows an extremely narrow maximum. In addition, we already know,
from the central limit theorem, that the relative fluctuation

√
∆H2/⟨H⟩ ∝ 1/

√
N → 0

for N → ∞.

Furthermore, in the macroscopic limit (N → ∞) we may identify the average energy
E = ⟨Ĥ⟩ with the most probable energy E, i.e., with the energy at which w(E) has its
maximum (saddle point integration). Indeed, the average energy is given by

E = ⟨Ĥ⟩ =
∫
E′w(E′) dE′

=

∫
E′ e

−βE′
Ω(E′)

Zc
dE′ →

N→∞

∫
E′ g(E′ − E) dE′ = E,

where we have used that g(E′ − E) = e−βE′
Ω(E′)/Zc has a very narrow peak at E for

N → ∞, which satisfies
∫
g(E′ − E) dE = 1 and converges to a Gaussian distribution

centered at E.
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Consequently, the average E can be obtained from the condition

∂w(E)

∂E

∣∣∣∣
E=E

= 0 .

Knowing that
∂w

∂E
=

1

Zc

[
−β e−βE Ω(E) + e−βE ∂Ω

∂E

]
,

we have

∂w

∂E
= 0 ⇔ −βΩ+

∂Ω

∂E
= 0 ⇔ β =

1

Ω(E)

∂Ω

∂E
,

which implies

β =
∂ lnΩ

∂E

∣∣∣∣
N,V

.

The fact that the average energy ⟨Ĥ⟩ and the most probable energy E coincide in the
macroscopic limit (N → ∞) allows us to directly obtain β as a function of E, without
having to invert the equation E(β) = Tr{ρ̂c Ĥ}. Since Ω(E) is in most cases an increasing
function of E, we usually have β > 0, although there are some remarkable exceptions.

The spectrum of macroscopic systems has a lower bound, the ground-state energy
E0, and is usually unbound for high energies. The density of states is an increasing
function of E and therefore β is in most cases positive. Notice that the trace giving the
partition function converges only if the spectrum is bounded at least on one side. If the
spectrum has only a lower bound, the trace converges only for β > 0. There are, however,
systems in which the spectrum is bounded on both sides, i.e., in which there is maximum
achievable energy Emax. An example of bounded spectrum is found in spin systems. In
these cases Ω(E) increases first with E, and then decreases as we approach the upper
bound. Thus, for energies close to the Emax one finds β < 0. As a simple example,
consider the Ising model with nearest neighbor interactions in a one dimensional chain:

Ĥ = −J
N∑
i=1

si si+1

with si = ±1 and J > 0. In this case one has E0 = −JN (parallel spins or ferromagnetic
order) and Emax = JN (alternating spins or antiferromagnetic order).

3.5.3 Grand Canonical ensemble

The equilibrium state of systems which are open with respect to energy and particle
exchange is described by the grand canonical ensemble. Examples of such systems are
metals kept at some given electrostatic potential, where electrons can be freely exchanged,
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or chemical solutions exchanging ions with the electrodes. The corresponding density
operator is given by

ρ̂gc =
1

Zgc
e−β(Ĥ−

∑
i µiN̂i)

with the partition function

Zgc = Tr
{
e−β(Ĥ−

∑
i µiN̂i)

}
.

The operator N̂i counts the number of particles of each component i in the system. Both
ρgc and Zgc depend on β, µi and V . Consequently, the parameters β and µi define the
average values of the total energy

E = ⟨Ĥ⟩ = Tr{ρ̂gc Ĥ}

= − ∂

∂β
lnZgc (3.18)

and of the particle numbers

Ni = ⟨N̂i⟩ = Tr{ρ̂gc N̂i}

=
1

β

∂

∂µi
lnZgc . (3.19)

Let is recall that all average values and traces are calculated by taking into account all
microstates with arbitrary energy and particle number within a fixed volume V . For
simplicity, we focus on one-component systems in the following.

It is easy to express the grand canonical partition function Zgc in terms of the canonical
one

Zc(β,N) = Tr{e−βĤ}N ,

which corresponds to a fixed number of particles N . Splitting the grand canonical trace
in separate sums over all states having the same N , we have

Zgc(β, µ) =
+∞∑
N=0

eβµN Tr{e−βĤ}N =
+∞∑
N=0

eβµNZc(β,N) . (3.20)

Some authors, such as K. Huang, introduce the fugacity z = eβµ, which allows us to
express the grand canonical partition function

Zgc =
∞∑

N=0

zNZc(N)

as a power series of z. Although quite practical in some cases, we shall not follow this
notation, since it spoils the correspondence between λi and fi.
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The probability of finding an energy E and a number of particles N is given by

w(E,N) = ⟨δ(E − Ĥ) δ(N − N̂)⟩

=
1

Zgc
Tr{δ(E − Ĥ) δ(N − N̂)} e−β(E−µN)

=
1

Zgc
e−β(E−µN)ΩN (E) . (3.21)

where ΩN (E) is the usual microcanonic density of states per unit energy when the sys-
tem contains precisely N particles in the volume V . Notice the analogy with the energy
distribution w(E) in the canonical ensemble. In the present case we see that the proba-
bility density w(E,N) is equal to the probability e−β(E−µN)/Zgc of finding the system in
a microstate with energy E and N particles multiplied by the number ΩN (E) of states
with N particles at the energy E per unit energy. In the macroscopic limit, w(E,N) be-
comes an extremely narrow probability distribution around the average values. Since the
central limit theorem applies (E and N are additive properties) the relative fluctuations
of E and N become irrelevant for N → ∞. Therefore, the average values ⟨Ĥ⟩ and ⟨N̂⟩
coincide with the most probable ones E and N .

The maximum of w(E,N) is achieved when its gradient vanishes. From Eq. (3.21) one
obtains

∂w

∂E

∣∣∣∣
N

=
1

Zgc

(
−β ΩN +

∂ΩN

∂E

)
e−β(E−µN)

and

∂w

∂N

∣∣∣∣
E

=
1

Zgc

(
βµΩN +

∂ΩN

∂µ

)
e−β(E−µN) .

Setting the partial derivatives equal to zero yields the important equilibrium relations

β =
∂ lnΩ

∂E

∣∣∣∣
N,V

(3.22)

and
µ = − 1

β

∂ lnΩ

∂N

∣∣∣∣
E,V

. (3.23)

These equations allow us to determine β and µ directly for any given energy and number
of particles. In this way, inverting Eqs. (3.18) and (3.19), which give ⟨Ĥ⟩ and ⟨N̂⟩ as a
function of β and µ, is avoided. Notice that µ is not necessarily negative, as one might
be tempted to conclude from Eq. (3.23), since the average energy E, whose dependence
on N is not obvious a priori, must be kept fixed upon differentiation with respect to
N . Adding particles under the constraint of constant total energy does not necessarily
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imply that the number of accessible states ΩN (E) increases [i.e., (∂ lnΩ/∂N)|E is not
necessarily positive].5

The unconstrained probability distribution of the number of particles is given by

w(N) =

∫
w(E,N) dE =

1

Zgc
eβµN

∫
e−βE ΩN (E) dE

=
Zc(β,N, V )

Zgc(β, µ, V )
eβµN ,

where we have used Eq. (3.17) for the canonical partition function Zc. Concerning the
dependence of w(N) on N it is important to recall that Zc also depends on N . In
fact, µ and ∂ ln(Zc)/∂N |β,V always have opposite signs, even if they depend on the
physical problem. In fact, one can show that µ = −(1/β)(∂ lnZc/∂N)|β,V . Thus, the
product of Zc and the exponential factor yields, as expected, a narrow distribution of N
around its average value, which in particular ensures the integrability of w(N) → 0 for
N → ∞. Furthermore, the convergence of the sum of all w(N), namely,

∑
N w(N) = 1,

is guaranteed by Eq. (3.20).

Exercise 3.12: Show that
∂⟨N̂⟩
∂µ

= β(⟨N̂2⟩ − ⟨N̂⟩2).

Show that ⟨N̂⟩ = 0 for µ→ −∞ (β > 0). Explain why for any β > 0, there is always one
and only one solution of the equation ⟨N̂⟩ = N for any average number of particles N > 0.

The bijective relation between (E,N) and (β, µ)

Finally, before closing this section, we would like to show that in the mapping (β, µ) →
(E,N) with N = ⟨N̂⟩ and E = ⟨Ĥ⟩ is locally invertible for all β and µ. This implies
that the solution of the equation E(β, µ) = E and N(β, µ) = N is always unique.

The proof is simpler if we return to the notation used in the general formulation,
instead of using the variables β and µ and the operators Ĥ and N̂ , which would otherwise
certainly be the more physical choice. Thus, we consider the parameters λ1 = −β and
λ2 = βµ with corresponding operators F̂1 = Ĥ and F̂2 = N̂ . In these terms the grand
canonical partition function is given by

ρ̂gc =
1

Zgc
eλ1F̂1+λ2F̂2

5As a bus carrying N identical stormtrooper clones fills up, the number of different ways ΩN in which
the seats are occupied by keeping the energy constant (i.e., avoiding that two clones sit on top of each
other) surely increases at first when the bus is nearly empty but then decreases when more than half
of the seats are already occupied. Fermions show a similar behavior, while non-interacting bosons do
not.
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with
Zgc = Tr{eλ1F̂1+λ2F̂2} .

It follows that
∂ lnZgc

∂λi
= ⟨Fi⟩

and
∂⟨Fi⟩
∂λi

= ⟨F̂ 2
i ⟩ − ⟨F̂i⟩2

for i = 1, 2. In addition,

∂⟨F̂1⟩
∂λ2

= ⟨F̂1F̂2⟩ − ⟨F̂1⟩⟨F̂2⟩ =
∂⟨F̂2⟩
∂λ1

.

The Jacobian matrix of the transformation is then given by

J =

(
∂⟨Fi⟩
∂λj

)
=

[
⟨F 2

1 ⟩ − ⟨F1⟩2 ⟨F1F2⟩ − ⟨F1⟩⟨F2⟩
⟨F1F2⟩ − ⟨F1⟩⟨F2⟩ ⟨F 2

2 ⟩ − ⟨F2⟩2
]
,

where the off-diagonal elements can be written as

⟨F̂1F̂2⟩ − ⟨F̂1⟩⟨F̂2⟩ =
〈
(F̂1 − ⟨F̂1⟩)(F̂2 − ⟨F̂2⟩)

〉
.

We need to show that the determinant of the Jacobian is never zero, whatever density
matrix ρ̂ is used for performing the averages. To this aim, we define an appropriate inner
product in an ad hoc vector space and apply the Cauchy-Schwarz inequality.

We consider s compatible linear operators F̂1, . . . , F̂s with [F̂i, F̂j ] = 0 ∀i, j. We define
the vector space V of all the linear combinations of the zero-average operators f̂i =
F̂i − ⟨F̂i⟩. In this space we introduce the bilinear function

⟨f̂ |ĝ⟩ = ⟨f̂ ĝ⟩ ,

where the averages are taken with respect to some fixed density matrix ρ̂. ⟨f |g⟩ has
all the properties of an inner product. First, ⟨f̂ |f̂⟩ ≥ 0 ∀f and ⟨f̂ |f̂⟩ = 0 ⇒ f̂ = 0.
Here we have used that ⟨f̂2⟩ = 0 implies that f̂ is constant and thus zero. Second,
⟨f |g⟩ is bilinear and symmetric, since [F̂i, F̂j ] = 0. Consequently, we can apply the
Cauchy-Schwarz inequality

⟨f |g⟩2 ≤ ⟨f |f⟩⟨g|g⟩ ,
which implies

0 ≤
(
⟨F 2

1 ⟩ − ⟨F1⟩2
) (

⟨F 2
2 ⟩ − ⟨F2⟩2

)
−
(
⟨F1F2⟩ − ⟨F1⟩⟨F2⟩

)2
= det(J).

The equal sign holds only when the vectors (operators) are linearly dependent, which of
course does not hold for Ĥ and N̂ . Since the Jacobian has always the same sign (and
is never zero) the change of variables is invertible, which implies the uniqueness of the
solution of the equations

E(β, µ) = ⟨Ĥ⟩βµ = E

and
N(β, µ) = ⟨N̂⟩βµ = N .
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Exercise 3.13: Show that
∂ lnZgc

∂β
= −

(
⟨Ĥ⟩ − µ⟨N̂⟩

)
and

∂

∂β

(
⟨Ĥ⟩ − µ⟨N̂⟩

)
= −

[
⟨(Ĥ − µN̂)2⟩ − ⟨Ĥ − µN̂⟩2

]
< 0.

Since ⟨Ĥ⟩ − µ⟨N̂⟩ is a monotonically decreasing function of β for all µ, conclude that the
equation ⟨Ĥ⟩ −µ⟨N̂⟩ = constant always has a unique solution as a function of β. Perform
the corresponding analysis concerning the chemical potential µ.

3.5.4 Grand Canonical pressure ensemble

A system which is open with respect to all constants of motion is characterized by the
density operator

ρ̂gcp = e−β(Ĥ−µN̂+pV ) ,

where the partition function Tr{ρgcp} = 1. Thus, there is no need for a normalizing
factor. The relevant parameters or variables entering ρgcp are here β, µ and p, which
define the average energy E = ⟨Ĥ⟩, average number of particles ⟨N̂⟩ and average volume
⟨V̂ ⟩, except for a common multiplicative constant. In fact, β, µ and p cannot define
the additive properties E, ⟨N̂⟩ and ⟨V̂ ⟩. They are bonded by the condition Tr{ρgcp} =
1, which represents the equation of state of the material under consideration, and are
therefore not independent of each other. The variables β, µ and p can only define the
ratios or densities of the additive constants of motion, for example, E/⟨N̂⟩ and ⟨V̂ ⟩/⟨N̂⟩.
We shall see that β, µ and p are intensive properties which remain unchanged when
all additive properties E, N and V are multiplied or scaled by the same factor [e.g.,
p(E,N, V ) = p(αE,αN,αV ) ∀α > 0 and similarly for β and µ]. Knowing β, µ and
p provides no information on the actual size of the system. Under these circumstances,
volume fluctuations come into play. We find this physical situation when we consider
a hot air balloon, an air bubble in a liquid, or a warm-air bubble climbing its way up
in the atmosphere on a sunny day. This ensemble is known as grand canonical pressure
ensemble.

The probability density of finding an energy E, number of particles N and volume V
is

w(E,N, V ) = ⟨δ(E − Ĥ) δ(N − N̂) δ(V − V̂ )⟩ = e−β(E−µN+pV )ΩN,V (E),

where ΩN,V (E) is the density of states for a system containing N particles in a volume
V at the energy E. Notice that ΩN,V (E) represents a density of states per unit energy
and unit volume. As the product of delta functions, it has units of inverse energy times
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inverse volume. In the same way as the previously considered ensembles, statistical
independence implies that ΩN,V (E) is an exponentially increasing function of E, N and
V , whereas the Boltzmann factor decreases exponentially as a function of these variables
(β > 0, µ < 0 and p > 0). Therefore, w(E,N, V ) has an extremely narrow distribution
around the averages ⟨E⟩, ⟨N⟩ and ⟨V ⟩, which coincide with the values of E, N and V
that maximize w(E,N, V ).

3.6 Implicit notation

Throughout the previous discussion of the density operators and partition functions in the
different ensembles we made use of a widespread convention, which consists in dropping
the δ functions in the expressions for ρ̂c and Zr. This is possible, and should lead to no
confusion, since we implicitly assumed that the Hilbert space on which ρ̂c acts, and with
respect to which the trace in Zr is calculated, contains only states |ψ⟩ having well-defined
values of the constants of motion:

F̂j |ψ⟩ = fj |ψ⟩

for j = r+1, . . . , s. Keeping this in mind is, of course, crucial for the calculations. Using
this convention, the general expressions for the canonical ensemble take the form

ρ̂c =
1

Zr
e
∑r

i=1 λiF̂i ,

where
Zr = Tr{e

∑r
i=1 λiF̂i} ,

which is clearly more compact and elegant.
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4 Entropy

The entropy is one of the most important concepts in statistical mechanics. It is defined
as

S = −kB⟨ln ρ̂⟩ = −kBTr{ρ̂ ln ρ̂},

where −⟨ln ρ̂⟩ is the entropy of the probability distribution of the microstates in the
mixed state defined by ρ̂ and kB = 1, 38 × 10−23 J/K is the Boltzmann constant. As
already discussed in Sec. 1.8, the average −⟨ln ρ̂⟩ = S/kB gives a measure of the diversity
of the population of microstates or, equivalently, of the lack of information in the corre-
sponding probability distribution. The Boltzmann constant is introduced in order to be
consistent with the historical definition of entropy change, which is the energy difference
at constant volume and particle number (i.e., reversible heat) between two equilibrium
states divided by the absolute temperature T at which the heat transfer occurs. Thus, kB
and S have units of energy divided by temperature. The temperature unit K stands for
Kelvin after William Thomson, 1st Baron Kelvin (1824–1907) who measured the value
of the absolute zero of temperature (≃ −273 ◦C). A temperature difference of 1 K is the
same as 1 ◦C, only the reference zero is different. In the Kelvin or absolute tempera-
ture scale, zero corresponds to the lowest attainable temperature value, whose existence
was already known to Carnot (1824). The Boltzmann constant is not a fundamental
physical constant. Its value follows from the convention that assigns the temperature
T = 273.16 K to the triple point of water. The choice of the triple point is practical since
the temperature at which the three phases coexist (solid, liquid, gas) can be precisely
and easily measured. The choice of the temperature value at the triple point ensures
consistency with the Celsius scale (0 ◦C corresponds to 273.15 K). Thus, maybe some
day one might be able to compute kB in terms of ℏ, c and the mass and charge of the
elementary particles. kB allows us to relate temperature and energy scales. Roughly
speaking, for simple estimates, one may take that 1 eV ≈ 104 K, actually 8620 K, or
10K ≈ 1 meV. As we shall see, these rough approximations of kB are very useful in order
to judge which energy differences are attainable or important at a given temperature.
In the following, unless explicitly stated otherwise, the temperature always refers to the
absolute scale.

If we denote by ρν the eigenvalues of ρ̂ we have

S = −kB
∑
ν

ρν ln ρν ⩾ 0 ,

since x lnx ≤ 0 for 0 ≤ x ≤ 1. We already know that S = 0 only for pure states.
S represents the average of the additive constant of motion − ln ρ̂, which we inferred
under the assumption of statistical independence of macroscopic subsystems. In previous
chapters we have analyzed statistical ensembles (mixed states) corresponding to different
physical situations: perfect isolation, exchange of some constants of motion and full
openness. The corresponding density operators ρ̂ characterizing the various mixed states
are obviously different and the differences are significant qualitatively. For instance, in
the microcanonical ensemble the total energy is sharply defined, whereas in the canonical
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ensemble the total energy fluctuations grow as
√
N . Nevertheless, we have shown that

all the different ensembles yield equivalent descriptions of the equilibrium state and its
macroscopic properties, since the relative fluctuations of the constant of motions (e.g.,
E, N and V ) are irrelevant in the macroscopic limit (N → ∞). One of our first goals in
this chapter is to show that calculating the entropy in the various ensembles, according
to the corresponding ρ’s, yields the same result, provided that the parameters defining
the macroscopic state are the same.

Another question of central interest is the behavior of S upon scaling. For open
systems, in the grand canonical ensemble, we know that ln ρ̂ is an additive constant of
motion, which can be expressed as

ln ρ̂ =

s∑
i=1

λiF̂i ,

in terms of the set F̂i, . . . F̂s of linearly independent additive constants of motion. In this
case, the additivity of S follows immediately:

S = −kB⟨ln ρ̂⟩ = −kB
s∑

i=1

λi⟨F̂i⟩ = −kB
s∑

i=1

λifi .

If the system is not fully open, i.e., if some additive constants of motion are constrained
to have well-defined values (i.e., no exchange with the environment), the statistical in-
dependence of the subsystems does not strictly hold. Indeed, different subsystems of an
isolated system can be regarded as statistically independent, except for the fact that the
sum of the conserved additive properties over all subsystems must always take a well-
defined value. Therefore, one could doubt on the additivity of S a priori. However, we
have seen that for macroscopic systems such constraints are not essential, since the den-
sity operators of different microcanonical and grand canonical ensembles are equivalent
in practice: the fluctuations of the properties Fi (i = 1, . . . r) with respect to which the
system is open, are negligible with respect to the average values ⟨Fi⟩. For instance, the
energy distribution w(E) in the canonical ensemble is extremely sharp, even though E
is not strictly conserved. As we shall see, the additivity of S holds in general.

Let us consider the general canonical ensemble, which is open with respect to F̂1, . . . , F̂r,
and closed with respect to F̂r+1, . . . , F̂s. In this case we have

ρ̂r = e
∑s

i=1 λiF̂i

s∏
j=r+1

δ(F̂j − fj) , (4.1)

which can be written as
ρ̂r =

1

Zr
e
∑r

i=1 λiF̂i , (4.2)

with the partition function

Zr = e−
∑s

j=r+1 λjfj = Tr{e
∑r

i=1 λiF̂i} . (4.3)
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The entropy of the mixed state ρ̂r is then given by

S = −kB⟨ln ρ̂⟩ = −kB

[
r∑

i=1

λi⟨F̂i⟩ − lnZr

]
= −kB

s∑
i=1

λifi , (4.4)

where we have used that ⟨F̂i⟩ = fi for 1 ≤ i ≤ r. The last equality shows that S is
equal to a linear combination of all the additive properties f1, . . . , fs. Since the λi should
be intensive properties —in order to ensure the additivity of ln ρ̂— S is expected to be
an additive property for all r, including the microcanonic case (r = 0) and the already
mentioned grandcanonic case (r = s).

Notice that for each r or type of ensemble, S can be always be regarded as a function
of the r coefficient λ1, . . . , λr —which control the average values ⟨F̂1⟩ = f1, . . . , ⟨F̂r⟩ =
fr of the constants of motion exchanged with the environment— and of the additive
properties fr+1, . . . , fs —which are the same in all microstates. This follows clearly from
the fact that the density operator ρ̂r, from which S is issued, is defined by λ1, . . . , λr and
fr+1, . . . , fs. For example, in the canonical ensemble, ρ̂c and S depend on β, N and V .
However, later on we will see that it is actually meaningful to regard S as a function of
all additive constants of motion f1, . . . , fs. For instance, in the most usual case we have
S = S(E,N, V ). In fact, the additivity of S will be rigorously demonstrated by showing
that S is an homogeneous function of grade 1 of these variables.

4.1 Maximum entropy theorem

We would like to establish the fundamental variational principle of statistical mechanics,
in terms of which the state of equilibrium can be characterized. To this aim we consider
the entropy

S[ρ̂] = −kB⟨ln ρ̂⟩ = −kBTr{ρ̂ ln ρ̂} (4.5)

as a functional of the density operator ρ̂ defining an arbitrary mixed state in the Hilbert
space of our system. The properties of ρ̂ are clear: ρ̂† = ρ̂, its eigenvalues ρν satisfy
0 ≤ ρν ≤ 1, and Tr{ρ̂} =

∑
ν ρν = 1. All ρ̂’s are positive-semidefinite, trace-one,

hermitic operators. We consider a general canonical ensemble. The underlying Hilbert
space is spanned by the states having well-defined constants of motion F̂r+1, . . . , F̂s.

Theorem: The following fundamental property holds. Consider a system which is
closed with respect to the constants of motion F̂r+1, . . . F̂s which have well-defined values
fr+1, . . . fs. Among all the the density operators ρ̂ satisfying ⟨F̂i⟩ = Tr{ρ̂F̂i} = fi for
i = 1, . . . , r the one yielding the largest S is the canonical density operator ρ̂r given by
Eqs. (4.2) and (4.3), which describes the state of equilibrium. This is equivalent to the
inequality

S[ρ̂] ≤ S[ρ̂r]
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or, using Eqs. (4.4) and (4.5), to

S[ρ̂] = −kBTr{ρ̂ ln ρ̂} ⩽ S[ρ̂r] = −kB

[
r∑

i=1

λifi − lnZr

]
.

Thus, the state of equilibrium is the one which maximizes S under the constraints ⟨F̂i⟩ =
fi for i = 1, . . . , r, and F̂j = fj for j = r + 1, . . . s.

Lemma: In order to prove this important statement we first show the following lemma.
Given any two density operators ρ̂ and ρ̂′, we have

Tr{ρ̂ ln ρ̂′} ⩽ Tr{ρ̂ ln ρ̂} , (4.6)

The starting point is the inequality lnx ≤ x− 1 for any x > 0. This implies that for any
hermitic operator Â with eigenvectors |n⟩ and eigenvalues an ≥ 0, we have

⟨ψ| ln Â|ψ⟩ =
∑
n

|⟨ψ|n⟩|2 ln an ⩽
∑
n

|⟨ψ|n⟩|2(an − 1) = ⟨ψ|(Â− 1)|ψ⟩. (4.7)

We consider the diagonal representation of

ρ̂ =
∑
n

ρn|n⟩⟨n|

with ρn > 0 and obtain

Tr{ρ̂ [ln(ρ̂′)− ln(ρ̂)]} =
∑
n

ρn ⟨n|[ln(ρ̂′)− ln(ρn)]|n⟩ =
∑
n

ρn ⟨n| ln
(
ρ̂′

ρn

)
|n⟩,

where we have used that ρn > 0. The operators ρ̂′/ρn are all positive semi-definite, since
ρ̂′ has positive or zero eigenvalues and ρn > 0. Therefore, using (4.7) we have

⟨n| ln
(
ρ̂′

ρn

)
|n⟩ ≤ ⟨n|

(
ρ̂′

ρn
− 1

)
|n⟩

for all n. It follows that

Tr{ρ̂(ln ρ̂′ − ln ρ̂)} ⩽
∑
n

ρn⟨n|
(
ρ̂′

ρn
− 1

)
|n⟩ =

∑
n

⟨n|ρ̂′|n⟩ − Tr{ρ̂} = Tr{ρ̂′} − 1 = 0.

This proves the inequality (4.6).

Proof: We turn now our attention to the entropy S[ρ̂] of an arbitrary density operator
ρ̂. Using the inequality (4.6) with ρ̂ arbitrary and ρ̂′ = ρ̂r we have

S[ρ̂] = −kBTr{ρ̂ ln ρ̂} ≤ −kBTr{ρ̂ ln ρ̂r} = −kBTr

{
ρ̂

(
r∑

i=1

λiF̂i − lnZr

)}
,
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where we have replaced, on the right hand side, the explicit form of the canonic density
operator ln ρ̂r =

∑r
i=1 λiF̂i − lnZr given by Eq. (4.2). Since all the mixed states ρ̂ have

the same averages ⟨F̂i⟩ = Tr{ρ̂F̂i} = fi for i = 1, . . . , r, we finally obtain

S[ρ̂] ≤ −kB
s∑

i=1

λifi = S[ρ̂r] , (4.8)

which proves the maximum entropy theorem. Notice that the logarithm of the density
operator at equilibrium ρ̂r is a linear combination of additive constants of motion. There-
fore, the average ⟨ln ρ̂r⟩ = Tr{ρ̂ ln ρ̂r} is the same for all the density operators ρ̂ having
the same average values ⟨F̂i⟩ = fi of the properties F̂i with respect to which the system is
open (1 ≤ i ≤ r) and the same constants of motion fj with respect to which the system
is closed (r + 1 ≤ j ≤ s).

We have already discussed the meaning of −⟨ln ρ̂⟩ = −
∑

n ρn ln ρn for an arbitrary
probability distribution ρn, where 0 ≤ ρn ≤ 1 and

∑
n ρn = 1. We have seen that −⟨ln ρ̂⟩

gives a measure of the degree of disorder in the distribution, or equivalently, a measure
of the deviation of the mixed states described by ρ̂ from a pure state (S = 0 only for
pure states). Moreover, S always increases as the number of microstates participating
in the mixed states increases since a larger number of participating states reduces the
average of ρn and ln ρn (

∑
n ρn = 1). We have also interpreted −⟨ln ρ⟩ as a measure of

the degree of uncertainty (or lack of knowledge) that we have on the mixed state of the
system. With this in mind, the principle of maximum entropy tells us that among all the
states of a system satisfying ⟨Fi⟩ = fi for i = 1, . . . , r and F̂i ≡ fi for i = r + 1, . . . , s,
the equilibrium state is the one with the highest degree of disorder, the most far from
pure, and the one about which we know less. This fundamental characteristic of the
equilibrium state is most plausible from a physical perspective. Indeed, one can actually
grasp the state of equilibrium in this way.

4.2 The approach to equilibrium

An alternative perspective to the principle of maximum entropy can be achieved by
investigating the time dependence of the entropy S = −kB⟨ln ρ̂⟩ of a system in an
arbitrary mixed state ρ̂ along the spontaneous process of reaching equilibrium. We
already know that the interactions with the environment play a central role in reaching
thermodynamic equilibrium. In fact, we have seen that when the system is strictly
isolated, the total time derivative of ρ̂ vanishes and the entropy, given by its eigenvalues,
is independent of time. The main reason behind this remarkable time independence
—besides the fundamental invariance of inner products in quantum mechanical time
evolution— is that the probabilities Pn of all the microstates |n⟩ (also referred to as
weights wn) are independent of time, as long as the system does not interact with the
environment. In this section we would like to discuss how Pn depends on time when the
system evolves towards equilibrium and how this conditions the time evolution of the
entropy in spontaneous processes. To this aim we will treat the interactions with the
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environment as stochastic processes, which are uncorrelated in time. This assumption
will lead us to the master equation. Subsequently, with Pn(t) in hand, the fundamental
symmetry of quantum mechanical transition probabilities will be exploited in order to
derive the time dependence of the entropy. This will provide us with a complementary
dynamical perspective to the maximum entropy theorem.6

4.2.1 The master equation

We consider a system in an arbitrary mixed state, not necessarily in equilibrium, which
is described by the density operator

ρ̂ =
∑
m

|m⟩Pm⟨m|.

The states |m⟩ are assumed here to be the eigenstates of ρ̂ with ⟨m|n⟩ = δmn and∑
m Pm = 1. The interactions with the environment are described by some external, yet

unspecified perturbation V̂ . Since the interactions are uncontrolled, the changes of state
of the system cannot be predicted with certainty. We shall describe them as a stochastic
process, which is defined as a time-indexed or time-ordered succession of states

m1t1,m2t2, . . . ,mn−1tn−1

at times t1 < t2 < · · · < tn−1. Moreover, we assume that that the transitions are
uncorrelated in time, i.e., the probability for the system to be in the state mk at time
tk is completely determined by the state mk−1 which the system had at time tk−1. Such
processes are called Markovian and the succession of states m1,m2, . . . ,mn−1 that the
system undergoes is usually referred to as a Markov chain. The assumed lack of any
memory or inertial effects implies that the time evolution is entirely controlled by the
transition probability

p(m, t′|n, t) , (4.9)

which represents the conditional probability of finding the system in the state m at time
t′, knowing that it was in state n at time t. Clearly, when t′ = t we have

p(m, t|n, t) = δmn ∀ t . (4.10)

Moreover, the normalization condition requires∑
m

p(m, t′|n, t) = 1 ∀ t′ > t, (4.11)

irrespectively of the state n in which the system is at time t. For small time differences
∆t = t′− t, it is meaningful to perform a linear expansion and to introduce the transition
rate or rate constant kmn representing the transition probability per unit time from n to
m:

p(m, t+∆t |nt) = kmn∆t+O(∆t2), (4.12)
6The main ideas behind this section are borrowed from Feynman’s book [3].
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for all m ̸= n. The probability of staying in the same state m at t+∆t is obtained from
the normalization condition (4.11):

p(m, t+∆t |m, t) = 1−
∑
n̸=m

knm∆t+O(∆t2) . (4.13)

Notice that the linear expansions (4.12) and (4.13) of the conditional probabilities satisfy
Eqs. (4.10) and (4.11) to first order in ∆t. The dynamics of the probability distribution
{Pm}, in a Markov processes is entirely controlled by the transition rates kmn.

The probability of finding the system in the state m at time t+∆t is equal to the sum
of the probabilities of being in any state n (including n = m) at time t multiplied by the
transition probability p(m, t+∆t |n, t) from the state n to the state m. This is written
as

Pm(t+∆t) =
∑
n

p(m, t+∆t |n, t)Pn(t) .

Replacing (4.12) for m ̸= n and (4.13) for m = n, we have

Pm(t+∆t) =
∑
n̸=m

kmn∆t Pn(t) +

1−
∑
n̸=m

knm∆t

Pm(t)

= Pm(t)∆t+
∑
n̸=m

kmn Pn(t)∆t−
∑
n̸=m

knm Pm(t)∆t ,

which implies
dPm

dt
=
∑
n̸=m

(kmn Pn − knm Pm) . (4.14)

The first term on the right-hand side, which is positive and thus increases Pm, represents
the probability of ending up in the state m coming from any other state n ̸= m, while the
second negative terms correspond to the probability of making a transition to any other
state n, starting from m. This simple, physically transparent relation plays a central role
in stochastic dynamics. It is known as the master equation.

4.2.2 Time dependence of the entropy

In order to be able to determine the time dependence of Pm and of S we need some
information on the transition rates kmn. To this aim we assume in the following that the
system is closed with respect to all its additive conserved quantities, i.e., that no energy,
particles or volume are exchanged as a result of the interaction with the environment.
This corresponds to the microcanonical ensemble. The transition rates kmn are derived
from time-dependent perturbation theory in quantum mechanics.7 Given a constant

7See, for example, J.J. Sakurai, Modern Quantum Mechanics, (Addison-Wesley, Reading, 1994) p. 327 ff.
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perturbation V̂ , with matrix elements Vnm = ⟨n|V̂ |m⟩, the transition probability per
unit time from an unperturbed state |m⟩ to a state |n⟩ is given by the Fermi golden rule

knm =
2π

ℏ
|Vnm|2δ(En − Em) , (4.15)

Despite the fact that the details of the interaction V̂ between the system and its environ-
ment are not know in general, the most important information for us is the microscopic
reversibility

knm = kmn . (4.16)

This symmetry always holds at the quantum level, between every pair of states |m⟩ and
|n⟩, since V̂ is hermitic (Vnm = V ∗

mn). It tells us that at a microscopic level the probability
for a transition from state |m⟩ to |n⟩ is the same as the probability for a transition from
|n⟩ to |m⟩. Further statistical considerations, concerning the number of accessible states
of the environment when the system is in the final state |m⟩, are not important at this
stage since all microstates have the same energy (En = Em).

We may finally turn our attention to the entropy

S = −kB⟨ln ρ̂⟩ = −kB
∑
m

Pm lnPm

and calculate
dS

dt
= −kB

∑
m

(
dPm

dt
lnPm +

dPm

dt

)
.

Taking into account that ∑
m

Pm = 1 ⇒
∑
m

dPm

dt
= 0 ,

we have

dS

dt
= −kB

∑
m

dPm

dt
lnPm

= −kB
∑
m

∑
n̸=m

(kmnPn − knmPm) lnPm

= −kB
∑
m ̸=n

kmn (Pn − Pm) lnPm

= −kB
∑
m<n

kmn (Pn − Pm) (lnPm − lnPn) .

