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Abstract V

Abstract
Usually heat engines are used to convert heat into work. This work is then
used to drive a load. However, the work extracted from the engine can also be
measured to infer information about the thermodynamic processes the engine
underwent. This assumes prior knowledge of the engines property.
In a recent proof-of-principle experiment a heat engine was realized with a
single atom [Roß16b]. In this thesis, the dynamics are modeled by analytic
and numeric means. It will be demonstrated how the single-atom heat engine
can be used as to estimate the temperature difference between two thermal
reservoirs.
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1. Introduction
The development of thermal devices started a huge social and economic change. The
introduction of the steam engine enabled the development of automatized fabrica-
tion plants, which started off the industrial revolution. Furthermore, steam engines
were used for transportation such as locomotives and ships. The spread of ther-
mal devices yielded also an interest of the nature of the operation of the devices
them self, which interested researchers to develop theoretical description to opti-
mize the operation of the machines. This launched the field which is known as
thermodynamics.In recent years technical devices are being miniaturized down to
a scale where quantum effects play a non-negligible role. To study especially the
behavior of thermal properties of such small devices it is important to find plat-
forms on which one can study the nature of thermodynamics on a quantum level.
To investigate thermodynamics at a single quantum level, a robust control over
the system is required. Due to recent development in different fields, many differ-
ent suitable platforms have emerged. Promising platforms for studying the nature
of thermodynamics in the quantum regimes are cold atoms [Nie19], nitrogen va-
cancy centers in diamond [Mic21] and trapped ions [Roß16b; Lin19]. We study a
trapped ion confined by a tapered potential in which a heat engine was successfully
demonstrated [Roß16a; Roß16b]. However, the operation range of this single-atom
heat engine was performed in a classical regime. To observe properties on a quan-
tum level, more sophisticated control and schemes need to be employed. Recently
schemes were developed to exceed the adiabatic limits for a single/atom heat engine
using short-cuts to adiabaticity (STA) [Tor18; Göb19]. Furthermore, the sideband
resolved quadrupole transition in 40Ca+ was recently measured in our laboratory
[Mas21].

In this thesis, a brief introduction to ion trapping is given in chapter 2. The un-
derlying theoretical concepts will be elaborated on in chapter 3. In chapter 5 the
method to measure small temperature differences with the single-atom heat engine
will be demonstrated. An outlook on further research is given in chapter 6.
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2. Ion traps
”We never experiment with just one electron or atom or (small) molecule. In

thought-experiments we sometimes assume that we do; this invariably entails
ridiculous consequences.” (Erwin Schrödinger, 1952 [Sch52])

This statement of Erwin Schrödinger does not hold anymore. Research on single
atoms are nowadays performed on a daily bases in laboratories. One of such ex-
perimental platforms is the quadrupole trap which is often referred to as Paul trap.
They have many applications, due to their well controllable dynamics.
The ions can be prepared in the ground state [Lei03] and via coupling to engineered
reservoirs [Tur00] the ion can be prepared into a selective state deterministically
[Roo00]. This techniques can be utilized for employing high fidelity gates between
single and multiple ions [Møl99; Sch03; Lem13], allowing for manipulation of infor-
mation encode in the internal quantum states of the ions. This allows to generate
maximally entangled states [Lin13; Kau17] as well as quantum information process-
ing [Lei03; Gar05; Kau20]. Another field where trapped ions are getting used in
metrology. A clock with a systematic uncertainty below 10−18 was implemented
with trapped 27Al+ [Bre19].

To resolve and address single atoms using visible light, a sufficiently large sepa-
ration is required. This is not feasible in bulk materials. Wolfgang Paul conceived
a technique which made it possible to trap single atoms in vacuum. For this inno-
vation he was awarded the Nobel prize in 1989 [Pau90]. The quadrupole ion trap,
which is also referred to as Paul trap, uses a combination of electro-static and dy-
namic potentials for confinement. This is necessary due to Earnshaw’s theorem,
which prohibits the trapping of a charged particle by solely utilizing static electric
potentials. The dynamic voltages are here in the radio frequency (RF) regime. The
general time-dependent potential Φ can be expressed as [Lei03]

Φ(x, y, z, t) =
UDC

2

(
αDCx

2 + βDCy
2 + γDCz

2
)

+
URF

2
cos(ωRFt)

(
αRFx

2 + βRFy
2 + γRFz

2
)
.

(2.1)

UDC and URF denotes the constant direct current (DC) and RF trapping voltages
respectively. Frequency with which the RF voltages are driven are denoted with
ωRF. The potential needs to fulfill the Laplace equation in a charge-free space.

△Φ(x, y, z, t) = 0 =UDC (αDC + βDC + γDC) + URF cos(ωRFt) (αRF + βRF + γRF)
(2.2)
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By separating this equation in a static DC and a dynamic RF part, one can obtain
simple relations between the parameters themselves.

0 =αDC + βDC + γDC

0 =αRF + βRF + γRF
(2.3)

z

yx

Figure 2.1.: Schematic of the linear Paul trap.

As an example for a possible combination, a linear Paul trap, which is depicted
in chapter 2, will be discussed in the following. Many more combinations can be
utilized, but this is beyond the scope of this thesis. For further elaborations see
[Sin10]. In this linear configuration γRF = 0. Therefore, the parameters can be
determined by

−αDC = βDC + γDC

αRF =− βRF.
(2.4)

The radial degrees of freedom are here confined with an oscillating saddle poten-
tial. The axial confinement is implemented using a static harmonic potential. The
trajectory of a single ion with mass m and charge q in this potential is described by

m¨⃗r = −q∇Φ(r⃗, t) , (2.5)

with r⃗ = (x, y, z)T . This yields a set of uncoupled Mathieu differential equations in
the x and y-direction.

d2ri
dξ2 + [ai − 2qi cos(2ξ)] ri(ξ) = 0 , (2.6)

Here i = x, y and 2ξ = ωrft. The parameter ai and qi are determined by the geometry
of the trap. In the case of this example, they can be derived to be

qx =
2|q|URFαRF

mω2
RF

, ai = −4|q|UDCαDC

mω2
RF

qy = −2|q|URFβRF

mω2
RF

, ai =
4|q|UDCβDC

mω2
RF

.

(2.7)

If 0 ≤ βi ≤ 1, with βi =

√
ai +

q2i
2

, the solutions are stable. When |ai|, q2i ≪ 1 a
solution of Equation (2.6) can be found [Lei03; Sin10].

ri(t) = ri(0) cos(ωit)
(
1 +

qi
2

cos(ωRFt)
)

(2.8)
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The ion undergoes a slow secular harmonic oscillation at the frequency ωi = βi
ωRF
2

and a fast but small micromotion, which are oscillations at the frequency of the radio
drive. The confinement along the z axis is a harmonic potential with the frequency

ωz =

√
|q|UDCγDC

m
. (2.9)

Since the micromotion is comparably fast with a small amplitude, during a secular
period the influence is negligible small. Furthermore, the amplitude can be further
minimized by using additional electrodes [Ber98]. Therefore, the potential can be
approximated to be harmonic.

Φp(x, y) =
|q||∇Φ(x, y, z, 0)|2

4mω2
RF

(2.10)

2.1. Funnel-shaped Paul trap

z

xy

Figure 2.2.: Schematic of a funnel-shaped linear Paul trap.

In constructing linear ion traps it is taken great care of, that the linear RF electrodes
are aligned in parallel. Even the slightest deviation gives rise to an undesired cou-
pling of the degrees of freedom. However, configuring the trapping electrodes in a
tapered geometry yields interesting and yet unexplored physics. The funnel-shaped
trap, which is depicted in fig. 2.2, generates the following RF potential.

Φ(x, y, z, t) ∝ URF cos(ωRFt)

(r0 + z tan(ϑ))2
(
x2 − y2

)
+
UDC

z20
z2 . (2.11)

Here r0 describes the distances of the RF electrodes, ϑ the angle with which the
electrodes are tilted away from the z-axis and z0 the distance of the DC electrodes.
A pseudo potential can be derived for this set up as well using Equation (2.10).

Φp =
m

2

ω2
x,0x

2 + ω2
y,0y

2

(r0 + z tan(ϑ))4
+
m

2
ω2
zz

2 (2.12)

Here ωi,0 with i = x, y denotes the radial trapping frequency at z = 0. The trapping
frequency in radial direction is dependent on the axial position of the ion. Further-
more, the tapering of the trap leads to a coupling of the radial and the axial degrees
of freedom [Roß16a]. This will be further discussed in chapter 5.
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2.2. Calcium ion
The common atomic ions to trap in a Paul trap are earth-alkali ions. Their remaining
single valence electron yields an easy control, because the structure is hydrogen like.
In our setup we employ 40Ca+. The electron configuration is [Ar]4s2S1/2. The
corresponding energy levels are depicted in Figure 2.3.

393 nm
397 nm

729 nm
732 nm

866 nm

854 nm
850 nm

42S1/2

42P1/2

42P3/2

32D3/2

32D5/2

Figure 2.3.: Energy level scheme of 40Ca+. The blue arrow denotes the dipole tran-
sition used for Doppler cooling, the red arrow denotes the quadrupole
transition for ground state cooling and the magenta arrows denote the
transitions addressed by the repump laser. The remaining transitions
are not addressed by lasers in the experiment.

Not all transitions in Figure 2.3 are relevant. In fact, it is sufficient to use four of
the depicted transitions, which are colored, to obtain full control of the system.
The transition 4s2S1/2 ↔ 4p2P1/2 has a short lifetime of τP = 6.9 ns [Het15]. This
short lifetime can be utilized for laser cooling [Lei03]. The ion decays from the
4p2P1/2 to the 3d2D3/2 state with a probability of 6.4% [Ram13]. Because further
relaxation to the ground state is dipole forbidden, this state has a long lifetime of
τD = 1.18 s [Kre05]. In order to counteract this relaxation, a light field near 866 nm
is used to re-pump the ion to the 4p2P1/2 state. However, it can be desirable to exploit
this long lifetime. Especially for quantum information processing application a long
qubit lifetime will yield a more robust system for executing algorithms. For this the
transition 4s2S1/2 ↔ 3d2D5/2 can be used. Due to this long lifetime of the transition,
the linewidth is comparably small. This allows for sideband-resolved operations. To
close this transition, the repumper at 854 nm transfers the population to the 4p2P3/2

state, from which it decays at 393 nm to the ground state. These wavelengths are
filtered out by a bandpass filter, to not be detected by the camera.
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3. Fundamental concepts

3.1. The harmonic oscillator

m

Figure 3.1.: Depiction of a mass m at the end of a coil spring.

One of the most studied problems in physics is the harmonic oscillator. The differ-
ential equation reads

mẍ = −kx (3.1)

with m being the mass, x the displacement and k the spring constant. This law is
also known as Hooke’s law. Due to frequent encountering of the differential equation
describing the problem in different fields, it has many analogues. With k = mω2 it
follows

mẍ = −mω2x, (3.2)

with the angular frequency ω. The dynamics of this simple case can be obtained by
integrating the equation of motion

x(t) = x0 cos(ωt+ φ) . (3.3)

Here x0 denotes the maximal elongation and φ the phase, giving the elongation at
t = 0.