Since ln(x) is an increasing function of x the signs of (Pn − Pm) and (lnPm − lnPn) are
always opposite. This implies

dS

dt
⩾ 0 ∀t . (4.17)
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One concludes that the entropy of a closed system always increases along the process
of reaching equilibrium, i.e., along any spontaneous process. The equilibrium state of a
closed system can only be the one with the maximum entropy.

Notice that the previous derivation of the dynamical entropy increase is intimately
related to the microscopic reversibility knm = kmn. Intuitively, it is also clear that
symmetric rates always lead to an increase of the diversity or disorder in the probability
distribution {Pm}. Consider for example a pure state having Pn = 1 and Pm = 0 for all
other m. Since Pm = 0 for m ̸= n and Pn = 1, the transition rate kmn (from n to m)
will lead to an increase of Pm. However, Pm is very small at the beginning. Therefore,
the probability for the system to go back from m to n is very small, even though the
conditional probability for a transition from m to n, i.e., the rate knm is the same as kmn.
Instead, the system will make transitions from m to all other states l, for which klm ̸= 0,
and so on, until the maximum diversity or disorder in the probability distribution {Pn},
i.e., maximum S is reached.

It is worth noting that the master equation also applies to the stochastic dynamics
of open systems, for which knm ̸= kmn and the equilibrium state does not correspond
to the probability distribution giving the maximum entropy. Of course, dPm/dt = 0
and dS/dt = 0 once equilibrium is reached. A simple transparent relation implying
equilibrium is the detailed balance condition kmnPn = knmPm for all n and m, as one can
easily verify by substituting in Eq. (4.14). Although this is not the only mathematical
possibility of reaching dPm/dt = 0 for all m, it can be shown to be the only one consistent
with microscopic reversibility (Kolmogorov’s criterion).

A particularly relevant, often encountered physical situation occurs when the system
can exchange energy with a much larger environment which plays the role of a thermal
bath and which, being very large, always has a well defined temperature T [1/T =
(∂S/∂E)N,V ]. In this case one can apply Fermi’s golden rule given by Eq. (4.15), and
the resulting reversibility and energy conservation predicted by quantum mechanics, by
regarding the system plus bath as a single closed unit. It follows that kmn/knm =
e−β(εm−εn), where εn and εm denote the energies of the system in the respective states and
β = 1/kBT . Clearly, the transition rates are not symmetric. For every pair of states, the
downward transitions —towards reducing the energy of the system and thus increasing
that of the bath— are more favorable. A reduction of the entropy of the system along
the spontaneous dynamics cannot be excluded under these circumstances. This occurs,
for example, along the process of folding proteins into their natural state, or simply when
a hot system is plunged in a cold environment. Of course, the entropy of the proteins
plus the surrounding liquid or tissue certainly increases along the process. We shall later
on see that in these cases the maximum entropy principle is conveniently adapted to
yield another variational principle, namely, the principle of minimal free energy F =
E − TS, where E refers to the average energy and T to the absolute temperature. From
a dynamical perspective the master equation implies dF/dt ≤ 0 for all t and for all
initial probability distributions. Notice that minimizing F is equivalent to the general
maximum entropy theorem discussed in Sec. 4.1 when the average energy E is fixed.
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4.2.3 A simple example of irreversible entropy growth

The principle of maximum entropy (either in its variational or dynamical form) allows
us to predict and understand the evolution of a closed systems from a nonequilibrium
situation towards the equilibrium state. For example, if two systems 1 and 2 are brought
in thermal contact, i.e., if they are allowed to exchange heat (i.e., energy without volume
or particle exchange) the energy will flow from the system having the lowest ∂S/∂E to the
system having the largest ∂S/∂E since in this way S = S1+S2 is increased. Incidentally,
we conclude that ∂S/∂E provides a universal, device-independent means of defining
temperature. As we shall see, ∂S/∂E = 1/T , where T is the absolute temperature of the
system. Thus, energy flows spontaneously only from the hotter to the cooler system, in
agreement with our usual thermodynamic notion of temperature. Equilibrium is reached
only when ∂S/∂E and thus the temperatures in both systems are equal.

4.3 Thermodynamic equivalent descriptions

We have learned that systems having a given set of additive constants of motion f1, . . . , fs
are described by different density operators depending on the degree of isolation, i.e., on
whether fi is a truly conserved property with a well-defined value (F̂i = fi) or whether
fi is actually the average value ⟨F̂i⟩ = fi of a property, which allows exchanges and thus
fluctuates. However, we have also seen that these descriptions are essentially equivalent,
since the probability of observing a significant relative fluctuation tends to zero as 1/

√
N

as the size of the system grows. We therefore conclude that the various mixed states or
density operators ρ̂r satisfying ⟨F̂i⟩ = fi for i = 1, . . . , r and F̂i = fi for i = r + 1 . . . , s
are thermodynamically equivalent descriptions of the same macroscopic state. More
specifically, the microcanonical, canonical and grand canonical descriptions of a system
with given E, N and V are equivalent, regardless of whether E is strictly conserved or
just E = ⟨Ĥ⟩, for example.

We have thus different possibilities of characterizing a macroscopic state, either by
mean of the additive observables f1, . . . , fs, or by any of the sets of s variables

λ1, . . . , λr, fr+1, . . . , fs ,

provided that the λi yield ⟨F̂i⟩ = fi for i = 1, . . . , r. The variables λ1, . . . , λr, fr+1, . . . , fs
define

ρ̂r =
1

Zr
e
∑r

i=1 λiF̂i

and with that all observables. Knowing that only s quantities are needed to define the
macrostate, it is clear that there must be relations allowing to determine s of them in
terms of the others, for example, expressing λ1, . . . , λs in terms of f1, . . . , fs. Establishing
these relations is important for at least two reasons. First, they are expected to be
universal, i.e., valid for any system in any of its states. And second, they provide us with
a means of assessing the physical meaning and properties of the parameters λ1, . . . , λs.
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One could in principle attempt to express λi as a functions of fi by solving the coupled
equations

fi = ⟨F̂i⟩ = Tr{ρ̂r F̂i} . (4.18)

for i = 1, . . . , r. However, this pathway is problem specific and in most cases infeasible.
It depends on the specific form of Ĥ. Nevertheless, the entropy and the partition function
Zr provide us with a much simpler way to solve the problem.

From the definition of entropy we have

S = −kB⟨ln ρ̂r⟩ = −kB

[
r∑

i=1

λi⟨F̂i⟩ − lnZr

]

= −kB

[
r∑

i=1

λifi − lnZr

]
(4.19)

This holds for all r including the microcanonical case (r = 0), where

S = kB lnZ0 = kB lnΩ ,

and the grand canonical case (r = s) where

S = −kB
s∑

i=1

λi⟨F̂i⟩ = −kB
s∑

i=1

λifi .

It is easy to see that all these different ways to compute S, using different ensembles,
yield the same result, provided that the variables defining the macrostate are the same.
We know that the partition function is given by

Zr = Tr{e
∑r

i=1 λiF̂i

s∏
j=r+1

δ(fj − F̂i)} = e−
∑s

j=r+1 λjfj . (4.20)

Substituting (4.20) in (4.19) we obtain

S = −kB

 r∑
i=1

λifi +
s∑

j=r+1

λjfj

 = −kB
s∑

i=1

λifi , (4.21)

where we have used that ⟨F̂i⟩ = fi for 1 ≤ i ≤ r.

In order to characterize the entropy, or any partition function Zr, we are in principle
free to use any set of s independent variables. Nevertheless, it is meaningful to describe
Zr in terms of λ1, . . . , λr, fr+1, . . . , fs, since these are the variables which define the
corresponding physical situation or ensemble and which can be controlled directly in
experiment. For instance, in the microcanonical ensemble the system is closed and the
natural variables which have well defined values are E, N and V . In the canonical
ensemble the energy can fluctuate and the natural variables having precise values are β
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or T , N and V . Finally, in the grand canonical ensemble the variables that one controls
are β, µ and V , energy and particle number fluctuate. A further important reason for
regarding λ1, . . . , λr, fr+1, . . . , fs as the natural variables of Zr is the very useful relation

∂ lnZr

∂λi
= ⟨F̂i⟩ = fi , (4.22)

valid for i = 1, . . . , r in any canonical ensemble. Here it is implicitly understood that all
other variables of Zr, namely, λj for j ̸= i (1 ≤ j ≤ r) and fr+1, . . . , fs, are kept constant
upon performing the partial derivation with respect to λi.

In the case of the entropy we have noticed that S = kB lnZ0 is (apart from a multi-
plicative constant) equal to the logarithm of the microcanonical partition function Z0,
which is entirely defined by the additive constants of motion f1, . . . , fs. Therefore, it is
meaningful to regard

S = S(f1, . . . , fs)

as a function of the additive constants of motion. In the most usual explicit case we have

S = S(E, V,N) = kB ln[Ω(E,N, V )] .

We would like to understand the dependence of S on its fundamental variables f1, . . . , fs
for all possible ensembles, from the microcanonical (r = 0) to the grand canonical one
(r = s), by computing ∂S

∂fj
keeping all the other fk fixed. In this way we would able to

obtain the entropy change associated with any change in the macrostate as

dS =
∑
i

∂S

∂fi
dfi .

For example, one could write

dS =
∂S

∂E
dE +

∂S

∂V
dV +

∂S

∂N
dN .

In order to calculate the partial derivatives of S = −kB⟨ln ρ̂r⟩ with respect to fj
(keeping all other fk with k ̸= j fixed) we need to consider the cases j ≤ r and j > r
separately. First, starting from Eq. (4.19) for 1 ≤ j ≤ r, we have

∂S

∂fj

∣∣∣∣
fk ̸=j

=− kB

[
λj +

r∑
i=1

fi
∂λi
∂fj

−
r∑

i=1

∂ lnZr

∂λi

∂λi
∂fj

]

=− kBλj − kB

r∑
i=1

∂λi
∂fj

(fi − fi)

=− kBλj . (4.23)

Second, for r < j ≤ s we have

∂S

∂fj

∣∣∣∣
fk ̸=j

= −kB

[
r∑

i=1

fi
∂λi
∂fj

− ∂ lnZr

∂fj

∣∣∣∣
fk ̸=j

]
. (4.24)
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It is important to notice that the λi with 1 ≤ i ≤ r depend on all fi, including the fj
in the range r + 1 ≤ j ≤ s, since the λi need to adapt to any change of fj in order
to keep the other averages f1, . . . , fr fixed. The dependence of lnZr on fj for fi fixed
(i ̸= j) has therefore two sources. On the one hand we ∂λi/∂fj for 1 ≤ i ≤ r, in order to
keep the averages f1, . . . , fr fixed, and, on the other hand, we have the straightforward
dependence of Zr on the additive constant of motion fj for r + 1 ≤ j ≤ s. Developing
the last term in Eq. (4.24) accordingly we have

∂ lnZr

∂fj

∣∣∣∣
fk ̸=j

=

r∑
i=1

∂ lnZr

∂λi

∂λi
∂fj

+
∂ lnZr

∂fj

=

r∑
i=1

fi
∂λi
∂fj

+
∂ lnZr

∂fj
,

where, as usual, we implicitly assume that the other natural variables of Zr, namely,
λ1, . . . , λr and fr+1, . . . , fs, are kept constant in the partial derivative of the right hand
side. The second line follows from Eq. (4.22). Replacing in Eq. (4.24) we have

∂S

∂fj
= −kB

[
r∑

i=1

fi
∂λi
∂fj

−
r∑

i=1

fi
∂λi
∂fj

− ∂ lnZr

∂fj

]
,

where the first two terms cancel out. Moreover, recalling that lnZr = −
∑s

j=r+1 λjfj we
have ∂ lnZr

∂fj
= −λj for r < j ≤ s. Thus, we finally obtain

∂S

∂fj

∣∣∣∣
fi ̸=j

= kB
∂ lnZr

∂fj

∣∣∣∣
λi

= −kBλj . (4.25)

In conclusion, we have thus reached the most important result

∂S

∂fj

∣∣∣∣
fi

= −kBλj (4.26)

for all j = 1, . . . , s. This holds for all types of ensembles, from the completely closed
microcanonic one (r = 0), over the partly closed canonic ones (1 ≤ r < s) to the
completely open grandcanonic one (r = s).

Example: Consider a single-component system with constants of motion f1 = E,
f2 = N and f3 = V . In the grand canonical pressure ensemble, where the system is open
with respect to all fi, i.e., E, N and V , we have

ρ̂gc = e−β(Ĥ−µN̂+pV ).

The derivatives of S = S(E,N, V ) are

∂S

∂E

∣∣∣∣
N,V

= −kB(−β) =
1

T
, (4.27)
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∂S

∂N

∣∣∣∣
E,V

= −kB(βµ) = −µ

T
(4.28)

and
∂S

∂V

∣∣∣∣
E,N

= −kB(−βp) =
p

T
. (4.29)

Once we identify λ1 = −β = −1/kBT , λ2 = βµ = µ/kBT , and λ3 = −βp = −p/kBT ,
we may express any entropy change resulting from any reversible changes in E, N and
V as

dS =
1

T
dE − µ

T
dN +

p

T
dV . (4.30)

The reader familiar with thermodynamics has probably already recognized that this
equation hides the first and second principles. In conclusion, the entropy allows us to
calculate the parameters λ1, . . . , λr directly from its derivatives with respect to f1, . . . , fr
without needing to solve the equations ⟨F̂i⟩(λ1, . . . , λr) = fi for 1 ≤ i ≤ r.

As an important corollary of Eq. (4.26) we can demonstrate the additivity of S. Re-
calling Eq. (4.21),

S = −kB
s∑

i=1

λifi , (4.31)

and replacing in it Eq. (4.26) we conclude that S satisfies the Euler condition

S =
s∑

i=1

∂S

∂fi
fi . (4.32)

Applying Euler’s homogeneous function theorem (see section 4.3.1) we conclude that the
entropy is an homogeneous function of degree 1 and thus satisfies

S(αf1, . . . , αfs) = αS(f1, ...., fs) (4.33)

for all α > 0. This important property means that if one changes the values of all additive
constants of motion fi by the same scaling factor α, then the entropy also changes by
the same factor α. This kind of properties are said to be extensive.

Consider now two isolated systems A and B with additive constants of motion fAi and
fBi . The entropy of the ensemble, before allowing any exchange of fi, is S(fA1 , . . . , fAs )+
S(fB1 , . . . , f

B
s ), since S is additive. If now exchanges are allowed, the pair AB (which is in

general out of equilibrium at the beginning) will evolve towards equilibrium by exchanging
fi keeping the sum fAi + fBi constant. Since equilibration occurs spontaneously, the
entropy must increase (or remain the same) during this process. Therefore, the entropy
of the ensemble S(fA1 + fB1 , . . . , f

A
s + fBs ) at equilibrium satisfies

S(fA1 , ..., f
A
s ) + S(fB1 , ..., f

B
s ) ⩽ S(fA1 + fB1 , ..., f

A
s + fBs ) .

The equal sign holds when the two systems were already in equilibrium before being put
together.
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In order to discuss the previous statement in more detail, suppose that the ratios
between all the fi’s in both systems are the same :

fAi
fA1

=
fBi
fB1

⇔ fAi
fBi

=
fA1
fB1

= α ⇔ fAi = αfBi ∀i .

It then follows that

S(fAi ) + S(fBi ) = S(αfBi ) + S(fBi ) = (α+ 1)S(fBi ) = S[(α+ 1)fBi ] = S(fAi + fBi ).

One concludes that if the ratios fi/fj are kept constant, the entropy is just proportional
to the size of the system.

What about the converse? What relation holds between the intensive properties λi of
two systems A and B, for which the entropy of the equilibrated ensemble AB is simply
equal to the sum of the entropies before contact? In this case

S(fAi ) + S(fBi ) = S(fAi + fBi )

implies

∂S

∂fAi
=
∂S

∂f

∣∣∣
f=fA

i +fB
i

=
∂S

∂fBi

∣∣∣ ⇒ λAi = λBi

for all i. We conclude that the equal sign holds if and only if the parts were already in
equilibrium before exchanges of the additive constants of motion are allowed.

The coefficients λi defining ρ̂r and Zr are partial derivatives of S, which is an homo-
geneous function of first degree:

∂S

∂fj
= −kBλj .

Therefore, they are homogeneous functions of degree zero, i.e.,

λi(αf1, ..., αfs) = λi(f1, .., fs). (4.34)

Such properties are said to be intensive. They do not change when the extensive prop-
erties are scaled, i.e., changed by keeping the ratios fi/fj constant. The λi depend only
on s− 1 independent ratios, for example, on f2/f1, f3/f1,. . . , fs/f1. That the λi are not
all independent is consistent with the fact that they satisfy the equation of state given
by the normalization condition Tr{ρgcp} = 1.

Examples of the intensive properties λi are the temperature T or β = 1/kBT , the
chemical potential µ, and the pressure p. Note that any function of intensive properties
is also intensive. In particular β, µ and p depend on the intensive variables E/N and
V/N .

In order to summarize a few comments are due:

i) The knowledge of the parameters λ1, . . . , λs gives us no information on the size of
the system. For instance, knowing the temperature and pressure gives no informa-
tion of the number of atoms or the volume.

84



ii) The λi with i = 1, . . . , s cannot all be independent of each other, i.e., they cannot all
be varied at will, since they depend on only s−1 densities, such as f2/f1, f3/f1,. . . ,
fs/f1. Therefore, T , p and µ cannot be chosen at will. As an example, consider a
non interacting classical gas, for which we have pV = NkBT or p V

N = kBT .

iii) The relation between the λi’s depends of course on the type of system that we are
studying, i.e., on its Hamiltonian, composition and interactions, not on the size of
the system. This relation is known as equation of state of the material. It is a
result of quantum mechanics and statistical mechanics. It cannot be obtained by
thermodynamic arguments.

iv) The dependence of the λi among each other has already been mentioned, when
introducing the grand canonical density operator

ρ̂gc = e
∑s

i=1 λiF̂i ,

which satisfies
Zgc = Tr{e−

∑s
i=1 λiF̂i} = 1.

In fact, the condition Zgc = 1 defines the relation between the intensive quantities
λ1, . . . , λs known as equation of state. Note that Zgc depends only on λi, once the
operators F̂i giving the additive constants of motion in the system under study have
been specified. In the most usual case, these are the Hamiltonian Ĥ, the number
particles N , and the volume V .

The logarithm of the partition functions Zr is also extensive. This can be seen easily
by noting that

kB lnZr = S + kB

r∑
i=1

λifi (4.35)

from Eq. (4.19), or by the relation

lnZr = −
s∑

j=r+1

λjfj , (4.36)

taking into account that the λj are intensive properties [see Eq. (4.34)]. This means that

lnZr(λ1...λr, αfr+1, αfs) = α lnZr(λ1...λr, fr+1...fs). (4.37)

From Eq. (4.25) we know that
∂ lnZr

∂fj
= −λj (4.38)

for r + 1 ≤ j ≤ s. Replacing in Eq. (4.36) we have

lnZr =

s∑
j=r+1

fj
∂ lnZr

∂fj
,
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which is consistent with Euler’s theorem, since Zr is extensive with respect to fr+1, . . . , fs.

As a final consequence of the extensiveness of the logarithm of the partition functions,
it is interesting to revisit the dependence of the density of states Ω(E) on system size.
We know that S(E, V,N) = kB lnΩ(E) is an extensive property, which implies

ln[Ω(E, V,N)] = N ln

[
Ω(
E

N
,
V

N
, 1)

]
.

Denoting ω(EN ,
V
N ) = Ω(EN ,

V
N , 1) we have

Ω(E, V,N) =

[
ω

(
E

N
,
V

N

)]N
, (4.39)

which confirms that the density of states is an extremely rapidly increasing function of
the system size.

4.3.1 Euler theorem for homogeneous functions

Let ϕ : Rn → R be a continuous differentiable function. We say that ϕ is homogeneous
of degree k if

ϕ(αx⃗) = αkϕ(x⃗).

Euler’s theorem states that ϕ(x1, . . . , xn) is homogeneous of degree k if and only if

n∑
i=1

∂ϕ

∂xi
xi = kϕ. (4.40)

Proof: We assume that ϕ is an homogeneous function of degree k, i.e., ϕ(αx⃗) = αkϕ(x⃗).
Differentiation with respect to α then yields

dϕ(αx⃗)

dα
= kαk−1ϕ(x⃗).

In addition we know that in general

dϕ(αx1, . . . , αxn)

dα
=
∑
i

∂ϕ

∂xi
(αx⃗)xi. (4.41)

Consequently, ∑
i

∂ϕi
∂xi

(αx⃗)xi = kαk−1ϕ(x⃗).

Setting α = 1, we have ∑
i

∂ϕ

∂xi
(x⃗)xi = kϕ(x⃗) ,
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which proves the statement.

In order to demonstrate the converse, we start from Eq.(4.40) at the point αx⃗, namely,

α
∑
i

∂ϕi
∂xi

(αx⃗)xi = kϕ(αx⃗),

and compare it with the general relation (4.41). In this way we obtain

α
d

dα
ϕ(αx⃗) = kϕ(αx⃗).

The solution of this first-order linear differential equation in the variable α is ϕ(αx⃗) =
Aαk, where A is independent of α. Setting α = 1 we have A = ϕ(x⃗) and ϕ(αx⃗) = αkϕ(x⃗),
which means that ϕ(x⃗) is homogeneous of degree k.

Corollary:
If ϕ : Rn → R is an homogeneous function of degree k, then the partial derivatives ∂ϕ/∂xj
are all homogeneous functions of degree k − 1. The homogeneity of ϕ(x⃗) implies

n∑
i=1

xi
∂ϕ

∂xi
= kϕ

⇒
n∑

i=1

xi
∂

∂xi

(
∂ϕ

∂xj

)
+
∂ϕ

∂xj
= k

∂ϕ

∂xj

⇒
n∑

i=1

xi
∂

∂xi

(
∂ϕ

∂xj

)
= (k − 1)

∂ϕ

∂xj
.

This means that ∂ϕ/∂xj is homogeneous of degree k − 1 for all j.

4.4 Thermodynamic potentials: General formulation

Energy plays a central role in any mechanical theory and statistical mechanics is no
exception. This manifests itself in the physical importance of the canonical and grand
canonical ensembles and in the convention used for denoting the intensive variables λi.
The first and most important observable is F̂1 = Ĥ and the corresponding parameter is
λ1 = −β, so that the canonical density operator is written as

ρ̂c =
1

Zc
e−βĤ

with
Zc = Tr{e−βĤ} .

From Eq. (4.26) we have
∂S

∂E

∣∣∣∣
N,V

= kBβ.
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In order to interpret β physically we consider two previously isolated subsystems 1 and
2, with energies E1 and E2 which are brought into thermal contact. The ensemble 1 + 2
remains isolated but the subsystems can exchange energy between them. If any energy
transfer occurs in the process of reaching a new equilibrium situation, for example, if
subsystem 1 changes its energy to E′

1 = E1 + ∆E the total E = E1 + E2 = E′
1 + E′

2

must remain constant, since the ensemble 1 and 2 is isolated. Thus, E′
2 = E2−∆E. The

additivity of the entropy implies then that for any given ∆E we have

S = S1(E
′
1) + S2(E

′
2) = S1(E1 +∆E) + S2(E2 −∆E) .

The change of entropy associated with a small energy transfer ∆E is therefore given by

∆S =
∂S1
∂E

∆E − ∂S2
∂E

∆E = kB (β1 − β2)∆E +O(∆E2).

Since ∆S must necessarily be positive or zero, we have

∆E > 0 ⇔ β1 > β2 ,

or equivalently,

∆E > 0 ⇔ 1

β1
<

1

β2
.

Thus, the energy is absorbed by the system having the smallest 1/β and equilibrium is
reached when β1 = β2, i.e., when ∆S = 0.

Notice that the total entropy change ∆S = ∆S1 + ∆S2 is always positive. However,
this is not necessarily true for the subparts. For example, for β1 > β2, we have ∆S1 =
kBβ1∆E > 0 and ∆S2 = −kBβ2∆E < 0. The total entropy increases since the entropy
of the cooler subsystem increases more than the decrease of the entropy of the hotter
subsystem. Therefore, 1/β has the properties of a temperature in thermodynamic sense.
We have therefore defined the absolute temperature as

T =
1

kBβ
⇔ β =

1

kBT
. (4.42)

The other intensive variables are redefined with respect to β. Denoting them as αi,
they are given by

λi = −βαi,

or equivalently,
−kBλi =

αi

T

for i = 2, . . . , s. For i = 1 we already have λ1 = −β with α1 = 1 and f1 = E. As
we shall see, the intensive variables αi are physically more appealing than the λi’s. For
example, α2 = −µ is the opposite of the chemical potential, which measures the energy
changes associated with changes in the particle number, and α3 = p is the pressure,
which measures the energy changes associated with changes on volume..
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Consequently, we write

ρ̂r =
1

Zr
e−β(Ĥ+

∑r
i=2 αiF̂i) (4.43)

with
Zr = Tr{e−β(Ĥ+

∑r
i=2 αiF̂i)}. (4.44)

Furthermore, we have seen that lnZr is an extensive property from which a number of
important information of the equilibrium state can be derived, particularly in the form
of derivatives with respect to λi and fi. For instance, we know that

−∂ lnZr

∂β
= ⟨Ĥ⟩ = E

and
∂ lnZr

∂λi
= ⟨F̂i⟩ = fi .

In terms of αi, this is equivalent to

− 1

β

∂ lnZr

∂αi
= fi (4.45)

for i = 2, . . . , r. It is therefore very useful to introduce the thermodynamic potential

Φr = − 1

β
lnZr = −kBT lnZr (4.46)

corresponding to the canonical ensemble, which is open with respect to r additive con-
stants of motion F̂1, . . . , F̂r and closed with respect to F̂r+1, . . . , F̂s. Indeed, in terms of
ϕr we simply have

∂Φr

∂αi
= fi , (4.47)

for i = 2, ..., r.

The functions Φr are named thermodynamic potentials because their partial derivatives
give direct access to the most fundamental thermodynamic properties. As for Zr, the
natural variables of Φr are T , α2, . . . , αr and fr+1, . . . , fs. It is therefore important to
analyze how Φr depends on these variables in the various ensembles. We have already
seen that the dependence on α2, . . . , αr is given by Eq. (4.47) Concerning the additive
quantities fj with j = r + 1, . . . , s, we have

∂Φr

∂fj
= − 1

β

∂ lnZr

∂fj
=

1

β
λj = −αj . (4.48)

Finally, in order to quantify the dependence on temperature we need to compute
∂Φr/∂T keeping all other variables α2, . . . , αr and fr+1, . . . , fs constant. To this aim it
is useful to note the following simple relation

T
∂

∂T
= −β ∂

∂β
. (4.49)
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We then have

T
∂Φr

∂T

∣∣∣∣
αi,fj

= −β ∂

∂β

(
− 1

β
lnZr

)
= β

∂

∂β

(
1

β
lnZr

)

= β

[
− 1

β2
lnZr +

1

β

r∑
i=1

∂ lnZr

∂λi

∂λi
∂β

]
.

Since λ1 = −β and λi = −βαi for i = 2, . . . , r, and recalling that ∂ lnZr
∂λi

= fi for
1 ⩽ i ⩽ r (f1 = E) we have

T
∂Φr

∂T

∣∣∣∣
αi,fj

= −kBT lnZr − E −
r∑

i=2

fi αi

= Φr − E −
r∑

i=2

αi fi. (4.50)

This expression can be remarkably simplified once Φr is expressed in terms of E, S and
the intensive variables T, α2, . . . , αr. From the definition (4.46) of Φr and the expression
(4.19) for S we have

Φr = −kBT lnZr = −TS − kBT

r∑
i=1

λi fi

= E − TS +

r∑
i=2

αi fi . (4.51)

This equation, often taken as a definition of Φr, expresses Φr in terms of E, S and the
pairs of intensive and extensive properties αi and fi with respect to which the system is
open (2 ≤ i ≤ r). It shows that Φr is an extensive property. In addition, an interesting
alternative expression of Φr can be obtained by exploiting the relation of lnZr and the
variables with respect to which the system is closed:

lnZr = −
s∑

j=r+1

λjfj .

It follows straightforwardly that

Φr = − 1

β
lnZr =

s∑
j=r+1

λj
β
fj

= −
s∑

j=r+1

αjfj . (4.52)
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We may now focus our attention back on the temperature dependence of Φr and its
derivative with respect to T . Replacing in it Eq. (4.51) in Eq. (4.50) we obtain

T
∂Φr

∂T
= E − TS +

r∑
2

αifi − E −
r∑
2

αifi

and therefore
∂Φr

∂T
= −S . (4.53)

This important relation allows us to obtain S directly as the partial derivative of the
thermodynamic potential Φr with respect to T .

For the sake of completeness we give here the derivatives of S with respect to fi in
terms of the newly introduced physical magnitudes T and αi. Eq. (4.26) reads

∂S

∂E
=
∂S

∂f1
= −kBλ1 = kBβ =

1

T

and
∂S

∂fi
= −kBλi = kBβ αi =

αi

T

for i ≥ 2.

4.4.1 Legendre transformations

The different thermodynamic potentials Φr are related through Legendre transforma-
tions. In order to obtain Φr = Φr(T, α2, . . . , αr, fr+1, . . . , fs), which is a function of αr,
from Φr−1 = Φr−1(T, α2, . . . , αr−1, fr, . . . , fs), which is a function of fr, we first need to
replace fr by αr in Φr−1. Therefore, one should first solve

∂Φr−1

∂fr
(T, α2, ...αr−1, fr, ...fs) = −αr

in order to obtain
fr = fr(T, α2, .., αr, fr+1, ...fs).

The thermodynamic potential is then given by

Φr(T, α2, ...αr, fr+1, ..fs) = Φr−1(T, α2...αr−1, fr, ..fs) + αrfr .. (4.54)

It is easy to verify that Φr, constructed in this way, has the same partial derivatives than
Φr, given by Eq. (4.46) and therefore coincides with it. In fact, from Eq. (4.54) we have

∂Φr

∂T
=
∂Φr−1

∂T
+

Φr−1

∂fr︸ ︷︷ ︸
−αr

·∂fr
∂T

+ αr
∂fr
∂T

= −S
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and
∂Φr

∂αi
=
∂Φr−1

αi
+
∂Φr−1

∂fr︸ ︷︷ ︸
−αr

·∂fr
∂αi

+ αr
∂fr
∂αi

= fi

for 2 ≤ i ≤ r − 1. Moreover,

∂Φr

∂αr
=
∂Φr−1

∂fr︸ ︷︷ ︸
−αr

· ∂fr
∂αr

+ fr + αr
∂fr
∂αr

= fr

and finally
∂Φr

∂fj
=
∂Φr−1

∂fr︸ ︷︷ ︸
−αr

·∂fr
∂fj

+
∂Φr−1

∂fj︸ ︷︷ ︸
−αj

+αr
∂fr
∂fj

= −αj

for r + 1 ≤ j ≤ s.

Thermodynamic potentials of closed systems

Before closing this section we would like to discuss the thermodynamic potentials
corresponding to the microcanonical ensemble, which cannot be obtained from Eq. (4.46)
or Eq. (4.51). In this case the extensive properties are E, N and V and in addition the
entropy S. These four properties are of course related since E, N and V alone define the
macroscopic state.

From Eq. (4.51) we have
F = Φ1 = E − TS .

The canonical potential Φ1, usually denoted by F , is known as Helmholtz free energy.
The energy, a function of S and the remaining constants of motion f2, . . . , fs, is then
given by

E = E(S, f2, . . . , fs) = TS +Φ1 . (4.55)

In order to obtain an explicit expression for E in terms of S, f2, . . . , fs we calculate the
partial derivatives and take advantage of the extensivity of E. One thus obtains

∂E

∂S

∣∣∣∣
fi

= T + S
∂T

∂S
+
∂Φ1

∂T︸︷︷︸
−S

∂T

∂S
= T . (4.56)

and
∂E

∂fi

∣∣∣∣
S,fj ̸=i

= S
∂T

∂fi
+
∂Φ1

∂fi︸︷︷︸
−αi

+
∂Φ1

∂T︸︷︷︸
−S

∂T

∂fi
= −αi (4.57)

for i = 2, . . . , s. We may thus write

dE = TdS −
s∑

i=2

αi dfi. (4.58)
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The extensiveness of E (Euler theorem) implies that

E = TS −
s∑

i=2

αi fi . (4.59)

The same result could have been obtained from the general expression (4.31) for the
entropy

S = −kB
s∑

i=1

λi fi =
1

T
E +

s∑
i=2

αi

T
fi , (4.60)

or even by combining Eqs. (4.51) and (4.52) for r = 1.
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5 Thermodynamic properties

The purpose of this chapter is to discuss the thermodynamic potentials and derived ther-
modynamic properties of practical interest by applying the general formulation developed
in the previous chapter.

5.1 Thermodynamic potentials: special cases

5.1.1 Energy E and Entropy S

We consider a system composed of particles of the same kind. The extensive constants
of motion which characterize the macroscopic state are the energy E, the number of
particles N and the volume V . The other important extensive property of statistical
interest is the entropy S. The relation between these four properties can be expressed as

S = S(E,N, V ) or E = E(S,N, V ) .

The partial derivatives are the intensive properties known as temperature

∂E

∂S

∣∣∣∣
V,N

= T , (5.1)

chemical potential
∂E

∂N

∣∣∣∣
S,V

= µ , (5.2)

and pressure
∂E

∂V

∣∣∣∣
S,N

= −p. (5.3)

The physical meaning of the intensive properties becomes clear if one considers the total
differential of the energy

dE = TdS − pdV + µdN. (5.4)

TdS = δQR is the change in energy by constant volume (isochoric process) and constant
number of particles. This is known as reversible heat.

The chemical potential µ represents the change in energy when a particle is added to
the system by keeping the volume and the entropy constant. In other words, µ is the
energy that a particle must bring (µ > 0) or that the system must release (µ < 0) when
a particle is added in order to keep the entropy unchanged at constant volume V .

Finally, p is the pressure since δW = −pdV is the change of the energy of the system
associated with a reversible volume change dV , which is equal to the work done by the
external forces without involving any heat or particle exchange (dS = 0 and dN = 0).

Processes without volume change (dV = 0) are known as isochoric. When the entropy
is constant we call them isoentropic. Processes without heat exchange (δQ = 0) are
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known as adiabatic. Processes in which the system is always in thermodynamic equilib-
rium are called reversible. Thus, reversible and adiabatic means isoentropic since in this
case TdS = δQR = 0.

The extensiveness of E implies

E = TS − pV + µN (5.5)

We can also express S = S(E,N, V ) as a function of the mechanical constant of motion:

S =
1

T
E − µ

T
N +

p

T
V (5.6)

and
dS =

1

T
dE − µ

T
dN +

p

T
dV. (5.7)

The energy and the entropy are known as thermodynamic potentials, since the thermo-
dynamic properties such as T , p and µ, which characterize the macroscopic state of the
system, can be obtained as their partial derivatives with respect to the variables that
define them. As all other thermodynamic potentials, they are state functions, since their
values depend only on the actual macroscopic state of the system and not on the way
by which this state has been achieved. In contrast, for example, the exchanged heat and
the delivered work are not state functions.