3.1.1. Damped harmonic oscillator
The equations derived in the previous chapter often does not reflect the physical
reality. The above assumes a frictionless system. This assumption does often not
reflect reality. To account for the loss of energy due to friction a dispersion or
damping parameter γ is introduced. Thus, the equation of motion reads

ẍ+ γẋ+ ω2x = 0. (3.4)

The solution for the ordinary differential equation eq. (3.4) is obtained by making
an ansatz for an exponentially decaying function with a free parameter λ.

x(t) = x0e
λt (3.5)
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Inserting eq. (3.5) into eq. (3.4) yields the equation to determine λ.

0 = λ2x0e
λt + γλx0e

λt + x0e
λt

⇔ 0 = λ2 + γλ+ ω2 (3.6)

λ can now be determined solving eq. (3.6).

λ1,2 = −γ
2
±
√
γ2

4
− ω2 = −γ

2
± ωD (3.7)

As λ can take different values, we need to consider the general solution of the
homogeneous differential equation, which can be written as

x(t) = ηx1(t) + ζx2(t). (3.8)

Depending on the solution for λ we can distinct three different cases which will be
elaborated in the following.

Figure 3.2.: Illustration of an overdamped (black), critical damped (blue) and under-
damped (red) harmonic oscillator. The exponentially decaying envelop
of the underdamped harmonic oscillator is depicted by the red dashed
line.

Overdamped case

In this instance, the damping parameter is γ > 2ω. Therefore, the eigenfrequency
of the damped harmonic oscillator is ωD ∈ R. The solution eq. (3.8) takes the form

x(t) = ηe−
γ
2
t+ωDt + ζe−

γ
2
t−ωDt = e−

γ
2
t
(
ηe+ωDt + ζe−ωDt

)
. (3.9)

The parameters η and ζ can be then determined from the initial conditions. The
dynamics of the overdamped harmonic oscillator (eq. (3.9)) is depicted in fig. 3.2.
The oscillator is approaching a zero elongation, but due to the strong damping very
slowly.
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Critical damped

The oscillator is critically damped in the case that γ = 2ω. The eigenfrequency of
the damper oscillator becomes ωD = 0. Therefore, we choose the ansatz

x(t) = e−
γ
2
t (η + ζt) (3.10)

to solve the differential equation. This equation is plotted in fig. 3.2 as the blue solid
line. The trajectory in this case yields a steeper decay of the initial elongation x0
compared to the previous case. This behavior is often desired in mechanical devices
which need to damp sudden accelerations. For example, shock absorbers in cars are
designed in such a way.

Underdamped case

In the underdamped case ωD takes an imaginary value, which means that γ < 2ω.
The solution thus reads

x(t) = x0e
− γ

2
t cos(ωDt+ φ), (3.11)

where φ denotes the phase of the oscillation. Thus, the dynamics consist of os-
cillation which is exponentially decaying. The exponentially decaying envelope is
depicted in fig. 3.2 with the dashed red line.

3.1.2. Driven harmonic oscillator
In the previous section we examined a damped harmonic oscillator. In this section
we will examine the properties of such an oscillator when it is driven by an external
time-dependent force Fext(t). This force adds an inhomogeneity to eq. (3.4).

ẍ+ γẋ+ ω2x = Fext(t) (3.12)
This external force can take many different forms, but for the sake of illustration we
will examine a periodic force with a driving frequency ωext, phase of the force φext
and an amplitude F0.

Fext(t) = F0 cos(ωextt+ φext) (3.13)
In section 3.1.3 we will examine the properties of a harmonic oscillator driven by
a stochastic random force. The general solution can be split into a transient and
steady-state solution.

x(t) = xtr(t) + xst(t) (3.14)
Dependent on the parameters, it is necessary to find a suitable solution analogous
to the in section 3.1.1 discussed cases. However, we will restrict ourselves solely to
the underdamped or weakly damped case. In this case the damping γ < 4ω, thus
the solution reads:

x(t) = x0e
− γ

2
t sin(ωDt+ φ) + xext cos(ωextt+ φext), (3.15)

where x0 denotes the elongation of the transient solution and xext the elongation in
the steady state. These parameters can be determined from the initial conditions.
However, the algebraic problem is involved and the solution can be found in the
literature.



3 Fundamental concepts 10

3.1.3. Langevin equation
In this section we will examine the behavior of a damped harmonic oscillator driven
by statistical forces. A description by an ordinary differential equation is thus not
sophisticated enough, as it only describes the first order statistical moments (e.g.,
the mean position ⟨x⟩ and mean velocity ⟨v⟩). The physical interesting behavior is
described by the second order statistical moments (e.g., the mean squared position
⟨x2⟩). To properly describe this type of dynamics we need to employ stochastic
differential equations (SDE).
Brownian motion was first described in detailed by Robert Brown in 1827. The
botanist was studying the transfer of pollen to the ovulum of aquatic plants. The
pollen underwent rapid oscillatory motion while observed under a microscope. The
initial explanation of Brown was that this motion was due to bio-mechanical prop-
erties, analogous to the male gamete, but discarded this expectation rather quickly
after observing similar dynamics with inorganic grains in aqueous suspension.
The first theoretical prediction for this effect was done by Albert Einstein in 1905.
He employed the stochastic process of random collision and the Maxwell-Boltzmann
distribution to describe the dynamics of the system, which was experimentally veri-
fied 1908 by Jean-Baptiste Perrin. Einstein utilized a probability diffusion equation,
which has become known as Fokker-Planck equation. For a more in detail descrip-
tion of the solution and a discussion of different approaches see ref. [Cof12].

To accurately describe a system driven by random noises, one can employ Newton’s
second law to describe the problem. The acceleration on the particle is

mẍ+ γẋ+mω2x = ξ(t), (3.16)

where γ denotes the damping coefficient, ω the frequency of the harmonic oscillator
and ξ(t) the acceleration due to the random force. This random force is independent
of the position x(t) of the particle. Furthermore, the noise fluctuates comparably
fast to the change of the position x(t). The average amplitude of the noise is
⟨ξ(t)⟩ = 0. The correlation function of the noise reads ⟨ξ(t)ξ(t′)⟩ = C(t− t′), which
is symmetric.

C(t− t′) = C(t′ − t) (3.17)

Due to the stochastic properties of the noise it is not sufficient to look only at the
first order stochastic moments. The correlation of the Gaussian white noise fulfills
in the steady state the fluctuation-dissipation theorem.

⟨ξ(t)ξ(t′)⟩ = 2kBγTδ(t) = 2Dδ(t) (3.18)

kB denotes the Boltzmann constant, T the temperature and D the noise strength.
However, it is only in the steady state that eq. (3.18) holds. Especially in thermal
machines running with a final cycle time it is not always guaranteed that equilibrium
is reached in each stroke. For such non-equilibrium dynamics, it is necessary to
examine the correlation matrix M .

M =

(
σ2
xx σ2

xv

σ2
vx σ2

vv

)
=

(
⟨x(t)x(t+ τ)⟩ ⟨x(t)v(t+ τ)⟩
⟨v(t)x(t+ τ)⟩ ⟨v(t)v(t+ τ)⟩

)
(3.19)
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The elements of this matrix are the autocorrelation of position σxx and velocity
σvv and the cross-correlations σxv and σvx. In the underdamped case γ < 2ω, the
position auto correlation takes the form

σ2
xx(t) = 2

∫ t

0

dt1
∫ t1

0

dt2H(t1)H(t2)C(t1 − t2), (3.20)

whereH(t) denotes the Laplace transform associated with eq. (3.16) [Wan96; Mas93].
The explicit expression is derived in appendix A.1.1. The time derivative of this ex-
pression is denoted with h(t) = ∂tH(t). The remaining matrix elements read:

σ2
vv(t) = 2

∫ t

0

h(t1)dt1

∫ t1

0

h(t2)C(t1 − t2)dt2 (3.21)

σ2
xv(t) =

∫ t

0

H(t1)dt1

∫ t1

0

h(t2)C(t1 − t2)dt2 (3.22)

σ2
vx(t) =

∫ t

0

h(t1)dt1

∫ t1

0

H(t2)C(t1 − t2)dt2. (3.23)

The steady state distribution, the distribution after t→ ∞, reads

Pss(x, v) =
1

2πσxxσvv
exp

[
−1

2

(
x2

σ2
xx

+
v2

σvv

)]
, (3.24)

where σij = limt→∞ σij(t). Note that in the steady-state case the cross-correlation
terms σxv and σvx are vanishing. The auto-correlation elements can be rewritten
in terms of the Laplace transformed auto-correlation function of the driving noise
C̃(s).

σ2
xx =

1

2γ0ω2
Re[C̃(s)] + 1

2Ωω2
Im[C̃(s)] (3.25)

σ2
vv =

1

2γ0
Re[C̃(s)]− 1

2Ω
Im[C̃(s)] (3.26)

Here Ω = ω2 − γ20 with γ0 = γ/(2m) and s = γ0 ± iΩ [Mén13]. The energy in the
steady-state is computed from the mean energy.

⟨E⟩ss =
m

2

⟨
v2
⟩
+
m

2
ω2
⟨
x2
⟩
=
m

2
σ2
vv +

m

2
ω2σ2

xx (3.27)

=
1

2γ0
Re
[
C̃(s = γ0 − iΩ)

]
= kBT (3.28)

This relation demonstrates the relation of steady-state temperatures between differ-
ent types of noises. The most common found type of noise is Gaussian white noise
with a correlation function of

C(t, t′) = Dδ(t, t′) = 2γ0kBTδ(t, t
′). (3.29)

However, it is sometimes more interesting to look at noises, which are different from
the Gaussian white noise. As one can see in eq. (3.29), the noise ξ(t) is independent
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of the noise at a different time t′. This lack of time dependence is often described
as having no memory in the system, due to the state of ξ(t) being independent on
the time which has already passed. This is also described as Markovian. In recent
years, research found a special interest in non- or semi-Markovian processes in quan-
tum information [Uta21; Wu20] and quantum thermodynamics [Uzd16]. Especially
exponentially correlated noise and colored noise is of great interest.
Exponentially correlated noise follows the correlation function

C(t, t′) =
D

τc
exp

(
−|t− t′|

τc

)
(3.30)

with the correlation time τc. This noise can be generated by employing the Fokker-
Planck equation describing this process [Gil96]. The second type of noise, we only
take flicker noise or 1/f noise

C(t) =
Dγ

ln(τ2/τ1)

∫ τ2

τ1

1

τ
exp(−t/τ)dτ, (3.31)

with τ1 < τ < τ2 are the corresponding times to the respective angular frequency
ωi = 1/(2πτi). This noise is generated via a Fourier domain multiplication method
[Kas95].