5.1.2 Helmholtz free energy F

In addition, there are other four potentials which have great practical significance. The
first one is the Helmholtz free energy

F = Φ1 = −kBT lnZc = −kBT ln
[
Tr{e−βĤ}

]
, (5.8)

which is a function of T , N and V . Using the general expression (4.51) of the thermo-
dynamic potentials for r = 1 we have

F = E − TS . (5.9)

The partial derivatives are obtained by applying Eqs. (4.48) and (4.53):

∂F

∂T

∣∣∣∣
V,N

= −S , (5.10)

∂F

∂N

∣∣∣∣
T,V

= µ (5.11)

and (5.12)
∂F

∂V

∣∣∣∣
T,N

= −p . (5.13)
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This implies
dF = −S dT + µdN − p dV . (5.14)

Applying Eq. (4.52), or recalling that F is extensive and using Euler’s theorem, we can
express F as a linear combination of its natural extensive variables V and N :

F = µN − pV . (5.15)

It is clear that all these expressions could have been derived by applying the general
Legendre transformation formalism developed in the previous section to the present spe-
cific cases, as is usually done in most thermodynamic textbooks. For instance, if one
considers physical situations in which T , instead of S, is the variable under control, one
performs a Lagrange transformation on E by subtracting TS. The resulting thermo-
dynamic potential is the Helmholtz free energy F = E − TS, whose differential form
reads

dF = dE − TdS − SdT = TdS − pdV + µdN − TdS − SdT = −SdT − pdV + µdN .

This is equivalent to Eqs. (5.10)–(5.13). The extensiveness of F , which follows from the
extensiveness of E and S and the intensiveness of T , implies Eq. (5.15).

In order to provide a physical interpretation to F we consider a process in which the
volume is changed keeping the temperature and the particle number constant. In this
case we have

dF = −pdV

since dT = 0 and dN = 0. Thus, dF represents the available energy, or free energy,
in isothermal processes. Note that the corresponding change in internal energy dE =
TdS−pdV is equal to dF +TdS for dT = 0. As the system expands at constant T , heat
has to be absorbed in order to keep the temperature constant (TdS > 0). Therefore,
dE > dF for dV > 0 and dT = 0 (dF < 0). In general |dF | > |dE| for dT = 0.

Taking into account that

F = −kBT ln
[
Tr
{
e−βĤ

}]
we may write

Zc = e−βF (5.16)

and
ρ̂c =

1

Zc
e−βĤ = eβ(F−Ĥ) = e−β(Ĥ−F ) . (5.17)

From a statistical perspective, F can be obtained, as all the other thermodynamic po-
tentials, directly from the corresponding partition function.

We may also verify that the usual statistical definition of entropy

S = −kB⟨ln ρ̂c⟩ (5.18)
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in the canonical ensemble and its well-known physical interpretation coincide with the
thermodynamic concept of entropy, since Eqs. (5.18) and Eq. (5.9) are actually the same.
Indeed, replacing Eq. (5.17) for ρ̂c in Eq. (5.18) we have

S = −kB⟨ln ρ̂c⟩ = kBβ⟨Ĥ − F ⟩ = E − F

T
.

5.1.3 Enthalpy H

The enthalpy is the appropriate thermodynamic potential Φr when the macroscopic state
is defined by the entropy S, particle number N and pressure p. It is obtained by means of
a Legendre transformation on E = E(S,N, V ) in order to replace V by p as the natural
variable:

H(S,N, p) = E + pV , (5.19)

which implies

dH = T dS + µdN − p dV + p dV + V dp

= T dS + µdN + V dp . (5.20)

Again, the extensiveness of H implies

H = TS + µN . (5.21)

In an isobaric process (dp = 0) keeping the number of particles constant (dN = 0) the
exchanged reversible heat δQR = TdS corresponds to the change in enthalpy. Therefore
H is sometimes also called heat function. Notice that if δQR > 0, usually work has to be
done by the system in order to keep the pressure constant (dV > 0 for α > 0). Thus, the
change in energy is smaller than the enthalpy change: dE = TdS − pdV < dH = TdS
for dp = 0, dN = 0 and dV > 0. In general |dH| > |dE| for dp = 0 (α > 0).

5.1.4 Free enthalpy G

The free enthalpy G = G(T,N, p) is obtained by changing the variables of the thermody-
namic potential to T , N and p. This is achieved by a Legendre transformation starting
either from F or from H:

G = F + pV = H − TS , (5.22)

which implies

dG = −S dT + µdN − p dV + p dV + V dp

= −S dT + µdN + V dp . (5.23)

In terms of N , the only extensive natural variable of G, we have

G = µN . (5.24)

Therefore, in a system having just one kind of particles, the free enthalpy per particle
G/N is equal to the chemical potential µ.
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5.1.5 Grand canonical potential Φ

Another important thermodynamic potential is the grand canonical potential

Φ = −kBT ln
[
Tr
{
e−β(Ĥ−µN̂)

}]
= −kBT lnZgc , (5.25)

which is directly obtained from the grand canonical partition Zgc. The natural variables
of Φ are T , µ and V . In this ensemble the volume is fixed, while energy and particle-
number fluctuations are possible. From the general relations (4.47) and (4.53) we have

∂Φ

∂T

∣∣∣∣
µ,V

= −S (5.26)

∂Φ

∂µ

∣∣∣∣
T,V

= −N (5.27)

∂Φ

∂V

∣∣∣∣
T,µ

= −p . (5.28)

Consequently,
dΦ = −S dT − p dV −N dµ (5.29)

and
Φ = −pV = F − µN = E − TS − µN . (5.30)

The density of Φ per unit volume is equal to minus the pressure: Φ/V = −p.

From Eq. (5.25) it follows that
Zgc = e−βΦ . (5.31)

We may thus write
ρ̂gc = eβ(Φ−Ĥ+µN̂) = e−β(Ĥ−µN̂−Φ) . (5.32)

5.1.6 Deriving properties in the grand canonical pressure ensemble

If all additive constants of motion can be exchanged with the environment, there are no
restrictions to be imposed to the system’s Hilbert space. In this case no normalization
factor enters the definition of the density operator ρ̂gcp = e−β(Ĥ−µN̂+pV̂ ). One may
say that the partition function Zgcp = Tr{ρ̂gcp} = 1. Consequently, no thermodynamic
potential can be derived from it. Moreover, since all the variables defining the ensemble
(β, µ and p) are intensive properties, the size of the system is not defined. Only the
densities (e.g., E/N and V/N) are known. Nevertheless, the normalization condition
gives us access to the equation of state of the material under consideration.
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In order to show how the equation of state comes about we express Zgcp in terms of
the grand canonical potential Φ as follows

Zgcp = Tr{e−β(Ĥ−µN̂+pV̂ )} (5.33)

= lim
Vm→∞

1

Vm

∫ Vm

0
e−βpV Tr{e−β(Ĥ−µN̂}V dV (5.34)

= lim
Vm→∞

1

Vm

∫ Vm

0
e−βpV Zgc(β, µ, V ) dV (5.35)

= lim
Vm→∞

1

Vm

∫ Vm

0
e−β[pV+Φ(T,µ,V )] dV , (5.36)

where Vm stands for the maximum allowed volume. Since the grand canonical potential
is an extensive property we have Φ ∝ V . Consequently,

Zgcp = 1 ⇔ pV = −Φ (5.37)

for all V . Otherwise, Zgcp would diverge or vanish. This condition coincides with the
Eq. (5.30) derived in the framework of the grand canonical ensemble. Thus, the normal-
ization condition on Zgcp allows us to establish the relation between Φ and p. Conversely,
even if the physical situation under study involves volume fluctuations, one may still work
in the grand canonical ensemble (Sec. 5.1.5) since Eq. (5.30) guarantees the normalization
of Zgcp. Finally, notice that the relation

p = −Φ

V
(5.38)

comprises only intensive properties and is therefore independent of the system size, which
is given by V or N . It represents the material-specific relation known as equation of state.

5.2 Derived thermodynamic properties

5.2.1 Heat capacities and specific heats

Besides the thermodynamic potentials, it is important to consider a number of derived
thermodynamic properties of physical interest. One of the first questions to be asked, in
order to characterize the thermal properties of a material, is how much heat δQR must
be transferred to the system in a reversible form in order to obtain a certain temperature
change ∆T . This property, known as heat capacity, is defined by

C =
δQR

dT
= T

dS

dT
. (5.39)

Let us recall that TdS = dE when dV = 0 and dN = 0. The amount of heat needed in
order to obtain a given temperature change ∆T depends of course on the type of process
that one considers. For example, for a given ∆T > 0, the heat δQR > 0 absorbed in a
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transformation at constant pressure is always larger than the heat required for the same
temperature change at constant V , since in the former case the system will expand and
do work in the environment.

Keeping the number of particles N constant, one possibility is to consider a transfor-
mation at constant volume (isochoric process) in which case we have

CV,N = CV = T
∂S

∂T

∣∣∣∣
V,N

=
∂E

∂T

∣∣∣∣
V,N

. (5.40)

The other most common situation is to keep the pressure constant (isobaric process) in
which case we have

Cp,N = Cp = T
∂S

∂T

∣∣∣∣
p,N

=
∂H

∂T

∣∣∣∣
p,N

. (5.41)

Notice that the heat capacities, as defined by Eqs. (5.39), (5.40) and (5.41), are extensive
properties. Material specific values per particle or per mole, are known as specific heat
capacity or simply specific heat.

5.2.2 Compressibilities

A further important question is to quantify the change in the volume of the system
associated with a given reversible change in pressure. Again, such a volume change de-
pends on the conditions imposed along the process. One therefore defines the isothermal
compressibility as

κT,N = κT = − 1

V

∂V

∂p

∣∣∣∣
T,N

(5.42)

and the adiabatic compressibility as

κS,N = κS = − 1

V

∂V

∂p

∣∣∣∣
S,N

. (5.43)

In the former the system is compressed at constant temperature (for example, in contact
with a thermal bath) and in the latter by precluding any heat exchange. Notice that κ
is an intensive property. When the compression is done at constant T , the system can
release internal energy to the environment (assuming ∆p > 0). This is not possible in
an isoentropic process, in which case the temperature will increase, thus rendering any
volume reduction more difficult. Consequently, we expect in general that κT > κS .

5.2.3 Thermal expansion

A further property of general interest is the thermal expansion coefficient

α =
1

V

∂V

∂T

∣∣∣∣
p,N

. (5.44)
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This is an intensive property which measures the relative volume change ∆V/V = α∆T
resulting from a given temperature change at constant pressure. Note that α can be
positive (the most usual case) or negative. Examples of negative α are found in water
close to the freezing point (T < 3, 984 ◦C) as it approaches the transition to ice, but also
in several semiconductors.

5.2.4 Charge compressibility

Finally, it is interesting to quantify how the number of particles changes when the chem-
ical potential is changed. By analogy with the volume compressibility κ discussed in
Sec. 5.2.2, we define the charge compressibility

κc =
1

N

∂N

∂µ

∣∣∣∣
V,T

, (5.45)

which is also known as charge susceptibility. The latter designation, borrowed from the
analogy with the magnetic susceptibility, seems less appropriate, since one should keep
the term charge susceptibility to indicate changes in the charge distribution resulting
from the action of some external field, which usually depends on the wave vector q⃗ and
frequency ω. The charge compressibility can be regarded as the many-body density
of states at the chemical potential µ, since it measures how many states are occupied
(emptied) by particles entering (leaving) the system when µ is increased (decreased):
∆N = κcN∆µ. The charge compressibility κc is often used to identify the occurrence of
metal-insulator transitions since κc > 0 is characteristic of a metallic behavior whereas
κc = 0 indicates the presence of a gap in the energy spectrum.

5.2.5 Assessing fluctuations

The above considered properties, which have a very clear thermodynamical interpreta-
tion, provide us with a remarkable insight into the statistical microscopic fluctuations of
the constants of motion E, V and N , which are present in the equilibrium macroscopic
mixed states. Let us first of all consider the canonical ensemble where V and N are fixed.
Recalling that

E = ⟨Ĥ⟩ =
Tr
{
e−βĤĤ

}
Tr
{
e−βĤ

}
we have

CV =
∂E

∂T

∣∣∣∣
V,N

= − 1

T
β
∂E

∂β

∣∣∣∣
V,N

=
1

kBT 2

(
⟨Ĥ2⟩ − ⟨Ĥ⟩2

)
.

We conclude that the heat capacity at constant volume

CV,N =
(∆H)2

kBT 2
≥ 0 (5.46)
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gives a measure of the energy fluctuations. A larger specific heat implies stronger fluc-
tuations of the energy at a given temperature. The extensivity of CV implies that
cV = CV /N and CV /E are independent of system size. Thus, the standard deviation√

(∆H)2 ∝
√
N . We recover the known result√

(∆H)2

⟨Ĥ⟩
∝ 1√

N
,

which means that the microcanonical and canonical ensembles are equivalent for N → ∞.

In order to analyze the compressibility we turn to the grand canonical pressure ensem-
ble and write

V = ⟨V̂ ⟩ =
Tr
{
V̂ e−β(Ĥ−µN̂+pV̂ )

}
Tr
{
e−β(Ĥ−µN̂+pV̂ )

} ,

where we have formally introduced the operator V̂ measuring the volume occupied by
the system. It follows that

∂V

∂p

∣∣∣∣
T,N

= −β
(
⟨V̂ 2⟩ − ⟨V̂ ⟩2

)
= −(∆V )2

kBT

and

κT,N =
1

kBT

(∆V )2

V
≥ 0 . (5.47)

For a given T , a larger compressibility implies that the relative volume fluctuations are
more important. The intensiveness of κ implies vanishing relative volume fluctuations
for N → ∞: √

(∆V )2

V
=

√
kBTκT,N

V
∝ 1√

N
.

In order to relate the charge compressibility to particle-number fluctuations in the
grand canonical ensemble we start from

N =
Tr
{
e−β(Ĥ−µN̂)N̂

}
Tr
{
e−β(Ĥ−µN̂)

}
and obtain

∂N

∂µ
= β

(
⟨N̂2⟩ − ⟨N̂⟩2

)
=

(∆N)2

kBT
.

The charge compressibility is then given by

κc =
1

N

∂N

∂µ

∣∣∣∣
T,V

=
1

kBT

(∆N)2

N
≥ 0 . (5.48)

The intensiveness of κc implies that the relative fluctuations of the particle number√
(∆N)2

N
∝ 1√

N

vanish for N → ∞.
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5.3 Minimum free-energy theorem

In section 4.1 we have demonstrated a fundamental variational principle for the entropy

S[ρ̂] = −kB⟨ln ρ̂⟩ = −kBTr {ρ̂ ln ρ̂}

regarded as a functional of the density matrix ρ̂. The maximum entropy theorem states
that all the density operators ρ̂, which comply with the normalization condition Trρ̂ = 1,
and yield same average values the additive constants of motion f1, . . . , fr, under the
constraint of fixed values of the other constants of motion fr+1, . . . , fs, always satisfy the
inequality

S[ρ̂] ≤ S[ρ̂r] , (5.49)

where ρ̂r is the corresponding equilibrium canonical density operator. It is important to
be clear about the constraints imposed to ρ̂ in order that (5.49) holds:

⟨F̂i⟩ = Tr{ρ̂ F̂i} = fi for i = 1, . . . , r

and
F̂i ≡ fi for i = r + 1, . . . , s.

For example, in a grand canonical ensemble energy and particles can be exchanged but
the volume is conserved (r = 2). The macrostate is in this case characterized by the
values of the average energy E = ⟨Ĥ⟩, the average number of particles N = ⟨N̂⟩, and the
fixed volume V . The maximum entropy theorem says that among all the mixed states ρ̂
having E = ⟨Ĥ⟩ and N = ⟨N̂⟩ in a volume V , the equilibrium one corresponds to the ρ̂
yielding the largest S [ρ̂] = −kB⟨ln ρ̂⟩. This important result implies the second law of
thermodynamics. It allows us to predict the sense of evolution of processes that occur
spontaneously. In particular we have shown, taking advantage of the additivity of S that

S
(
fA1 , . . . , f

A
s

)
+ S

(
fB1 , . . . , f

B
s

)
≤ S

(
fA+B
1 , . . . , fA+B

s

)
when two systems A and B are brought into contact and are allowed to exchange additive
constants of motion (e.g., E and N).

We seek for an appropriate variational principle for the canonical and grand canonical
ensembles, in particular in order to understand how to picture the equilibrium state that
is reached under the constraint of constant intensive properties, such as temperature and
chemical potential. To be explicit we focus on the grand canonical ensemble with a fixed
volume V , temperature T and chemical potential µ. We consider the grand canonical
potential

Φ[ρ̂] = E[ρ̂]− µN [ρ̂]− T S[ρ̂]

= Tr
{
ρ̂
(
Ĥ − µ N̂ + T kB ln ρ̂

)}
(5.50)

as a functional of ρ̂. The parameters T and µ characterize the ensemble and are therefore
fixed, as well as the volume V . The following minimum free-energy theorem holds. The
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minimum of Φ[ρ̂] among all the density operators ρ̂, satisfying Tr{ρ̂} = 1, is achieved
when ρ̂ is equal to the equilibrium grand canonical density operator

ρ̂gc =
1

Zgc
e−β(Ĥ−µN̂)

corresponding to the given T , µ and V . This can be written as

Φ [ρ̂gc] ≤ Φ [ρ̂] ∀ρ̂ satisfying Tr{ρ̂} = 1 , (5.51)

or as
min
ρ̂

Tr{ρ̂}=1

{Φ [ρ̂]} = Φ[ρ̂gc] . (5.52)

The proof is simple taking advantage of the maximum entropy theorem. However,
before applying the latter, we need to keep in mind that S[ρ̂] is maximal only among
all the ρ̂ yielding a given ⟨Ĥ⟩, ⟨N̂⟩ and V . We therefore perform the minimization in
Eq. (5.52) in two steps:

min
ρ̂

{Φ [ρ̂]} = min
E,N

 min
ρ̂→⟨Ĥ⟩=E

⟨N̂⟩=N

[
Tr
{
ρ̂
(
Ĥ − µN̂ + T kB ln ρ̂

)}] .

The inner minimization runs over all the ρ̂ yielding some given average values of E = ⟨Ĥ⟩
and N = ⟨N̂⟩, while the outer minimization removes this constraint by minimizing over
all possible values of E and N . Since all the ρ̂ within the outer minimization yield the
same ⟨Ĥ⟩ = E and ⟨N̂⟩ = N for the given volume V , we replace them by E and N , and
write

min
ρ̂

{Φ [ρ̂]} = min
E,N

E − µN + min
ρ̂→⟨Ĥ⟩=E

⟨N̂⟩=N

[
T kBTr {ρ̂ ln ρ̂}

] .

The maximum entropy theorem implies that

min
ρ̂→⟨Ĥ⟩=E

⟨N̂⟩=N

[
T kBTr {ρ̂ ln ρ̂}

]
= −T S(E,N, V ) ,

where S(E,N, V ) is the entropy corresponding to the average energy E, particle number
N and volume V . Moreover, the maximum S is achieved by the grand canonical density
operator

ρgc =
1

Zgc
e−β̃(Ĥ−µ̃N̂) , (5.53)

where β̃ = β̃(E,N, V ) and µ̃ = µ̃(E,N, V ) are the inverse temperature and chemical
potential yielding the given averages E and N for the fixed volume V . In order to
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determine the optimal β̃ and µ̃ we must perform the minimization with respect to E and
N :

min
ρ̂

{Φ [ρ̂]} = min
E,N

{E − µN − T S(E,N, V )} .

Denoting by F = E−µN−T S(E, V,N) the grand canonical potential which corresponds
to β̃ and µ̃, it is clear that the optimal E andN are given by the usual extremal conditions

∂F

∂E

∣∣∣∣
N,V

= 1− T
∂S

∂E

∣∣∣∣
N,V

= 0 ⇔ ∂S

∂E
=

1

T

and
∂F

∂N

∣∣∣∣
E,N

= −µ− T
∂S

∂N

∣∣∣∣
E,V

= 0 ⇔ ∂S

∂N

∣∣∣∣
E,V

= −µ

T
.

Since ∂S/∂E = kBβ̃ = 1/T̃ and ∂S/∂N = −kBβ̃µ̃ = −(µ̃/T̃ ), we conclude that the
minimum is achieved when T̃ = T and µ̃ = µ. Replacing these optimal values on
Eq. (5.53) proves the theorem.

We have thus reached the important conclusion that any process occurring sponta-
neously at a given temperature and chemical potential will evolve in order to minimize
the grand canonical potential Φ[ρ̂]. This result has been obtained by maximizing the
entropy under the constraint of fixed ⟨Ĥ⟩, ⟨N̂⟩ and V . Conversely, the fact that the
equilibrium state at constant T , µ and V is achieved by minimizing the grand canonical
potential Φ[ρ̂] leads to the maximum entropy principle. It is easy to see that the same
minimal property discussed here in the case of Φ[ρ̂], also holds for the Helmholtz free
energy F [ρ̂], regarded as a functional of ρ̂, keeping the temperature, particle number and
volume constant.
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6 Thermodynamic relations

In the last chapter we have introduced a variety of thermodynamic properties (thermo-
dynamic potentials, heat capacities, compressibilities, etc.) which allow us to describe
different aspects of macroscopic equilibrium states, as well as the processes connecting
them. Taking into account that there are far more properties of physical interest than the
few extensive or intensive magnitudes needed for characterizing the equilibrium state, it
is most reasonable to attempt to establish general relations between them. Moreover, we
know that the thermodynamic properties fulfill very specific conditions, for example, the
extensiveness of the potentials or the intensiveness of pressure, temperature and chemical
potential. Establishing the relations among the thermodynamic properties is important
in order to derive the values of new properties from a smaller set of known ones. Further-
more, the relations can also be used to test the validity of models and approximations
of the microscopic theory of matter. It is the purpose of this section to derive a number
of thermodynamic relations and to discuss the most important methods used to derive
them.

6.1 Duhem-Gibbs relations for thermodynamic potentials

The first and more fundamental interdependences of thermodynamic properties are the
Duhem-Gibbs relations among the thermodynamic potentials. They follow from the ex-
tensive character of the potentials Φr as a function of their additive natural variables fi,
from the corresponding Euler conditions Φr =

∑
i

∂Φr
∂fi

fi, or from the Legendre transfor-

mations relating the potentials. Examples of this kind are

E = TS − pV + µN ,

F = E − TS = µN − pV,

and

Φ = E − TS − µN = −pV .

6.2 Intensive nature of the derivatives of extensive properties

Another source of thermodynamic relations is the intensive character of properties such
as p, µ and T . For example, if we consider the pressure p = p(T, V,N) in a canonical
ensemble, we know that

p(T, V,N) = p(T, αV, αN). (6.1)

Taking the derivative with respect to α we have

0 =
∂p

∂V

∣∣∣∣
T,N

V +
∂p

∂N

∣∣∣∣
T,V

N , (6.2)
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which allows us to exchange ∂p/∂V by ∂p/∂N .

The same reasoning can be applied to other intensive properties. For instance, in the
case of the chemical potential

µ(T, V,N) = µ(T, αV, αN) , (6.3)

we obtain
0 =

∂µ

∂V

∣∣∣∣
T,N

V +
∂µ

∂N

∣∣∣∣
T,V

N , (6.4)

with the help of which we can exchange ∂µ/∂V by ∂µ/∂N .

6.3 Integrability of the differential of thermodynamic potentials

We know that the thermodynamic potentials are state functions, whose values do not
depend on the previous history of the system. Therefore, the change in a state function
f (typically a thermodynamic potential) between any two states 1 and 2 is independent
of the details of the process involved in going from 1 to 2. Mathematically, this means
that

f2 − f1 =

∫ 2

1
df

is independent of the integration path, which is usually stated by requiring that∮
df = 0

for any closed path. Writing the differential form of f as

df = fx dx+ fy dy ,

the integrability condition, also known as Schwarz theorem, reads

∂fx
∂y

=
∂fy
∂x

or
∂

∂y

(
∂f

∂x

)
=

∂

∂x

(
∂f

∂y

)
. (6.5)

Once applied to the thermodynamic potentials, this simple condition on the partial
derivatives becomes a very useful tool for revealing important connections between the
rates of change of different thermodynamic properties. The identities derived in this way
are usually known as Maxwell relations.

As a first example let us consider the differential of the Helmholtz free energy

dF = −SdT − pdV + µdN
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from which we conclude that
∂S

∂V

∣∣∣∣
T,N

=
∂p

∂T

∣∣∣∣
V,N

. (6.6)

An analogous relation can be derived from the differential of the grand canonical potential

dΦ = −S dT − p dV −N dµ ,

namely,
∂S

∂V

∣∣∣∣
T,µ

=
∂p

∂T

∣∣∣∣
V,µ

. (6.7)

The only difference between (6.6) and (6.7) is that the derivatives are now taken for a
fixed µ instead of a fixed N .

There are three pairs of conjugated extensive-intensive variables: (S, T ), (V, p) and
(N,µ). By picking one variable from each pair, we can therefore construct 8 different
thermodynamic potentials, which depend on the chosen variables. In each case there are
three possible pairs of variables whose derivatives can be exchanged. In the examples
above we considered the potentials F = F (T, V,N) and Φ = Φ(T, V, µ) and the variables
V and T . We have therefore 3× 8 = 24 different thermodynamic relations of this kind.
Actually, they can be reduced to 12, if we ignore which is the third variable that is kept
fixed on both sides of the equality. Thus, instead of Eqs. (6.6) and (6.7), one could simply
write

∂S

∂V

∣∣∣∣
T

=
∂p

∂T

∣∣∣∣
V

regardless of whether N or µ is kept fixed. The reader is encouraged to explore and
derive some of these relations and to compare their results with those reported in the
literature.

Some relations are more interesting than others. For instance, starting from

dH = TdS + V dp+ µdN ,

one obtains the relation
∂T

∂p

∣∣∣∣
S,N

=
∂V

∂S

∣∣∣∣
p,N

, (6.8)

which seems hard to interpret physically a priori, although it already looks more appeal-
ing when expressed in terms of the inverse functions as

∂p

∂T

∣∣∣∣
S,N

=
∂S

∂V

∣∣∣∣
p,N

. (6.9)

An interesting relation is obtained by considering the free enthalpy

dG = −S dT + V dp+ µdN .
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In this case we obtain
∂S

∂p

∣∣∣∣
T

= −∂V
∂T

∣∣∣∣
p

= −αV , (6.10)

where α = 1
V

∂V
∂T

∣∣
p

is the thermal expansion coefficient. In this way we relate the isother-
mal pressure dependence of S to α.

From the differential dF = −SdT − pdV + µdN follows

∂µ

∂V

∣∣∣∣
N,T

= − ∂p

∂N

∣∣∣∣
V,T

. (6.11)

The right hand side can be transformed by replacing ∂p/∂N by ∂p/∂V using (6.2) [i.e.,
N∂p/∂N + V ∂p/∂V = 0]. Thus we have

∂µ

∂V

∣∣∣∣
N,T

=
∂p

∂V

∣∣∣∣
N,T

V

N

=
1

N

V
∂V
∂p

∣∣
N,T

= − 1

N

1

κT,N
. (6.12)

Since µ is also an intensive property, we can replace ∂µ/∂V by ∂µ/∂N and relate the
latter to the charge compressibility κc as

∂µ

∂V

∣∣∣∣
N,T

= − ∂µ

∂N

∣∣∣∣
V,T

N

V
= − 1

V

N
∂N
∂µ

∣∣
V,T

= − 1

V

1

κc
. (6.13)

Finally, combining (6.12) and (6.13), we conclude that

κT,N =
V

N
κc =

V

N2

∂N

∂µ

∣∣∣∣
V,T

, (6.14)

which relates the volume compressibility to the charge compressibility, and allows us to
determine κT,N in the framework of the grand canonical ensemble, where the natural
variables are (T, V, µ).

One can also derive interesting relations for the derivatives of the thermodynamic
potentials with respect to variables that are not the natural ones or by keeping those
variables constant. As an example, let us consider the energy

E = TS − pV + µN ,

with its differential
dE = T dS − p dV + µdN ,
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and look for ∂E/∂V keeping the temperature and particle number constant. We may
then write

∂E

∂V

∣∣∣∣
T,N

= T
∂S

∂V

∣∣∣∣
T,N

− p

= T
∂p

∂T

∣∣∣∣
V,N

− p . (6.15)

In the first step we have used that a change in volume V at constant T and N causes
an energy change dE = TdS − pdV , provided that dS also refers to the entropy change
at constant T and N . In the second step we have used the condition on the crossed
derivatives in dF = −SdT + µdN − pdV .

Alternatively, we may start from the Duhem-Gibbs relation E = TS + µN − pV and
take the derivative with respect to V straightforwardly:

∂E

∂V

∣∣∣∣
T,N

= T
∂S

∂V

∣∣∣∣
T,N

− ∂p

∂V

∣∣∣∣
T,N

V − p+
∂µ

∂V

∣∣∣∣
T,N

N , (6.16)

which surely looks more complicated at first. However, from dF and by changing ∂p/∂N
into ∂p/∂V we have

∂µ

∂V

∣∣∣∣
T,N

= − ∂p

∂N

∣∣∣∣
T,V

=
∂p

∂V

∣∣∣∣
T,N

V

N
.

Replacing in (6.16) brings us back to Eq. (6.15), as it should. Many other relations can
be derived in a similar way (e.g., for ∂F

∂V

∣∣
S,N

).

6.4 Jacobi-determinant manipulations

A large number of relations in thermodynamics are obtained by changing an extensive
variable (e.g., V ) by its conjugated intensive variable (e.g., p) in partial derivatives.
This concerns both exchanging derivatives with respect to these variable or changing the
variables which are kept fixed, for example, from ∂E

∂V

∣∣
T,N

to ∂E
∂p

∣∣
T,N

, or from ∂E
∂T

∣∣
V,N

to
∂E
∂T

∣∣
p,N

. This kind of manipulations can be performed in a systematic way by using the
properties of the 2× 2 Jacobi determinant.

Let us first recall the definition and some useful properties of the Jacobian. Given two
functions of the variables u and v, namely, f, g : R2 → R, f = f(u, v) and g = g(u, v),
the Jacobi determinant is defined by

∂(f, g)

∂(u, v)
=

∣∣∣∣∣
∂f
∂u

∂f
∂v

∂g
∂u

∂g
∂v

∣∣∣∣∣ = ∂f

∂u

∂g

∂v
− ∂g

∂u

∂f

∂v
. (6.17)

The change of sign of the determinant when two columns or rows are interchanged implies

∂(f, g)

∂(u, v)
= −∂(g, f)

∂(u, v)
= −∂(f, g)

∂(v, u)
=
∂(g, f)

∂(v, u)
. (6.18)

110



In addition we have
∂(f, v)

∂(u, v)
=

∣∣∣∣∣
∂f
∂u

∂f
∂v

0 1

∣∣∣∣∣ = ∂f

∂u

∣∣∣∣
v

=
∂(v, f)

∂(v, u)
. (6.19)

If the variables u and v are themselves functions u = u(x, y) and v(x, y) of other variables
x and y, we can apply the usual chain rule for the partial derivatives:

∂f

∂x
=
∂f

∂u

∂u

∂x
+
∂f

∂v

∂v

∂x
,

∂f

∂y
=
∂f

∂u

∂u

∂y
+
∂f

∂v

∂v

∂y

and similarly for g. These relations can be written in a compact matrix form as( ∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

)
=

(
∂f
∂u

∂f
∂v

∂g
∂u

∂g
∂v

)(
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)
.

Taking determinants on both sides we have

∂(f, g)

∂(x, y)
=
∂(f, g)

∂(u, v)
· ∂(u, v)
∂(x, y)

. (6.20)

If the mapping (u, v) → (f, g) is bijective, we can invert it, i.e., solve the equations
f = f(u, v) and g = g(u, v) for u and v. The functions u(f, g) and v(f, g) obtained in
this way satisfy

f
(
u(f ′, g′), v(f ′, g′)

)
= f ′

and
g
(
u(f ′, g′), v(f ′, g′)

)
= g′ .

We can therefore write
1 =

∂(f, g)

∂(f, g)
=
∂(f, g)

∂(u, v)
· ∂(u, v)
∂(f, g)

. (6.21)

As a first application of the Jacobi determinant method we consider ∂p
∂T

∣∣
V

and try to
relate it with other properties by changing V by p. We thus write

∂p

∂T

∣∣∣∣
V

=
∂(p, V )

∂(T, V )
=
∂(p, V )

∂(p, T )

∂(p, T )

∂(T, V )

= −∂(p, V )

∂(p, T )

∂(p, T )

∂(V, T )

= −∂V
∂T

∣∣∣∣
p

∂p

∂V

∣∣∣∣
T

=
V α

−∂V
∂p

∣∣
T

=
α

κT
. (6.22)
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As a physically transparent byproduct, notice that the sign of ∂p
∂T

∣∣
V

is the same as the
sign of the thermal expansion coefficient α.

A further interesting application of the Jacobi determinant method is to establish the
relation between the heat capacities Cp and CV by changing p by V as the variable that
is kept constant:

Cp = T
∂S

∂T

∣∣∣∣
p

= T
∂(S, p)

∂(T, p)
= T

∂(S, p)

∂(S, V )

∂(S, V )

∂(T, p)
,

where we have replaced p by V , keeping S constant [∂(T, p) → ∂(S, V )]. On the right-
hand side we recognize the adiabatic compressibility κS since

∂(S, p)

∂(S, V )
=

1
∂V
∂p

∣∣
S

= − 1

V κS
.

In a second step we intend to find CV by replacing ∂(T, p) by ∂(T, V ) in the denominator.
In this way we obtain

Cp = T

(
− 1

V κS

)
∂(S, V )

∂(T, V )

∂(T, V )

∂(T, p)
.

Noting that

T
∂(S, V )

∂(T, V )
= T

∂S

∂T

∣∣∣∣
V

= CV and
∂(T, V )

∂(T, p)
=
∂V

∂p

∣∣∣∣
T

= −V κT ,

we have
Cp = CV

κT
κS

or
Cp

CV
=
κT
κS
. (6.23)

There are also some Jacobi determinants which take a simple closed form in terms
of know thermodynamic properties and which can be used in order to establish new
relations. For example:

∂(S, V )

∂(T, p)
=

∣∣∣∣∣
∂S
∂T

∣∣
p

∂S
∂p

∣∣
T

∂V
∂T

∣∣
p

∂V
∂p

∣∣
T

∣∣∣∣∣ =
∣∣∣∣∣ Cp

1
T −αV

V α −V κT

∣∣∣∣∣ = −V κT
T

Cp + α2V 2 , (6.24)

where we have used that

dG = −SdT + V dp− µdN ⇒ ∂S

∂p

∣∣∣∣
T

= −∂V
∂T

∣∣∣∣
p

= −αV .

Using the relation (6.24) we can rewrite CV as

CV = T
∂S

∂T

∣∣∣∣
V

= T
∂(S, V )

∂(T, V )
= T

∂(S, V )

∂(T, p)

∂(T, p)

∂(T, V )

= (−V κTCp + Tα2V 2)

(
− 1

V κT

)
= Cp − T

α2V

κT
,
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and obtain the important relation

Cp − CV = T
α2V

κT
≥ 0 . (6.25)

Combining (6.23) and (6.25) we have

1− CV

Cp
= 1− κS

κT
= T

α2V

κTCp

and

κT − κS = T
α2V

Cp
≥ 0 . (6.26)

These relations show that only three of the five quantities CV , Cp, κT , κS and α are
actually independent. The present analysis is just one example of how thermodynamic
relations can be used in order to derive results on new properties and to gain insight
into the correlations between various macroscopic observables, which can be verified
by comparing independent measurements. As a byproduct we should also mention the
inequalities

Cp ≥ CV ≥ 0 (6.27)

and
κT ≥ κS ≥ 0 , (6.28)

which can be easily understood physically.

The number of thermodynamic relation that one may conceive is almost inexhaustible.
We shall not pursue with further examples here, but rather derive those needed in the
context of the specific problems to be discussed below.

Exercise 6.14: Starting from the definition of κS show that κS = CV
Cp
κT by using simple

Jacobi transformations.

6.5 Measuring the absolute temperature scale

In the thermodynamic relations discussed in the previous section the absolute tempera-
ture scale T appears explicitly, either as the parameter which is varied, or which is kept
constant, or as a multiplicative factor. This means that the derived equations would not
hold if T were replaced by an arbitrary empirical temperature scale. One may therefore
use these relations in order to determine the absolute temperature T = T (θ) as a func-
tion of an empirical temperature θ satisfying a one-to-one correspondence with T . For
example, θ can be the voltage across a thermocouple, the length of a Hg filament, and
the like.
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In order to illustrate this remarkable possibility, we consider three related properties,
namely, the Joule-Thompson coefficient µJT , the heat capacity Cp and the expansion
coefficient α. In each case we distinguish between the true exact values of the proper-
ties, which are denoted by µJT , Cp and α, and the values obtained using an empirical
(laboratory specific) temperature θ, which are denoted by µ̃JT , C̃p and α̃, respectively.

i) The Joule-Thompson coefficient

µJT =
∂T

∂p

∣∣∣∣
H

=
dT

dθ

∂θ

∂p

∣∣∣∣
H

= µ̃JT
dT

dθ
(6.29)

measures the temperature change following an isoenthalpic pressure change. On
the left hand side of (6.29) we have the true Joule-Thompson coefficient while on
the right hand side we have the measured one according to θ = θ(T ).

ii) The heat capacity at constant pressure is given by

Cp =
∂H

∂T

∣∣∣∣
p

=
∂H

∂θ

∣∣∣∣
p

dθ

dT
= C̃p

1
dT
dθ

. (6.30)

iii) Finally, the expansion coefficient is given by

α =
1

V

∂V

∂T

∣∣∣∣
p

=
1

V

∂V

∂θ

∣∣∣∣
p

dθ

dT
= α̃

1
dT
dθ

. (6.31)

We would like to express µJT in terms of known quantities including in particular Cp

and α:

µJT =
∂T

∂p

∣∣∣∣
H

=
∂(T,H)

∂(p,H)
=
∂(T,H)

∂(T, p)

∂(T, p)

∂(p,H)︸ ︷︷ ︸
−1/Cp

= −
∂H
∂p

∣∣
T

Cp
. (6.32)

In order to replace ∂H
∂p

∣∣
T

by involving α we use two different Maxwell relations. From
dH = TdS + V dp+ µdN we have

∂H

∂p

∣∣∣∣
T,N

= T
∂S

∂p

∣∣∣∣
T

+ V , (6.33)

and from dG = −SdT + V dp+ µdN we have

−∂S
∂p

∣∣∣∣
T

=
∂V

∂T

∣∣∣∣
p

. (6.34)

Thus, we have
∂H

∂p

∣∣∣∣
T

= T
∂S

∂p

∣∣∣∣
T

+ V = V − T
∂V

∂T

∣∣∣∣
p

= V (1− Tα)

and therefore
µJT =

V

Cp
(Tα− 1). (6.35)
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Replacing (6.29), (6.30) and (6.31) in (6.35) we finally obtain

µ̃JT
dT

dθ
=

V

C̃p

dT

dθ

(
T
α̃
dT
dθ

− 1

)
(
µ̃JT +

V

C̃p

)
dT

dθ
=
V T α̃

C̃p

d lnT

dθ
=

V α̃

µ̃JT C̃p + V
.

We conclude that the measurement of µ̃JT , C̃p and α̃ at a volume V , by using an
arbitrary temperature scale and an arbitrary substance, allows us to determine the abso-
lute temperature except for a multiplicative constant (i.e., an additive constant in lnT ).
This constant can only be fixed by a convention, which defines the unit of the absolute
temperature. In this context it is important to notice that all thermodynamic relations
are invariant with respect to a uniform scaling transformation T ′ = aT , where a is a con-
stant. The adopted convention is such that 1 K is the temperature of the triple point of
water divided by 273.16, or equivalently, that the triple point of water is 273.16 K. Since
in the Celsius scale the triple-point temperature is 0.01 ◦C, the absolute zero corresponds
to −273.15 ◦C.
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7 Thermodynamic processes

Thermodynamic processes are present in our everyday life, for example, in a number of
processes in the atmosphere and in many technological applications (internal combustion
engines, refrigerators, etc.). In many cases the process is cyclic. One has a working
substance (typically a gas) which undergoes a cyclic process repeatedly. Very often, the
substance is replaced by a new initial substance at the beginning of the cycle (e.g., the
vaporized water in a steam engine or the fuel in an internal combustion engine). Since
the principles of cyclic processes are not affected by this, we shall ignore the replacement
and assume that the particle number N is constant. Thus, two thermodynamic variables
[e.g., (p, V ) or (S, T )] are enough to characterize the equilibrium state of the substance.
We shall further assume that the processes are quasi static, so that equilibrium can be
taken for granted. Irreversible processes are discussed in a forthcoming section.

Figure 1: (a) Representation of a cyclic process in a TS-diagram. The area Q12 under
the T (S) curve gives the absorbed heat during the process from state 1 to
state 2, while the enclosed area Q is the total heat absorbed in the cycle. b)
Representation of a cyclic process in a pV -diagram. The area W12 under the
curve (the enclosed area W ) is the work delivered into the environment during
the process from state 1 to state 2 (during the cycle).

It is useful to represent the process in both a (T, S) and a (p, V ) diagrams, since the
area TdS and pdV under the process curves have a clear physical meaning (see Fig. 1).
The area under the T = T (S) curve represents the heat

Q12 =

∫ 2

1
T dS (7.1)

absorbed by the system. In a cyclic process the heat absorbed in a cycle is

Q =

∮
T dS (7.2)
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The area under the p = p(V ) curve is the work done by the system, i.e., the work

W12 =

∫ 2

1
p dV (7.3)

delivered by the system into the environment. In a cycle we have

W =

∮
p dV (7.4)

Since the energy is a state function and dE = TdS − pdV we have∮
dE = E (7.5)

and
Q−W = 0 . (7.6)

Thus, with the appropriate scale, the areas enclosed by the cycles in the (T, S) and
(p, V ) diagrams are the same. See Eqs. (7.2), (7.4) and (7.6). Moreover, since the
signs of Q and W are the same, the cycles are run in the same sense in both diagrams.
Counterclockwise processes are also known as left processes and clockwise processes as
right processes. Clockwise processes have Q =W > 0. A net amount of heat is absorbed
and work is delivered. These are working machines. Counterclockwise processes have
Q = W < 0. Work is absorbed and heat is delivered. These are refrigerators or heat
pumps from lower to higher temperatures.

The cyclic processes can be usually subdivided in simpler subprocesses, in which a given
thermodynamic property is kept constant. One distinguishes in particular isothermal,
isobaric, isochoric and isoentropic processes. The latter are also known as adiabatic.
These can be illustrated as follows:

Figure 2: Adiabatic (δQ = 0), isothermal (constant temperature T ), isobaric (constant
pressure p) and isochoric (constant volume V ) subprocesses illustrated in the
a) TS-diagram and b) pV -diagram.

The different slopes of the isothermal and isoentropic curves in the (p, V ) diagram,
and of the isochoric and isobaric curves in the (T, S) diagram can be inferred from the
relations κT ≥ κS ≥ 0 and Cp ≥ CV ≥ 0 [see Eqs. (6.25) and (6.26)].
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7.1 Carnot cycle

The most important cyclic process is Carnot’s cycle, which is obtained by alternating
isothermal and adiabatic subprocesses:

Figure 3: Illustration of the Carnot’s cycle in the a) TS-diagram and b) pV -diagram.
The cycle consists of alternating isothermal and adiabatic subprocesses. During
the isothermal subprocesses, the system is in contact with heat baths at tem-
peratures T1 and T2 > T1. During the adiabatic subprocesses, S1 and S2 > S1
denote the constant-kept entropies.

All the heat exchanges occur at constant temperature. As clockwise process the system
absorbs the heat

Q2 = T2 (S2 − S1) > 0 (7.7)

from the higher temperature T2, and rejects a smaller amount of heat

Q1 = T1 (S2 − S1) > 0 (7.8)

to the cooler reservoir at T1. The total heat exchanged in a cycle is

Q = Q2 −Q1 =W > 0 . (7.9)

The work efficiency or energy-conversion efficiency of a machine is defined by

ηW =
W

Q2
=

Work done
Heat absorbed

. (7.10)

In a Carnot cycle this takes the value

ηWCarnot =
T2 − T1
T2

< 1, (7.11)

where T2 > T1.

It is easy to see, using that
∮ δQ

T ≤ 0, that no machine involving heat baths in the
temperature range [T1, T2] can exceed the work efficiency of the Carnot cycle. We consider
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Figure 4: Illustration of a cyclic process involving a succession of heat baths in the
temperature range [T1, T2]. During the process from state a to state b, the
system absorbs heat from the baths (δQ = TdS ≥ 0), while during the process
from b to a, heat is delivered to the environment (δQ = TdS ≤ 0).

an arbitrary cycle in which the system exchanges heat δQ with thermal baths at various
temperatures T (S). Let T2 be the largest value of T along the cycle and T1 the smallest
one (see Fig. 4). We intend to compare ηW for such an arbitrary cycle with the efficiency
of the Carnot cycle running between the largest and the smallest temperatures. The
total work and heat are

W = Q =

∮
δQ =

∫ b

a
δQ︸ ︷︷ ︸

Q2>0

+

∫ a

b
δQ︸ ︷︷ ︸

−Q1<0

= Q2 −Q1 . (7.12)

We consider Clausius inequality ∮
δQ

T
≤ 0 , (7.13)

where T refers to the temperature of the thermal bath with which the heat exchange δQ
occurs:

0 ≥
∮
δQ

T
=

∫ b

a

δQ

T︸ ︷︷ ︸
δQ>0

+

∫ a

b

δQ

T︸ ︷︷ ︸
δQ<0

(7.14)

Since T2 ≥ T ≥ T1 we replace T by T2 for all the δQ > 0 and T by T1 for all the δQ < 0.
We may thus write

0 ≥
∫
δQ

T︸ ︷︷ ︸
δQ>0

+

∫
δQ

T︸ ︷︷ ︸
δQ<0

≥
∫
δQ

T2
+

∫
δQ

T1
=
Q2

T2
− Q1

T1
,

which implies
Q1

T1
≥ Q2

T2
⇒ Q1

Q2
≥ T1
T2
. (7.15)
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The work efficiency ηW of the arbitrary cycle satisfies

ηW =
W

Q2
=
Q2 −Q1

Q2
= 1− Q1

Q2
≤ 1− T1

T2
= ηWCarnot . (7.16)

The equal sign holds only when the process is reversible (i.e.,
∮ δQ

T = 0) and at the same
time all the heat absorbed (δQ > 0) comes from the highest temperature bath (T2) and
all the rejected heat (δQ < 0) goes to the coolest bath (T1). In other words, only for the
Carnot cycle running between the temperatures T1 and T2.

As a counterclockwise process the Carnot cycle receives the work −W > 0 done by
external forces, it absorbs the heat Q1 > 0 from the reservoir at the lower temperature
T1, and transfers the absorbed energy ∆E = −Q2 = −W −Q1 < 0 in the form of heat to
the hottest reservoir at T2. One defines the heat-transfer efficiency of an arbitrary heat
pump as

ηH =
Rejected heat
Absorbed work

=
−Q2

−W
=

1

ηW
. (7.17)

In the Carnot cycle we have

ηHCarnot =
T2

T2 − T1
=

1

ηWCarnot
> 1 . (7.18)

Notice that the efficiency of a Carnot cycle is much better than the plain dissipation of
work, as one would have in a Joule experiment, for which Q2 =W and thus ηHJoule = 1.

It is also interesting to consider the cooling efficiency of refrigerators, which is defined
as

ηC =
Heat removed

Absorbed Work
=

Q1

−W
. (7.19)

For the Carnot cycle we have

ηCCarnot =
T1

T2 − T1
, (7.20)

which shows that the efficiency improves when ∆T = T2−T1 is small. Therefore, cooling
processes are usually split in a number of subprocesses with smaller ∆T ’s.

Before closing this section we would like to mention the Stirling cycle, which alternates
isothermal and isochoric processes, the Ericsson cycle, which alternates isobaric and
isothermal processes, and the Rankine cycle (steam engine) which alternates adiabatic
and isobaric processes.

7.2 Joule Thompson process

In the following sections we would like to discuss two important irreversible processes.
The first one is the Joule-Thompson effect which consists in an adiabatic (δQ = 0)
expansion at constant pressure. More precisely, we consider a gas or liquid at a pressure
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p1 in a volume V1 which flows into a region of lower pressure p2 through a small opening
or porous material. During the process the pressures p1 and p2 are kept constant from the
exterior and the volume change is so slow that the system is constantly at thermodynamic
equilibrium. Initially, before the value is open, we have V1 = V 0

1 and V2 = 0 and in the
final state we have V1 = 0 and V2 = V∞

2 .

Figure 5: Scheme of the Joule-Thompson effect. A gas or liquid flows from a region at
constant pressure p1 into a region of lower pressure p2 through a small opening.

It is easy to show that this is an isoenthalpic process (dH = 0). Since the system is
thermally isolated, we have δQ = 0 and therefore

dE = δW = −p1dV1 − p2dV2 . (7.21)

The extensiveness of E implies E = E1 + E2 and thus

dE1 + dE2 + p1dV1 + p2dV2 = 0 (7.22)

or
dH1 + dH2 = dH = 0 . (7.23)

The enthalpy is conserved throughout the process. Note that the change in the number
of particles of each subsystem dN1 = −dN2 < 0 does not contribute to dE or dH, since
the system is in equilibrium. Therefore, µ1 = µ2 = µ and µdN1 + µdN2 = µdN = 0.
The total number of particles is conserved.

The change of temperature associated with a change of pressure at constant enthalpy
H is given by the Joule-Thompson coefficient

µJT =
∂T

∂p

∣∣∣∣
H

=
V

Cp
(αT − 1) .

The total temperature change is then

T2 − T1 =

∫ p2

p1

∂T

∂p

∣∣∣∣
H

dp.
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The observed temperature change is known as Joule-Thompson effect. In an ideal gas
we have α = 1/T , since the enthalpy depends only on the temperature. No temperature
change can occur because ∆H = 0. In real gases the Joule-Thompson coefficient changes
sign as a function of T , becoming positive only at low temperatures, below the so-called
inversion point. For µJT > 0 we have a temperature drop upon pressure drop. Therefore,
in order that the Joule-Thompson expansion becomes effective as cooler, the gas must
already be below the inversion temperature where µJT = 0.

Since dH = 0 and dN = 0, we have

dH = TdS + V dp = 0 , (7.24)

which implies
∂S

∂p

∣∣∣∣
H,N

= −V
T
< 0 . (7.25)

The process is obviously irreversible, since

∆S = −V
T
∆p > 0 for ∆p = p2 − p1 < 0 . (7.26)

Finally, we observe that any change of pressure occurring spontaneously is negative, as
expected.

7.3 Adiabatic expansion in vacuum

A further important irreversible process is the adiabatic (δQ = 0) expansion into an
evacuated chamber having pressure p2 = 0. In order that the process takes place quasi-
statically, and that the system remains always in equilibrium, we can device the system
illustrated above, which involves a small valve or a porous media. Before opening the
valve, we have V = V1 and p = p1. In the final state we have V = V2. The external
pressure is p2 → 0. In this case we have both δQ = 0 and δW = 0, which implies dE = 0.
The energy of the gas is conserved. The temperature change can be calculated from

T2 − T1 =

∫ V2

V1

∂T

∂V

∣∣∣∣
E

dV.

The rate of temperature change at constant energy can be expressed in terms of known
properties. Our starting point is

∂T

∂V

∣∣∣∣
E

=
∂(T,E)

∂(V,E)
=
∂(T,E)

∂(V, T )

∂(V, T )

∂(V,E)
= − 1

CV

∂E

∂V

∣∣∣∣
T

.

Moreover
dE = TdS − pdV ⇒ ∂E

∂V

∣∣∣∣
T

= T
∂S

∂V

∣∣∣∣
T

− p
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and
dF = −SdT − pdV ⇒ ∂S

∂V

∣∣∣∣
T

=
∂p

∂T

∣∣∣∣
V

.

Combining these relations we obtain

∂E

∂V

∣∣∣∣
T

= T
∂p

∂T

∣∣∣∣
V

− p

and finally
∂T

∂V

∣∣∣∣
E

=
1

CV

[
p− T

∂p

∂T

∣∣∣∣
V

]
.

Again, for an ideal gas there is no effect, since at constant V, p depends linearly on T
and thus ∂T

∂V

∣∣
E
= 0. In principle, one can find both signs for ∂T

∂V

∣∣
E
. However, in diluted

real gases we always see a cooling. In fact, the van der Waals interactions between gas
molecules are attractive at long distances. Consequently, increasing the volume implies
an increase of the average interparticle distance. This raises the potential energy and by
energy conservation lowers the kinetic energy. The equipartition theorem implies that
the temperature must decrease.

Before closing this section, we may calculate the entropy change following an energy
conserving expansion:

dE = TdS − pdV = 0 ⇒ ∂S

∂V

∣∣∣∣
E,N

=
p

T
> 0

and
∆S =

p

T
∆V.

As expected, any spontaneous volume change into vacuum must be positive. The process
is irreversible, since ∆S > 0.
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8 The Nernst theorem: The Third law of thermodynamics

In 1905 Walther Nernst postulated that the entropy of any system at absolute zero
temperature is a universal constant, which may be taken to be zero. This postulate, which
he actually formulated in other terms, was inferred from experiments at temperatures
of the order of 1 K. For example, one observed that the changes in enthalpy H and in
free enthalpy G = H − TS in isothermal and isobaric processes become equal as T → 0.
Indeed, since ∆G = ∆H − T∆S for constant T,∆H = ∆G implies ∆S = 0. Moreover,
since ∂G

∂T

∣∣
p
= −S, the fact that ∂G

∂T

∣∣
p
→ 0 for T → 0 was used to infer that S → 0 for

T → 0. This important fundamental property is general in two respects:

i) It holds for any system and any substance, and

ii) it holds irrespectively of the values of any other additive constants of motion fi =
E, V or N or intensive properties αi = p or µ, on which S usually depends.

Therefore, it is easy to imagine that the third law of thermodynamics has many far
reaching consequences. In the following, we shall demonstrate this important result.
Furthermore, we discuss the conditions for its validity from the point of view of statistical
mechanics, which provides an unambiguous microscopic definition of S.

Let us consider the canonical density operator

ρ̂c =
e−βĤ

Tr{e−βĤ}
=

+∞∑
n=0

e−βEn |n⟩⟨n|

+∞∑
n=0

e−βEn

=

P̂0 +
∑
n

En>E0

e−β(En−E0)|n⟩⟨n|

g +
∑
n

En>E0

e−β(En−E0)
,

where

P̂0 =

g∑
i=1

|i⟩⟨i|

is the projector operator on the g-dimensional subspace spanned by the states having the
lowest energy E0 (P̂ 2

0 = P̂0). The degeneracy of the ground state is denoted by g, i.e.,
Ei = E0 for i = 1, . . . , g. In the limit of T → 0 (i.e., β → ∞) we have

ρ̂c(T = 0) =
1

g
P̂0 =

1

g

g∑
i=1

|i⟩⟨i|,

which implies that the system is found in the ground-state subspace. In this case the
entropy is given by

S0 = −kB⟨ln ρ̂⟩ = kB ln g .

Very often the ground state is non-degenerate (i.e., g = 1), in which case S0 = 0 irrespec-
tively of the other thermodynamic variables (e.g., V , N , p or µ). However, there are also
many situations where g > 1. They deserve a more detailed consideration. For example,
if a system has an odd number of electrons, its ground state has a non-vanishing half-
integer total spin s ≥ 1/2 which, combined with the orbital angular momentum l, yields
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a half-integer total angular momentum j⃗ = s⃗ + l⃗. This implies a finite 2j + 1 ground-
state degeneracy as a consequence of rotational invariance. In general, time-inversion
symmetry requires that the ground state is at least twofold degenerate when the number
of electrons is odd. Although in these cases the ground-state entropy S0 = kB ln(2j + 1)
or S0 = kB ln 2 is finite, its value is negligible in comparison with the entropy of a macro-
scopic system at any finite T since the latter is an extensive property proportional to the
system size. Apart from this, there are special situations where a higher ground state
degeneracy g ∝ N is obtained. This is the case, for example, in a spin-rotational invari-
ant electronic system having a ferromagnetic ground state, where the total spin angular
momentum s and the degeneracy g = 2s+ 1 grow linearly with the number of atoms N
(e.g., s ∝ N in a saturated ferromagnetic solid). But even in these cases the ground-state
entropy per particle S0/N ∝ lnN/N and the proportion S0/S(T ) of S0 relative to the
entropy at any finite T tend to zero when N → ∞. In addition, it should be noted that
these cases are not truly relevant in practice. In fact, spin-orbit interactions introduce
magnetic anisotropy which removes the 2s + 1 spin-rotational degeneracy of ferromag-
netic materials. Moreover, the total orbital momentum j⃗ = s⃗+ l⃗ is not conserved, since
the solid is usually fixed to the laboratory frame. Only the time inversion symmetry and
possibly some finite point-group symmetries are left, which yield a finite N -independent
g. Therefore, we conclude that the additive or extensive part of the entropy is always
zero as T → 0, irrespectively of the values of all other thermodynamic quantities (V , N ,
p, µ, etc.).

8.1 Some experimental consequences

The third principle of thermodynamics has far reaching repercussions, which can be
directly observed in experiments. From an historical perspective, the conclusions to be
derived below are some of the observations that guided Nernst to infer and postulate his
principle.

An immediate consequence of the third principle is that any heat capacity vanishes at
T = 0. Consider some reversible path R connecting the T = 0 equilibrium state with
some finite-temperature macrostate A whose entropy S(A) we want to calculate. Since

∂S

∂T

∣∣∣∣
R

=
CR

T

we have

S(A) =

∫ TA

0

CR

T
dT.

Since S(A) is well defined and finite, CR
T needs to be integrable in [0, TA]. This implies

that
CR

T→0−−−→ 0.

In particular CV → 0 and Cp → 0 for T → 0, a result verified by all experiments done
so far.
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A further consequence of the third principle is that the thermal expansion coefficients
α of all substances vanish for T → 0. Since S(T =0) = 0 we can write

S(T ) =

∫ T

0

Cp

T ′ dT
′,

where the integration path is isobaric ( ∂S∂T
∣∣
p
=

Cp

T ). Moreover, we know that

V α =
∂V

∂T

∣∣∣∣
p

= −∂S
∂p

∣∣∣∣
T

= − ∂

∂p

(∫ T

0

Cp

T ′ dT
′
) ∣∣∣∣

T

= −
∫ T

0

∂Cp

∂p

∣∣∣∣
T

dT ′

T ′ . (8.1)

Taking into account that

Cp

T
=
∂S

∂T

∣∣∣∣
p

⇒ 1

T

∂Cp

∂p

∣∣∣∣
T

=
∂

∂T

(
∂S

∂p

∣∣∣∣
T

) ∣∣∣∣
p

= − ∂

∂T

(
∂V

∂T

) ∣∣∣∣
p

= −∂
2V

∂T 2

∣∣∣∣
p

.

Substituting in Eq. (8.1), we finally obtain

V α =

∫ T

0

∂2V

∂T 2

∣∣∣∣
p

dT ′ =
∂V

∂T

∣∣∣∣
p

(T )− ∂V

∂T

∣∣∣∣
p

(0)
T→0−−−→ 0.

This proves the statement. Moreover, from the previous relations (6.6), (6.7) and (6.22)
we have

α

κT
=
∂p

∂T

∣∣∣∣
V

=
∂S

∂V

∣∣∣∣
T

T→0−−−→ 0.

In the above derivation it is irrelevant whether N or µ are kept constant. Thus, S is
independent of V for T → 0. A similar argument involving the charge compressibility κc
shows that ∂S

∂N

∣∣
T

T→0−−−→ 0 (see exercise).

On these thermodynamic grounds, we conclude that S(T, V,N) is independent of V
and N at T = 0. This result alone already allows us to choose the value of the this
universal constant equal to zero, even without any further microscopic explanation.

Exercise 8.15: Show that ∂S
∂N

∣∣
T

= −α/κc. Consider ∂µ
∂T

∣∣
V,N

and work it out using the
Jacobi determinant method as in Eq. (6.22). Conclude that S is independent of N for
T → 0.

8.2 Approaching T = 0 in experiment

A further important consequence of the third principle of thermodynamics —in partic-
ular, of the fact that the T = 0 entropy is independent of all other thermodynamic

126



variables— is the impossibility to reach the absolute zero of temperature in experiment.
It is easy to show that an infinite number of intermediate thermodynamic processes
would be necessary in order to succeed. Only if the number of intermediate steps tends
to infinite one is able to come arbitrarily close to the T = 0 state, without ever reaching
it.

The basic reasoning goes as follows. Since S = 0 independently of any other ther-
modynamic variables and of the details of the system, we must have that all curves in
the (S, T ) diagram corresponding to any constant value of a thermodynamic variable P
(e.g., pressure or volume) merge at T = 0 in order to yield S = 0. This is illustrated in
Fig. 6(a). In contrast, the situations illustrated in Figs. 6(b) and 6(c) are not possible,
since they would contradict the third law.

Figure 6: (a) Schematic curves corresponding to different constant values of some ther-
modynamic variable P (e.g., P = p or P = V ) in an (S, T ) diagram. Notice
the convergence of all constant-P curves to the same entropy S = 0 for T = 0.
(b) Unphysical (S, T ) diagram since it implies that S depends on the thermo-
dynamic variable P at T = 0. (c) Unphysical (S, T ) diagram since it implies
that ∂S/∂T = 0 for T ≥ 0.

One can imagine, for example, an isoentropic cooling from p = p1 to p = p2 (vertical
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line) but then, in order to be able to achieve further cooling, one should reduce the
entropy. This can be done at best via an isothermal process, since (after some point) no
thermal bath cooler than the system can be found (horizontal line). Since the values of
P must be finite, the isothermal process leaves the system at some finite value of p = p1.
From there, a new isoentropic cooling can be made. In order to reach T = 0 (or even
to approach T = 0 arbitrarily close) one would need an infinite number of constant T ,
constant S processes. Notice that this would not be necessary if all the constant-P curves
in the (S, T ) diagram would not converge to the same value of S at T = 0, as illustrated
in Fig. 6(b).
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9 The principle of indistinguishability of identical particles

Before discussing the properties of macroscopic systems at low temperatures and assess-
ing the limitations of classical statistical mechanics, it is absolutely necessary to recall the
principle of indistinguishability of identical particles and its consequences on the sym-
metry of many-body wave functions. In classical mechanics the particles preserve their
identity despite having the same physical properties. A numbering is possible without
altering the mechanical behavior in any significant respect. This allows us in principle
to follow the trajectory of each particle along its path. This reasoning applies to any
number of particles and in particular to particles that are identical in all respects. For
example, from a classical perspective a state in which particle 1 has a position and mo-
mentum (q, p) and particle 2 has the coordinates (q′, p′) is fundamentally distinct for the
case in which particle 1 is in state (q′, p′) and particle 2 in state (q, p).

In quantum mechanics the situation is entirely different, since the motion of determin-
istic path ceases to exist as a consequence of the Heisenberg uncertainty principle. Even
if a labeling of the particles is attempted by measuring all the positions of each particle
with arbitrary accuracy at some time t, it is not possible to track the position of the
particles at any future time t′ > t. In fact, the coordinates have no definite values even
at times t′ arbitrarily close to t. Suppose that we localize (measure the position) of a
particle at a given time t′ > t. It would then be impossible to say which particle among
the initial N ones has arrived at this point. This is clearly illustrated by the following
scattering experiment:

[Picture]

In quantum mechanics identical particles entirely lose their individuality. They are
completely indistinguishable. No experimental measurement can ever remove this indis-
tinguishability. This fundamental principle of indistinguishability of identical particles
has many far reaching consequences.

Consider two observers O and O′ who attempt to defy the principle of indistinguisha-
bility by preparing two experiments, adopting different conventions for labeling the elec-
tronic coordinates. For example, the scattering between two electronic wave packets is
prepared. According to O electron 1, in the wave packet |a⟩, interacts with electron 2
in the wave packet |b⟩. The corresponding state considered by O is |ψ⟩ with coordinate
wave function ⟨x1, x2|ψ⟩ = ψ(x1, x2). According to observer O′, electron 2 is the one in
state |a⟩, while electron 1 is in state |b⟩. The corresponding two particle state is |ψ′⟩ with
wave function ⟨x1, x2|ψ′⟩ = ψ′(x1, x2). The principle of indistinguishability of identical
particles states that |ψ⟩ and |ψ′⟩ are two equivalent representations of the same physical
state. No measurement can ever make the difference between |ψ⟩ and |ψ′⟩. This means
no more and no less that for any state |β⟩ the probability of finding |ψ⟩ in |β⟩ is the same
as the probability of finding |ψ′⟩ in |β⟩:

|⟨β|ψ⟩|2 =
∣∣⟨β|ψ′⟩

∣∣2
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for any |β⟩. Setting
|β⟩ = |ψ⟩

we have
|⟨ψ|ψ⟩|2 = 1 = |⟨ψ|ψ′⟩|2

and setting |β⟩ = |ψ′⟩ we have

|⟨ψ|ψ′⟩|2 = 1 = |⟨ψ|ψ′⟩|2 .

It is easy to see that two vectors having a norm equal to 1 and an overlap with absolute
value equal to 1 must be collinear. This implies

|ψ′⟩ = eiα|ψ⟩ .

Consequently,

⟨x1, x2|ψ′⟩ = ψ′(x1, x2) = eiαψ(x1, x2) = ⟨x1, x2|ψ⟩ .

Repeating the interchange, we obtain

ψ(x1, x2) = eiαψ(x2, x1) = e2iαψ(x1, x2) ∀x1, x2
⇒ e2iα = 1 ⇒ eiα = ±1

Consequently
ψ(x1, x2) = ±ψ(x2, x1).

Obviously, the same sign must hold for any two particles of the same kind.

Applying the previous argument two any two particles belonging to a larger N -particle
system we have

ψ(x1, . . . , xi, . . . , xj , . . . , xN ) = ±ψ(x1, . . . , xj , . . . , xi, . . . , xN )

for all i and j. The particles in nature are thus divided in two disjoint groups: the
particles having fully symmetric wave functions (+ sign), which are called bosons, and the
particles having fully antisymmetric wave functions (− sign), which are called fermions.
The property of being a boson or a fermion is an intrinsic property of any particle.
It can be shown experimentally that there is a one-to-one correspondence between the
bosonic or fermionic character and integer or half integer nature of the particles’ intrinsic
spin. Bosons have integer spin, while fermions have half-integer spin. Most elementary
particles are fermions (e−, p+, n, e+). Photons and most elementary excitations in
condensed matter are bosons (phonons, magnons, etc.).

Complex particles, for example, atoms, molecules or nuclei have fermionic character
if the number of fermions constituting them (elementary particles) is odd. Otherwise,
they show bosonic character. For instance, 3He atoms are fermions while 4He atoms are
bosons. As we shall see, this has crucial consequences for the thermodynamic properties
at low temperatures.
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The exchange or transposition of the coordinates of two particles i and j is a particular
case of the most general permutation of N coordinates x1, . . . , xN . A permutation P :
[1, N ] → [1, N ] in the natural interval [1, N ] is a bijective function within [1, N ]. We may
denote it by (

1 2 . . . N
P (1) P (2) . . . P (N)

)
or simply by P = [P (1), P (2), . . . , P (N)]. For example, a transposition corresponds to(

1 . . . i . . . j . . . N
1 . . . j . . . i . . . N

)
.

It is very useful to define the order of a permutation P , which we denote by O(P ) = p,
as the number of transpositions required to bring the sequence [P (1), P (2)...P (N)] to
the normal order [1, 2, ...N ]. For example(

1 2 3
1 3 2

)
has p = 1

and (
1 2 3
3 1 2

)
has p = 2.

A simple transposition has always p = 1. One may easily convince oneself that p corre-
sponds to the number line crossing in the diagrams of the form(

1 2 . . . N
P (1) P (2) . . . P (N)

)
, (9.1)

where the lines connect the numbers i on the upper row with P (i) on the lower row.
Knowing that ψ(x1, . . . xi, . . . , xj , . . . xN ) = ±ψ(x1, . . . , xj , . . . , xi, . . . xN ) we conclude
that

ψ(xP (1), xP (2), . . . , xP (N)) = ψ(x1, x2, . . . , xN )

for bosons and
ψ(xP (1), . . . , xP (N)) = (−1)pψ(x1, . . . , xN )

for fermions. Functions with these properties are said to be fully symmetric (bosons) or
fully antisymmetric (fermions).

9.1 Many-particle wave functions

The superposition principle states that any linear combination of two quantum mechan-
ical states |ψ1⟩ and |ψ2⟩ is a possible state. Therefore, all the wave functions of a system
of N identical particles must have the same fermionic or bosonic character. Otherwise
the linear combination would have no defined symmetry. In particular, the basis states
must be fully antisymmetric or symmetric. We seek for a simple complete basis set
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for fermions and bosons, in terms of which we can compute the partition functions and
statistical averages of systems of identical particles.

Consider an arbitrary complete set of orthonormal single-particle wave functions or
spin-orbitals

{φ1(x), φ2(x), . . . } = {φα with α = 1, 2, . . . } ,

where ∑
α

φ∗
α(x)φα(x

′) = δ(x− x′)

and ∫
φ∗
α(x)φβ(x) dx = δαβ.

For simplicity, we introduce the notation xi ≡ r⃗i for the spatial coordinates of spinless
particles, and also xi ≡ (r⃗i, σi) for particles having a spin variable σi (e.g., electrons).
Consequently, the delta functions and integrals are to be interpreted as

δ(x− x′) = δ(3)(r⃗ − r⃗′) δσσ′

and ∫
. . . dx =

∑
σ

∫
. . . d3r.

Since the set {ϕα(x)} is a complete set for single-variable functions, any N variable
function can be expanded as a linear combination of simple products of the form

φk1(x1), φk2(x2), . . . , φkN (xN ).

However, simple products are not appropriate N -particle basis wave functions, since
they are neither symmetric nor antisymmetric. In other words, simple products are
not physically acceptable states for identical particles. It is, however, simple to obtain
a complete basis set appropriate for fermions or bosons by symmetrizing the products
φk1 , . . . , φkN .

Exercise 9.16: Show that ψ(x1, . . . , xN ) as given by Eq. (9.2) fulfills the required anti-
symmetry properties of fermion wave functions.

132



9.2 Fermions

In the case of fermions, the simplest fully antisymmetric wave functions that can be
constructed from a single product reads

ψ(x1, . . . , xN ) =
1√
N !