3.1.4. Quantum Harmonic oscillator
The quantum harmonic oscillator is one of the example problems studied in under-
graduate courses. It is an often used approximation for more complex systems, i.e.
Morse potential. The first approach to describe harmonic oscillators in a quantized
manner was done by Max Planck in his work about the black body radiator by
allowing for discrete energy states [Pla01]. The Hamiltonian Ĥ takes the form

Ĥ =
m

2
p̂2 +

m

2
ω2x̂2, (3.32)

with p̂, x̂ ∈ H denoting the momentum and position operator respectively. Instead
of using the stationary Schrödinger equation to compute the wave function, we’ll use
the algebraic method to solve the problem. This derivation was first done by Paul
Dirac [Dir27]. We define the annihilator operator â and the conjugated operator â†,
which is also called creation operator, as follows

â =

√
mω

2h̄

(
x̂+

i

mω
p̂

)
(3.33)

â† =

√
mω

2h̄

(
x̂− i

mω
p̂

)
. (3.34)

This allows to express the momentum and position operator in terms of the creation
and annihilation operator.

x̂ =

√
h̄

2mω

(
â+ â†

)
(3.35)

p̂ = i

√
h̄mω

2

(
â− â†

)
(3.36)
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By inserting eq. (3.35) and 3.36 into eq. (3.32) and using the following canonical
commutation relations[

â, â†
]
− =

1

2h̄
(−i[x̂, p̂] + i[p̂, x̂]) =

1

2h̄

(
(−i)ih̄1̂+ i(−i)h̄1̂

)
= 1̂ (3.37)

[n̂, â]− =
[
ââ†, â

]
− = â†[â, â]− +

[
â†, â

]
−â = −â (3.38)[

n̂, â†
]
− =

[
ââ†, â†

]
− = â

[
â†, â†

]
− +

[
â, â†

]
−â

† = â† (3.39)

where n̂ = ââ† denotes the number operator, the Hamiltonian can be rewritten as

Ĥ = h̄ω

(
n̂+

1

2
1̂

)
. (3.40)

The eigenstates of the number operator |n⟩ yields the basis, which eigenvalues corre-
sponds to the phonon numbers. Furthermore, the operators affect these eigenstates
|n⟩, which are also referred to as Fock states,

â |n⟩ =
√
n |n− 1⟩ (3.41)

â† |n⟩ =
√
n+ 1 |n+ 1⟩ (3.42)

n̂ |n⟩ = n |n⟩ (3.43)

In the following, we will discuss two special states which are of high interest, since
both are suggested to be able to enhance the performance of heat engines [Aba12;
Kos13; Gel15; Aba16; Dan19].

Coherent states

Coherent states are quantum mechanical states which resemble a classical harmonic
oscillator. A coherent state |α⟩ in the Fock basis reads

|α⟩ = exp
(
−|α|2

2

)
∞∑
n=0

αn

√
n!

|n⟩ , (3.44)

where α ∈ C. This state is generated by displacing a vacuum state using the
displacement operator D̂(α)

D̂(α) = exp
[
αâ+ α∗â†

]
. (3.45)

The action of this operator is illustrated in fig. 3.3. As it is depicted, the action of
the displacement operator is illustrated on an initial vacuum state. Representing
α = |α|eiφ the displacement in phase space can be given.

⟨α|x̂|α⟩ =
√
mω

2h̄
|α| cos(φ) (3.46)

⟨α|p̂|α⟩ =
√

1

2h̄mω
|α| sin(φ) (3.47)

Furthermore, it is also of interest to examine the expectation values of the number
operator as well as its variance.

⟨n̂⟩ = |α|2, (∆n̂)2 = |α|2 (3.48)
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x̂

p̂

Figure 3.3.: Illustration of a generation of a coherent state by displacing a vacuum
state in phase space.

Squeezed states

Further states of interest are squeezed states. These can be generated by applying
squeezing operator Ŝ(ζ) to the vacuum state. The squeezing operator reads

Ŝ(ζ) = exp
[
1

2

(
ζ∗â2 − ζâ†

2
)]

. (3.49)

To note here, that the creation and annihilation operators are in the second order in
exponent. By examining the action of this operator, it becomes clear that this op-
erator acts on the second statistical moments. With ζ = |ζ| exp(2iφ), the variances
of position and momentum are given with

(∆x̂)2 =
h̄

2mω
e−2ζ and (∆p̂)2 =

mh̄ω

2
e2ζ . (3.50)

The action of the operator is sketched in fig. 3.4. The center of the distribution is
not shifted for an initial vacuum state. Note that it is possible to reduce one second
order moment, but the other second order moment is thus increased. Therefore,
the Heisenberg limit can’t be overcome, but it is a useful technique to enhance the
sensitivity with respect to one of the two parameters.

x̂

p̂

Ŝ(ζ)

x̂

p̂

Figure 3.4.: Illustration of the action of the squeezing operator.
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3.2. Density operators and Liouville equation
One usually describes the dynamics of a quantum system in an Hilbert space H .
However, due to the nature of this description it neglects decays and it is not feasible
to describe more complex states as for example mixed states. To fully describe a
quantum system with entanglement and decoherences one must move to the Liouville
space. The Liouville space is defined as the tensor product of two Hilbert spaces as
follows

L = H ⊗ H (3.51)

The state of the system is denoted by the density operator ρ̂. In complete orthonor-
mal basis {|ψℓ⟩} the density operator can be described as

ρ̂ =
∑
ℓ

pℓ |ψℓ⟩⟨ψℓ| . (3.52)

The factor pℓ denotes the probability for each state. This constitutes a probability
distribution, ∀ℓ : pℓ ≥ 0 and

∑
ℓ pℓ = 1. For finite dimensional Hilbert spaces

the density operator is also referred as density matrix [Rei15]. To compute the
expectation values of operators on the Liouville space the Hilbert-Schmidt norm
⟨·, ·⟩HS is used.

⟨Â⟩ = ⟨Â , ρ̂⟩HS = tr
[
Âρ̂
]

(3.53)

To obtain the dynamics of a system, one must consider the time evolution of the
density matrix. The generator of the time evolution is the Hamiltonian Ĥ. The
time evolution can be obtained from the time derivative of a density operator.

∂ρ̂

∂t
=

∂

∂t

∑
ℓ

pℓ |ψℓ⟩⟨ψℓ| (3.54)

=
∑
ℓ

pℓ
∂ |ψℓ⟩
∂t

⟨ψℓ|+
∑
ℓ

pℓ |ψℓ⟩
∂ ⟨ψℓ|
∂t

(3.55)

The time derivatives of the states are given by the time-dependent Schrödinger
equation

ih̄
∂

∂t
|ψℓ⟩ = Ĥ |ψℓ⟩ and − ih̄

∂

∂t
⟨ψℓ| = ⟨ψℓ| Ĥ. (3.56)

The time derivative of the density operator can thus be rewritten as

∂ρ̂

∂t
=
∑
ℓ

pℓ

(
− i

h̄

)
Ĥ |ψℓ⟩ ⟨ψℓ|+

∑
ℓ

pℓ |ψℓ⟩ ⟨ψℓ|
i

h̄
Ĥ (3.57)

= − i

h̄

(
Ĥ
∑
ℓ

pℓ |ψℓ⟩ ⟨ψℓ| −
∑
ℓ

pℓ |ψℓ⟩ ⟨ψℓ| Ĥ

)
(3.58)

= − i

h̄

(
Ĥρ̂− ρ̂Ĥ

)
. (3.59)
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The last step is now to rewrite the commutator of the Hamiltonian and the density
operator.

∂ρ̂

∂t
= − i

h̄

[
Ĥ, ρ̂

]
−

(3.60)

This equation is referred to as the Liouville-von Neumann equation. Note that
eq. (3.60) resembles Liouville’s theorem from classical statistical mechanics. There-
fore, it is regarded as quantum equivalent of it.

This equation only holds for closed quantum system. In the case of open quantum
systems, i.e. systems where energy is dissipated, the dissipation is modelled often
phenomenologically. The super-operator L̂D [ρ̂(t)], which is referred to as Lindbla-
dian or Lindblad operator, denotes this dissipation. A super-operator denotes an
operator acting upon an operator. For ease of notation the Liouvillian super-operator
L̂ [ρ̂(t)] is defined as

L̂ [ρ̂(t)] =
dρ̂(t)

dt =
∂ρ̂(t)

∂t
+ iL̂D [ρ̂(t)] . (3.61)

Further instructions on how this super-operator is used is found in section 4.3. Note
that the dissipation can take different forms. For most systems, this dissipation
process is Markovian. This means that the dynamics of the dissipation is solely
dependent on the current density operator. This is the case for dynamics like the
decay of electrons of an excited atomic state or the process taking place in the regime
in thermodynamics. However, it is of great interest to especially examine dynamics
governed by non-Markovian processes, which are processes depending on previous
states. Because dynamics of such systems is of great interest, recent research effort
is put into investigating such systems [Bas17; Veg17; Tam18; Cia19; Luc20; Bas21].
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3.3. Heat engines
Heat engines are of interest in research, since they are used widely throughout
society. In general, they consist in general of a working agent, which is connected to
a flywheel, and a cold and a hot reservoir. The working agent is brought into the hot
reservoir and heat Q is transferred from the bath to the working agent. This heat
is transferred to the cold reservoir while the working agent is performing work W .
This work can be stored in the flywheel. Depending on the type of cycle employed
by the heat engine these processes can differ vastly. In this section we will elaborate
on the Carnot section 3.3.1, Otto section 3.3.2 and the Stirling section 3.3.3 cycle.
Furthermore, the Single atom heat engine [Roß16b; Roß16a] will be discussed briefly
in section 3.3.4

3.3.1. The Carnot cycle
The Carnot cycle is one of the most theoretical studied heat engine cycles, since it
is closely linked to the second law of thermodynamics. The engine cycle is named
after Sadi Carnot, who described this cycle [Car72]. Even today this cycle is still of
interest for ongoing research [Cur75; Gev92; Ben00; Esp10a; Esp10b; Ma17; Ma18;
Dan19].
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S1 S2 (b) V
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D
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Figure 3.5.: Depiction of the Carnot cycle in a (a) T -S diagram and in a (b) p-V
diagram.

The Carnot cycle consists of four strokes, which are depicted in fig. 3.5. The four
strokes are described below in table 3.1.
To evaluate the performance of heat engines, it is of interest to compare the energy
which is put in as heat Q and the work extracted by the system W . Such a measure
is the efficiency η. The heat between point A to B QAB is computed by

QAB = TH∆S , (3.62)

with ∆S = (S2 − S1). This term correlates to the heat, which is put into the system.
The work performed by the working agent is computed by

W = (TH − TC)∆S . (3.63)

This is due to the working agent being decoupled from the environment, leaving
the internal energy unchanged. From these expressions, the efficiency of the Carnot
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A → B isothermal expansion The working agent is in contact with the
hot reservoir at temperature TH and heat
is transferred from the hot reservoir to the
working agent.

B → C isentropic expansion The working agent is decoupled from the
bath and adiabatically expanded until it
reaches the temperature of the cold reservoir
TC . Here work is performed by the working
agent.

C → D isothermal compression The working agent is in contact with the
cold bath at temperature TC , to which heat
is transferred from the working agent to the
cold bath.

D → A isentropic compression The working agent is decoupled from the cold
reservoir and adiabatically compressed until
it reaches the temperature of the hot reser-
voir TH .

Table 3.1.: Description of the four strokes which together build the Carnot cycle.

cycle ηC can be computed as the ratio of the work extracted from the engine and
the energy put into the system.

ηC =
W
QAB

(TH − TC)

TH
= 1− TC

TH
(3.64)

It can be concluded from the second law of thermodynamics, that the Carnot effi-
ciency yields a tight classical bound for any heat engine. That is due to the use of
solely reversible adiabatic and isothermal processes. This reversibility necessitates
not to generate entropy. Therefore, any classical heat engine can only reach the
Carnot efficiency, but not exceed it.

η ≤ 1− TH
TC

(3.65)

To achieve reversible thermalization, an infinite time must be waited for the equi-
libration between the working agent and the thermal reservoirs. Thus the engine
yields a vanishing power due to the infinite cycle time. This is not of importance
for theoretical considerations. However, for experimental realization of a Carnot
heat engine an infinite cycle time is not feasible. Furthermore, for experimental
machines it is of interest to obtain the highest power at an optimal efficiency. For
the so called endoreversible engine a bound can be obtained. This bound describes
the maximal efficiency at maximal power. This bound is also known as the Curzon-
Ahlborn-Novikov limit [Cur75; Nov58], which is takes the form

ηCA = 1−
√
TH
TC

. (3.66)



3 Fundamental concepts 19

3.3.2. The Otto cycle
The Otto cycle is one of the most spread in modern applications. It approximates
the cycle of an internal combustion engine, which are commonly found in cars. As
well as the Carnot cycle, the Otto cycle is investigated in recent research [Den13;
Roß14; Kos17; Aba19; Çak19]. The Otto cycle is depicted in fig. 3.6.
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Figure 3.6.: Depiction of the Otto cycle in a (a) T -S diagram and in a (b) p-V
diagram.

The four strokes of the Otto cycle are described in table 3.2.

A → B isochoric heating Heat QAB is transferred from the hot reser-
voir to the working agent while the volume
V1 is kept constant.

B → C adiabatic expansion The working agent is adiabatically expanded
from V1 to V2.

C → D isochoric cooling Heat QCD is transferred from the working
agent to the cold reservoir while the volume
V2 is kept constant.

D → A adiabatic compression The working agent is adiabatically com-
pressed from V2 to V1.

Table 3.2.: Description of the four strokes of which the Otto cycle consist of.

To compute the heat transferred between the reservoirs and the working agent, one
need to integrate over the isochoric heating/cooling stroke. The work done by the
working agent can be analogous determined as in section 3.3.1. The efficiency of the
Otto heat engine cycle can be derived to be

ηOtto = 1−
(
V2
V1

) (cp−cν )

cν

, (3.67)

where cp denotes the isobaric and cν the isochoric heat capacity [Cal85].
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Quantum harmonic Otto cycle

The quantum harmonic Otto cycle describes the quantum working agent described
as a harmonic oscillator. The volume of a harmonic oscillator can be understood as
the confinement of the particle in the harmonic potential [Kos17]. This confinement
is described by the frequency ω. The heat transfer is expressed as the difference of
the occupation number ∆n = nh − nc, with ni = 1/(exp[h̄ωi/kbTi] − 1). The work
per cycle is derived as

Wcyc = h̄∆ω∆n , (3.68)
with ∆ω = ωh − ωc [Kos17]. The efficiency of the quantum harmonic Otto engine
becomes

ηOtto = 1− ωc

ωh

≤ ηCA . (3.69)

3.3.3. The Stirling cycle
The Stirling cycle, even though not as prominent as the Otto cycle, has still many
applications. Due to the Stirling engine not requiring combustion for the operation,
Stirling engines can be used in hazardous atmospheres where the oxygen which
would be required for combustion is a sparse resource. Such an environment can
be found in submarines, where Stirling engines are employed to propel the craft
[Nil88]. Another application for Stirling engines is to use the sun’s radiation as a
hot reservoir to convert the radiation energy into mechanical work, which can be
used to propel a generator [Kon03]. Also it is still subject to ongoing research [Wu98;
Yin17; Yin18].
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Figure 3.7.: Depiction of the Stirling cycle in a (a) T -S diagram and in a (b) p-V
diagram.

The Stirling cycle, which is depicted in fig. 3.7, is composed of four processes,
which are described in table 3.3.
Since the Stirling cycle includes isothermal expansion and compression like a Carnot
cycle, the same notion as discussed in section 3.3.1 applies here.
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A → B isothermal expansion The working agent is in contact with the
hot reservoir at temperature TH and work is
transferred reversibly from the hot reservoir
to it.

B → C isochoric expansion The working agent is decoupled from bath
and adiabatically expanded until it reaches
the temperature of the cold reservoir TC .

C → D isothermal compression The working agent is in contact with the cold
bath at temperature TC , to which work is
transferred from the working agent.

D → A isochoric compression The working agent is decoupled from the cold
reservoir and adiabatically compressed until
it reaches the temperature of the hot reser-
voir TH .

Table 3.3.: Description of the four strokes of which the Stirling cycle consist of.

3.3.4. Single-atom heat engine
To investigate the behavior of thermal devices in the quantum regime, a miniatur-
ization of such devices is required. To still be able to perform experiments a sophis-
ticated control needs to be employed. One such a system is trapped ions, which has
been demonstrated to be used for thermal devices [Roß16b; Roß16a; Lin19]. In this
thesis we will focus on the usage of a tapered ion trap, which was used in [Roß16b;
Roß16a]. This trapping geometry is described in section 2.1.

Figure 3.8.: Working cycle of the single-atom heat engine [Roß16b].
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The working cycle of the single-atom heat engine is depicted in fig. 3.8. Since the
working agent consists of two harmonic oscillators in radial direction, the dimension
to examine the thermodynamic cycle is the trapping frequency ωr and the relative
mean phonon number n̄r in radial direction. As a cold reservoir a Doppler cooling
laser was utilized. The hot bath was emulated using white noise together with the
Doppler cooling laser. The laser damps the movement of the ion, yielding dissipation.
After some time, the ion will arrive at the final steady state temperature following
the dissipation fluctuation theorem. As we will see in section 5.1, the heating and
cooling of the ion yields a changing displacement force along the axial direction. The
ion follows this force, lowering/raising the confinement of the ion in radial direction.
The single-atom heat engine performed at an efficiency of ηSIHE = 2.8‰ with a
power of P = 3.42 · 10−22 J/s [Roß16b].
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4. Numerical methods
Not every problem has an exact analytical solution. To still examine the properties,
one might choose to solve the problem numerically. In the following will be presented
a classical propagator and a propagator for quantum dynamics.

4.1. Störmer-Verlet propagator
Obtained equations of motion can not always be solved analytical or only with a
substantial time effort. To obtain the trajectories of such complex systems one
can employ numerical propagators. The straightforward implementation of such
a propagator is the Euler-method, which just integrates the equation of motion
in discrete steps directly. However, often this propagator does not yield a good
stability and leads especially for long integration time to large errors [Sin10]. A
more sophisticated solution is to employ the Störmer-Verlet or inter-leaping frog
method [Hai03]. The basic idea behind this method is that the integration takes
place on two partitioned groups of variables. These groups are position r⃗(t) and
velocity v⃗(t). Let the particle with mass m and charge q be put in an arbitrary
continuous potential V (r⃗, t). The Hamiltonian H(r⃗, v⃗, t) takes the form

H(r⃗, v⃗, t) =
m

2
|v⃗|2 + V (r⃗, t). (4.1)

The canonical equation of motion is discretized with the finite time step θ.

r⃗n+1 − 2r⃗n + r⃗n−1 = −θ2 q
m
∇V (r⃗n, tn). (4.2)

This relation allows to find the next position r⃗n+1 for n ≤ 1. However, the position
before the time propagation has started r⃗−1 is not known. To account for this pre-
initial condition, the velocity needs to be included. The velocity v⃗ is defined as
v⃗ = ˙⃗r. To also put this equation into a discrete time frame, it can be rewritten as

v⃗n =
r⃗n+1 − r⃗n−1

2θ
. (4.3)

By solving eq. (4.3) for r⃗n−1 and inserting this expression in eq. (4.2), this parameter
can be eliminated.

r⃗n+1 = r⃗n + θv⃗n +
θ2

2

q

m
∇V (r⃗n, tn) (4.4)

Instead of computing the required of the position, one can compute the velocity at
the intermediate point in the time step v⃗n+ 1

2
. The following relations are used to
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update the positions and velocities.

v⃗n+ 1
2
= v⃗n +

θ

2

q

m
∇V (r⃗n, tn) (4.5)

r⃗n+1 = r⃗n + θv⃗n+ 1
2

(4.6)

v⃗n+1 = v⃗n+ 1
2
+
θ

2

q

m
∇V (r⃗n, tn) (4.7)

4.2. Monte-Carlo simulation
For deterministic problems trajectories can be obtained from numerical propaga-
tors. However, the simulation of systems undergoing random events which are not
deterministic is not as straight-forward. Due to the encountering of problems where
underlying randomness in different sectors like finances, fluid dynamics or molec-
ular dynamics. By utilizing random sampling algorithms, it is feasible to obtain
predictions for complex dynamics. Such algorithms are referred to as Monte-Carlo
algorithms.
For particles which are undergoing random accelerations from fluctuating forces, the
numerical modeling is not as straightforward as in section 4.1. Such a problem is for
example the Brownian motion. Due to the thermal fluctuations one needs to con-
sider the microscopic processes and obtain the dynamic properties by averaging over
each iteration. To obtain each iteration, the fluctuating noise needs to be generated.
These are generated from distributions of pseudo random numbers.

Randomness and computers
It might seem to be contradictory to generate randomness on a deterministic device
such as computers. The acquiring of true random data, for example from quantum
jump measurements, is quite slow. Especially compared to state-of-the-art compute
process unit (CPU), which are becoming faster and faster. Therefore, a lot of effort
went into developing of algorithms, which can deterministically generate random
numbers. Such a procedure is referred to as pseudo random number generation
(pRNG). The numbers generated are dependent on an input parameter which is
called seed. From this seed, the algorithm is generating a string of random numbers
deterministically. There are different algorithms available. One of most used is the
implementation of the Mersenne Twister algorithm as provided by the GNU scientific
library (GSL) [Gal09]. For the more interested reader, a detailed description of this
algorithm can be found in the paper by Matsumoto and Nishimura [Mat98].

4.3. Newton propagator
The newton propagator is utilized to propagate quantum systems in the Liouville
space. The dynamic of the system is described by the Liouvillian super-operator
L eq. (3.61). The time-dependent density operator ρ̂(t) is obtained by solving this
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equation.

ρ̂(t) = e−
i
h̄
L̂tρ̂(0) (4.8)

The state can be therefore determined at a given time using the above expression.
However, it is computationally expensive to perform the exponentiation of matri-
ces, because the expansion of the Taylor series is not converging fast. Therefore,
one can expand the exponential functions into Newton polynomials. The Newton
polynomials Rn(z) can express an arbitrary complex function f(z) : C → C.

f(z) ≈
N−1∑
n=0

anRn(z), Rn(z) =
n−1∏
m=0

(z − zj) (4.9)

{zj} denotes the set of the N sampling points. At these points the interpolation
is exact. The coefficients an are determined by the iterative method referred to as
divided difference [Ash95; Goe15].

a0 = f(z0) (4.10)
a1 = f(z1)− f(z0) (4.11)

an =
f(zn)−

∑n−1
m=0 am

∏m−1
ℓ=0 (zn − zℓ)∏n−1

m=0(zn − zm)
(4.12)

Therefore, the time evolution of a density operator can be obtained by expanding
eq. (3.60) in Newton polynomials.