∑
P

(−1)pφkP (1)
(x1)φkP (2)

(x2) . . . φkP (N)
(xN )

=
1√
N !

∑
P

(−1)pφk1(xP (1))φk2(xP (2)) . . . φkN (xP (N))

=
1√
N !

∣∣∣∣∣∣∣
φk1(x1) . . . φk1(xN )

...
φkN (x1) . . . φkN (xN )

∣∣∣∣∣∣∣ . (9.2)

These functions are known as Slater determinants. Each Slater determinant is univocally
defined by specifying the occupation numbers nα of each single-particle spin-orbital φα,
i.e., by specifying whether α appears in the list k1, k2, . . . kN , in which case nα = 1, or not,
in which case nα = 0. The phase ambiguity is removed by requiring k1 < k2 < · · · < kN .
Notice that Ψ = 0 if any of the single-particle orbitals is occupied twice. The Pauli
exclusion principle imposes nα = 0 or 1 for fermions. Let us recall that the single
particle states φα(x) concern both spatial coordinates r⃗i and the spin variables σi. We
may thus write

Ψk1,...,kN (x1, . . . , xN ) = ⟨x1, . . . , xN |n1, n2 . . . ⟩ ,
where nα = 1 for α = k1, k2, . . . , kN , and nα = 0 otherwise. From the occupation-number
perspective, the following notation for the Slater-determinant wave function seems more
appropriate:

Ψ{nα}(x1, . . . , xN ) = ⟨x1, . . . , xN |n1, n2 . . . ⟩ ,
where |n1, n2 . . . ⟩ is the N -fermion ket corresponding to the occupation numbers nα =
0, 1 and

∑
α nα = N . It is easy to verify that the Slater determinants are properly nor-

malized and that two Slater determinants are orthogonal unless all occupation numbers
coincide:

⟨n1, n2, . . . |n′1, n′2, . . . ⟩ =
∫
dx1 . . . dxN Ψ∗

{nα}(x1, . . . , xN )Ψ{n′
α}(x1, . . . , xN )

= δn1n′
1
δn2n′

2
. . . δn∞n′

∞ .

Once we have the orthonormal many-body basis |n1, n2, . . . ⟩ or ψ{nα}(x1, . . . , xN ), we
can compute the trace of any operator Ô in the Hilbert space of fermion states having
an arbitrary number of particles:

Tr{Ô} =
∑
{nα}

⟨n1, n2, . . . |Ô|n1, n2, . . . ⟩

=

1∑
n1=0

1∑
n2=0

· · ·
1∑

nα=0

. . . ⟨n1, n2, . . . |Ô|n1, n2, . . . ⟩ ,
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where

⟨n1, n2, . . . |Ô|n1, n2, . . . ⟩ =
∫
dx1 . . . dxN Ψ∗

{nα}(x1, . . . , xN ) ÔΨ{nα}(x1, . . . , xN ) .

For example, the grand canonical partition function is given by

Zgc =
1∑

n1=0

1∑
n2=0

· · ·
1∑

nα=0

. . . ⟨n1, n2, . . . |e−β(Ĥ−µN̂)|n1, n2, . . . ⟩ .

Of course, in the case of a canonical partition function the constraint Σαnα = N must
be enforced.

An alternative way to compute the trace is to sum over all possible choices of the N
occupied orbitals (i.e., the orbitals appearing in the product φk1 , . . . , φkN ) and to correct
for the multiple appearance of the same set of orbitals. In the case of fermions all non-
allowed products showing the same orbitals two or more times are automatically ignored,
since the corresponding Slater determinant is zero. However, if one sums over each value
of ki independently, one obtains N ! times the same set of orbitals. Therefore we have

Tr{Ô} =
1

N !

∞∑
k1=1

· · ·
∞∑

kN=1

∫
dx1 . . . dxN Ψk1,...,kN (x1, . . . , xN )∗ ÔΨk1,...,kN (x1, . . . , xN ) .

This form is more appropriate for the canonical ensemble, where the number of particles
is fixed.

9.3 Bosons

In the case of bosons, the fully symmetric wave function obtained from a simple product
of single-particle orbitals looks even simpler than the Slater determinant. It can be
written as

Φ̃s
k1,...,kN

(x1, . . . , xN ) =
1√
N !

∑
P

φkP (1)
(x1) . . . φkP (N)

(xN )

=
1√
N !

∑
P

φk1(xP (1)) . . . φkN (xP (N))

= Φ̃s
{nα}(x1, . . . , xN ).

It is easy to see that Φ̃s(xQ(1), . . . , xQ(N)) = Φ̃s(x1, . . . , xN ) for any permutation Q.
Moreover, ∫ (

Φ̃s
{nα}

)∗
Φ̃s
{n′

α} dx1 . . . dxN = 0

unless the occupation numbers nα = n′α are the same ∀α. Indeed, if this is not the
case one of the integrals

∫
φ∗
i (x)φj(x) dx = 0. The form of Φ̃s is appealing, since
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it is the same as the Slater determinant except for the phase factor (−1)p. However,
it has the inconvenience of not being normalized to 1. In fact in the

∑
P there are

n1!n2! . . . nα! · · · =
∏

α nα! terms which are exactly the same. They correspond to the
permutations of the indices kP (i) among the ki corresponding to the same single-particle
orbital α. The properly normalized fully symmetric states are therefore given by

Φs
{nα}(x1, . . . , xN ) =

Φ̃s(x1, . . . , xN )√∏
α nα!

.

This can also be written as

Φs
{nα}(x1, . . . , xN ) =

√∏
α nα!

N !

∑
P̸=k

ϕkP (1)
(x1) . . . ϕkP (N)

(xN )

where
∑

P̸=k
is the sum over all possible permutations of the indices i = 1, . . . , N such

that kP (i) ̸= ki for some i. In other words, in
∑

P ̸=k
only permutations which actually

change the product are taken into account. There are N !/(
∏

α nα!) such permutations,
since the number of permutations among indices corresponding to the same orbitals is∏

α nα!.

As in the case of fermions, indistinguishability implies that the many-particle state or
wave function is univocally defined by the occupation numbers {nα} = n1, n2 . . . . We
therefore introduce the bosons kets |n1, n2, . . . ⟩ corresponding to the occupation numbers
{nα}, which are defined by

⟨x1, . . . , xN |n1, n2 . . . ⟩ = Φs
{nα}(x1, . . . , xN ).

It is easy to see that

⟨n1, n2, . . . |n′1, n′2, . . . ⟩ = δn1n′
1
δn2n′

2
. . . δnαn′

α
. . .

for all {nα} and all N =
∑

α nα, since Φs
{nα} is normalized to 1.

Once we have the orthonormal many-body basis |n1, n2, . . . ⟩ or Φs
{nα}(x1, . . . , xN ) we

can compute the trace of any operator Ô as

Tr{Ô} =
∑
{nα}

⟨n1, n2, . . . |Ô|n1, n2, . . . ⟩ =
∞∑

n1=0

· · ·
∞∑

nα=0

. . . ⟨n1, n2, . . . |Ô|n1, n2, . . . ⟩ ,

where

⟨n1, n2, . . . |Ô|n1, n2, . . . ⟩ =
∫
dx1 . . . dxN Φs

{nα}(x1, . . . , xN )∗ ÔΦs
{nα}(x1, . . . , xN ).

Notice that each term in the sum corresponds to a distinct many-body state. It is
therefore important that |n1, n2, . . . ⟩ and Φs

{nα}(x1, . . . , xN ) are normalized to 1. For
example, the grand canonical partition function is given by

Zgc =

∞∑
n1=0

· · ·
∞∑

nα=0

. . . ⟨n1, n2, . . . |e−β(Ĥ−µN̂)|n1, n2, . . . ⟩.
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In this case there are no restrictions on the total number of bosons N =
∑

α nα. Calcu-
lating the canonical partition function Zc would be more complicated, since one would
need to impose the constraint

∑
α nα = N on the occupation numbers.

An alternative way of computing the trace is to sum over all orbitals indices k1, k2, . . . , kN
independently (not occupation numbers!) and to correct for the multiple appearances.
In the case of bosons the number of times that the same product of orbitals φk1 , . . . , φkN

appears is given by N !
n1!n2!...n∞! =

N !∏
α nα!

, which is the number of permutations between
the indices ki having different values, i.e., ki ̸= kP (i) for some i. We therefore have

Tr{Ô} =
∞∑

k1=1

· · ·
∞∑

kN=1

Π
α
nα!

N !

∫
dx1 . . . dxN Φs

k1,...kN
(x1, . . . , xN )∗ ÔΦs

k1,...kN
(x1, . . . , xN ).

At first sight this seems quite inconvenient, since the factor
∏

α nα! depends on the values
of k1, k2, . . . , kN in a complicated way. However, the expression simplifies remarkably if
we recall that

Φ̃s
k1,...kN

(x1, . . . , xN ) =

√∏
α

nα! Φ
s
k1,...kN

(x1, . . . , xN ) (9.3)

=
1√
N !

∑
P

φk1(xP (1)) . . . φkN (xP (N)). (9.4)

We finally conclude that

Tr{Ô} =
1

N !

∞∑
k1=1

· · ·
∞∑

kN=1

∫
dx1 . . . dxN Φ̃s

k1,...kN
(x1, . . . , xN )∗ Ô Φ̃s

k1,...kN
(x1, . . . , xN ) ,

(9.5)
which has the same form as in the case of fermions. Only the phase factor (−1)p is
replaced by (+1)p = 1 in the sum over all permutations P .

These two ways of computing Tr{Ô} should not be confused. In one case,
∑

{nα},
each term of the sum corresponds to a different many-body state, and the kets or wave
functions involved must be normalized to 1. In the other case,

∑
k1
· · ·
∑

kN
, the boson

wave-functions are not necessarily normalized to one. There are states which appear
more that once in the sum, which is corrected by the factor 1/N ! and the square norm∏

α nα! of the wave functions Φ̃s
k1,...kN

(x1, . . . , xN ) used to calculate the averages. Thus,
the prefactor 1/N ! does not come exclusively from the normalization of the N -particle
wave functions.
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Exercise 9.17: Consider the Hamilton operator

Ĥ =
N∑
i=1

ĥ(xi)

of N non-interacting identical particles. For example, Ĥ =
N∑
i=1

p̂2i
2m . Note that ĥ(x) is

the same for all particles, since they are identical. Let φk(x) with k = 1, 2, . . . be the
eigenfunctions of ĥ: ĥφk = εkφk. Show that any simple product

π(x1, . . . , xN ) = φk1(x1)φk2(x2) . . . φkN (xN )

is an eigenfunction of Ĥ with eigenenergy E =
N∑
i=1

εki . Is π(x1, . . . , xN ) an ap-

propriate wave function in some particular case? Show that the fully symmetrized
and antisymmetrized functions ψ±(x1, . . . , xN ) obtained from π are either zero or are
eigenfunctions of Ĥ with the same energy E. Conclude that Ĥ|n1, n2, . . . n∞⟩ =( ∞∑

α=1
nαεα

)
|n1, n2, . . . n∞⟩, where |n1, n2, . . . , n∞⟩ is the state with definite occupa-

tion numbers nα of all orbitals φα [⟨x1, x2, . . . , xN |n1, n2, . . . , n∞⟩ = Ψ±(x1, . . . , xN )].

Exercise 9.18: Consider a degenerate energy level with degeneracy g, which is occupied by
n particles (0 ≤ n ≤ g). Calculate the number of possible quantum states Ωg(n) for n
identical fermions, n identical bosons and n distinguishable particles. What would be the
result for "correct Boltzmann counting"? Are there any cases in which Ωg(n) is the same
for all the three situations? When? Interpret physically.
Repeat the exercise by calculating the number of quantum states Ω({ni}) for the case
in which several different groups of levels i, each with degeneracy gi, are occupied by
ni particles each (

∑
i ni = N). Express S = ln(Ω) in terms of the gi and the average

occupation numbers νi = ni/gi. Analyze interesting limiting cases for Fermions, Bosons
and Boltzmann particles. When do the results for different statistics coincide? Interpret
the result physically.
Note: Correct Boltzmann counting corresponds to assuming that the particles are distin-
guishable, as in classical mechanics, dividing a posteriori the number of states simply by
N !, where N is the number of particles, in order to mimic indistinguishability.
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Exercise 9.19:: Identity of particles:

i) Given a complete orthonormal single-variable basis set {φα(x), α = 1, 2, . . . } satis-
fying ∑

α

φα(x)
∗ φα(x

′) = δ(x− x′)

and ∫
φα(x)

∗ φβ(x) dx = δαβ ,

it is always possible to expand an N variable function Ψ in the form

Ψ(x1 . . . xN ) =
∞∑

k1=1

· · ·
∞∑

kN=1

c(k1, . . . , kN )φk1(x1) . . . φkN (xN ) .

a) Consider now the case where Ψ(x1, . . . , xN ) is an N -particle fermionic wave
function. Show that

c(k1, . . . ki . . . kj . . . kN ) = −c(k1, . . . kj . . . ki . . . kN ).

for all i and j. Conclude that two fermions can never occupy the same single-
particle state or spin-orbital (Pauli exclusion principle). Remember that the
index ki (or α) defines the single-particle state completely, i.e., it includes the
spin variable.

b) Show that c(kP (1), . . . , kP (N)) = (−1)p c(k1, . . . , kN ) for an arbitrary permuta-
tion P , where p is the order of P . Conclude that for each choice of occupations
n1, n2, . . . with nα = 0, 1 and

∑
α nα = N , there is only one independent co-

efficient, for instance,

c(k1 < k2 < · · · < kN ) = c(n1, . . . nα, . . . ).

c) Consider now the case where Ψ(x1, . . . , xN ) is an N -particle bosonic wave
function. Show that

c(k1, . . . ki . . . kj . . . kN ) = c(k1, . . . kj . . . ki . . . kN )

for all i, j. Generalize the statement to an arbitrary permutation of the indices:

c(kP (1) . . . kP (N)) = c(k1, . . . kN ) ∀P.

Conclude that for a given choice of orbital occupations n1, n2, . . . with
∑

α nα = N ,
all the coefficient are the same. In other words, for each set of nα there is only one
independent coefficient c(n1, n2, . . . , nα, . . . ).
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ii) Consider the Slater determinant or fully antisymmetric single-product state

Φ{nα}(x1, . . . , xN ) =
1√
N !

∑
P

(−1)pφkP (1)
(x1) . . . φkP (N)

(xN ) ,

where k1, . . . , kN are the occupied orbitals (i.e., nα = 1 for α = k1, . . . , kN ) and
the sum runs over all permutations P having order p. Show that Φ{nα}(x1, . . . , xN )
is normalized to 1 provided that the single-particle orbital φα(x) are orthonormal
and ki ̸= kj for all i, j. Show that Φ{nα} = 0 if ki = kj for some i and j.

iii) Consider the symmetrized bosonic single product state

Φ̃s
{nα} =

1√
N !

∑
P

φkP (1)
(x1) . . . φkP (N)

(xN )

for certain occupation numbers nα satisfying
∑

α nα = N .
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10 The classical limit

In the previous section we have found closed expressions for the trace of any operator
Ô according to the laws of quantum mechanics and the principle of indistinguishable
identical particles. In principle every real system should be described in terms of the
corresponding symmetrized or antisymmetrized many-body quantum states. However,
in many cases of interest the quantum mechanical description is superfluous. We would
like to derive the classical approach to statistical mechanics, in which, according to the
classical picture, the state of the system is defined by specifying the positions r⃗1, . . . , r⃗N
and the momenta p⃗1, . . . , p⃗N of each particle. This is formally achieved by starting from
the quantum expression for the partition function Z for fermions and bosons and taking
the limit ℏ → 0. An expansion in power of ℏ is thus obtained, in which the zeroth
order term gives Gibbs classical expression for Z, and the higher order terms quantify
the quantum corrections. More important, the derivation allows us to understand how
the classical description emerges from the quantum principles and to delimit the domain
of applicability of classical statistics.

We will show that if the temperature T is sufficiently high or if the density of particles
N/V is sufficiently low (large volume per particle v = V/N) we can approximate the
canonical partition function by

Zc(T, V,N) =
1

N !

1

(2πℏ)3N

∫
dp3Ndq3Ne−βH(p,q) , (10.1)

where H(p, q) is the classical Hamilton function. In Cartesian coordinates this is given
by

H =

N∑
i=1

p2i
2m

+W (r⃗1 . . . r⃗N ) ,

where W (r⃗1, . . . , r⃗N ) = (1/2)
∑
i,j
w(|r⃗i − r⃗j |) +

∑
i
v(r⃗i) is the interaction energy between

the particles and with any external fields.

Before the derivation, it is interesting to discuss the range of validity and consequences
of Eq.(10.1). The classical limit is valid when the average interparticle distance v1/3 =
(V/N)1/3 satisfies

v1/3 =

(
V

N

)1/3

≫ λ, (10.2)

where

λ =
2πℏ√

2πmkBT
=

√
2πℏ2
mkBT

(10.3)

is the thermal de Broglie wavelength. It represents the quantum mechanical uncertainty
in the position of a particle having an uncertainty in the momentum corresponding
to the kinetic energy p2/2m = kBT . In fact, ∆p =

√
⟨p2⟩ =

√
2mkBT ⇒ ∆x ∼

ℏ/∆p = ℏ/
√
2mkBT = λ/2

√
π. Thus, λ, which is proportional to ℏ, can be regarded as
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a physically more appropriate expansion parameter than ℏ itself. In fact, ℏ never goes
to zero. Still, the classical limit is reached for sufficiently large T , since λ ∝ 1/

√
T . If

λ ≪ v1/3 = (V/N)1/3 the particles can be regarded as occupying wave packets, whose
width is of the order of λ. In this limit the overlap between the different wave packets is
nearly zero and the differences between fermionic and bosonic statistics vanish. Indeed, if
the occupied orbitals do not overlap at all [i.e., φα(r⃗)φβ(r⃗) ∼= 0, ∀r⃗ ∈ R3] the probability
of finding a particle at point r⃗ and another particle at point r⃗ ′, usually given by

P (r⃗, r⃗ ′) = ⟨δ(r⃗ − r⃗1) δ(r⃗
′ − r⃗2)⟩ =

∫
dr1 . . . drN |Φ(r⃗1 . . . r⃗N )|2 δ(r⃗ − r⃗1) δ(r⃗

′ − r⃗2)

=

∫
|Φ(r⃗, r⃗ ′, r⃗3 . . . r⃗N )|2dr3 . . . drN ,

takes the simpler form

P (r⃗, r⃗ ′) =
1

N(N − 1)

∑
α ̸=β

|φα(r⃗)|2|φβ(r⃗
′)|2 .

This holds independently of the symmetry of the many-body wave function provided that
φα(r⃗)φβ(r⃗) = 0 for all r⃗, α and β, as already discussed for the case of two particles.

On the opposite limit, T → 0, λ ∝ 1/
√
T diverges, since the momenta of the particles

become well defined (⟨p2⟩ ∼ kBT → 0). In this case the overlap between the occupied
single-particle states is always important (λ ≳ v1/3). Thus, the quantum mechanical
symmetry-correlations resulting from indistinguishability play a central role. One con-
cludes that the classical approximation always breaks down for T → 0, regardless of
the tolerated accuracy by which the classical model may describe the microstates of the
system.

In order to get a feeling of the order of magnitude of the temperature below which
classical statistics fails, we may compute v and λ for electrons in solids and for a typical
atomic gas. Using that 2πℏ = 6, 6 × 10−34Js, me = 9, 1 × 10−31kg, and kB = 1, 4 ×
10−23J/K, we have

T [K] =
(2πℏ)2

2πkB

1

λ2m
=

5× 10−45

λ2[m2]m[kg]
=

5× 10−38

λ2[cm2]m[g]
=

5, 44× 105

λ2[Å2
]m[me]

. (10.4)

In solids we have typically one electron per cubic Å, i.e., v = V/N ≃ 1 Å3. If we set
λ = v1/3 in Eq. (10.4), we obtain that the temperature should be larger than 5, 5×105 K
in order that the classical approximation starts to be applicable. Therefore, electrons in
solids can never be treated classically. The symmetry correlations are always important
in condensed matter. The situation is quite different in not too dense gases with, for
example, (V/N)1/3 = 10 Å and m = Amp, where A is the atomic weight and mp =
1, 76× 103 me the proton mass. In this case, the symmetry of the wave function ceases
to be important for temperatures above T ≃ 3/A K. Lighter atoms are more affected by
quantum effects, since for the same average kinetic energy or temperature the uncertainty
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in momentum is smaller, for instance, A = 4 for He while A = 131 for Xe. If the density
of the gas is lower, one may apply the classical approximation to lower temperatures but
never for T → 0, since in this case λ diverges. The important point, in order that the
symmetry of the many-body wave function (fermionic or bosonic) becomes irrelevant, is
that the probability of finding two particles in the same state should be extremely low. As
we shall see in the exercises, the entropies of Fermi, Bose and Boltzmann gases coincide,
if and only if all the occupation numbers are extremely low. This is only possible for
sufficiently high temperatures or sufficiently low densities.

The classical partition function (10.1) shows important signs of its quantum mechanical
origin, despite the fact that the microstates are characterized by (p, q). The first one is
the factor 1/2πℏ per degree of freedom and the second one is the factor 1/N !, where N
is the number of identical particles. They are both important consequences of the right
(quantum mechanical) counting of the number of (linearly independent) states having
the same energy. The first one tells us that in phase space only one state fits in a volume
element 2πℏ. A factor proportional to 1/ℏ correcting each component of the phase-space
volume element, could have been expected, since we know that each state must have
∆pi∆qi ⩾ ℏ/2. It is not possible to find states occupying a smaller volume in phase
space. Note, moreover, that this factor renders Z dimensionless, as it should.

The second factor tells us that N identical particles having the set of momenta and
coordinates {(p1, q1), (p2, q2), . . . , (pN , qN )} correspond to one and the same state, irre-
spectively of which particle has which (pi, qi). Notice that all N ! permutations of the
coordinates and momenta appear in the integral. Dividing by 1/N ! simply ensures that
these are counted only once. Furthermore, as we shall see, this factor is necessary in
order that the thermodynamic potentials derived from Z are extensive.

10.1 Boltzmann counting

Eq.(10.1) allows us to introduce the so-called correct Boltzmann counting, which corre-
sponds to the correct counting of states in the limit where the symmetry correlations for
fermions or bosons play no role. According to classical mechanics identical particles are
distinguishable. Therefore, from a classical perspective, the states p1, . . . , pN , q1, . . . , qN
and all the permutations of them are distinguishable and should be counted separately
when computing Z. Correct Boltzmann counting means that we consider the particles
as distinguishable for the purpose of computing Z, or the number of accessible states
Ω(E), and that we then divide the result blindly by N !, when the particles are identical.
This does not correspond to Bosons or Fermions. And there is no real particle following
this artificial statistics. Nevertheless, correct Boltzmann counting, or simply Boltzmann
statistics, provides a shortcut for the high temperature and low density limits of quantum
statistics. It is useful for analyzing them.
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10.2 Configurational Integrals

The integration with respect to the momenta in Eq.(10.1) can be done straightforwardly.

Let us recall that
∞∫

−∞
dx e−

x2

2σ2 =
√
2πσ2. Using that

H =
∑
i

p2i
2m

+W (r⃗1 . . . r⃗N )

we have

Zc =
1

N !

∫
d3r1 . . . d

3rN e−βW (r⃗1...r⃗N ) 1

(2πℏ)3N

 ∞∫
−∞

e−β p2

2m dp

3N

,

where
∞∫

−∞

e−β p2

2m dp =
√

2πmkBT =
2πℏ
λ

.

Consequently,

Zc(V, T,N) =
1

N !

∫
d3r1 . . . d

3rN
λ3N

e−βW (r⃗1...r⃗N ), (10.5)

where λ = 2πℏ/
√
2πmkBT . The classical partition functions is therefore given by a

configurational integral over all possible distributions of the particles having e−βW as
weighting factor. Performing such integrals is, however, non trivial.

Using Eq. (10.5) one may show that

CV =
3

2
NkB +

⟨∆W 2⟩
kBT 2

,

where ⟨∆W 2⟩ = ⟨W 2⟩ − ⟨W ⟩2 is the square mean deviation of the interaction energy.
Notice that all types of interactions (attractive or repulsive) lead to an enhancement of
CV . Since the second term cannot be negative, it is clear that CV does not tend to zero
for T → 0. The reasons for the breakdown of the classical approximation have been
discussed.

10.3 Virial and equipartition theorems

Let y be any coordinate or momentum on which H depends. Then we have

− 1

β

∂

∂y
e−βH =

∂H

∂y
e−βH .

This implies 〈
y
∂H

∂y

〉
=

∫
y ∂H

∂y e−βH dpdx∫
e−βH dpdx

= − 1

β

∫
y ∂
∂y e

−βH dpdx∫
e−βH dpdx

.
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Integration by parts gives∫
y
∂

∂y
e−βH dpdx = y e−βH

∣∣∣∣y=∞

y=−∞
−
∫

e−βH dpdx , (10.6)

which implies 〈
y
∂H

∂y

〉
=

1

β
= kBT , (10.7)

provided that e−βH → 0 more rapidly than y for y → ±∞ or at the boundaries of the
volume. This is obviously the case for y = pi. For y = xi we need to incorporate the finite
volume restriction in the form of a single particle potential which constraints the motion
of the particles within V . This cannot be done in the case of free particles. Therefore
Eq.(10.7) is not applicable in the absence of a potential for y = xi.

We take y = pi and obtain y ∂H
∂y = pi

∂H
∂pi

=
p2i
m . Consequently,〈

p2i
2m

〉
=

1

2
kBT. (10.8)

This important relation is known as equipartition theorem. It tells us that in classical
systems the average of each momentum component is equal to kBT

2 , independently of
the particle mass, the nature of the interparticle interactions, or any other parameters
characterizing the equilibrium state, such as system size, pressure, volume or energy. Of
course, the temperature and the kinetic energy per particle depend on all these parame-
ters. In the classical limit, we may therefore associate temperature to the average kinetic
energy of the system.

Example: Consider a close-shell nanoparticle or droplet in which an atom can be pro-
moted from the closed surface shell to above the surface, creating an adatom and a
vacancy. Which configuration is hot? Which one is cold?

Applying (10.7) to y = xi we obtain〈
xi
∂H

∂xi

〉
= −⟨xiṗi⟩ = kBT ,

provided that the boundary contribution to the partial integration can be neglected.
Summing over all degrees of freedom we have

−
3N∑
i=1

〈
xi
∂H

∂xi

〉
=

〈
3N∑
i=1

xiṗi

〉
= −3NkBT = −2

〈∑
i

p2i
2m

〉

and using Eq.(10.8) 〈
3N∑
i=1

xiṗi

〉
= −2⟨Ekin⟩.

This relation is knows as virial theorem.
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Example: Consider a system of N non-interacting particles in a 3D harmonic potential
well:

W =
N∑
i=1

k
r2i
2

⇒ ⟨W ⟩ = −1

2

3N∑
i=1

⟨xiṗi⟩ =
3N

2
kBT = ⟨Ekin⟩ . (10.9)

10.4 The ideal classical gas

We consider a classical system in the absence of interactions. SettingW = 0 in Eq. (10.5),
the canonical partition function is given by

Zc(T, V ;N) =
1

N !

(
V

λ3

)N

=
1

N !
[Zc(T, V, 1)]

N .

Using Stirling’s formula, lnN ! = N ln
(
N
e

)
+O(lnN), we obtain

lnZc = N ln

(
V

λ3

)
−N ln

(
N

e

)
= N ln

(
V

N

e

λ3

)
.

The free energy is thus given by

F (T, V,N) = −NkBT ln

(
e

N

V

λ3

)
.

It is important to remark that the factor 1/N ! in Zc, which is a consequence of the indis-
tinguishability of identical particles, is absolutely necessary in order that F is extensive,
i.e., F (T, αV, αN) = αF (T, V,N). Keeping in mind that λ = 2πℏ/

√
2πmkBT ∼ 1/

√
T ,
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one easily obtains all thermodynamic properties:

p = −∂F
∂V

∣∣∣
T
=
NkBT

V
,

S = −∂F
∂T

= NkB

[(
ln

eV

Nλ3

)
+

3

2

]
= −F

T
+

3

2
NkB ,

E = F + TS =
3

2
NkBT ,

H = E + pV =
5

2
NkBT ,

CV =
∂E

∂T

∣∣∣∣
V

=
3

2
NkB ,

Cp =
∂H

∂T

∣∣∣∣
p

=
5

2
NkB ,

α =
1

V

∂V

∂T

∣∣∣
p
=

1

T
,

κT = − 1

V

∂V

∂p

∣∣∣
T
=

1

p
, and

κS = κT
CV

Cp
=

3

5p
.

The grand canonical partition function is given by

Zgc =
∞∑

N=0

eβµNZc(N) =
∞∑

N=0

zN
1

N !

(
V

λ3

)N

= ezV/λ
3
, (10.10)

where we have introduced the fugacity

z = eβµ ,

which satisfies the following useful relations:

∂z

∂µ
= βz and

∂z

∂β
= µz .

The grand canonical potential reads

Φ(T, V, z) = −kBT
zV

λ3

or

Φ(T, V, µ) = −kBT eβµ
V

λ3
.
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The average number of particles is given by

N = −∂Φ
∂µ

= eβµ
V

λ3
=
zV

λ3
. (10.11)

Using this expression for N we can write

Φ = −NkBT. (10.12)

Moreover, from the definition of Φ (Laplace transformation) we know that Φ = −pV in
general. In the present case Eq. (10.12) implies

pV = NkBT ,

which is the known equation of state of the ideal classical gas.

Finally, as a side comment, one may revisit the ideal classical gas from the perspective
of the grand canonical pressure ensemble and derive the equation of state by imposing
the condition Zgcp = 1 to the intensive variables β, µ and p that define the ensemble.
From (5.37) and using (10.10) we know that Zgcp = 1 implies

βp =
z

λ3
, (10.13)

which involves only intensive quantities and represents the equation of state of the ideal
classical gas, although in an unfamiliar way. In order to rewrite it in the more usual form
we need to calculate the average density ⟨N̂⟩/⟨V ⟩ taking into account volume fluctuations.
To this aim use Eq. (10.11) which holds for any fixed volume V . Therefore, we can take
averages and write

⟨N̂⟩ = z

λ3
⟨V ⟩ .

Replacing this result in Eq. (10.13) we obtain p⟨V ⟩ = ⟨N̂⟩kBT .

10.5 The ideal classical gas in the pressure ensemble

We consider an ideal classical gas which is open with respect to all constants of motion
E, N and V . Its equilibrium density operator

ρ̂gcp = e−β(Ĥ−µN̂+pV ) ,

which must satisfy the normalization condition Zgcp = Tr{ρgcp} = 1. The variables
defining ρgcp are here β, µ and p. They define the average energy per particle E =
⟨Ĥ⟩/⟨N̂⟩ and average volume per particle ⟨V̂ ⟩/⟨N̂⟩. The intensive variables β, µ and p
cannot define the actual size of the system. They are linked by the condition Zgcp = 1
which represents the equation of state of the system. Our goal here is to derive the known
equation of state of the ideal gas from the grand canonical pressure perspective.
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In order to calculate the trace over all possible volumes of the system we introduce
a maximal attainable volume Vm and then remove this constraint by letting Vm tend
to infinity. Thus, Zgcp = Tr{e−β(Ĥ−µN̂+pV )} can be expressed in terms of the already
calculated grand canonical partition function Zgc(V ) = ezV/λ

3 for a fixed volume V as

Zgcp = lim
Vm→∞

1

Vm

∫ Vm

0
e−βpV Zgc(V ) dV

= lim
Vm→∞

1

Vm

∫ Vm

0
e−βpV ezV/λ

3
dV

= lim
Vm→∞

1

Vm

∫ Vm

0
e(z/λ

3−βp)V dV . (10.14)

The normalization of the density matrix (Zgcp = 1) implies that the intensive variables
β, z and p must satisfy the relation

z

λ3
− βp = 0 , (10.15)

since otherwise Zgcp would be zero or diverge. It remains to be shown that this relation
is equivalent to the usual equation of state of the ideal classical gas.

For this purpose we calculate the average number of particles, which is given by

⟨N⟩ = Tr{N̂ ρ̂gcp}

= lim
Vm→∞

1

Vm

∫ Vm

0
e−βpV Tr{N̂ e−β(Ĥ−µN̂)} dV

= lim
Vm→∞

1

Vm

∫ Vm

0
e−βpV Zgc(V )

Tr{N̂ e−β(Ĥ−µN̂)}
Zgc(V )

dV

= lim
Vm→∞

1

Vm

∫ Vm

0
e−βpV Zgc(V )

1

β

∂ lnZgc(V )

∂µ
dV

= lim
Vm→∞

1

Vm

∫ Vm

0
e−βpV Zgc(V )

zV

λ3
dV

=
z

λ3
lim

Vm→∞

1

Vm

∫ Vm

0
V e−βpV Zgc(V ) dV

=
z

λ3
⟨V ⟩ , (10.16)

where we have used that Zgc(V ) = ezV/λ
3 and therefore ∂ lnZgc(V )/∂µ = V

λ3βz. Notice
that ⟨N⟩ is, as expected, proportional to ⟨V ⟩ since the intensive variables β, z and p
can only define densities, not the size of the system. Finally, replacing Eq. (10.15) in
Eq. (10.16) we obtain the equation of state in the usual form

p⟨V ⟩ = ⟨N⟩kBT .
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10.6 Derivation of the classical limit

Far too often we hear and read, from most respected people, the statement that classical
mechanics follows from quantum mechanics by taking the limit of Planck’s constant
ℏ → 0. And each time I do I am dissatisfied and puzzled. Classical mechanics exists. We
observe it in experiment. We know that it works to an extremely high level of accuracy
in countless everyday occasions. And still, ℏ is nowhere going to zero. Its value has been
the same as far as far back as we can look into the universe’s past. I am willing to admit
that ℏ → 0 is a practical shortcut. Indeed, if one wants to recover a classical picture of
the universe one can do that by setting ℏ → 0 in some quantum mechanical relations,
basically in order to make Heisenberg’s uncertainty principle, the quintessence of QM,
disappear. In this way a number of classical features, though not all, are recovered. But
still, from a scientific perspective, the argumentation cannot be satisfying.

The purpose of this section is to discuss how to recover the classical limit of statistical
mechanics, starting from the quantum theory that we have developed so far, by pointing
out what assumptions need to be made, when they are justified, and when they are
not. A detailed derivation with strict bounds and error estimates is beyond the scope of
this lecture, and is probably even difficult to formulate in rigorous mathematical terms.
Nevertheless, discussing the subject is physically worthwhile, since it forces us to deal
with the fundamentals of quantum mechanics. Indeed, we shall see that in order to be
able to apply the classical limit of statistical mechanics, one needs to circumvent two
of the most basic principles of quantum mechanics, namely, the uncertainly principle
and the principle of indistinguishability of identical particles. Needless to say that these
are also the quantum phenomena which contradict classical determinism in the most
open and profound way. The following discussion is intended to show why the classical
approximation is valid in the limit of high temperatures and low densities. Moreover, we
should be able to understand how these two principles survive in some way, despite our
most resolute efforts of classical simplification.