ρ̂(t) = e−
i
h̄
L̂dtρ̂0 ≈

N−1∑
n=0

an

[
L̂ − zn1̂

]
ρ̂0 (4.13)

By iterative utilization of this expansion, any arbitrary point in time can be reached.
To obtain a fast convergence of the series, the proper interpolation points must be
chosen. It has been demonstrated that fastest convergence is reached when using
the complex eigenvalues of L̂ [Goe15]. But these are often not easily determinable,
especially with high dissipation terms. For this problem sophisticated estimation
methods have been developed using suitable sampling points. In this thesis, we use
the Newton propagator developed by Michael Goerz [Goe15; Goe18].
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5. Single-atom heat engine as
sensitive probe

A major part of this chapter has been published in:
Single-atom heat engine as a sensitive thermal probe,
A. Levy, M. Göb, B. Deng, K. Singer, E. Torrontegui, D. Wang, New Journal of
Physics 22, 093020 (2020).

Usually, work is extracted from two thermal reservoirs by a heat engine and stored
in the flywheel. Usually, this work is used to propel a load. The performance of a
heat engine is determined by the thermodynamic properties of the system. Instead
of using the work to drive a device, the work can be measured to obtain information
about the performance of the heat engine. This principle is depicted in fig. 5.1 (a)
and (b).

(a) (c)
Cold
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Flywheel

Hot 
bath

 Bath 2

θ -RF
+RF
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Figure 5.1.: (a) A heat engine takes in heat from a hot thermal bath, converts part
of the thermal energy into mechanical work and rel4eases the rest to
a cold bath. The work can be stored in a flywheel. (b) A calibrated
heat engine can be employed to measure the temperature difference
between two baths by monitoring the energy in the flywheel. (c) A
modified linear Paul trap with four tapered blade electrodes facilitating
the operation of a single-ion heat engine.

5.1. Dynamics of the single-ion heat engine
In our setup we investigate a 40Ca+ ion confined in a tapered Paul trap, which
is depicted in fig. 5.1 (c). This trap consists out of four blade electrodes, which
are connected to RF voltages, and two endcap electrodes connected to DC volt-
ages [Roß16b]. Compared to conventional linear Paul traps, the RF electrodes are
tilted with respect to the z axis with an angle θ. Due to this angle, the harmonic

https://doi.org/10.1088/1367-2630/abad7f
https://doi.org/10.1088/1367-2630/abad7f
https://doi.org/10.1088/1367-2630/abad7f
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confinement in radial (x, y) direction is in dependence of the axial (z) direction.

ωx, y(z) =
ωx0, y0

(1 + tan θ · z/r0)2
(5.1)

Here r0 denotes the radial distance of the ion to the blade electrodes and ωx0, y0

the radial trapping frequencies at z = 0. In our setup we need to introduce a
small anisotropy of the potential to lift the degeneracy in the radial direction. The
confinement in radial direction is here usually an order of magnitude larger than the
axial trapping frequency. The Hamiltonian Ĥ of an ion inside the tapered potential
reads

Ĥ =
p̂2x
2m

+
1

2
mω2

x(z)x̂
2 +

p̂2y
2m

+
1

2
mω2

y(z)ŷ
2 +

p̂2z
2m

+
1

2
mω2

z ẑ
2, (5.2)

with m the mass of the ion, x̂, ŷ, ẑ and p̂x, p̂y, p̂z the position and momentum
operators in the corresponding directions. To formulate the dynamics in terms of
a heat engine, one can recontextualize the radial degrees of freedom as the working
agent. This working agent is coupled to external thermal reservoirs periodically.
The resulting displacement, as we will see later in this section, yields a displacement
force. This displacement force acts analog to a piston, because it drives an adiabatic
compression/expansion of the working medium. The work performed by the atom
is stored in the axial direction, which is therefore analogous to the flywheel of an
engine. Here, we will consider the radial degrees of freedom in a full quantum picture
and the axial motion to be classical. This is due to the oscillation in axial direction
being coherent with a large elongation. The Hamiltonian can be rewritten in terms
of annihilation and creation operators â†x (â†y) and âx (ây) in x (y) direction.

Ĥ = h̄ωx0(â
†
xâx +

1

2
) + h̄ωy0(â

†
yây +

1

2
)

+
1

2
m(ω2

x0x̂
2 + ω2

y0ŷ
2)

(
1

(1 + γz)4
− 1

)
+

p2z
2m

+
1

2
mω2

zz
2 (5.3)

The first two terms in eq. (5.3) describe the energy transferred to the working
medium. The coupling of the working medium to the flywheel is denoted in the
third term, where we define γ = tan θ/r0. The last two terms denote energy along
the axial direction of the atom. pz and xz denote the classical momentum and
position of the calcium ion in the z direction. As the keen reader might notice that
the two radial directions couple each individually with the axial degree of freedom.
This is indicated in eq. (5.3). For sake of brevity, we consider here only the x
direction and assume that the oscillator in y direction is kept at a constant and low
constant temperature, not contributing to the work done by the heat engine. The
creation (annihilation) operator is denoted as â† (â). We define the moments X̂1(t)
and X̂2(t), the number operator N̂(t) in x direction as well as the coupling relation
g(t) between the quantum harmonic oscillator and the axial degree of freedom as
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follows

X̂1(t) =
(
â†2(t) + â2(t)

)
(5.4)

X̂2(t) = i
(
â†2(t)− â2(t)

)
N̂(t) = â†(t)â(t)

g(t) =
h̄ωx0

4

(
1

[1 + γz(t)]4
− 1

)
.

The equations of motion of the operators in the x direction read

d

dt
X̂1(t) = 2 (h̄ωx0 + 2g(t)) X̂2(t) (5.5)

d

dt
X̂2(t) = −2 (h̄ωx0 + 2g(t)) X̂1(t)− 8g(t)N̂(t)− 4g(t)

d

dt
N̂(t) = −2g(t)X̂2(t).

The trajectory of the ion in axial direction is obtained by the following classical

ż(t) = pz(t)/m

ṗz(t) = F(t) , (5.6)

with F denoting the force acting on the axial oscillator. In the mean-field approxi-
mation, F can be expressed as

F(t) = −∂⟨Ĥ⟩
∂z

= −mω2
zz(t) + F (t) . (5.7)

The first term denotes the restoring force of the harmonic potential in axial direction.
The radial-axial coupling is described by F (t).

F (t) =
γh̄ωx0R(t)

(1 + γz(t))5
− h̄ωx0

4

∂R

∂z

(
1

(1 + γz(t))4
− 1

)
. (5.8)

Here, we define R(t) =
⟨(
â†(t) + â(t)

)2⟩. Instead of assuming the temperature
of the ion being constant, alternatively one could consider the temperature being
the same in the y direction. This would increase the force F (t) by a factor of two.
Therefore, the derivation for this case is analog to the one presented in this thesis. In
the experiment z(t) ≪ r0 [Roß16b], which allows due to γz(t) ≪ 1 an approximation
for the force F(t)

F(t) ≈ −mω2
zz(t) + γh̄ωx0R(t), (5.9)

with

R(t) =
⟨
X̂1(t) + 2 ˆN(t) + 1

⟩
(5.10)

= 1 + 2N0 +X1(0) cos (2ωx0t) + X2(0) sin (2ωx0t) ,

and X1(0), X2(0), N0 the expectation values of X̂1(t), X̂2(t) and N̂(t) at t = 0.
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5.1.1. Thermodynamic cycle

The operation of the system can be described as an Otto engine [Aba12; Rez06;
Tor13; Kos17], which is described in section 3.3.2. This cycle is depicted in fig. 5.2
(a) and (b). For the sake of clarity, here the principal working cycle will be elaborated
on our specific system.

Hot isochore [A]: The ion is kept confined in a constant trapping frequency ωh, while
it is coupled to the hot reservoir. The radial degree of freedom thermalizes to the
temperature Th after a time τh. The time the interaction takes is comparably brief to
the axial oscillation, so that the trajectory of the ion is well assumed to be negligible
in axial direction.

Isentropic expansion [B]: The ion is decoupled from the hot bath and the ion evolves
over a time τz freely. During this time the frequency changes from the initial ωh

to the frequency ωc. This is due to the axial displacing force caused by the now
higher temperature. This evolution is usually adiabatic, but it can be also driven
faster using optimal control techniques [Tor18; Göb19]. This method also allows
for optimizing with respect to experimental limitations and minimization of errors
from different sources [Lev17; Lev18]. This process is unitary, meaning that it is
not increasing the entropy of the motional state of the ion.

Cold isochore [C]: The ion is coupled to the cold bath and thermalizes with it to the
temperature Tc. During this interaction the trapping frequency is kept constant at
ωc.

Isentropic compression [D]: in the last stroke, the ion is again isolated from the baths
and evolves isentropically in the trapping potential for another time of τz.

In previous work, the baths were realized by utilizing Doppler cooling lasers and
electric noise to emulate thermal baths [Roß16b]. The Doppler cooling laser serves
here as cold reservoir as well as dissipation of the sent in electrical noise. This allows
the ion to thermalize following the fluctuation-dissipation theorem. The Doppler
cooling laser is here a red detuned laser from the ions 2S1/2 − 2P1/2 transition and
the noise is generated by an arbitrary waveform generator. With this technique
temperatures ranging from 1 mK to 4 K were obtained.
To obtain further insight into the dynamics of the above-described heat engine, we
will examine analytical approximation as well as a full numerical simulation of this
system. First, we will derive the analytical description. The numerical model will be
explained in section 5.2. For both descriptions we will use parameters found in the
experiment. The ion in the trap is a 40Ca+ ion (see section 2.2) with m = 40 amu
confined in a tapered Paul trap with θ = π/6, r0 = 1mm and trap frequencies of
ωx0 = 2π × 1MHz and ωz = 2π × 0.1MHz. The ion is initialized in a thermal
distribution by using the Doppler laser to cool the ion to the Doppler temperature,
which is ∼ 1mK. The average phonon number corresponding to this temperature
in axial direction is ≥ 200. This well justifies the classical treatment of the axial
degree of freedom. At time t = 0 the ion is at an axial position z0 with an initial
axial velocity vz0 = pz0/m. The ion is coupled to a hot reservoir with a temperature
of βh = 1/kBTh. After the thermalization to the reservoir the working medium has
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Figure 5.2.: (a) Upper: illustration of the radial and axial states of the ion that un-
dergoes one four-stroke (A-B-C-D) cycle. Red (blue) circle represents
the radial state after interaction with the hot (cold) bath. A different
temperature of the radial state leads to a different amount of displace-
ment of the axial potential. Dashed and solid black lines illustrate the
axial potential before and after the bath interaction. Lower panels show
the density matrix elements (cij) of the radial state in phonon number
(n) basis at the end of each stroke. Only the first 20 levels are dis-
played. (b) Energy-frequency diagram of the radial state. The cycle
is not closed due to the accumulation of energy in the flywheel. (c)
Blue line shows a close-up of the axial trajectory of the ion as a func-
tion of time with Tc = 1.0mK, Th = 1.2mK and z0 = −1.1µm. The
oscillation amplitude grows linearly with the number of engine cycles.
Inset: the full axial trajectory over four engine cycles. The results from
numerical simulations (solid blue) and analytical calculations using sec-
tion 5.3.1 (dashed red) show excellent agreement. (d) Energy in the
working medium (blue) and the flywheel (red) under the same condi-
tion as in (c).