The quantum expression for the canonical partition function is

Zc(N) =
1

N !

∞∑
k1=1

· · ·
∞∑

kN=1

⟨k1, . . . kN |e−βĤ |k1, . . . kN ⟩ , (10.17)

where the sums run over a complete set of single-particle orbitals φk(x) and the sym-
metrized states |k1, . . . , kN ⟩ are given by

⟨x1, . . . xN |k1, . . . kN ⟩ = Φs(x1 . . . xN ) =
1√
N !

∑
P

(±1)pφk1(xP (1)) . . . φkN (xP (N)) .

The corresponding average values are

⟨k1, . . . kN |e−βĤ |k1, . . . kN ⟩ =
∫
dx1 . . . dxN Φs(x1, . . . xN )∗ e−βĤ Φs(x1, . . . xN ) .

In the case of bosons the kets |k1, . . . kN ⟩ and and many-body wave functions Φs(x1, . . . xN )
are not normalized to one. They have a square norm equal to

∏
α nα! which ensures that
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Eq. (10.17) is valid [see the derivation leading to Eq. (9.5) in Sec. 9.3]. Moreover, notice
that only Zc(N) needs to be considered, since Zgc =

∑
N zNZc(N).

The first hurdle is to deal with the impossibility of defining the position and momentum
of a particle at the same time or, in more mathematical terms, the consequences of
the non-commutativity of position and momentum operators. In order to develop our
reasoning we focus first on just one particle in a volume V . The single-particle kets |p⃗⟩,
having the wave functions

⟨r⃗|p⃗⟩ = 1√
V
e

i
ℏ p⃗·r⃗ , (10.18)

form a complete orthonormal set in the volume V . Thus, the one-particle partition
function is given by

Z1 =
∑
p⃗

⟨p⃗| e−β( p̂2

2m
+U(r⃗)) |p⃗⟩ ,

where the sum runs over the complete set of linearly independent momenta within the
cubic volume V = L3 with side L. According to the theory of Fourier series, the plane
waves (10.18) satisfying periodic boundary conditions at the boundaries of the cubic
volume form a complete orthonormal basis in the volume V . Any function, including
plane waves not satisfying the periodic boundary condition, can be be obtained as linear
combination of the periodic ones within the volume V . This implies that the so-called
allowed values of p⃗ to be taken into account in the sum are given by

pα
ℏ
L = 2πνα

where α = x, y, z and να ∈ Z. In a more compact form we may write

p⃗ =
2πℏ
L
ν⃗ , (10.19)

where ν⃗ ∈ Z3 is a vector with integer components. The sum of any well-behaved function
f(p⃗) over all possible p⃗ is in fact a sum over all integers ν⃗ ∈ Z3 according to Eq. (10.19):∑

p⃗

f(p⃗) =
∑
ν⃗

f(ν⃗) .

In the limit of V → ∞ the allowed values of p⃗ form nearly a continuum since the
separation between two consecutive values decreases as 1/L. It is then possible to replace
the sum over p⃗ by an integral over all momenta p⃗ since the spectrum of the momentum
operator tends to a continuum. In order to do that, we need to determine the number of
linearly independent momentum eigenstates contained in a volume element dp3. This is
very important in general since the number of allowed p⃗ increases linearly with V thus
ensuring the extensivity of lnZc. From Eq. (10.19) one obtains that the number of the
summands d3ν contained in a volume element d3p is

d3ν = dνx dνy dνz =
V

(2πℏ)3
d3p .
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Assuming that f(p⃗) remains finite for all p⃗ when of V → ∞, which is certainly the case
for the Zc as we approach the classical limit, we may replace the sum over p⃗ by an integral
as follows: ∑

p⃗

f(p⃗) =
∑
ν⃗

f(ν⃗) →
∫
f(ν⃗) d3ν =

V

(2πℏ)3

∫
f(p⃗) dp3 .

The factor V/(2πℏ)3 represents the number of allowed values of p⃗ in a volume element
d3p. Should there be terms f(p⃗) in the sum which diverge in the limit of V → ∞, one
would need to identify them and add them up separately, since isolated points give no
contribution to an integral. Later on we shall see, in the context of the Bose-Einstein
condensation, that this situation appears when computing the average occupation of the
p⃗ = 0 state of bosons at low temperatures.

In order to calculate the classical limit of Z1 for large V we thus replace the sum by
an integral and obtain

Z1 =
V

(2πℏ)3

∫
d3p ⟨p⃗| e−β( p̂2

2m
+U(r⃗)) |p⃗⟩ .

We may now split the exponential of the sum of the non-commuting kinetic and potential-
energy operators in a product of exponentials by using the Zassenhaus formula

et(X+Y ) = etX etY e−
t2

2
[X,Y ] e−

t3

6
(2[Y,[X,Y ]]+[X,[X,Y ]]) . . .

which to lowest order in t reads

et(X+Y ) = etX etY
(
1− t2

2
[X,Y ] + . . .

)
. (10.20)

This relation follows from the more widespread Baker-Campbell-Hausdorff equation eXeY =
eZ with Z = X+Y +[X,Y ]/2+ . . . . Before we can use Eq. (10.20) for t = β in the high
temperature limit we need the commutator

[p̂2, U(r⃗)] = −i2ℏ∇⃗U · ˆ⃗p− ℏ2∇2U .

We may then approximate the partition function to the lowest (second) order in β as

Z1 =
V

(2πℏ)3

∫
d3p ⟨p⃗| e−β p̂2

2m e−βU(r⃗)

(
1− i

ℏβ2

2m
∇⃗U · ˆ⃗p− ℏ2β2

4m
∇2U + . . .

)
|p⃗⟩ .

Introducing the Dirac’s completeness relation
∫
d3r |r⃗⟩⟨r⃗| = 1 between the exponentials

we obtain

Z1 =
V

(2πℏ)3

∫
d3r

∫
d3p ⟨p⃗| e−β p̂2

2m |r⃗⟩⟨r⃗| e−βU(r⃗)

(
1− i

ℏβ2

2m
∇⃗U · ˆ⃗p− ℏ2β2

4m
∇2U + . . .

)
|p⃗⟩ .

151



Acting with the momentum and position operators on the bras or kets having well-defined
p⃗, respectively r⃗, as appropriate yields

Z1 =
V

(2πℏ)3

∫
d3r

∫
d3p e−β p2

2m e−βU(r⃗)

(
1− i

ℏβ2

2m
∇⃗U ·p⃗− ℏ2β2

4m
∇2U + . . .

)
|⟨r⃗|p⃗⟩|2 .

Notice that the second term in brackets vanishes because it is linear in p⃗, an expected
result since it would not have been real. Taking advantage of the fact that single-electron
plane waves satisfy |⟨r⃗|p⃗⟩|2 = 1/V for all r⃗ and p⃗, we obtain Z1 and its first nonvanishing
correction in the high-temperature limit:

Z1 = Zcl
1

(
1− ℏ2β2

4m
⟨∇2U⟩+ . . .

)
, (10.21)

where
Zcl
1 =

1

(2πℏ)3

∫
d3r

∫
d3p e−β[ p

2

2m
+U(r⃗)] (10.22)

is the classical partition function, and

⟨∇2U⟩ =
∫
d3r e−βU(r⃗)∇2U∫
d3r e−βU(r⃗)

(10.23)

is the classical average of the local curvature of the potential U . Notice that the momen-
tum distribution is irrelevant for calculating the classical average of any function of the
coordinates. Since ⟨∇2U⟩ is finite and tends to a constant in the high temperature limit,
where all positions in the volume V are equally probable, we conclude that the quantum
partition function converges to the classical one as 1/T 2 for large T . The quantum cor-
rection is also proportional to ℏ2/m, which is understandable since in this case it results
exclusively from Heisenberg’s uncertainty. One may also write ℏ2β2/4m = βλ2/8π. The
particle density v does not appear in the expansion as part of the convergence criterion,
since only a single particle has been considered so far.

In the case of N identical particles we follow an analogous procedure. We consider the
complete basis of symmetrized (bosons) or antisymmetrized (fermions) states with de-
fined linear momenta p⃗1, . . . , p⃗N , which we denote in a compact way by |p⟩ ≡ |p⃗1, . . . , p⃗N ⟩,
as well the basis of states with defined positions r⃗1, . . . , r⃗N , which we denote by |q⟩ ≡
|r⃗1, . . . , r⃗N ⟩. Accordingly,

∫
dp and

∫
dq stand for the multiple integrals

∏
i d

3pi, respec-
tively

∏
i d

3ri. If present, for example for fermions, the spin projection is also taken into
account among the quantum numbers p⃗i and r⃗i defining the kets involved in calculating
the trace.

In the limit of large volume V Eq. (10.17 can then be written as

Zc(N) =
1

N !

V N

(2πℏ)3N

∫
dp ⟨p|e−βĤ |p⟩ ,

where the Hamiltonian governing the system is given by

Ĥ = T̂ + Ŵ =
∑
i

p̂2i
2m

+W (r⃗1, . . . r⃗N ) .
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The relevant commutator between the kinetic energy T̂ and the potential energy Ŵ is

[T̂ , Ŵ ] = −i ℏ
m

∑
i

∇⃗iW · ˆ⃗pi −
ℏ2

2m

∑
i

∇2
iW ,

where ∇2
iW stands for the Laplacian of the interaction energy W with respect to the

coordinates r⃗i of particle i. Using the Zassenhaus formula we find that to lowest order
in β the partition function is given by

Zc(N) =
1

N !

V N

(2πℏ)3N

∫
dp ⟨p| e−

β
2m

∑
i p̂

2
i e−βŴ (r⃗1...r⃗N )×

×

(
1− i

ℏβ2

2m

∑
i

∇⃗iW · ˆ⃗pi −
ℏ2β2

4m

∑
i

∇2
iW + . . .

)
|p⟩.

Introducing the Dirac’s completeness relation
∫
dq |q⃗⟩⟨q⃗| = 1 between the exponentials

and acting with the momentum (position) operators ˆ⃗pi (ˆ⃗ri) either on the bras or on the
kets having well-defined p⃗i (r⃗i) we obtain

Zc(N) =
1

N !

V N

(2πℏ)3N

∫
dq

∫
dp ⟨p| e−

β
2m

∑
i p̂

2
i |q⟩⟨q|e−βŴ (r⃗1...r⃗N )×

×

(
1− i

ℏβ2

2m

∑
i

∇⃗iW · ˆ⃗pi −
ℏ2β2

4m

∑
i

∇2
iW + . . .

)
|p⟩

and

Zc(N) =
1

N !

V N

(2πℏ)N

∫
dq

∫
dp e−β[

∑
i

p2i
2m

+W (r⃗1...r⃗N )]

(
1− ℏ2β2

4m

∑
i

∇2
iW + . . .

)
|⟨q|p⟩|2,

where we have used that the terms that are linear in the momentum operators vanish,
since inverting all p⃗i yields the same kinetic energy and probability distribution |⟨q|p⟩|2.

This expression can be further simplified by noting that the amplitude of the normal-
ized plane waves (10.18) scales as 1/

√
V ). Therefore |⟨q|p⟩|2 ∝ 1/V N which cancels the

factor V N . It therefore meaningful to change the normalization of the single-particle
wave functions entering the symmetrized N -particle kets |p⟩ by using the plane waves

⟨r⃗|p⃗⟩ = e
i
ℏ p⃗·r⃗ , (10.24)

whose amplitude is independent of the volume V and which satisfy the simpler relation
|⟨r⃗|p⃗⟩|2 = 1. Denoting the corresponding symmetrized states by |p̃⟩ we have

|p̃⟩ = V N/2|p⟩

and therefore

Zc(N) =
1

N !

1

(2πℏ)N

∫
dq

∫
dp e−β[

∑
i

p2i
2m

+W (r⃗1...r⃗N )]

(
1− ℏ2β2

4m

∑
i

∇2
iW + . . .

)
|⟨q|p̃⟩|2.

(10.25)
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The above semiclassical approximation of Zc(N) starts to closely resemble the classical
partition function (10.1). It allows us to obtain the classical limit and to identify the
origin of the leading quantum corrections. The first one is given by

−ℏ2β2

4m
N⟨∇2

iW ⟩ = −ℏ2β2

4m
N

∫
dq e−βW (q)∇2

iW∫
dq e−βW (q)

, (10.26)

which has its origin in Heisenberg’s uncertainty principle or, in other words, in the im-
possibility that the momentum and position of any particle take arbitrarily sharp values.
Notice that ⟨∇2

iW ⟩ represents the classical statistical average of the curvature of the
interaction energy felt by each particle. It is independent of i since all particles are
identical. This contribution is proportional to ℏ2 and vanishes with increasing tempera-
ture as 1/T 2, thus showing the expected convergence to the classical expression at high
temperatures. An analogous correction was found for a single particle in an external
potential [see Eqs. (10.21)–(10.23)]. This quantum correction can be regarded as the
consequence of the motion of each individual particle in the field created by the others.
Consequently, the volume per particle v = V/N and the average interparticle distance
v1/3 also play an important role. Indeed, larger v implies weaker average interactions
⟨W ⟩, as well as a longer length scale for its spatial variations, which both contribute to
reducing the average local curvature ⟨∇iW ⟩ until, in the limit of v → ∞, ⟨∇iW ⟩ vanishes
altogether [see Eq (10.26)]. Therefore, the classical limit is not only a high-temperature
approximation, but also a low-density one. For any finite T , whatever high, the quantum
effects cease to be negligible at a sufficiently high density 1/v. Conversely, the validity of
the classical approximation can be pushed to lower temperatures (but never for T → 0!)
provided that the density is sufficiently low.

The second quantum correction is a more subtle consequence of the fact that in a
fully symmetrized or antisymmetrized quantum state, the joint probability distribution
|⟨q|p⟩|2 = |⟨r⃗1, . . . , r⃗N |p⃗1, . . . , p⃗N ⟩|2 of finding the particles at the positions r⃗1, . . . , r⃗N
depends on both the point q = (r⃗1, . . . , r⃗N ) as well as on the occupied momenta p =
(p⃗1, . . . , p⃗N ). One says that the particles are correlated by their symmetry with respect
to interchange (bosonic or fermionic). This phenomenon is a clear manifestation of the
indistinguishability of identical particles, a truly many-body quantum behavior which lies
well beyond the scope of a classical description. It is of course absent in the single particle
case, where |⟨r⃗|p⃗⟩|2 = 1/V or 1 depending on the chosen normalization [see Eqs. (10.18)
and (10.24)]. Moreover, it is important to note that these symmetry correlations are
also present in the absence of interactions W . Therefore, one may determine their effect
analytically by setting W = 0, in which case it is possible to calculate the exact quantum
partition function and thermodynamic properties for all temperatures and densities. We
shall develop this approach in the following chapters.

In order to understand the classical limit of |⟨q|p⟩|2 and the consequences of the sym-
metry with respect to interchange in the high-temperature low-density limit, we consider
the joint particle distribution in a symmetrized product state Φs(x1, . . . xN ), in which
the occupied orbitals are not necessarily plane waves but arbitrary single particle or-
bitals φ1(x), . . . φN (x). Thus, we replace the ket |p⟩ = |p⃗1, . . . , p⃗N ⟩, in which the oc-
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cupied single-particle states have defined momenta p⃗1, . . . , p⃗N , by the more general ket
|φ⟩ = |φ1, . . . φN ⟩. As in chapter 9 we denote by xi ≡ (r⃗i, σi) the position and spin
quantum numbers of particle i. Thus, the N -particle ket |x⟩ ≡ |x1, . . . xN ⟩ with well
defined coordinates x1, . . . xN takes the role of |q⟩ ≡ |r⃗1, . . . , r⃗N ⟩ and the wave function
⟨x|φ⟩ corresponds to ⟨q|p⟩. The fully symmetrized wave functions are given by

Φs(x1, . . . xN ) = ⟨x1, . . . xN |φ1, . . . φN ⟩ ≡ ⟨x|φ⟩

=
1√
N !

∑
P

(±1)pφ1(xP (1)), . . . φN (xP (N))

=
1√
N !

∑
P

(±1)pφP (1)(x1), . . . φP (N)(xN ) ,

where the sum runs over all permutations P in the natural interval [1, N ], p is the order of
the permutation P , and the + (−) sign applies to bosons (fermions). The corresponding
joint probability distribution of finding the particle at the coordinates x1, . . . xN is

|⟨x|φ⟩|2 = |⟨x1, . . . xN |φ1, . . . φN ⟩|2

=
1

N !

∑
P,Q

(±1)p+q φP (1)(x1)
∗, . . . φP (N)(xN )∗ φQ(1)(x1), . . . φQ(N)(xN )

=
1

N !

∑
P

|φP (1)(x1)|2 . . . |φP (N)(xN )|2+ (10.27)

+
1

N !

∑
P ̸=Q

(±1)p+q φP (1)(x1)
∗φQ(1)(x1) . . . φP (N)(xN )∗φQ(N)(xN ) . (10.28)

One recognizes two types of terms. In (10.27) the permutations P and Q are identical,
the phase factor (±1)p+q disappears and with it any differences between fermionic and
bosonic behavior. This contribution is simply the product of the probability densities
|φα(x)|2 of finding a particle in the orbital α, yet symmetrized in order that the same
result is obtained regardless of which particle has which coordinates xi. In contrast, in
(10.28) the nature of the particles is crucial. Here we find at least one i for which P (i) ̸=
Q(i) and therefore the overlap φP (i)(xi)

∗ φQ(i)(xi) and the phase factor (±1)p+q matter.
This expression is quite complicated in general. However, it simplifies enormously in
the particular case where the orbitals φα(x) that the particles occupy do not overlap at
all, i.e., if the particles always (or almost always) occupy completely different regions in
space [i.e., φα(x)φβ(x) = 0,∀α ̸= β and ∀x] which corresponds to the classical notion of
distinguishability. Notice that this presupposes that also for bosons no orbital is occupied
more than once. In this case the contribution (10.28) where P ̸= Q vanishes altogether,
since P (i) ̸= Q(i) for some i and therefore φP (i)(x)

∗φQ(i)(x) = 0 for all x. In this case
the joint probability distribution reads

|⟨x1 . . . xN |φ1 . . . φN ⟩|2 = 1

N !

∑
P

|φP (1)(x1)|2 . . . |φP (N)(xN )|2 .
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If the particles are localized in wave packets occupying different regions in space, the
only consequence of the indistinguishability of identical particles and of the associated
symmetry of the many-body wave functions is that only one distinct many-body state
(and not N !) can be constructed when a set of N orbitals φ1, . . . , φN (x) are occupied.
This provides a justification for the Boltzmann counting introduced ad hoc in Sec. 10.1
as a shortcut to the classical limit. Furthermore, the above analysis shows that in the
classical limit, when the particles states can be approximated by non-overlapping orbitals,
the bosonic of fermionic nature of the wave-function symmetry plays no role. Moreover,
|⟨x1, . . . , xN |φ1, . . . , φN ⟩|2 is simply given by the symmetrized product of the probabilities
of finding the particles at the points x1, . . . , xN . In the context of Eq. (10.25) this means
that the classical limit of the probability density distribution |⟨q|p̃⟩|2 = 1, where we have
used that |⟨r⃗|p⃗⟩|2 = 1 [see also Eq. (10.24)]. In this way the classical partition function
(10.1) is finally obtained.

Before closing it is important to stress that the accuracy of the assumption of non-
overlapping single particle states, and thus of the classical approximation to Zc(N),
depends both on the density 1/v or average interparticle distance v1/3 as well as on the
temperature T . Clearly, the higher the particle density is, the stronger is the localization
which has to be imposed to the single-particle orbitals in order to avoid any overlaps.
As the average interparticle distance decreases, the spatial extension ∆r of the orbitals
φα must also decrease roughly as v1/3. Consequently, the kinetic energy of these orbitals
increases roughly as ∆E = ∆p2

2m ∼ ℏ2
2m∆r2

∼ ℏ2
2mv

−2/3. This localization-induced energy
enhancement ∆E has little effect on the calculation of Zc(N) when the temperature
T is high enough, since in this case large values of the kinetic energy p2/2m dominate
and any energy differences that are much smaller than kBT turn out to be irrelevant.
Quantitatively, this condition is satisfied when kBT ≫ ∆E or equivalently λ2/v2/3 ≪ 1,
which corresponds to (10.2). Conversely, the assumption of localized orbital, which
as we have seen is inherent to the classical approximation and to the very notion of
classical distinguishability, becomes unacceptable when the temperature is low and λ is
comparable to v1/3. In this case, small momenta having a large spatial extension and
a small kinetic energy are the most probable ones. In the low temperature regime the
indistinguishability of identical particles remains crucial in every respect.
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11 The ideal quantum gases

The simplest system of N identical particles is found in the absence of interactions. In
this case the Hamiltonian is given by

Ĥ =
N∑
i=1

p̂2i
2m

,

where m is the particles’ rest mass. The case of photons will be discussed separately. In
order to compute the partition function we need to find the eigenstates of the system, or
at least we need to classify them by finding the appropriate quantum numbers, the cor-
responding eigenvalues and their degeneracies. In the following we assume for simplicity
that that the particles are spinless. In other words, we ignore the particles’ spin degree
of freedom and the degeneracies associated with it, even in the case of fermions.

Since there are no interactions among the particles, the Hamiltonian is simply the
sum of the kinetic energy operators p̂2i /2m, each acting on a different variable r⃗i. Under
these circumstances the eigenfunctions of Ĥ are products of single-particle wave func-
tions uα(r⃗), each one depending on the coordinates r⃗i of the ith electron and being
eigenfunctions of p̂2i /2m. Any simple product, however, needs to be symmetrized (anti-
symmetrized) in order to comply with the symmetry requirements on the wave functions
of indistinguishable bosons (fermions). The general form of the N -particle eigenfunctions
is

Ψ{np⃗}(x1, . . . , xN ) =
1√
N !

∑
P

(±1)p up⃗1(xP (1))up⃗2(xP (2)) . . . up⃗N(xP (N)) , (11.1)

where the + (−) sign corresponds to bosons (fermions), the single-particle wave functions
are the known plane waves

up⃗(r⃗) =
1√
V
e

i
ℏ p⃗·r⃗ , (11.2)

and p⃗1, p⃗2, . . . p⃗N are the momenta of the particles. One usually says that p⃗1, p⃗2, . . . p⃗N
are the momenta which are occupied in the state Ψ{np⃗} since np⃗ ̸= 0 only for p⃗ = p⃗j .
Notice that the norm of Ψ{np⃗} is not equal to 1 in the case of bosons having np⃗ ≥ 2 for
some p⃗, even though the single-particle states up⃗(r⃗) are normalized. As already discussed,
Ψ{np⃗} depends only on the set of occupation numbers {np⃗} which count how often the
single-particle state up⃗(r⃗) appears on the right hand side of (11.1). For bosons all positive
or zero values of np⃗ are allowed (np⃗ = 0, 1, 2, . . . ), while for fermions np⃗ can only take the
values 0 or 1 (Pauli exclusion principle). In all cases the sum of all occupation numbers
must be equal to the number of particles:

N =
∑
p⃗

np⃗ , (11.3)

where the sum runs over all possible values of the momentum of a single particle in the
volume V. The fact that the eigenstates of Ĥ depend only on {np⃗} can be stressed by
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introducing the occupation number representation of the many-body states. Thus, the
kets

|{np⃗}⟩ = |n1, n2, . . . , n∞⟩

have definite occupation numbers of all single-particle eigenstates of the momentum
operator ˆ⃗p. The normalized wave function corresponding to |{np⃗}⟩ is given by

⟨x1, . . . , xN |{np⃗}⟩ =
1√∏
p⃗ np⃗!

Ψ{np⃗}(x1, . . . , xN ) . (11.4)

The states |n1, n2, . . . , n∞⟩ constitute a complete orthonormal set satisfying

⟨n1, n2, . . . n∞|n′1, n′2, . . . n′∞⟩ = δn1n′
1
. . . δn∞n′

∞ .

Since up⃗(r) is an eigenfunction of ˆ⃗p we have

p̂2

2m
up⃗ ′ =

p′ 2

2m
up⃗ ′ = εp⃗ ′ up⃗ ′ . (11.5)

This implies that the N -particle wave function satisfies

ĤΨ{np⃗} = E{np⃗}Ψ{np⃗} (11.6)

where the eigenenergy
E{np⃗} =

∑
p⃗

np⃗ εp⃗ (11.7)

is the sum of the single-particle eigenenergies εp⃗ = p2/2m of the occupied states up⃗. In
the occupation number representation we have

Ĥ|n1, n2, . . . n∞⟩ =

(∑
i

ni εi

)
|n1, n2, . . . n∞⟩ (11.8)

where i = 1, 2, 3, . . . is an index that enumerates the different possibles values of the
momentum p⃗. Alternatively, we can also write

Ĥ|{np⃗}⟩ =

∑
p⃗

np⃗ εp⃗

 |{np⃗}⟩. (11.9)

In order to determine the allowed values of p⃗, we consider a cubic volume V = L3 with
side L. A complete orthonormal basis of eigenfunctions of the momentum operator ˆ⃗p is
given by

up⃗ =
1√
V

e
i
ℏ p⃗·r⃗ ,
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where the values of p⃗ satisfy periodic boundary condition
pα
ℏ
L = 2πνα

where α = x, y, z and να ∈ Z. This constitutes a complete set of single-particle wave
functions in the volume V . In a more compact form we may write

p⃗ =
2πℏ
L
ν⃗ (11.10)

where ν⃗ ∈ Z3 is a vector with integer components. In the limit of V → ∞ the allowed
values of p⃗ form nearly a continuum. This will allow us to replace a sum of a function
f(p⃗) over all possible p⃗ by the corresponding integral in momentum space:∑

p⃗

f(p⃗) → V

(2πℏ)3

∫
f(p⃗) d3p , (11.11)

provided that all the terms in the sum over p⃗ are finite. Later on we shall see, in the
context of the Bose-Einstein condensation, that this condition is not always satisfied. In
such cases the diverging term or terms (e.g., p⃗ = 0) need to be identified and added up
separately. The factor V/(2πℏ)3 gives the number of allowed values of p⃗ in a volume
element d3p. Formally, we may write∑

p⃗

f(p⃗) =
∑
ν⃗

f(ν⃗) →
∫
f(ν⃗) d3ν =

V

(2πℏ)3

∫
f(p⃗) dp3

since
ν⃗ =

L

2πℏ
p⃗ ⇒ d3ν = dνx dνy dνz =

V

(2πℏ)3
d3p .

Computing the canonical partition function Zc(N) for a fixed number of particles is
quite complicated, since we would need to impose the constraint

N =
∑
p⃗

np⃗

on the occupation numbers np⃗. However, this restriction is absent in the grand canonical
ensemble, where all possible values of np⃗ and all total numbers of particles N are a priori
possible. The grand canonical partition function is given by

Zgc = Tr{e−β(Ĥ−µN̂)}

=
∑
{np⃗}

e
−β

∑⃗
p

(εp−µ)np⃗

, (11.12)

where we have used that in |{np⃗}⟩ the number of particles is

N =
∑
p⃗

np⃗ (11.13)
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and the eigenenergy is
E =

∑
p⃗

εp⃗ np⃗ . (11.14)

The sum in Eq. (11.12) runs over all states |{np⃗}⟩ with defined occupations {np⃗}. Notice
that each set of occupations {np⃗} defines one and only one distinct state. Therefore, we
must consider all possible values of np⃗ for each p⃗. To this aim we enumerate the different
p⃗ in some arbitrary way according to the index i, so that p⃗↔ i and {np⃗} = {n1, n2, . . . }.
The partition function is then given by

Zgc =
∑
n1

∑
n2

. . . e
−β

∑
i
(εi−µ)ni

=

(∑
n1

e−β(ε1−µ)n1

)(∑
n2

e−β(ε2−µ)n2

)
. . .

=
∏
p⃗

[∑
n

e−β(εp⃗ −µ)n

]

=
∏
p⃗

[∑
n

(
e−β(εp⃗ −µ)

)n]
.

The sum over the occupation number n is of course different for fermions (n = 0, 1) and
bosons (n ∈ N). For fermions we have simply

Zgc =
∏
p⃗

(
1 + e−β(εp⃗ −µ)

)
. (11.15)

For bosons we obtain
Zgc =

∏
p⃗

1(
1− e−β(εp⃗ −µ)

) (11.16)

after summation of a geometric series, whose convergence requires e−β(εp⃗ −µ) < 1, or
equivalently, µ ≤ 0 since εp⃗ ≥ 0.

In order to facilitate the mathematical manipulations it is useful to replace the chemical
potential µ by the fugacity

z = eβµ

as one of the independent intensive variables defining Zgc. In terms of z we have

Zgc =


∏⃗
p

(
1 + z e−βεp⃗

)
for fermions∏⃗

p

(
1− z e−βεp⃗

)−1 for bosons.
(11.17)

The grand canonical potential is thus given by

Φ =


−kBT

∑⃗
p

ln
[
1 + e−β(εp⃗ −µ)

]
for fermions

kBT
∑⃗
p

ln
[
1− e−β(εp⃗ −µ)

]
for bosons.

(11.18)
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Moreover, since Φ = −pV , the pressure-volume relation reads

pV

kBT
=


∑⃗
p

ln
[
1 + e−β(εp⃗ −µ)

]
for fermions

−
∑⃗
p

ln
[
1− e−β(εp⃗ −µ)

]
for bosons.

(11.19)

The chemical potential µ, or the fugacity z, are defined by the average number of particles.
In the case of fermions we have

N = −∂Φ
∂µ

=
∑
p⃗

e−β(εp⃗ −µ)

1 + e−β(εp⃗ −µ)

=
∑
p⃗

1

eβ(εp⃗ −µ) + 1

=
∑
p⃗

1

z−1eβεp⃗ + 1
. (11.20)

Analogously for bosons we have

N =
∑
p⃗

e−β(εp⃗ −µ)

1− e−β(εp⃗ −µ)

=
∑
p⃗

1

eβ(εp⃗ −µ) − 1

=
∑
p⃗

1

z−1eβεp⃗ − 1
. (11.21)

These equations need to be solved to find µ(N) or z(N), which can then be replaced in
(11.19) in order to obtain the equations of state relating p, T and N/V .

The average occupation of each single-particle state p⃗ can be calculated as

⟨np⃗⟩ = Tr{n̂p⃗ ρ̂gc}

=
Tr{n̂p⃗ e−β(Ĥ−N̂)}

Zgc

=
Tr
{
n̂p⃗ e−β

∑
p⃗(εp⃗ −µ)n̂p⃗

}
Zgc

= − 1

β

∂

∂εp⃗
lnZgc

=
∂Φ

∂εp⃗
,
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which yields

⟨np⃗⟩ =


1

e
β(εp⃗ −µ)

+1
for fermions

1

e
β(εp⃗ −µ)−1

for bosons.

Comparison with Eqs. (11.20) and (11.21) shows, as expected, that
∑

p⃗⟨np⃗⟩ = N . Here
we may also confirm that e−β(εp⃗ −µ) = z e−βεp⃗ < 1 for bosons, as requested in order
that the geometric series leading to (11.16) converges, since n̂p⃗ has only positive or zero
eigenvalues. In other terms, ⟨np⃗⟩ ≥ 0 ⇔ eβ(εp⃗−µ) ≥ 1 ⇔ µ ≤ εp⃗ for all p⃗, which implies
that µ ≤ 0, or equivalently, z ≤ 1. Notice that if µ → 0, ⟨np⃗⟩ diverges for p⃗ = 0.
However, the density N/V is necessarily finite. Therefore ⟨np⃗⟩/V is always finite for all
p⃗. For fermions ⟨np⃗⟩ itself is obviously always finite for all p⃗.

In order to pursue the discussion we take the limit V → ∞ and replace∑
p⃗

→ V

(2πℏ)3

∫
d3p

whenever this is possible. In fact, such a replacement is valid as long as the terms in the
sum remain finite in the limit of V → ∞. If this is not the case one must single out the
terms that risk to diverge and sum them separately. In the following chapters the Fermi
and Bose gases are discussed specifically in some detail.
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12 Fermi systems: The ideal Fermi gas

In order to analyze the properties of the ideal Fermi gas in more detail, it is convenient
to consider the fugacity z = eβµ, T and V as the thermodynamic variables. The fugacity
z = eβµ is an intensive variable which, like µ, defines the particle number N at the given
temperature T . Alternatively, one may regard z as a function of T and N .

Let us examine the equation of state

pV

kBT
=
∑
p⃗

ln
[
1 + z e−βεp⃗

]
. (12.1)

Since z = eβµ > 0 and e−βεp⃗ > 0, all the terms in the sum are finite. We may then write

pV

kBT
=

V

(2πℏ)3

∫
ln
[
1 + z e−βp2/2m

]
d3p (12.2)

=
V

(2πℏ)3
4π

∞∫
0

p2 ln
[
1 + z e−βp2/2m

]
dp . (12.3)

Introducing the dimensionless integration variable x = p√
2mkBT

in Eq. (12.3) we have

p

kBT
=

4π

(2πℏ)3
(√

2mkBT
)3 ∞∫

0

x2 ln
[
1 + ze−x2

]
dx . (12.4)

Recalling that λ = 2πℏ√
2πmkBT

is the thermal wave length, the equation of state takes the
form

p

kBT
=

1

λ3
f5/2(z) , (12.5)

where

f5/2(z) =
4√
π

∞∫
0

x2 ln
[
1 + ze−x2

]
dx =

∞∑
l=1

(−1)l−1 zl

l5/2
(12.6)

is one of Riemann’s z-functions. Notice that the integral is well defined for all z ≥ 0 and
that f5/2(0) = 0. However, the Taylor expansion converges only for |z| ≤ 1.

In order to obtain the Taylor expansion of f5/2(z) for small z we develop ln(1 + αz)
around z = 0. The derivatives are

ln(1 + αz)
(1)→
d
dz

α

1 + αz

(2)→ − α2

(1 + αz)2
(3)→ 2α3

(1 + αz)3
→ . . . (12.7)

In general we have for l ≥ 1

dl

dzl
ln(1 + αz) =

(−1)l−1 (l − 1)!αl

(1 + αz)l
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and for z = 0
dl

dzl
ln(1 + αz)

∣∣∣∣
z=0

= (−1)l−1 (l − 1)!αl .

Since we are interested in f5/2(z) we set α = e−x2 . Therefore, we need the integrals

4√
π

∞∫
0

x2e−lx2
dx =

4√
π

1

l3/2

∞∫
0

y2e−y2dy

︸ ︷︷ ︸√
π/4

=
1

l3/2
,

where we have introduced y =
√
lx and dx = dy/

√
l. Since

f5/2(z) =
4√
π

∞∫
0

dx x2 ln(1 + ze−x2
)

we have

dlf5/2(z)

dzl

∣∣∣∣
z=0

= (−1)l−1(l − 1)!
4√
π

∞∫
0

x2e−lx2
dx

︸ ︷︷ ︸
l−3/2

= (−1)l−1(l − 1)!
1

l3/2
= (−1)l−1 l!

l5/2

for l ≥ 1. Recalling that f5/2(0) = 0, we finally have

f5/2(z) =
∑
l=1

(−1)l−1 zl

l5/2
= z − z2

4
√
2
+

z3

9
√
3
− . . . .

The equation for the number of particles reads

N =
∑
p⃗

1

eβ(εp⃗ −µ) + 1
=
∑
p⃗

1

z−1 eβεp⃗ + 1
.

Since z = eβµ > 0 all terms in the sum are finite. Thus, for V → ∞ we may write

N =
V

(2πℏ)3
4π

∞∫
0

p2
1

z−1 eβεp + 1
dp

and
N

V
=

1

v
=

1

λ3
f3/2(z) , (12.8)

where

f3/2(z) =
4√
π

∞∫
0

x2

z−1 ex2 + 1
dx (12.9)

=
4√
π

∞∫
0

zx2

ex2 + z
dx.
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Notice that

z
df5/2

dz
= z

4√
π

∞∫
0

x2
e−x2

1 + ze−x2 dx

=
4√
π

∞∫
0

x2
1

z−1ex2 + 1
dx = f3/2(z) .

Consequently,

f3/2(z) = z
df5/2

dz
=

∞∑
l=1

(−1)l−1 zl

l3/2
(12.10)

Both f5/2 and f3/2 have convergent Taylor expansions for z → 0:

f3/2(z) ≈ z − z2

2
√
2
+ . . .

and

f5/2(z) ≈ z − z2

4
√
2
+ . . .

with the convergence radius |z| = 1.

12.1 Energy-pressure relation

An interesting relation may be derived between the average energy E = ⟨Ĥ⟩ and the
pressure p of an ideal fermionic gas. On the one hand we know that

pV = −Φ = kBT lnZgc .

Therefore, using Eq. (12.5) we have

lnZgc =
pV

kBT
=
V

λ3
f5/2(z) . (12.11)

On the other hand, we know that

Zgc = Tr

{∑
N

zNe−βĤ

}
,

which implies that

−∂ lnZgc

∂β

∣∣∣∣
z,V

=
1

Zgc
Tr

{∑
N

zNe−βĤĤ

}
= ⟨E⟩ . (12.12)
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Notice that z and not µ is kept fixed in the partial derivation. Combining (12.11) and
(12.12), and recalling that β ∂

∂β

(
1
λ3

)
= −T ∂

∂T

(
1
λ3

)
= −3

2
1
λ3 , where λ = 2πℏ/

√
2πmkBT ∝

T−1/2, we have

⟨E⟩ = −∂ lnZgc

∂β

= −V f5/2(z)
1

β

(
−3

2

)
1

λ3

=
3

2
kBT

V

λ3
f5/2(z)

=
3

2
pV

Remarkably, the relation

E =
3

2
pV (12.13)

is the same as in the classical limit. However, pV is not simply proportional to T ! Using
thermodynamic relations a number of other properties can be derived from Eq.(12.13).
See the following exercises.

An alternative derivation of the energy-pressure relation can be provided, which helps
revealing its more general validity. Given an arbitrary system (interacting or not) gov-
erned by the Hamiltonian Ĥ we have

p = −∂Φ
∂V

∣∣∣∣
T,µ

= −∂Φ
∂V

∣∣∣∣
T,z

= kBT
∂ lnZgc

∂V

∣∣∣∣
T,z

= kBT
1

Zgc
Tr

{
zN̂ e−βĤ

(
−β∂Ĥ

∂V

)}

= −

〈
∂Ĥ

∂V

〉
(12.14)

If the particles do not interact with each other or with an external field, we have

Ĥ =
∑
p⃗

n̂p⃗ εp⃗

with εp⃗ ∝ V −2/3. Thus,
∂εp⃗
∂V

= −2

3

εp⃗
V

and
∂Ĥ

∂V
=
∑
p⃗

n̂p⃗
∂εp⃗
∂V

= −2

3

Ĥ

V
.
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Consequently, replacing in Eq. (12.14) we obtain

p =
2

3

E

V
.

In this way one concludes that the relation holds for fermions, bosons and classical
particles alike.

Exercise 12.20: The energy of the quantum Fermi gas is given by E = 3/2pV . Show
that this implies that the adiabatic compressibility is also given by the classical expression
κS = 3

5p . Are there other classical-ideal-gas relations which survive in the quantum case?

Exercise 12.21: Calculate the entropy S of the non-interacting Fermi gas. Express the
result in terms of ⟨np⃗⟩ and interpret the result physically. Hint: For the interpretation
calculate the number of accessible states Ω for Ni Fermions occupying gi states, and express
Ω in terms of the probability ni = Ni/gi for an individual state to be occupied.

Summarizing so far, the functions

f5/2(z) =
4√
π

∞∫
0

dx x2 ln(1 + ze−x2
)

and

f3/2(z) = zf ′5/2(z) =
4√
π

∞∫
0

dx
x2

z−1ex2 + 1
,

define, on the one hand, the grand canonical potential Φ per particle and the equation
of state in terms of λ3/v and the fugacity z as

Φ = −kBTN
v

λ3
f5/2(z) ,

pv

kBT
=

v

λ3
f5/2(z) .

On the other hand, they allow us to obtain z as a function of λ3/v by solving

λ3

v
= f3/2(z) .
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These Riemann functions can be expressed in the form of integrals, power series or
asymptotic expansions. Otherwise, they can only be evaluated numerically. In particular,
there are no closed expressions, neither for N as a function of z, nor for the much needed
z = z(N) in the general case. There are, however, two most important limits, which
deserve to be worked out analytically.

12.2 High temperatures and low densities

The limit of low densities and/or high temperatures corresponds to λ3

v → 0. Since f3/2(z)
is a monotonously increasing function of z, this corresponds to z → 0. This limit is easy
to discuss since

f3/2(z) =

∞∑
l=1

(−1)l−1 zl

l3/2
= z − 1

2
√
2
z2 +O

(
z3
)

and

f5/2(z) =
∞∑
l=1

(−1)l−1 zl

l5/2
= z − 1

4
√
2
z2 +O

(
z3
)

have a convergent Taylor expansion at z = 0. We obtain z from

λ3

v
= z − z2

2
√
2
+O(z3) ,

which implies

z =
λ3

v
+

1

2
√
2
z2 +O

(
z3
)

and

z =
λ3

v
+

1

2
√
2

(
λ3

v

)2

+O

(
λ3

v

)3
=
λ3

v

[
1 +

1

2
√
2

(
λ3

v

)
+O

(
λ3

v

)2]
. (12.15)

Taylor developing f5/2(z) for small z and replacing z with the expansion (12.15) we
obtain the equation of state

pv

kBT
=
( v
λ3

)[
z − 1

4
√
2
z2 +O

(
z3
)]

= 1 +
1

2
√
2

λ3

v
− 1

4
√
2

λ3

v
+O

(
λ3

v

)2
= 1 +

1

4
√
2

λ3

v
+O

(
λ3

v

)2
.
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We recover the classical limit and the first non-vanishing quantum correction, which is
entirely due to the symmetry correlations in the fermion wave functions (no interactions).
Notice that the leading correction is proportional to λ3 ∼ ℏ3/T 3/2. In the Fermi gas the
pressure is always higher than in the classical Boltzmann gas. This is the consequence
of the Pauli exclusion principle, which precludes identical fermions from occupying the
same region in space, thus resulting in an effective repulsion among the particles. This
enhances p, despite the lack of any interaction. As we shall see, the pressure of the Fermi
gas is finite even at T = 0.

The grand canonical potential in the limit of
(
λ3

v

)
→ 0 reads

Φ = −kBTN

[
1 +

1

4
√
2

λ3

v
+O

(
λ3

v

)2 ]

and

E =
3

2
kBTN

[
1 +

1

4
√
2

λ3

v
+O

(
λ3

v

)2 ]
from which the leading quantum corrections to all other thermodynamic properties can
be obtained (CV , Cp, κT , α, S, etc.).

The average occupation ⟨n̂p⃗⟩ for z → 0 (i.e., βµ→ −∞) given by

⟨n̂p⃗⟩ =
1

z−1 eβεp⃗ + 1
≃ z e−βεp⃗ ≃ λ3

v
e−βεp⃗ +O

[(
λ3

v

)2 ]
,

takes the Maxwell-Boltzmann form.

Exercise 12.22: Generalize the expressions for Φ and N for Fermi and Bose gases to the
case where the single-particle energy levels εp⃗α have a degeneracy g (i.e., εp⃗,α = εp⃗ for
α = 1, . . . , g). In this way one can take into account the intrinsic angular momentum S of
the particles (g = 2S + 1). Derive the corresponding expressions for ⟨n̂p⃗,α⟩.

12.3 Low temperatures and high densities

A far more interesting and important limit is found at low temperatures and/or high
densities, i.e., λ3

v → +∞. Since f3/2(z) is monotonously increasing we also have z =

eβµ → +∞. We therefore need a systematic asymptotic approximation of the diverging
functions f5/2(z) and f3/2(z) in the limit of z → +∞. This development is known as the
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Sommerfeld expansion after Arnold Sommerfeld (1868–1951). It is given by

f3/2(z) =
4

3
√
π
(ln z)3/2

(
1 +

π2

8
(ln z)−2 +O

[
(ln z)−4

])
and

f5/2(z) =
8

15
√
π
(ln z)5/2

(
1 +

5π2

8
(ln z)−2 +O

[
(ln z)−4

])
.

In the following a formal derivation of the Sommerfeld expansion is presented. The
physical consequences are discussed in Sec. 12.3.2.

12.3.1 The Sommerfeld expansion

We start from

f5/2(z) =
4√
π

∞∫
0

x2 ln(1 + ze−x2
) dx

and replace y = x2, dy = 2xdx, dx = dy/2
√
y to obtain

f5/2(z) =
4√
π

∞∫
0

1

2
√
y
y ln(1 + ze−y) dy

=
2√
π

∞∫
0

√
y︸︷︷︸

u′

ln(1 + ze−y)︸ ︷︷ ︸
v

dy .

We integrate by parts as

f5/2(z) =
2√
π


2

3
y3/2 ln(1 + ze−y)

∣∣∣∣∞
0︸ ︷︷ ︸

0

+

∞∫
0

2

3
y3/2

ze−y

1 + ze−y
dy


f5/2(z) =

4

3
√
π

∞∫
0

y3/2

z−1ey + 1
dy .

Before further manipulations, let us apply the same change of variables x2 = y to

f3/2(z) =
4√
π

∞∫
0

x2

z−1ex2 + 1
dx

and obtain

f3/2(z) =
2√
π

∞∫
0

y1/2

z−1ey + 1
dy.
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We see that both functions of interest may be cast in the same form. We thus need to
expand

f̃m(z) =

∞∫
0

u′︷ ︸︸ ︷
ym−1

z−1ey + 1︸ ︷︷ ︸
v

dy .

for m = 3/2 and 5/2. We integrate by parts and obtain

1

m
ym

1

z−1ey + 1

∣∣∣∣∞
0︸ ︷︷ ︸

0

+

∞∫
0

1

m
ym

z−1ey

(z−1ey + 1)2
dy .

At this point it is useful to introduce the variable

ν = βµ ⇒ z = eν and ν = ln z

and write

f̃m(z) =
1

m

∞∫
0

ym
ey−ν

(ey−ν + 1)2
dy.

Replacing t = y − ν we have

f̃m(z) =
1

m

∞∫
−ν

(ν + t)m
et

(et + 1)2
dt.

As z → ∞, ν → ∞ and the integral approaches
∞∫

−∞
. The function

h(t) =
et

(et + 1)2
=

e−2t

e−2t

et

(et + 1)2
=

e−t

(1 + e−t)2
= h(−t)

is even, has a bell-like form with a maximum a t = 0 and a width (mean square deviation)
σ = π/

√
3. It decreases exponentially for |t| → ∞.

∞∫
−∞

h(t) dt = 1.

h(t) = − d

dt

(
1

et + 1

)
, t = β(ε− µ)

Since h(t) has a peak form with a finite width of about 2–4 around t = 0, we can expand

(ν + t)m = νm +mνm−1 t+
m(m− 1)

2
νm−2 t2 + . . .
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for small t and obtain

f̃m(z) =
1

m

∞∫
−ν

dt
et

(et + 1)2

(
νm +mνm−1 t+

m(m− 1)

2
νm−2 t2 + . . .

)

We may now replace
∞∫
−ν

. . . dt =
∞∫

−∞
. . . dt−

−ν∫
−∞

. . . dt knowing that

−ν∫
−∞

tl
et

(et + 1)2
dt ≈

−ν∫
−∞

tle−t dt = tlet
∣∣∣∣−ν

−∞
− l

−ν∫
−∞

tl−1etdt ∝ νl e−ν → 0

which vanishes as ν = ln z → +∞. For further details one may note that

Al = (−ν)l e−ν − l Al−1

Al = Pl e
−ν ⇒ Ple

−ν = −(ν)l e−ν − l Pl−1 e
−ν

Pl = (−ν)l − l Pl−1 ,

where Pl is a polynomial of degree l. The integrals
−ν∫

−∞
tl et

(et+1)2
dt are of the order νle−ν

and can therefore be neglected in the limit ν = ln z → +∞. We finally have

f̃m(z) =
1

m

(
I0ν

m +mI1ν
m−1 +

m(m− 1)

2
I2ν

m−2 + . . .

)
where

Il =

+∞∫
−∞

tl
et

(et + 1)2
dt

Since h(t) = et

(et+1)2
is even all odd-l integrals vanish. For l = 0 we have

I0 =

+∞∫
−∞

et

(et + 1)2
dt = 1

and for even l > 0

Il = −2

 ∂

∂λ

∞∫
0

dt
tl−1

eλt + 1


λ=1

= (l − 1)! (2l) (1− 2l−1) ζ(l)

where ζ(l) is the Riemann zeta function:

ζ(2) =
π2

6
, ζ(4) =

π4

90
, . . .
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We can now replace this information explicitly for m = 3/2 and 5/2:

f̃3/2(z) =
2

3

[
ν3/2 +

π2

3

3

8
ν−1/2 +O

(
ν−5/2

)]
and therefore

f3/2(z) =
2√
π
f̃3/2(z) =

4

3
√
π

(
ν3/2 +

π2

8
ν−1/2 + . . .

)
=

4

3
√
π
ν3/2

(
1 +

π2

8
ν−2 + . . .

)
=

4

3
√
π

(
(ln z)3/2 +

π2

8
(ln z)−1/2 +O

[
(ln z)−5/2

])
.

In the same way we have

f5/2(z) =
4

3
√
π
f̃5/2(z) (12.16)

where

f̃5/2(z) =
2

5

(
ν5/2 +

π2

3

15

8
ν1/2 +O(ν−3/2)

)
.

Consequently,

f5/2(z) =
8

15
√
π

(
ν5/2 +

5π2

8
ν1/2 + . . .

)
=

8

15
√
π

{
(ln z)5/2 +

5π2

8
(ln z)1/2 +O

[
(ln z)−3/2

]}
.

It is probably clearer to write

f3/2(z) =
4

3
√
π
(ln z)3/2

(
1 +

π2

8
(ln z)−2 +O

[
(ln z)−4

])
(12.17)

and

f5/2(z) =
8

15
√
π
(ln z)5/2

(
1 +

5π2

8
(ln z)−2 +O

[
(ln z)−4

])
. (12.18)

The above Sommerfeld expansion will allow us to calculate the properties of the ideal
fermion gas in the most interesting quantum limit. The expressions become a lot more
transparent once one replaces ln z by βµ on the right hand side. In the following section
we use the expansion (12.17) of f3/2(z) in order to obtain z = f−1

3/2(λ
3/v) as a function

of λ3/v. Replacing then z in the the expansion (12.18) of f5/2(z) gives access to the
equation of state and to all thermodynamic properties as a function of T , N and V .

12.3.2 Physics of the low temperature limit

Before using the Sommerfeld expansion and solving for z as a function of the density
N/V or the volume per particle v = V

N it is useful to consider the T = 0 limit explicitly.
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In this case the occupation numbers are

⟨np⃗⟩ =
1

eβ(εp⃗ −µ) + 1
=

{
1 if εp⃗ < µ = εF

0 if εp⃗ > µ = εF

All states are occupied below the Fermi energy εF and all states above εF are empty,
where

εF =
p2F
2m

and

N =
V

(2πℏ)3
4π

pF∫
0

p2dp =
V

(2πℏ)3
4

3
πp3F =

V

6π2ℏ3
p3F .

The Fermi wave vector is thus given by the density or volume per particle v as

pF = ℏ
(
6π2

v

)1/3

= ℏkF .

It is an eminently quantum property proportional to ℏ divided by the average distance
v1/3 between the Fermions. Accordingly, the Fermi energy is given by

εF =
ℏ2

2m

(
6π2

v

)2/3

. (12.19)

Both εF and pF are independent of the size of the system. They are intensive quantum
properties, which are defined entirely by the particle density N/V = 1/v or volume per
particle v, and which increase monotonously as a function of 1/v. In order to quantify
the temperature scale below which quantum effects dominate we introduce the Fermi
temperature

TF =
εF
kB
.

In fact, the Sommerfeld expansion and the following discussion hold only as long as T
is clearly smaller than TF . Quantitative values of TF in usual metals (of the order of
104 K) show that this is perfectly valid assumption.

The importance of εF and TF becomes clearer when one considers the properties at
finite low temperatures. To calculate µ to the lowest non-vanishing order in T we use
the expansion of f3/2(z) for large z:

λ3

v
= f3/2(z) =

4

3
√
π
(ln z)3/2

(
1 +

π2

8
(ln z)−2 +O

[
(ln z)−4

])
.

Recalling that

λ =
2πℏ√

2πmkBT
=

√
2πℏ2
m

β1/2 → λ3 =

(
2πℏ2

m

)3/2

β3/2
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and replacing ln z = βµ we have

1

v

(√
2πℏ2
m

)3

β3/2 =
4µ3/2

3
√
π
β3/2

(
1 +

π2

8
(βµ)−2 + . . .

)
.

Rearranging the prefactor we obtain

ε
3/2
F =

1

v
6π2

(
ℏ2

2m

)3/2

= µ3/2
(
1 +

π2

8
(βµ)−2 +O

[
(βµ)−4

])
which yields

εF =
ℏ2

2m

(
6π2

v

)2/3

= µ

(
1 +

π2

8
(βµ)−2 + . . .

)2/3

= µ

(
1 +

π2

12
(βµ)−2 + . . .

)
,

or equivalently,

µ = εF − π2

12

(
kBT

εF

)2(ε2F
µ

)
+O

(
kBT

µ

)4

.

Replacing µ on the right hand side and keeping the terms up to order (kBT/εF )
2 we

have

µ

εF
= 1− π2

12

(
kBT

εF

)2(εF
µ

)
+O

(
kBT

µ

)4

µ

εF
= 1− π2

12

(
kBT

εF

)2

+O

(
kBT

εF

)4

µ

εF
= 1− π2

12

(
T

TF

)2

+O

(
T

TF

)4

Notice that µ ≈ εF up to temperatures of the order of TF . To give an order to magni-
tude, in narrow band metals we find εF ≈ 5 eV. This corresponds to TF ≈ 5 × 104 K.
Larger values are found in simple metals, which are all much higher than the melting
temperature, for example. Consequently, ignoring the temperature dependence of µ in
solid metals is usually a very good approximation.

The fact that µ decreases with increasing T is a consequence of the form of the single-
particle energy spectrum of free particles in three dimensions. We may compute the
single-particle density of states (DOS)

ρ(ε) =
∑
p⃗

δ(εp⃗ − ε) =
V

(2πℏ)3

∫
d3p δ(εp⃗ − ε) ,
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which represents the number of single-particle states per unit energy at the energy ε. For
non-interacting particles of mass m we have εp⃗ = p2/2m and

ρ(ε) =
V

(2πℏ)3
4π

∞∫
0

p2 δ

(
p2

2m
− ε

)
dp .

Introducing

ε′ =
p2

2m
⇒ dε′ =

p

m
dp

and
dp =

m√
2mε′

dε′

we obtain

ρ(ε) =
V

(2πℏ)3
4π

√
m

2
2m

∞∫
0

√
ε′ δ(ε′ − ε) dε′

=
Nv(2m)3/2

4πℏ3
√
ε =

3

2

N

ε
3/2
F

√
ε .

The number of particles can then be calculated from

N =

+∞∫
−∞

ρ(ε) f(ε) dε =

+∞∫
−∞

ρ(ε)
1

eβ(ε−µ) + 1
dε

where we have replaced the average occupation of the states with energy ε by the Fermi
function

f(ε) =
1

eβ(ε−µ) + 1
.

In particular at T = 0 we have

N =

εF∫
−∞

ρ(ε) dε

and in general for T ≥ 0

N =

+∞∫
−∞

ρ(ε)f(ε) dε .

176



The equation of state is obtained from

pv

kBT
=

v

λ3
f5/2(z) =

f5/2(z)

f3/2(z)

=
2

5
ln z

(
1 + 5π2

8 (ln z)−2 + . . .

1 + π2

8 (ln z)−2 + . . .

)

=
2

5
ln z

(
1 +

5π2

8
(ln z)−2 − π2

8
(ln z)−2 + . . .

)
=

2

5
ln z

(
1 +

π2

2
(ln z)−2 +O(ln z)−4

)
=

2

5
βµ

(
1 +

π2

2
(βµ)−2 + . . .

)
=

2

5

εF
kBT

[
1− π2

12

(
kBT

εF

)2

+
π2

2

(
kBT

εF

)2

+ . . .

]

=
2

5

εF
kBT

[
1 +

5π2

12

(
kBT

εF

)2

+O

(
kBT

εF

)4
]
.

This can be written in a more compact form as

pv =
2

5
εF

[
1 +

5π2

12

(
kBT

εF

)2

+ . . .

]
.

Notice that the pressure does not vanish at T = 0. This is of course a consequence of
Pauli’s exclusion principle, which forces a macroscopic number of fermions to occupy non-
vanishing momentum states —up to pF = ℏ(6π2/v)1/3— and the Heisenberg principle,
which enhances the kinetic energy as the volume is reduced.

For non-interacting Fermi gases the pressure gives us directly the internal energy
through

E =
3

2
pV =

3

5
NεF

(
1 +

5π2

12

(
kBT

εF

)2

+ . . .

)
,

Notice the ground state energy E0 = 3
5NεF is simply proportional to εF . This result

could also have been obtained from

E0 =

∫ εF

0
ρ(ε) ε dε =

3

2

N

ε
3/2
F

εF∫
0

ε3/2 dε =
3

2

N

ε
3/2
F

2

5
ε
5/2
F =

3

5
NεF .

From the temperature dependence of E we straightforwardly obtain the physically
important heat capacity at constant volume

CV =
∂E

∂T

∣∣∣∣
V,N

=
3

5
NεF

5π2

6

k2BT

ε2F
=

γ︷ ︸︸ ︷
π2

2

k2B
εF
N T +O

(
kBT

εF

)3

,
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which is linear in T and thus satisfies the third principle of thermodynamics. Know-
ing that CV → 3

2NkB for T → +∞, we can infer qualitatively the full temperature
dependence.

A few important properties of the Fermi energy

εF =
ℏ2

2m

(
6π2

v

)2/3

deserve to be underlined:

i) εF (or the Fermi temperature TF = εF /kBT ) defines the temperature scale be-
low which quantum effects and in particular wave-function-symmetry correlations
dominate the behavior of the ideal Fermi gas.

ii) εF is a quantum property proportional to ℏ2, since εF = p2F /2m and pF ∼ ℏ.

iii) εF increases when the mass of the particles decreases.

iv) εF is an intensive property. It does not depend on the size of the system but on
the volume per particle v = V/N , which defines the average interparticle distance
v1/3. Equivalently, we may express εF in terms of the density n = N

V .

v) As the density increases, the Fermi energy εF and the Fermi momentum pF increase.
A larger density (e.g., due to compression) increases the size of the Fermi sphere.
This behavior is understandable taking into account the symmetry correlations,
which preclude two Fermions from occupying the same state, and the Heisenberg
principle, which implies an increase of the kinetic energy of each single-particle
state with decreasing volume. Notice that neither εF nor pF change when both
the system volume V and the particle number N are scaled keeping v = V/N
constant. If V is increased only the density of the allowed values of the momentum
pα = 2πνα/L increases.

After all these calculations it is interesting to qualitatively discuss how the properties
change as a function of T within the quantum (also known as degenerate) regime (T ≪
TF ). At T = 0 the occupation-number distribution np⃗ looks like an ice cube or ice block
(Heaviside step function). As the temperature increases, at T > 0, the ice cube melts.
The step in the Fermi function gives place to a smooth transition, from f(ε) ≃ 1 for
ε well below the chemical potential [(ε − µ) ≪ −kBT ], to f(ε) ≃ 0 for ε well above
µ [(ε − µ) ≫ kBT ]. At the same time as f(ε) describes this smooth crossover, the
chemical potential decreases slightly. This is a consequence of the shape of the density
of single-particle states (DOS) ρ(ε) ∝

√
ε, which increases with energy. In fact, if one

would increase T keeping µ constant, the number of particles N would increase, since
the number of states with energy ε > εF is larger than the number of states with ε < εF .
Notice, that f(ε) occupies as many states above µ as it produces holes below µ:

1− 1

ex + 1
=

ex + 1− 1

ex + 1
=

1

e−x + 1
.

A decrease in occupation below µ (x < 0) implies and increase in occupation above µ
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(−x > 0). Thus, f(ε) alone does not change the number of particles as T increases. In
other words, if ρ(ε) would be independent of ε, N and thus µ would not change with
increasing T :

0∫
−∞

(
1− 1

1 + ex

)
dx =

∫ 0

−∞

dx

e−x + 1
= −

∫ 0

+∞

dx

ex + 1
=

∫ +∞

0

dx

ex + 1
.

Thus, the number of unoccupied states below µ equals the number of occupied states
above µ if ρ(ε) is independent of ε around εF .

The energy range where the Fermi function f(ε) is significantly different from 0 or 1
(i.e., the crossover region) is of the order of kBT . The physical reason for this is simply
that the energy available for excitations is of the order of kBT . With increasing T ,
the entropy increases and electron-hole excitations become increasingly probable. The
number of these excitations is of the order of kBTρ(εF ), where ρ(εF ) is the single-particle
density of states at εF . The energy involved in each excitation is in average of the order
of kBT . Thus, the internal energy E increases proportional to (kBT )

2, which explains
qualitatively why the specific heat CV = (∂E/∂T )V is linear in T , with a coefficient γ
that is proportional to ρ(εF ). More precisely, the DOS at εF is given by

ρ(εF ) =
3

2

N

ε
3/2
F

√
εF =

3

2

N

εF
(12.20)

and the heat capacity is given by

CV =
π2

2
k2B

N

εF
T =

π2k2B
3

ρ(εF )︸ ︷︷ ︸
γ

T . (12.21)

The reduction of CV with decreasing T reflects the reduction of the number of degrees of
freedom which are available to excite the fermions as the temperature is lowered. In other
words, the volume in momentum space, within which excitations are possible, becomes
smaller and smaller as we approach zero temperature. This is, again, a direct consequence
of the correlations imposed by the antisymmetry of fermionic wave functions. Indeed, the
exclusion principle precludes all electrons except those occupying states close the Fermi
energy —within an energy range kBT— to be excited, since the thermally available
energy for these excitations is only kBT . It is this reduction of accessible volume in
momentum space what reduces CV , in a way that it complies with the 3rd principle as
T → 0.
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13 Bose systems: Photons and black body radiation

The most important application of Bose-Einstein statistics is the theory of electromag-
netic radiation in thermal equilibrium. One considers the electromagnetic radiation en-
closed on a volume V at temperature T . This cavity is known as black-body cavity, since
it would absorb all radiation incident on it. Such a body can be realized by a cavity
with highly absorbing internal walls and a small aperture. Any ray entering through the
aperture could only leave the cavity after numerous reflections on the internal walls of
the cavity. When the aperture is sufficiently small all radiation incident on the aperture
will be practically absorbed and thus the surface of the aperture behaves like a black
body.

The cavity can be stabilized at any desired temperature T . The atoms in the cavity
surface constantly emit and absorbs photons, so that in the equilibrium state, a certain
amount of electromagnetic radiation will be enclosed in the cavity. The linearity of the
equations of electrodynamics implies that the photons do not interact with each other.
We can of course ignore the entirely negligible interaction resulting from virtual creation
of electron-positron pairs (scattering of light by light). However, notice that, precisely
because of the lack of interaction between the photons, the presence of the cavity walls
and the resulting interaction between photons and matter is crucial in order that the
photon gas reaches equilibrium.

The mechanism by which equilibrium is reached consists in the absorption and emission
of photons by the cavity walls. The photon gas in the cavity differs therefore from
conventional gases of massive particles in an essential point: the number of particles
(photons) N is not conserved. It is not a constant of motion as in ordinary gases. The
variable number N of photons must be determined from the equilibrium conditions,
namely, temperature and volume, by minimizing the free energy or grand canonical
potential without any restriction. In fact, since N is not conserved, it does not appear
in the expansion of the logarithm of the density matrix ln ρ̂, as a linear combination of
the conserved additive constants of motion. Consequently, the statistical description of
the photon gas follows the grand canonical ensemble with

µ = 0 .

The partition function is obtained by summing over all possible occupations of the photon
states without any Lagrange multiplier or chemical potential µ. This is consistent with
the condition that the average equilibrium value of N is obtained when the free energy F
(or the grand canonical potential Φ) of the gas is minimal for the given T and V , which
also corresponds to

µ =
∂F

∂N

∣∣∣∣
T,V

= 0.
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13.1 Basic properties of the quantized electromagnetic field

The quantum electromagnetic field is characterized by the following properties:

i) A stationary state of the electromagnetic field in the absence of sources (free EMF)
is characterized uniquely by the photon occupation numbers {n

k⃗α
}, where k⃗ refers

to the wave vector of the photon and α = +,− denote the polarization directions,
which are perpendicular to each other and to k⃗ (ε̂+ · ε̂− = 0, and ε̂α · k⃗ = 0). The
occupation numbers n

k⃗α
can take any integer value n

k⃗α
= 0, 1, 2, . . . . Such a state

of the EMF has the total energy

E =
∑
k⃗,α

n
k⃗α

ℏωk =
∑
k⃗,α

n
k⃗α
εk,

with
ωk = ck, εk = ℏωk = cp

and a total momentum
P⃗ =

∑
k⃗,α

n
k⃗α

ℏk⃗.

The values of k⃗ are those allowed by the boundary conditions in the volume V = L3,
which form a complete orthonormal plane-wave basis set. The periodic boundary
conditions read

kiL = 2πmi

with mi ∈ Z and i = 1, 2, 3, or equivalently,

k⃗ =
2π

L
m⃗ =

2π

V 1/3
m⃗ (13.1)

with m⃗ ∈ Z3. Since k =
√
k2x + k2y + k2z ∝ V −1/3 we have ωk ∝ V −1/3. In the limit

of large V we may replace the sums over the allowed values of k⃗ by integrals as∑
k⃗

. . . → V

(2π)3

∫
. . . d3k.

ii) The lowest energy state of the EMF is obtained by setting all the photon occupation
numbers n

k⃗α
= 0. This is known as the vacuum state and is denoted by |0⟩. All

other stationary states |{n
k⃗α
}⟩ can be obtained from |0⟩ by applying the photon

creation operators â†
k⃗α

as in the quantum harmonic oscillator:

|{n
k⃗α
}⟩ =

∏
k⃗α

1√
n
k⃗α
!

(
â†
k⃗α

)n
k⃗α |0⟩
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iii) The creation operators â†
k⃗α

and annihilation operators â
k⃗α

=
(
â†
k⃗α

)†
satisfy the

boson commutation relations[
â
k⃗α
, â

k⃗′α

]
=
[
â†
k⃗α
, â†

k⃗′α

]
= 0

and [
â
k⃗α
, â†

k⃗′α

]
= δkk′ δαα′

for all k⃗, k⃗′, α and α′.

iv) The state |{n
k⃗α
}⟩ is fully symmetric with respect to interchange of all the operators

â†
k⃗α

that define it. Consequently, photons are bosons.

v) The state â†
k⃗α
|0⟩ is a single-photon state having an energy εk = ℏωk = ℏck and

a momentum ℏk⃗. The state |{n
k⃗α
}⟩ contains n

k⃗α
photons in each state k⃗α. The

total number of photons is thus

N =
∑
k⃗α

n
k⃗α
.

vi) The operator â†
k⃗α

(â
k⃗α

) creates (annihilates) a photon in the state k⃗α according to
the usual boson algebraic rules

â†
k⃗α

|{n
k⃗α
}⟩ =

√
n
k⃗α

+ 1 |n
k⃗α

+ 1⟩

â
k⃗α
|{n

k⃗α
}⟩ = √

n
k⃗α

|nkα − 1⟩.
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13.2 The Planck distribution

The Bose-Einstein statistics applies to the quantized EMF, since its stationary states are
uniquely defined by the occupation numbers n

k⃗α
of photons states k⃗α and all integer

values of n
k⃗α

= 0, 1, 2, . . . are allowed. The partition function is then given by

Zgc =
∏
k⃗,α

(
+∞∑
n=0

e−βℏωkn

)
=
∏
k⃗,α

1

1− e−βℏωk
=
∏
k⃗

(
1

1− e−βℏωk

)2

.

Since µ = 0, the grand canonical potential Φ = − 1
β lnZgc and the free energy F = Φ+µN

coincide. In the following we rather refer to it as free energy and write

Φ = F = − 1

β
lnZgc = 2kBT

∑
k⃗

ln
(
1− e−βℏωk

)
.

The average occupation number for photons with wave vector k⃗ and polarization α is
given by

⟨n
k⃗α
⟩ = 1

2

∂F

∂(ℏωk)
=

1

eβℏωk − 1
,

which is known as Planck’s distribution:

⟨n
k⃗α
⟩ = 1

eβℏck − 1
.

It corresponds to the Bose-Einstein distribution for µ = 0. Summing the contributions
of both polarizations we have

⟨n
k⃗
⟩ = 2

(eβℏωk − 1)
.
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13.3 The energy-pressure relation

The internal energy is given by

E = − ∂

∂β
lnZgc =

∑
k⃗

2ℏωk e
−βℏωk

1− e−βℏωk

=
∑
k⃗

ℏωk⟨nk⃗⟩

We can obtain the pressure (i.e., the equation of state) from

p = −∂F
∂V

=
2

β

∑
k⃗

e−βℏωk

1− e−βℏωk

(
−βℏ∂ωk

∂V

)
= −

∑
k⃗

⟨n̂
k⃗
⟩ℏ∂ωk

∂V
.

Knowing that ωk = ck = c 2π
V 1/3m, where m =

√
m2

x +m2
y +m2

z [see Eq. (13.1)], we have

∂ωk

∂V
= −1

3
c
2π

V 4/3
m = −1

3

ωk

V
,

which allows us to write
p =

∑
k⃗

1

3
⟨n

k⃗
⟩ℏωk

V
.

Therefore,

pV =
1

3
E .

The same relation would have obtained for fermions having a dispersion relation εp⃗ = cp,
since this follows from the dependence of εp⃗ on V . The reader may wish to prove this
statement as an exercise.
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13.4 Thermodynamic properties

We may now take the limit V → ∞ and obtain the number of linearly independent
single-particle states or photon modes in a volume element d3k around k⃗ as

2
V

(2π)3
d3k.

The number of photon modes having a magnitude k in the interval (k, k + dk) is thus

8πV

(2π)3
k2 dk.

Since ω = ck, the number of modes with a frequency ω in the interval (ω, ω + dω) is

8πV

(2π)3c3
ω2dω.