X1(0) = X2(0) = 0, N0 = (eβhh̄ωx0 − 1)−1. In the small axial displacement limit the
force in axial direction due to the variance in radial direction becomes

Fh = γh̄ωx0Rh , (5.11)
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with

Rh = coth
(
βhh̄ωx0

2

)
. (5.12)

As illustrated in fig. 5.2 (a), this force generates a displacement along the axial
degree of freedom towards the open end of the taper. During the action of the
force the radial state expands in an isentropic manner. The dynamics in the axial
direction are determined by integrating the equations of motion (section 5.1) in this
direction. After evolving freely for τz, the ion reaches the position z1 with a velocity
vz1. Here the ion interacts with the cold reservoir and thermalizes to a temperature
of βc = 1/kBTc. The force after the isochoric cooling the force is lowered to

Fc = γh̄ωx0Rc , (5.13)

where Rc is given by section 5.1.1, where the temperature is substituted βh → βc.
The diminished force yields a shifted minimum of the potential, yielding an effective
restoring force towards the narrow end of the trap. Again, the ion evolves freely
in time, till a time t = 2τ . This process is again isentropic. When the ion couples
again with the hot thermal bath, the flywheel does not restore the original (z0, vz0)
point but ends at (z2, vz2) due to the work done by the forces Fh and Fc. This open
engine cycle is illustrated in fig. 5.2 (b).
To verify the analytical results of the accumulation of work, numerical simulations
were performed. The results are shown in fig. 5.2 (c) and (d) with temperatures
of Th = 1.2mK and Tc = 1.0mK. The procedure to perform the simulations will
be elaborated on in the next section. The blue lines in fig. 5.2 (c) depict a zoom
in on the axial motion of the ion, to make the increase in elongation visible. The
inset depicts the full trajectory in axial direction, where the blue solid lines are the
numerical results and the red dashed line represent the analytically approximated
solution discussed in this section. Both description are in agreement with each other.
In fig. 5.2 (d) the energy in the radial (blue) and axial (red) degrees of freedom
is plotted. The energy in the flywheel grows quadratically due to the elongation
increasing linearly in each cycle.



5 Single-atom heat engine as sensitive probe 33

5.2. Numerical simulation
In this section we will describe the numerical model used to simulate the dynamics of
the system. For this we use a combination of classical and quantum simulations. The
classical dynamic in axial direction is here simulated by the Störmer-Verlet method
(section 4.1) and the quantum trajectory in the radial direction is propagated by
the Newton propagator section 4.3.
Especially for harmonic oscillators the simulation of thermal states is challenging.
There is an infinite number of eigenstates and the dimensionality of the Hilbert space
is thus not limited. However, to perform computations on an infinite set of states is
not feasible. Therefore, a truncation is necessary [Feh09]. But this truncation must
be chosen carefully. A too tight truncation can lead to numerical artifacts, such as
reflections at the truncation. Especially for thermal states, which can be expressed
as

ρ̂th = exp
(
−βĤ

)
. (5.14)

For high temperatures the distribution has an exponentially decaying tail, yielding
reflections quite easily at the truncation of the Liouville space. To ensure that
the truncation is sufficient, we generated a thermal state with temperature higher
than the simulations for this work. We examined at which entry the population
became negligible. The criterion for this is when the population became lower than
the precision of the floating point number. From there we took a factor of two to
truncate the Hilbert space for good measure.

5.2.1. Algorithm for the simulation of classical and quantum
trajectories

In this section the numerical algorithm for propagating the axial and radial degrees
of freedom will be elaborated on. To achieve this propagation, two different prop-
agators are required. The classical axial degree of freedom is simulated using the
Störmer Verlet method and the quantum radial degree of freedom is propagated
by the Newton propagator. To ensure that at every step the according dynamic is
properly described, the density matrix and the Hamiltonian of the radial degree of
freedom and the position z, velocity v and the force F in axial direction needs to
be updated.
The simulation is initialized at an initial axial position z0 and velocity v0. The radial
state is then set to the desired state. The value R(ti) is then computed and used
to propagate the axial degree of freedom by one time step ∆t. The newly obtained
axial position is then used to update the Hamiltonian in accordance with eq. (5.3).
From the Hamiltonian the Liouville superoperator is computed and the density ma-
trix is propagated by ∆t. This procedure is repeated until t = π

ωz
. At this time the

radial degree of freedom is coupled to a reservoir. The density matrix is thermalized
to it and the procedure is started over again. This scheme is illustrated in fig. 5.3.
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Initialize axial oscillator with z0 and v0

Thermalize radial state

Compute R(t)

Propagate z by ∆t with updated force

Update Ĥ and compute L

Propagate ρ̂ by ∆t with Newton propagator

Is t = π
ωz

?
no

yes

Figure 5.3.: Flowchart of the implemented algorithm.

The simulation is coded in Python [Van09]. For handling array operations, the
NumPy [Har20] module is utilized. Visualization of the results are done using Mat-
plotlib [Hun07]. The implementation of constructing operators and density matrices
is left to the ”quantum toolbox in python” (QuTiP [Joh13]). The implementation
of the in section 4.3 described newton propagator for the simulation of the radial
degree of freedom is imported from the newton propagator package [Goe18]. To
optimize the performance of the simulation we used numba [Lam15] to compile the
python code into machine code.

1 import os
2 import glob
3 import string
4 import pickle
5 import numpy as np
6 from numpy import pi
7 import matplotlib
8 import matplotlib.pylab as plt
9 import newtonprop

10 from scipy.special import factorial
11 import qutip
12 from qutip.visualization import matrix_histogram , hinton



5 Single-atom heat engine as sensitive probe 35

13 from qutip import position, momentum, expect, create, destroy,
coherent_dm , thermal_dm , fock_dm, displace , squeeze, Qobj,
operator_to_vector , wigner

14 from numba import jit

The function for updating the Hamiltonian implements eq. (5.3). The necessary
parameters for this are the axial position z_pos, the parameter of the taper alpha=
tan(θ)/r0, the axial trapping frequency w_x0 and the dimensions of the Hilbert
space N. For sake of numerical precision, the constant h̄ = 1 which is denoted in the
variable hbar_1.

1 def get_hamiltonian(z_pos, alpha, w_x0, N=20):
2 """function returns the Hamiltonian of the radial state."""
3 # input: z_pos, alpha, w_x0, N the system dimension
4 # return: Hamiltonian as a Qobject
5

6 taper_ratio = 1+z_pos*alpha
7 # w_x = w_x0/taper_ratio**2
8 hbar_1 = 1
9

10 # unperturbed Hamiltonian
11 H0 = np.array(np.zeros(shape=(N, N), dtype=np.complex128))
12 for i in range(N):
13 H0[i, i] = (0.5+i)*w_x0*hbar_1
14

15 # including the interaction term
16 H = Qobj(H0) + hbar_1/4*w_x0*((destroy(N)+create(N))**2)*(1/

taper_ratio**4-1)
17

18 return H

For achieving better precision, it is of advantage to compute in the dimensions
intrinsic to the system. The trapping frequency in radial direction in the experiment
is in the order of GHz and have typical displacements in axial direction of µm.
Therefore, we adjust the constants to fit this chosen units.

1 two_pi = 2.0 * pi
2 k_B = 1.38064852e-23 #µm^2kg/K/µs^2
3 hbar = 6.62607004e-34/two_pi*1e6 # Planck constant in µm^2kg/µs
4 w_x0 = two_pi * 1.0 # radial trapping frequency in MHz at z=0
5 alpha = np.tan(30/180*pi)/(1e3)

The by QuTiP implemented initialization of a thermal state takes as argument
the average phonon number nbar. The function getNbar_thermal(temp,z_pos)
is calculating this value by a simple energy consideration. The total energy, which
is the sum of the kinetic and potential energy is equivalent to the energy of the
harmonic oscillator. Here the kinetic and potential term summed are equal to the
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total thermal energy.⟨
h̄ωx(z)

(
n̂+

1

2

)⟩
= T + V =

1

2
kBT +

1

2
kBT (5.15)

⇔ h̄ωx(z)

(
n̄+

1

2

)
= kBT

⇔ n̄ =
kBT

h̄ωx(z)
− 1

2

1 def getNbar_thermal(temp=0.0,z_pos=0.0):
2 taper_ratio = 1+z_pos*alpha
3 #compute the energy
4 w_x_z=w_x0*(1/(taper_ratio**4))
5 thermalEnergy = k_B*temp
6 nbar = thermalEnergy/hbar/w_x_z -0.5
7 print(nbar)
8 return nbar

To generate the density matrices for different kind of states, the function ini_rho
is used. This function returns the corresponding density matrix rho with dimension
N×N. The distribution is chosen by the string distribution which goes through a
comparison to call the corresponding routine of the QuTiP library. The necessary
parameters depending on the type of distribution is passed as further arguments of
the function.

1 def ini_rho(N=20, mean_phonon_number=0, distribution = 'thermal',
squeeze_para = 0.25, displace_para = 0.25,temp=0.0,zpos=0.0):

2 """function generates the density matrix of the initial radial
state."""

3

4 if distribution == 'coherent':
5 rho = coherent_dm(N, np.sqrt(mean_phonon_number))
6 # coherent state generated with qutip.coherent_dm
7 elif distribution == 'fock':
8 rho = fock_dm(N, mean_phonon_number)
9 # Fock state generated with qutip.fock_dm

10 elif distribution == 'thermal':
11 nbar = getNbar_thermal(temp,zpos)
12 rho = thermal_dm(N, nbar, 'analytic')
13 rho = rho/rho.norm()
14 # Thermal state generated with qutip.thermal_dm
15 elif distribution == 'squeezed':
16 rho = coherent_dm(N, np.sqrt(mean_phonon_number))
17 s = squeeze(N, squeeze_para)
18 rho = s*rho*s.dag()
19 elif distribution == 'squeezeddisplaced':
20 rho = coherent_dm(N, np.sqrt(0))
21 s = squeeze(N, squeeze_para)
22 d = displace(N, displace_para)
23 rho = d*s*rho*s.dag()*d.dag()
24 elif distribution == 'squeezedvacuum':
25 rho = fock_dm(N, 0)
26 s = squeeze(N, squeeze_para)
27 rho = s*rho*s.dag()
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28 return rho

To update the Force, driving the ion along the axial degree of freedom, the expec-
tation value of the squared position operator ⟨x̂2⟩ needs to be evaluated. Therefore,
we construct the position operator x_op in the Fock basis and compute the product
with itself. The result is stored in x_sq_op. The same is done for the momentum
operator x_mom_op and x_sq_mom_op. The expectation value of these operators are
computed by the built-in function of QuTiP. The results are returned.
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1 def get_x_var(rho, N=20):
2 """function returns the measurables (x,x^2,p,p^2) from the input

density matrix rho"""
3

4 x_op = destroy(N) + create(N)
5 x_sq_op = x_op*x_op
6

7 x_mom_op = -1j*(destroy(N) - create(N))
8 x_sq_mom_op = x_mom_op*x_mom_op
9

10 x_pos = expect(rho, x_op)
11 x_pos_var = expect(rho, x_sq_op)
12 x_mom = expect(rho, x_mom_op)
13 x_mom_var = expect(rho, x_sq_mom_op)
14

15 return x_pos, x_pos_var , x_mom, x_mom_var

The class Result is handling storing and saving the data of the simulation. The
member states is an array of quitp.Qobj, where the density matrices are stored.
t_series is an array tracking the time t. The remaining arrays are handling the
variables required for performing simulation as denoted by the the comments in the
code. The member variable stroke denotes the current stroke number. Due to
the higher dimensions especially it is often not feasible to run the simulation for
the whole duration due to limitation of allocatable memory for it. This is why the
simulation is run till the next bath is reached. Because we assume for our system
that the thermalization destroys all coherences, meaning that the radial degree of
freedom is fully reset to the state with which it will evolve further. After a stroke,
the obtained data is written to disk serialized in a binary format. This allows for
fast writing as well as fast read in.