Therefore, the density of photon modes with frequency ω is given by

ρ(ω) =
V

π2c3
ω2 .

Note that ρ(ω) includes the contribution of both polarizations.

Consequently, the internal energy is given by

E =

+∞∫
0

ℏω ρ(ω) dω
eβℏω − 1

= V
ℏ

π2c3

+∞∫
0

ω3dω

eβℏω − 1
.

The corresponding energy density per unit volume and unit frequency is

u(ω, T ) =
ℏ

π2c3
ω3

eβℏω − 1
,

in terms of which we have
E

V
=

+∞∫
0

u(ω, T ) dω .

This is Planck’s radiation law, which gives the energy density u(ω, T ) due to photons of
frequency ω at temperature T .

Introducing the variable x = βℏω we have

E =
V (kBT )

4

π2c3ℏ3

∞∫
0

x3

ex − 1
dx

︸ ︷︷ ︸
π4/15

E

V
=
π2(kBT )

4

15c3ℏ3
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Introducing the Stefan-Boltzmann constant

σ =
π2k4B
60ℏ3c2

= 5, 67× 10−5 erg
cm2 s K4 ,

we can write
E

V
=

4σ

c
T 4 .
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The free energy can be obtained in the same way:

F = kBT

∞∫
0

ρ(ω) ln(1− e−βℏω) dω

= kBT
V

π2c3

∞∫
0

ω2 ln(1− e−βℏω) dω

=
V (kBT )

4

π2c3ℏ3

∞∫
0

x2 ln(1− e−x) dx

︸ ︷︷ ︸
−π4/45

= −π
2

45

V (kBT )
4

c3ℏ3
= −4σ

3c
V T 4

The other thermodynamic properties follow straightforwardly:

S = −∂F
∂T

=
16σ

3c
V T 3

E = TS + F =
4σ

c
V T 4

CV =
16σ

c
V T 3 .

Note that CV → ∞ for T → ∞, since the energy and number of photons has no upper
bound. We shall see that this is not the case for lattice vibrations (phonons) which do
reach a proper classical limit. Finally, the equation of state can be written as

p = −∂F
∂V

=
1

3

E

V
=

4σ

3c
T 4 .
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13.5 Revisiting Planck’s law

It is useful to return to the average occupation number

⟨n
k⃗α
⟩ = 1

eβℏωk − 1

for photon modes with wave vector k⃗ and polarization α and to analyze how the energy
of the electromagnetic radiation within the cavity is distributed as a function of the
frequency ω. First of all notice that for T = 0 there are no photons with finite frequency,
i.e., ⟨n

k⃗α
⟩ = 0, ∀k⃗ ̸= 0. For any finite temperature we consider the spectral energy-

density per unit volume

u(ω, T ) =
1

V

∑
k⃗,α

ℏωk ⟨nk⃗α⟩ δ(ω − ωk)

= 2
4π

(2π)3

∞∫
0

ℏωk δ(ω − ωk)

eβℏωk − 1
k2dk .

Noting that ωk = ck we have

u(ω, T ) =
1

π2
ℏ
c3

∞∫
0

ω′3 δ(ω − ω′)

eβℏω′ − 1
dω′

=
ℏ

π2c3
ω3

eβℏω − 1
,

which is known as Planck’s law. We have already seen that
∫
dω u(ω, T ) = E/V = 4σ

c T
4.

For frequencies that are low relative to the temperature (ℏω ≪ kBT ) we obtain

u(ω, T ) ≈ ℏ
π2c3

kBT

ℏω
ω3 =

ω2

π2c3
kBT =

ρ(ω)

V
kBT

This is the Rayleigh-Jeans formula, which does not involve the Planck constant ℏ and
corresponds to the classical limit (high temperatures). This formula has been derived
from classical electromagnetism. If applied beyond its domain of validity, it implies an
ultraviolet catastrophe of the form u(ω, T ) ∝ ω2, in which the high frequencies get so
much energy that the total energy of the EMF in the cavity would diverge. It is interesting
to note that the Rayleigh-Jeans limit (ℏω ≪ kBT ) corresponds to the equipartition
theorem because u(ω, T ) = ρ(ω)

V kBT , where ρ(ω) is the density of states at the frequency
ω and kBT is the energy per photon mode.
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In the opposite limit of high frequencies relative to T , i.e., ℏω ≫ kBT , we obtain the
Wien formula

u(ω, T ) ≈ ℏ
π2c3

ω3 e−βℏω ,

which was empirically known to describe the high frequency spectrum quite accurately.
Planck’s law interpolates nicely between the two limits. We can write Planck’s law in
the form

u(ω, T ) =
(kBT )

3

π2c3ℏ2
x3

e−x − 1
(13.2)

with x = ℏω
kBT . The maximum is found at xm = 2.82. The corresponding frequency of

the maximum ℏωm = 2.82kBT scales linearly with temperature. This is known as Wien’s
displacement law (Verschiebungsgesetz).

Exercise 13.23: Estimate the position of the maximum in u(ω, T ) [Eq. (13.5)].
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13.6 Phonons

Lattice vibrations in solids can be treated within the harmonic approximation in a very
similar way as photons. The quantization of the translational degrees of freedom relative
to the lattice equilibrium positions leads to the elementary excitations or normal modes
known as phonons, in a very similar way as photons are derived from the quantization of
the electromagnetic field. Assuming periodic boundary conditions in a volume V = L3,
the allowed phonon wave-vectors are

k⃗ =

(
2π

L

)
m⃗ with m⃗ ∈ Z .

For each k⃗ there are three possible polarizations: a longitudinal mode and two transversal
modes. The corresponding frequencies are denoted by ωα(k⃗). The density of phonon
states ρ(ω) =

∑
α ρα(ω) per unit frequency is given by

ρ(ω) =
∑
k⃗,α

δ[ωα(k⃗)− ω] =
V

(2π)3

∑
α

∫
δ[ωα(k⃗)− ω] dk3 .

Assuming for simplicity a linear isotropic dispersion relation ωk = ck, with the same
speed of sound c for longitudinal and transversal modes, we have

ρ(ω) = 3
V

(2π)3
4πk2

c
= V

3ω2

2π2 c3
. (13.3)

In contrast to photons, phonons frequencies are bounded by the constraint that the total
number of eigenmodes must be equal to the number of degrees of freedom 3N . This
means that there is an upper bound ωD for the phonon frequencies which satisfies∫ ωD

0
ρ(ω) dω = 3N , (13.4)

where ωD is the largest attainable Debye frequency. Replacing Eq. (13.3) in (13.4) one
obtains

ωD = c

(
6π2

v

)1/3

, (13.5)

where v = V/N is the volume per atom. That phonon frequencies are bounded corre-
sponds physically to the fact that in a discrete lattice the wavelengths cannot be shorter
than the lattice spacing a = L/N1/3 = v1/3. In the Debye model the shortest wave
length is λD = 2π/kD = 2πc/ωD = (4π/3)1/3v1/3 ≃ 1.6 v1/3, which is of the order of the
interatomic distance v1/3.
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The vibrational state |{n
k⃗α
}⟩ of the lattice is defined univocally by the occupation

numbers n
k⃗α

of all phonons modes. The total energy is given by

E({n
k⃗α
}) =

∑
k⃗,α

(n
k⃗α

+
1

2
) ℏωα(k⃗) .

In the limit of V → ∞ we can write

E =

∫ ωD

0
ρ(ω)

(
1

eβℏω − 1
+

1

2

)
ℏω dω

= E0 +
3V

2π2c3

∫ ωD

0
ω2 ℏω

eβℏω − 1
dω , (13.6)

where E0 = (3V ℏ/4π2c3)
∫ ωD

0 ω3dω = (9/8)NℏωD stands for the ground-state zero-
point-motion energy, which is of the order of ℏωD per atom. From Eq. (13.6) one obtains
the heat capacity at constant volume CV = (∂E/∂T )|V . It has the form

CV =


3NkB

[
1− 1

20

(
TD
T

)2
+ . . .

]
T ≫ TD

12π4

5 NkB

(
T
TD

)3
+O

(
e−TD/T

)
T ≪ TD

where TD = ℏωD/kB is the Debye temperature. Typical values of TD for pure elements
are in the range of 200–600 K although some elements can have values as low as 40 K
(Cs) or more than 2000 K (C). Notice that CV vanishes as T 3 for T → 0, as in the
case of photons. In metals, and at sufficiently low temperatures, the free-electron-like
contribution to CV , which is linear in T , always dominates over the phonon contribution.
At temperatures that are large in comparison with TD we approach the classical limit, in
which the heat capacity takes a constant value equal to kB per degree of freedom. This
is known as the Dulong-Petit law. The high-temperature value of CV follows from the
equipartition theorem which states that the classical averages of the kinetic energy and of
the interaction energy in an harmonic potential are both equal to kBT/2 for each degree
of freedom (see Sec. 10.3). Finally, notice the profound contrast to photons, whose heat
capacity diverges as T 3 since their energies are unbounded.
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14 Bose-Einstein condensation

As a final example of a non-interacting Bose gas we consider non-relativistic particles
having a finite mass m whose number N is conserved. We are interested in understanding
the properties when the total average number of particles N = ⟨N̂⟩ is fixed, rather than
in the case where the chemical potential is held constant. The thermodynamic potentials,
however, can be calculated in the grand canonical ensemble, which is by far simpler than
in the canonical ensemble where no particle exchange with the enviroment is allowed.
Moreover, we are interested in the macroscopic limit. Therefore, consider the limit of V
and N → ∞ keeping constant the particle density ν = N/V or, equivalently, the volume
per particle v = V/N .

As already discussed, the grand canonical potential, equation of state and particle
numbers are given by

Φ = kBT
∑
p⃗

ln
[
1− e−β(εp⃗−µ)

]
,

Φ = kBT
∑
p⃗

ln
[
1− ze−βεp⃗

]
, (14.1)

pV

kBT
= lnZgc = −

∑
p⃗

ln
[
1− ze−βεp⃗

]
, (14.2)

N = −∂Φ
∂µ

=
∑
p⃗

1

z−1eβεp⃗ − 1
, (14.3)

and the average occupation of the single-particle state p⃗ is

⟨np⃗⟩ =
1

z−1eβεp − 1
. (14.4)

In principle, in order to calculate the properties of the gas, we need to solve for z = eβµ

as a function of N from Eq. (14.3) by using the dispersion relation

εp⃗ =
p2

2m
,

and the fact that the momenta take the values

p⃗ =
2πℏ
L
k⃗

with k⃗ ∈ Z3. One would then replace z as function of N , V and T in Eqs. (14.1) and
(14.2) in order to obtain Φ and the equation of state. However, before doing that (or in
order to succeed in doing that) we need to analyze the properties of ⟨np⃗⟩ and N as given
by Eqs. (14.3) and (14.4) in some detail. Since

⟨np⃗⟩ =
1

eβ(εp⃗−µ) − 1
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is positive for all p⃗, we must have µ ≤ εp⃗ for all p⃗, which implies that µ ≤ 0. Consequently,
the fugacity z = eβµ satisfies

0 < z ≤ 1.

Clearly, both limits can be approached arbitrarily close: z → 0 for T → ∞, since
µ → −∞ when β → 0, while z → 1 for T → 0, since the ground-state of the ideal Bose
gas has all its particles occupying the p = 0 state (⟨np⃗⟩ = 0, ∀p ̸= 0). In order to see
this more clearly we express z in terms of occupation ⟨n0⟩ of the p = 0 state:

⟨n0⟩ =
1

z−1 − 1
=

z

1− z
⇒ z =

⟨n0⟩
⟨n0⟩+ 1

.

For T → ∞, ⟨n0⟩ → 0, since ⟨np⃗⟩ becomes independent of p⃗ and
∑

p⃗⟨np⃗⟩ = N . Thus,
z → 0 for T → ∞, irrespectively of the value of N . For T → 0, ⟨np⃗⟩ → 0 for all p⃗ ̸= 0.
Consequently, ⟨n0⟩ → N and z → N/(N + 1), which tends to 1 for N or V → ∞. We
will actually see that in the limit of V → ∞ the fugacity z is strictly equal to 1 (µ = 0)
below a given finite critical temperature Tc. Therefore, we must consider z = 1 as a
possible attainable value in the macroscopic limit.

In order to be able to take the limit V → ∞ in Eqs. (14.2) and (14.3) we need to verify
if any element of the sum can diverge for V → ∞, since these terms need to be taken off
the sum, before replacing the latter by an integral. We must therefore pay attention to
the terms having εp⃗ → 0 when z → 1.

Let us consider the density of bosons occupying a given state p⃗ ̸= 0, which is given by

⟨np⃗⟩
V

=
1

V

1

z−1eβεp − 1
≤ 1

V

1

eβεp − 1
, (14.5)

where in the last inequality we have used that z ≤ 1 and εp ≥ 0. In the macroscopic limit
the smallest εp tends to 0, even for p ̸= 0. Therefore,

(
eβεp − 1

)−1 becomes divergent for
p→ 0. In order to determine ⟨np⃗⟩/V for large V , we calculate the leading contributions:

eβεp − 1 = β
p2

2m
+O(p4)

=
β

2m

(2πℏ)2

V 2/3
k2 +O

(
1

V 4/3

)
,

where we have used that p2 = (2πℏ)2
V 2/3 k

2 with k2 = k2x + k2y + k2z and k⃗ ∈ Z3. Replacing in
(14.5) we obtain

⟨np⃗⟩
V

≤ 2m

β(2πℏ)2k2
1

V 1/3

V→∞−→ 0

for all p⃗ ̸= 0. One concludes that none of the occupation densities ⟨np⃗⟩/V diverges for
p⃗ ̸= 0. However, this is obviously not true for the p = 0 state, since

⟨n0⟩ =
1

z−1 − 1
(14.6)
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diverges for z → 1. This term (and only this term) needs to be singled-out before
replacing the sum over p⃗ by an integral in Eq. (14.3). In the limit of large V we therefore
have

N

V
=

4π

(2πℏ)3

∞∫
0

p2
1

z−1eβp2/2m − 1
dp+

1

V

z

1− z
.

Replacing with the variable x = p/
√
2mkBT we have

N

V
= 4π

(
√
2mkBT )

3

(2πℏ)3

∞∫
0

x2 dx

z−1ex2 − 1
+

1

V

z

1− z

=
1

λ3
g3/2(z) +

1

V

z

1− z
, (14.7)

where

g3/2(z) =
4√
π

∞∫
0

x2

z−1ex2 − 1
dx (14.8)

is a simple function of z. Introducing the density of particles per unit volume ν = N/V =
1/v we can write

ν =
N

V
=

⟨n∗⟩
V

+
⟨n0⟩
V

, (14.9)

where
ν∗ =

⟨n∗⟩
V

=
1

V

∑
p⃗ ̸=0

⟨np⃗⟩ =
1

λ3
g3/2(z). (14.10)

is the density of excited particles occupying states having p⃗ ̸= 0, and

ν0 =
⟨n0⟩
V

=
1

V

z

1− z
(14.11)

is the density of particles occupying the lowest single-particle state with p = 0. Notice
that ν0 may well be different from zero in the macroscopic limit, if z → 1 for V → ∞.
This is certainly the case for T = 0, where ν0 = ν. In general, having ν0 ̸= 0 means that
a finite macroscopic fraction of the bosons occupies the p = 0 state.

Let us now analyze the functions

g3/2(z) =
4√
π

∞∫
0

x2

z−1ex2 − 1
dx =

∞∑
l=1

zl

l3/2
(14.12)

and
dg3/2

dz
=

4√
π

∞∫
0

x2ex
2
(1/z)2

(z−1ex2 − 1)2
dx > 0 (14.13)

194



for 0 ≤ z ≤ 1. g3/2(z) is always finite as can be easily seen by looking at the integral or

the Taylor expansion. However, dg3/2
dz → ∞ for z → 1 since the integral (14.13) diverges

at its lower bound. Moreover, g3/2(z) is a monotonously increasing function of z, which
reaches its maximal finite value g3/2(1) = 2.612 for z = 1. The fact that the largest
possible value of g3/2(z) and thus of ν∗ is finite has very important consequences.

Consider a system with a given density of particles ν = N/V or volume per particle
v = V/N = 1/ν at a sufficiently high temperature T , so that

λ3ν =
λ3

v
< g3/2(1) = 2.612.

Recalling that

λ =
2πℏ√

2πmkBT
=

√
2π

mkBT
ℏ,

this corresponds to a temperature

T > Tc =
2πℏ2

mkB

1

[v g3/2(1)]2/3
. (14.14)

From Eq. (14.7) we have

λ3ν =
λ3

v
= g3/2(z) +

λ3

V

z

1− z
(14.15)

= λ3
(
⟨n∗⟩
V

+
⟨n0⟩
V

)
. (14.16)

Since λ3/v < g3/2(1) we must have z < 1 and

g3/2(z) =
λ3

v
for

λ3

v
< g3/2(1) = 2.612 .

Therefore, in the temperature range T > Tc we have

⟨n0⟩
V

=
1

V

z

1− z
→ 0 for V → ∞ .

In particular for T → Tc (T > Tc) we have λ3/v → g3/2(1) and z → 1. Precisely at T =
Tc, where λ3/v = g3/2(1), we still have ν0 = ⟨n0⟩/V = 0, since ν∗ = ⟨n∗⟩/V = g3/2(z)/λ

3

is equal to g3/2(1)/λ3 = ν. In other words, at T ≥ Tc the density of excited particles ν∗

(i.e., occupying p⃗ ̸= 0 states) is equal to the total density ν. However, for T < Tc the
temperature is so low that λ3/v > g3/2(1), a value that g3/2(z) cannot reach. The only
possibility of satisfying Eq. (14.15) is to set z = 1, which gives the maximum possible
density of excited particles

⟨n∗⟩
V

=
g3/2(1)

λ3
, (14.17)
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and to place all the remaining particles

⟨n0⟩
V

=
N

V
− ⟨n∗⟩

V
=

1

v
−
g3/2(1)

λ3
(14.18)

in the p⃗ = 0 state. Thus, for T < Tc, a finite macroscopic fraction of the particles

⟨n0⟩
V

=
N

V
−
g3/2(1)

λ3
=

1

v
−
g3/2(1)

λ3
(14.19)

condensates in the lowest-energy p⃗ = 0 state. This remarkable phenomenon is known
as Bose-Einstein condensation. In the so-called mixed phase, i.e., for T < Tc we have a
macroscopic occupation ⟨n0⟩ of the p⃗ = 0 state. ⟨n0⟩/V increases proportional to T 3/2

with decreasing temperature until at T = 0 we reach ⟨n0⟩ = N .

Knowing that λ = 2πℏ/
√
2πmkbT and using Eq. (14.14) for Tc we have

λ3(Tc)

v
= g3/2(1),

(
2πℏ2

mkBTc

)3/2

= v g3/2(1), Tc =
2πℏ2

mkB

1

[v g3/2(1)]2/3
(14.20)

and thus (
T

Tc

)3/2

=
vg3/2(1)

λ3
, (14.21)

which allows us to bring Eq. (14.19) in the form

⟨n0⟩
V

=
1

v

(
1−

v g3/2(1)

λ3

)
=
N

V

[
1−

(
T

Tc

)3/2
]

(14.22)

for T ≤ Tc. For T > Tc, ⟨n0⟩/V = 0. In the condensed phase (T < Tc) the fugacity is
fixed to z = 1, while in the normal phase (T > Tc) z is obtained as usual as the root of
λ3/v = g3/2(z).

[Grafik: mixed phase: normal gas + zero pressure "liquid"]

For each temperature T there is a critical density νc = 1/vc above which (or a critical
volume per particle vc below which) the Bose-Einstein condensation takes place. This is
given by

vc(T ) =
λ3

g3/2(1)
(14.23)

In this context it is meaningful to define the order parameter

η =
⟨n0⟩
N

=


0 for T > TC

1−
vg3/2(1)

λ3
= 1−

(
T

Tc

)3/2

= 1− v

vc
for T < Tc ,

(14.24)
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which represents the proportion of the total number of bosons which are condensed in
the p = 0 state. In the normal phase (T > Tc or v > vc) we have η = 0, whereas in the
condensed phase we have η > 0. From Eq. (14.14), taking into account that Tc ∝ v−2/3,
we can draw the phase boundary in a T -V diagram.

Before looking at the equation of state, it is useful to derive some relations valid in the
normal phase, i.e., λ3/v ≤ g3/2(1), T > Tc or v > vc. For λ3/v ≤ g3/2(1), z is given by

g3/2(z) =
λ3

v
. (14.25)

At the transition we have

g3/2(1) =
λ3

vc
(14.26)

for all T , and

g3/2(1) =
λ(Tc)

3

v
(14.27)

=
1

v

(
2πℏ2

mkBTc

)3/2

for all v. Combining (14.25) and (14.26) we have

g3/2(z)

g3/2(1)
=
vc
v
, (14.28)

and combining (14.25) and (14.27) we have

g3/2(z)

g3/2(1)
=

λ3

λ(Tc)3
=

(
Tc
T

)3/2

. (14.29)

Let us now verify the behavior of the different terms in the sum over p⃗, which gives
the grand canonical potential Φ, for V → +∞. Before replacing the sum over p⃗ by an
integral we must single out any possibly diverging terms. For finite V we have

Φ = kBT
∑
p⃗

ln
(
1− z e−βεp⃗

)
< 0 . (14.30)

It is easy to see that | ln(1 − ze−βεp)|/V → 0 for V → ∞ for all p⃗ ̸= 0, since | ln(1 −
ze−βεp)| ≤ | ln(1− e−βεp)| ≃ ln(βεp) ∝ (−2/3) ln(V ). In the limit of V → ∞, we need to
separate only the potentially diverging p⃗ = 0 term. We can thus write

−p = Φ

V
= kBT

 4π

(2πℏ)3

∞∫
0

p2 ln
(
1− ze−βp2/2m

)
dp+

1

V
ln(1− z)

 (14.31)
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Within the usual change of variable x = p√
2mkBT

and knowing that λ =
√
2πℏ/mkBT ,

we have
Φ

V
= −kBT

{
1

λ3
g5/2(z)−

1

V
ln(1− z)

}
(14.32)

where

g5/2(z) = − 4√
π

∫ ∞

0
x2 ln

(
1− ze−x2

)
dx =

∞∑
l=1

zl

l5/2
. (14.33)

Knowing that pV = −Φ we can write more simply

p

kBT
=

1

λ3
g5/2(z)−

1

V
ln(1− z) . (14.34)

Since in the normal phase [i.e., for λ3/v < g3/2(1)] we have z < 1, it is clear that the p = 0
term vanishes. But also in the condensed (mixed) phase this term does not contribute.
In fact,

⟨n0⟩ =
1

z−1 − 1
⇒ 1− z =

1

⟨n0⟩+ 1
∝ 1

V
(14.35)

in the condensed phase. Consequently,

1

V
ln(1− z) ≈ − 1

V
lnV

V→∞→ 0. (14.36)

The equation of state reads therefore

p

kBT
=

1

λ3
g5/2(z) =


1

λ3
g5/2(z) for v > vc

1

λ3
g5/2(1) for v < vc .

(14.37)

We should therefore analyze g5/2(z) for 0 ≤ z ≤ 1. For z ≪ 1 we have g5/2(z) ≈ z+O(z2).
Clearly,

g5/2(z) =
∑
l≥1

zl

l5/2
<
∑
l≥1

zl

l3/2
= g3/2(z) ∀z. (14.38)

Consequently, g5/2(z) is finite ∀z ∈ [0, 1], and also dg5/2
dz is finite, since g3/2(z) = z

dg5/2
dz is

finite. Thus, g5/2 increases monotonously. Its largest value in [0, 1] is g5/2(1) = 1, 3415.

[Grafik]

Remarkably, the pressure is independent of V or v = V/N in the mixed phase. Indeed,
for v < vc we can write

p

kBT
=

1

λ3
g5/2(1) =

1

vc

g5/2(1)

g3/2(1)
.
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The reason is that only the excited particles (p ̸= 0) contribute to the pressure, since for
v < vc we can write

pv

kBT
=

v

vc

g5/2(1)

g3/2(1)
=

⟨n∗⟩
N

g5/2(1)

g3/2(1)

Remember that
⟨n0⟩
V

= 1− v

vc
⇒ ⟨n∗⟩

N
= 1− n0

V
=

v

vc
.

Maybe more clearly

pV = ⟨n∗⟩ kBT
g5/2(1)

g3/2(1)

for v < vc or T < Tc, where g5/2(1)/g3/2(1) ≃ 0.5135 < 1. Each excited particle
contributes to the pressure by about half the contribution of the classical Boltzmann
gas. This reflects again the effective attraction between Bose particles, which we already
observed in the high-temperature limit. The condensed part of the mixed phase has zero
pressure. One therefore speaks about the condensate as a zero pressure liquid. This is
of course an idealization in the limit v → 0, due to the neglected interactions among the
particles.

Along the transition line we have

λ3

vc
= g3/2(1) ⇒ λ2 =

2πℏ2

mkBT
=
[
g3/2(1)vc

]2/3 ⇒ kBT =
2πℏ2

m

1[
g3/2(1)vc

]3/2 .
The pressure along the transition line is

p(vc) = pc =
kBT

vc

g5/2(1)

g3/2(1)
=

2πℏ2

m

g5/2(1)

g3/2(1)5/3
1

v
5/3
c

In order to obtain the pressure as a function of temperature we use, for T ≤ Tc, the
relation

p

kBT
=

1

λ3
g5/2(1)

p =
( m

2πℏ2
)3/2

(kBT )
5/2 g5/2(1) ,

and for T = Tc we have

p(Tc) = pc =
N

V
kBTc

g5/2(1)

g3/2(1)
= 0.5135

N

V
kBTc .

For T > Tc, p approaches the classical limit from below.

One may easily express all the other thermodynamic properties in terms of g5/2 and
g3/2 by taking the appropriate derivatives of Φ = −pV . For example, the entropy is
given by

S

NkB
=

{
5
2

v
λ3 g5/2(z)− ln z T ≥ Tc

5
2

v
λ3 g5/2(1) T ≤ Tc

(14.39)
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Since S is continuous at Tc, there is no latent heat as in a first order solid-liquid transition.
In the mixed phase, T ≤ Tc, we have

S =
5

2
kB N

v

vc

g5/2(1)

g3/2(1)
=

5

2
kB ⟨n∗⟩

g5/2(1)

g3/2(1)

=
5

2
kB N

(
T

Tc

)3/2 g5/2(1)

g3/2(1)
.

Only the excited particles (p ̸= 0) contribute to the entropy, with an entropy per excited
particle

S

⟨n∗⟩
= kB

5

2

g5/2(1)

g3/2(1)

that is independent of ⟨n∗⟩ and T . The particles in the “liquid” (i.e., having p = 0)
do not contribute at all to S. They have zero entropy, since they all form one and the
same many-body state. Every time a particle condensates (i.e., ⟨n∗⟩V → ⟨n∗⟩V − 1)
there is a finite change ∆S = kB

5
2

g5/2(1)

g3/2(1)
in the total entropy of the system (not in the

entropy per unit volume for V → ∞). This supports the interpretation or analogy with
a first-order phase transition. The Bose-Einstein condensation has also features that
are characteristic of a second-order phase transition. One of the them is the continuous
increase of the order parameter η = ⟨n0⟩/N with decreasing T , starting at the transition
temperature Tc. Another one is the divergence of the compressibility κT at vc for all T .

The divergence of the compressibility

κT = − 1

V

∂V

∂p

∣∣∣∣
T

= −1

v

∂v

∂p

∣∣∣∣
T

v→vc−→ +∞

can be easily demonstrated by showing that the isotherms p(v) approach the critical
volume vc with zero slope. First we note that

∂p

∂v

∣∣∣∣
T

=
kBT

λ3
dg5/2

dz

∂z

∂v

∣∣∣∣
T

=
kBT

λ3
1

z
g3/2(z)

∂z

∂v

∣∣∣∣
T

.

We also know that

λ3

v
= g3/2(z) ⇒ −λ

3

v2
=
dg3/2(z)

dz

∂z

∂v

∣∣∣∣
T

.

Consequently,

−∂p
∂v

∣∣∣∣
T

=
kBT

λ3
g3/2(z)

1

z

λ3

v2
1

dg3/2(z)

dz

−v ∂p
∂v

∣∣∣∣
T

= κ−1
T =

kBT

v

g3/2(z)

g1/2(z)
.
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Since

g3/2(z) → 2.61

g1/2(z) → +∞

for z → 1, we have

κT =
v

kBT

g1/2(z)

g3/2(z)
→ +∞

for v → vc (i.e., for z → 1).

Finally, let us have a look at the specific heat, which can be obtained straightforwardly
from S:

CV

NkB
=

{
15
4

v
λ3 g5/2(z)− 9

4

g3/2(z)

g1/2(z)
T > TC

15
4

v
λ3 g5/2(z). T < TC

At low temperatures, CV ∝ T 3/2 and vanishes for T → 0, in agreement with Nernst
theorem. This can be easily understood by noting that at low T we have ⟨n∗⟩/N =
v/vc = (T/Tc)

3/2 excited particles, whose energy is of the order of kBT . Thus, we have
E ∝ T 5/2 and CV ∝ T 3/2. Notice that CV is continuous at Tc, since g1/2(z) → ∞
for z → 1. The value at Tc is larger than the classical limit CV

NkB
= 3

2 , which actually
corresponds to CV (T → +∞) = 3

2NkB. In fact,

CV =
15

4

λ(Tc)
3

λ

g5/2(1)

g3/2(1)

T→Tc−→ 15

4

g5/2(1)

g3/2(1)
,

which yields

CV (Tc) ≃ 1.926 >
3

2
.

The fact that CV > 3/2 for large T is remarkable. It can be interpreted to be the
consequence of an effective attraction between bosons, which is due to the symmetry
correlations (full permutation symmetry of the many-body wave functions). Let us recall
that the heat capacity CV of an interacting classical gas is enhanced by ⟨∆W 2⟩/kBT 2,
where ⟨∆W 2⟩ refers to the mean square deviation of the interparticle interaction energy
W , irrespectively of whether the latter is attractive or repulsive (see Sec. 10.2).

[Grafik]
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Exercise 14.24: Bosons in a two-level system
Consider an open system of non-interacting Bosons in which the average number of particles
N is held constant for all temperatures T and volumes V . The single-particle spectrum
consists of two levels: a non-degenerate ground state | 0 ⟩ with energy E0 = 0 and a g-fold
degenerate excited state having an energy is E1 = ∆ > 0 and a degeneracy g = V/v0,
proportional to the volume, where v0 is a constant representing the volume per degree of
degeneracy.

i) Express the average ground-state occupation number n0 and the average occupation
n∗ of the excited states as a function of T , ∆ and chemical potential µ. How are
n0, n∗ and N related? Explain why the fugacity z = eβ µ must always lie in the
range 0 < z ≤ 1 and why z = 1 (or equivalently µ = 0) is only possible in the
thermodynamic limit where N → ∞.

ii) Find the densities of bosons ν0 = n0/V in the single-particle ground state and ν∗ =
n∗/V in the excited states as a function of z, T and ∆. Express z as a function
of the total boson density ν = N/V . Find the density of bosons ν0 occupying the
ground state in the limit of V → ∞ for z < 1. Show that limV→∞ ν0 = ν0 > 0 is
only possible when at the same time z → 1.
Hint: For the sake of clarity one may introduce the variable y = eβ∆ > 1.

iii) Plot or sketch ν∗ as a function of z for ∆ > 0 at different fixed temperatures T .

iv) Find the critical Bose-Einstein-condensation density νc above which ν0 is finite in
the thermodynamic limit (N → ∞).

v) Find the critical temperature Tc as a function of ν, v0 and ∆ below which the system
is in the condensed phase.
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Exercise 14.25: Two-level condensation: Work out Einstein’s argument for the condensa-
tion of indistinguishable particles.
Consider a system of N = n1 + n2 particles, which can occupy two levels with energies ε1
and ε2 with ε1 < ε2. The number of particles in level εi is denoted by ni. In the following
the thermodynamic limit N ≫ 1 may be assumed.
i) Distinguishable particles
(a) Find the microcanonical partition function Ω and entropy S as a function of ni, in the
case of distinguishable particles.
(b) Determine the equilibrium value of n1/n2 as a function of ∆ε = ε2 − ε1, for example,
by minimizing the free energy F . What do you expect for ∆ε = 0?
ii) Repeat the calculation for bosons:
(a) Find the microcanonical partition function Ω and entropy S as a function of ni, in the
case of bosons.
(b) Determine the equilibrium value of n1/n2 as a function of ∆ε = ε2 − ε1, for example,
by minimizing the free energy F . Analyze the cases ∆ε = 0 and ∆ε > 0.
iii) Condensation: One says that the two-level system is condensed, when n1 = N and
n2 = 0 (ε1 < ε2). Find out the conditions for condensation in the case of bosons and
distinguishable particles and bosons for T = 0 and T > 0 (∆ε > 0).
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Exercise 14.26: The Bose-Einstein condensation appears very clearly, mathematically, as
a consequence of the fact that g3/2(z) is bounded for z ∈ [0, 1]. However, this does not
provide any physical understanding of the reason why the normal or excited phase cannot
sustain an arbitrary density of particles in equilibrium. Why is ⟨n∗⟩/N bounded? Why is
the system not willing to keep ⟨n∗⟩/N = 1 when the temperature decreases? Notice that
the contribution of ⟨n0⟩ to the entropy is zero, while the contribution of ⟨n∗⟩ is not. One
could therefore expect that having the largest ⟨n∗⟩ could be more favorable.
A plausible explanation (following Einstein’s argument) is that the entropy S, regarded
as a function of ⟨n∗⟩ [⟨n0⟩ = N − ⟨n∗⟩] increases too slowly with ⟨n∗⟩ as compared to the
internal energy E. In this case a critical temperature would be needed in order that all
the particles are excited (i.e., in order to have ⟨n∗⟩ = N). In fact, it is always possible
to consider a boson gas with an arbitrary number ⟨n∗⟩ of particles in the states having
p⃗ ̸= 0 —even if this does not coincide with the actual value of ⟨n∗⟩ at equilibrium— and to
compute the energy and entropy of this gas as a function of T and V under the constraint∑

p⃗ ̸=0⟨np⃗⟩ = ⟨n∗⟩. This corresponds to Landau’s microcanonical calculation of the entropy
of what he calls “an ideal gases out of equilibrium”.
The exercise is then to compute S = S(⟨n∗⟩), and E = E(⟨n∗⟩), to derive the free energy
F = E−TS, and to analyze how E, S and F depend on ⟨n∗⟩. One expects that above Tc,
or for v > vc, ∂F/∂⟨n∗⟩ < 0 for all ⟨n∗⟩, in which case ⟨n∗⟩ is maximal, while for T < Tc
one should have ∂F/∂⟨n∗⟩ > 0 for ⟨n∗⟩ = N , implying that a fraction of the particles
condensates in the ground state (p = 0).

Exercise 14.27: Investigate the Bose-Einstein condensation in systems with arbitrary di-
mensions D, where εp⃗ = 1

2m

∑D
α=1 p

2
α. How do Tc and vc depend on D?

Exercise 14.28: Investigate the effects of interactions in Bose gases. For example, one
could consider a two level problem and introduce a Hubbard-like local interaction U . Or
one could solve numerically a bosonic Hubbard model. It would be interesting to compare
repulsive and attractive cases.
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