1 class Result():
2 """Dummy class for propagation result"""
3

4 states = [Qobj()]
5 t_series = np.array([])
6 z_positions = np.array([]) # position along z-axis
7 velocities = np.array([]) # velocity in z direction
8 x_positions = np.array([]) # expectation value of x-operator in

the radial degree of freedom
9 x_pos_var = np.array([]) # expectation value of x-operator^2 in

the radial degree of freedom
10 x_momenta = np.array([]) # expectation value of p-operator in the

radial degree of freedom
11 x_momenta_var = np.array([])# expectation value of p-operator^2 in

the radial degree of freedom
12 axial_energy = np.array([]) # energy in axial direction
13 radial_energy = np.array([])# energy in radial direction
14 z_acc_potential = np.array([]) # acceleration due to harmonic

potential
15 z_acc_radial = np.array([]) # acceleration due to force from x-z

coupling
16 stroke = 0 # current stroke number
17

18
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19 def __init__(self):
20 self.states = [Qobj()]
21 self.t_series = np.linspace(0, two_pi/w_z/2, 1000)
22 self.z_positions = 0*self.t_series
23 self.velocities = 0*self.t_series
24 self.x_positions = 0*self.t_series
25 self.x_pos_var = 0*self.t_series
26 self.x_momenta = 0*self.t_series
27 self.x_momenta_var = 0*self.t_series
28 self.axial_energy = 0*self.t_series
29 self.radial_energy = 0*self.t_series
30 self.z_acc_potential = 0*self.t_series
31 self.z_acc_radial = 0*self.t_series
32 self.stroke = 0
33

34 def plot_pop_dynamics(self):
35 """function to visualize the simulation results"""
36

37 #fig1, ax_1 = hinton(self.states[0])
38 #fig2 = plt.figure(1)
39 #fig2, ax_2 = hinton(self.states[-1])
40

41 fig2 = plt.figure(2)
42 fig2.set_size_inches(18.5, 10.5, forward=True)
43

44 ax1 = plt.subplot(231)
45 ax2 = plt.subplot(232)
46 ax3 = plt.subplot(233)
47 ax4 = plt.subplot(234)
48 ax5 = plt.subplot(235)
49 ax6 = plt.subplot(236)
50

51 ax1.plot(self.t_series , self.z_positions)
52 ax2.plot(self.t_series , self.x_positions , self.t_series, self.

x_momenta)
53 ax3.plot(self.t_series , self.x_pos_var , self.t_series, self.

x_momenta_var)
54 ax4.plot(self.t_series , self.axial_energy -np.mean(self.

axial_energy), self.t_series , self.radial_energy -np.mean(self.
radial_energy))

55 ax5.plot(self.t_series , self.z_acc_radial+self.z_acc_potential)
56

57 ax1.set_xlabel(r'Time ($\mu s$)')
58 ax1.set_ylabel(r'$z$ position ($\mu m$)')
59 ax1.legend(['z position'])
60

61 ax2.set_xlabel(r'Time ($\mu s$)')
62 ax2.set_ylabel(r'$x$ position ($\mu m$)')
63 ax2.legend(['x position', 'x momentum'])
64

65 ax3.set_xlabel(r'Time ($\mu s$)')
66 ax3.set_ylabel(r'Variances ($\mu m^2$)')
67 ax3.legend(['x pos. var.', 'x mom. var.'])
68

69 ax4.set_xlabel(r'Time ($\mu s$)')
70 ax4.set_ylabel(r'Energy change')
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71 ax4.legend(['axial energy', 'radial energy'])
72

73 ax5.set_xlabel(r'Time ($\mu s$)')
74 ax5.set_ylabel(r'z accerlation')
75 ax5.legend(['potential force', 'radial force'])
76

77 ax1.set_xlim([self.t_series[0],self.t_series[-1]])
78 ax2.set_xlim([self.t_series[0],self.t_series[-1]])
79 ax3.set_xlim([self.t_series[0],self.t_series[-1]])
80 ax4.set_xlim([self.t_series[0],self.t_series[-1]])
81 ax5.set_xlim([self.t_series[0],self.t_series[-1]])
82

83 plt.show()
84

85 #fig1.savefig(os.getcwd()+'\\output\\1stroke'+str(self.stroke)
+'fig1.png')

86 fig2.savefig(os.getcwd()+'\\output\\2stroke'+str(self.stroke)+'
fig2.png')

87

88 plt.close("all")
89

90 def save(self,folder=".\\"):
91 directory = folder
92 if not os.path.exists(directory):
93 os.makedirs(directory)
94 filename = directory+'stroke'+str(self.stroke)+'.pkl'
95 with open(filename , 'wb') as output: # Overwrites any existing

file.
96 pickle.dump(self, output, pickle.HIGHEST_PROTOCOL)

The function read_results loads each stroke to extract the simulation results from
the raw data. It iterates over all strokes and the relevant data is stored in the vari-
ables at the top of the body of the function. The relevant parameters are named
analogues to the members of the class Result. The relevant parameters for evalu-
ating further performance are stored in ASCII text files. The function returns the
array storing the positions in axial direction and their respective times.

1 def read_results(folder):
2 path = os.getcwd()+'\\output\\'
3 filenumber = len(glob.glob1(path+folder,'*.pkl'))
4 z_positions = np.array([])
5 times = np.array([])
6 z_acc_potential = np.array([])
7 z_acc_radial = np.array([])
8 z_acc = np.array([])
9 t = 0

10

11 for a in range(filenumber):
12 filename = path+folder+'stroke'+str(a)+'.pkl'
13 print(filename)
14 with open(path+folder+'stroke'+str(a)+'.pkl', 'rb') as f:
15 data = pickle.load(f)
16 z_positions = np.append(z_positions , data.z_positions)
17 times = np.append(times, t+data.t_series)
18 z_acc_potential = np.append(z_acc_potential , data.

z_acc_potential)
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19 z_acc_radial = np.append(z_acc_radial ,data.z_acc_radial)
20 t = np.amax(times)
21

22

23 z_acc = z_acc_potential + z_acc_radial
24 #plt.plot(times, z_acc_potential ,'ro',label=' z_acc_potential')
25 #plt.plot(times, z_acc_radial ,'ro',label='z_acc_radial')
26 #plt.plot(times, z_acc,'ro',label=' z_acc_potential+ z_acc_radial')
27 np.savetxt(path+folder+'accel.txt',z_acc)
28 np.savetxt(path+folder+'accel_pot.txt',z_acc_potential)
29 np.savetxt(path+folder+'accel_rad.txt',z_acc_radial)
30 np.savetxt(path+folder+"times.txt",times)
31 np.savetxt(path+folder+"pos.txt",z_positions)
32 return times, z_positions

The function visualize is used to display the full trajectory in z direction. The
function read_result is called to obtain the result of the simulation. The full
trajectory is saved as an image as well.

1 def visualize(folder):
2 times, position = read_results(folder)
3 plt.plot(times,position)
4 plt.xlabel('t / µs')
5 plt.ylabel('z position / µm')
6 plt.savefig'\\output\\'+folder+"dynamic.png")
7 plt.close("all")

The following functions are some auxiliary methods for making the code more read-
able.

1 def zero_vectorized(v):
2 return np.zeros(shape=v.shape, dtype=v.dtype)
3

4 def norm_vectorized(v):
5 return np.linalg.norm(v)
6

7 def inner_vectorized(a, b):
8 return np.vdot(a, b)

The function velVerletStep implements the updating of the axial position in de-
pendence of the radial variance using the Störmer-Verlet algorithm. This algorithm
is elaborated on in section 4.1. The force for this is computed in dependence of
the expectation value of ⟨x̂2⟩, which is passed in the variable x_var. To have a
more thorough evaluation the acceleration due to the harmonic confinement in axial
direction as well as the acceleration in axial direction due to the force generated by
the variance in radial direction. Those values are returned.

1 @jit(nopython=True)
2 def velVerlStep(position_old ,velocity_old ,x_var,dt):
3 """function returns the new position , momentum of in the axial

direction"""
4

5 v_half = 0*velocity_old
6 position_new = 0*velocity_old
7 velocity_new = 0*velocity_old
8
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9 v_half = velocity_old + dt/2.0*(-(w_z**2)*position_old + hbar*w_x0*
x_var*alpha/(1+position_old*alpha)**5/mass)

10

11 position_new = position_old+dt*v_half
12

13 velocity_new = v_half+ dt/2.0*(-(w_z**2)*position_new + hbar*w_x0*
x_var*alpha/(1+position_new*alpha)**5/mass)

14

15 acc_potential = -(w_z**2)*position_new
16 acc_radial = hbar*w_x0*x_var*alpha/(1+position_new*alpha)**5/mass
17

18 return position_new , velocity_new , acc_potential , acc_radial

To run the simulation for one stroke is implemented in single_stroke. The input
parameters are the density matrix rho, the dimension of the Hilbert space N, the
taper parameter alpha, initial position z_pos and velocity z_vel, the radial and
axial trapping frequencies w_x0 and w_z as well as a result object result to save
the data generated by the simulation. The parameter result will be returned. As
discussed above, first the trajectory of the ion in axial direction is propagated. The
updated values are then used to compute Hamiltonian H. From the Hamiltonian,
the Liouvillian is constructed and the density matrix rho is propagated by a time
step dt.

1 def single_stroke(rho, N, alpha, z_pos, z_vel, w_x0, w_z, result):
2

3 dt = result.t_series[1]-result.t_series[0]
4 for step in range(len(result.t_series)):
5 result.x_positions[step], result.x_pos_var[step], result.

x_momenta[step], result.x_momenta_var[step] = np.real(get_x_var(
Qobj(rho.reshape(N,N)), N))

6

7 z_pos, z_vel, z_acc_p, z_acc_r = velVerlStep(z_pos,z_vel,result
.x_pos_var[step],dt)

8

9 result.z_positions[step] = z_pos
10 result.velocities[step] = z_vel
11 result.z_acc_potential[step] = z_acc_p
12 result.z_acc_radial[step] = z_acc_r
13 # Hamiltonian as a function of z position
14 H = get_hamiltonian(z_pos, alpha, w_x0, N)
15 # Liouvillian derived from the Hamiltonian
16 L = qutip.liouvillian(H)
17 Lmatrix = L.full()
18

19 # Propagating density matrix with newton propagator
20 rho = newtonprop.newton(lambda v: Lmatrix @ v, rho, dt, func=np

.exp, zero=zero_vectorized , norm=norm_vectorized , inner=
inner_vectorized , tol=1e-12)

21 result.states.append(Qobj(rho.reshape(N,N)))
22

23 if not (step % 100): print("step: ", step, "/", len(result.
t_series), "; z position", z_pos)

24

25 return result
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Some further constants which are required for performing simulations are defined.
1 N = 80 # dimension of the simultion
2 two_pi = 2.0 * pi
3 mass=40*1.66053886e-27 # mass of Ca+ ion in kg

To run a simulation the number of strokes n_strokes needs to be defined. The
simulation is started with the ion thermalized to the hot reservoir with temperature
T_hot. The initial elongation z_pos is computed by simple consideration of the
energy in the system. The ion is then propagated stroke by stroke, in which the
ion is thermalized alternating to the hot and cold reservoirs T_hot and T_cold
respectively. To piece the stroke wise simulation together, the initial position and
velocity of the next stroke is obtained by the last position and velocity of the current
stroke.

1 n_strokes = 20# number of strokes
2

3 result = Result()
4 z_vel = 0e-2
5 T_cold=2e-4 #K
6 T_hot=2.1e-4 #K
7 z_pos = - np.sqrt(k_B*T_hot*2/(w_z**2)/mass)
8

9 for stroke in range(n_strokes):
10 result.stroke = stroke
11 print("Stroke: ",stroke)
12 if (stroke % 2) == 0:
13

14 rho0 = ini_rho(N, 0, 'thermal',squeeze_para = 0.0,
displace_para = 0.0,temp=T_hot,zpos=z_pos)#hot bath: initial
density matrix

15

16 rho0_vectorized = operator_to_vector(rho0).full().flatten() #
convert qutip object to numpy array

17 rho = rho0_vectorized
18

19 else:
20 rho0 = ini_rho(N, 0, 'thermal',squeeze_para = 0.0,

displace_para = np.sqrt(0),temp=T_cold,zpos=z_pos) #cold bath:
initial density matrix

21 rho0_vectorized = operator_to_vector(rho0).full().flatten() #
convert qutip object to numpy array

22 rho = rho0_vectorized
23

24 result.states = [Qobj()]
25 result.states[0] = rho0
26 result = single_stroke(rho, N, alpha, z_pos, z_vel, w_x0, w_z,

result)
27

28

29 #With out giving the maximum amplitude as turning point
30 z_pos = result.z_positions[-1]
31 z_vel = result.velocities[-1]
32 result.plot_pop_dynamics()
33 #save data after every stroke
34 result.save('0_21mkto0_2withCorrection2\\')
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5.3. Single-ion heat engine as a sensitive thermal
probe

Compared to precious work [Roß16b], in which laser cooling was applied in axial di-
rection to close the working cycle of the single-atom heat engine, we will consider the
operation of the heat engine without dissipation in this direction. When the energy
transferred to the axial flywheel is not dissipated, each time the engine performs
a cycle energy will be added. This accumulative nature of the open cycle engine
allows for a sensitive probe for especially small temperature differences. An estimate
for the sensitivity for this device will be derived in section 5.3.1. Furthermore, in
section 5.3.2 it will be demonstrated that exploiting quantum resources yields an
even higher sensitivity.
In fig. 5.4 (a) the measurement protocol is depicted. The ion is prepared in a ther-
mal state at Doppler temperature using Doppler cooling. Letting the engine run
for N cycles, work is stored in the axial flywheel. To obtain the information about
the energy, one does solely need to perform position measurements after the ion has
interacted with each bath respectively. The necessary position measurement is done
by collecting photons with an objective and using a camera for recording.

2N Δz

......
𝛕z

Bath 1 Bath 2Initialization

Measurement 1

N engine cycles

......
𝛕z

Initialization

Measurement 2

Bath 1 Bath 2

Objective

Camera

Camera 

images
(a) (b)

40Ca+
𝛕z / 10

𝛕z / 10

Figure 5.4.: (a) Measurement protocol. After initialization with Doppler cooling,
the engine is set to operate under the driving of the two baths. After a
number of N engine cycles, measurements are performed to determine
the extreme of the axial location. The measurements are realized by
illuminating the ion with a short laser pulse of duration τz/10, at times
τz and 2τz after the 2N -th bath interaction, respectively. The physical
separation of the ion’s image on the camera directly translates to the
axial oscillation amplitude 2N ·∆z. It is necessary to repeat the protocol
many times in order to precisely determine the amplitude. (b) The
photons emitted by the 40Ca+ ion at 397 nm are collected by an objective
and focused on a camera.

5.3.1. Temperature difference estimation
To estimate the temperature difference of two different baths, the ion needs to be
prepared in an initial state. This can be achieved by employing a Doppler cooling
laser with a variable detuning. This allows to have control over the initial tempera-
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ture T0. The initial position x0 and velocity v0 in axial direction is described by the
Maxwell-Boltzmann distribution of the initial temperature.

f(z0, vz0) ∝ exp
[
−m(v2z0 + ω2

zz
2
0)/2kBT0

]
(5.16)

From here on, the atom is set to operate as an Otto engine. The two baths to be
measured are thermalizing the ion to T1 or T2. Each cycle performs work, which
is stored in the axial degree of freedom. This increase in elongation at the turning
points can be measured directly by directly observing the position of the ion on
camera (fig. 5.4 b). This parameter can be determined by the following equations
for the odd and even turning points.

zn = z0 +
nh̄ωx0γ(R2 −R1)

mω2
z

for n = 0, 2, 4... (5.17)

zn = −z0 +
2h̄ωx0γR1 − (n− 1)h̄ωx0γ(R2 −R1)

mω2
z

for n = 1, 3, 5...,

where R1 and R2 are given by section 5.1.1 with the corresponding temperatures T1
and T2. Thus, the difference in the Temperature yields a difference in the elongation
in axial direction ∆z after a full cycle (see fig. 5.2 c). This increase reads

∆z = zn+2 − zn =
2h̄ωx0γ

mω2
z

(R2 −R1). (5.18)

In the case that h̄ωx0 ≪ kBT can be approximated as

∆z =
4kBγ

mω2
z

∆T, (5.19)

where ∆T = T2 − T1. The sign of δZ is dependent of the temperature difference
∆T . The engine is run for N cycles, where N ≫ z0/∆Z. Then the elongation due
to the work accumulated in the flywheel from driving the engine cycles becomes
dominant. Regardless of the initial condition, the motion of the ion along the
axial degree of freedom will be brought in phase of the bath interaction. After
thermalizing to the hot/cold bath the ion moves towards the wide/narrow side of
the tapered trap. To measure the temperature difference, we are proposing the
following two measurements are performed. First, the position is illuminated by a
pulse of τ = τz/10 at the turning point after 2N bath interactions. The position
here can be directly obtained from the camera, which is observing the light emitted
from the ion after it passed through a high numerical aperture (NA) objective. This
measurement has to be done M times with restarting the engine, to obtain a better
signal-to-noise ratio. From the acquired data, the ions position is determined by
single-particle localization analysis [Für13].

z2N =
2Nh̄ωx0γ(R2 −R1)

mω2
z

. (5.20)

The second set of measurements is performed following the same procedure but at
a time 2τz after the 2N -th bath interaction, while the (2N + 1)-th bath interaction
is skipped (see lower panel of fig. 5.4a). The measured mean axial position is then

z′2N = −2Nh̄ωx0γ(R2 −R1)

mω2
z

, (5.21)
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Figure 5.5.: (a) Distribution of the axial positions of the ion after N = 105 number
of cycles for the two sets of measurements. M = 2×105 initial positions
were drafted randomly from the Boltzmann distribution with tempera-
ture T0 = 1mK. (b) The oscillation amplitude z2N − z′2N after N = 105

engine cycles versus temperature difference ∆T between the two baths.
Green circles and red crosses represent the results obtained from nu-
merical simulations with Tc = 1.0mK, 0.2 mK, respectively. The solid
black line shows the prediction of section 5.3.1.

leading to the difference between the two positions

z2N − z′2N = 2N∆z (5.22)

a linear function of the temperature differences ∆T . The distribution of the ions
axial positions obtained by the numerical simulation with ∆T = 0.1mK, T0 =
1.0mK, N = 105 and M = 2×105 is depicted in fig. 5.5 (a). The difference between
the two measurement points z2N − z′2N is shown in fig. 5.5 (b). The simulations are
done with a base temperature of Tc = 1.0mK and 0.2 mK which are plotted with
green circles and red crosses, respectively. The number of the bath interactions is
N = 105. The temperature difference ∆T is varied for the different simulations.
The analytical solution is plotted as a black line. eq. (5.19) is in good agreement
with the simulated data.
Because this method relies on localizing the ion, the major uncertainties stem from

measuring the amplitude 2N∆z. The precision with which a single particle can
be localized is limited mainly by the signal-to-noise ratio of the camera. There is
a multitude of factors to consider. Mainly the illumination time of the laser, the
efficiency of photon collection, the quantum efficiency, and the background noise of
the camera are having an influence on the signal-to-noise ratio. In the experiment
an objective with a numerical aperture of 0.26 [Roß16b]. To obtain a precision
of precision of ±250 nm, an acquisition of 2 × 105 repeated measurements were
necessary [Roß16a]. This resolution limitation can be translated to a temperature
using eq. (5.19). The temperature difference uncertainty is ±2µK.
To note is, that this measurement scheme is only dependent of the temperature
difference between the two thermal reservoir and is not sensitive towards the base
line temperature in the limit of h̄ωx ≪ kBT1,2. This yields the protocol to be used
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Figure 5.6.: Amplification factor A as a function of the amplitude of squeezing r.
Green circles show the results obtained from the numerical simulations.
The solid line represents the outcome of eq. (5.26). The dashed black
line indicates the value r = 0.77, and the shaded area denote the region
where the squeezing operations brings the working medium into the
quantum regime.

to detect small temperature differences at high base temperatures. However, if one
of the baths is well known, the obtained temperature difference can then be used to
characterize the absolute temperature of the unknown bath.

5.3.2. The squeezed engine: Enhancing sensitivity using
quantum resources

To enhance the sensitivity of the single-atom heat probe, one can consider using
quantum resources to enhance the performance. Here, it is demonstrated how the
usage of squeezing after the isochoric strokes yields an amplification of the oscillation
amplitude. This enhancement might be used in experiment to be able to detect even
smaller temperature differences than ±2µK. The squeezing applied to the motional
radial state is described by the squeezing operator

Ŝ(ξ) = exp
(
1

2
(ξ∗â2 − ξâ†2)

)
. (5.23)

Because the squeezing is applied after the ion is thermalized to a thermal state, the
end state is described by a squeezed thermal state Ŝ(ξ)ρthŜ†(ξ). In this case, as
X1(0) ̸= 0, X2(0) ̸= 0, R(t) becomes time-dependent (see Eq. eq. (5.10)). The axial
oscillation grows after one engine cycle by

∆z′ =
4κγh̄

mωz

(
cosh(2r) + sinh(2r) cos(α)/(4κ2 − 1)

)
(n1

th − n2
th), (5.24)

with κ = ωx0/ωz, n1,2
th = (eβ1,2h̄ωx0 − 1)−1, r and α the amplitude and phase of

the squeezing parameter following ξ = reiα. To obtain the maximal growth the



5 Single-atom heat engine as sensitive probe 48

0

5

10
0

5
10

0.0
0.1

0.2

0.3

0.4

(b)

r= 0

0

5

10
0

5
10

0.0
0.1

0.2

0.3

0.4

(c)

r= 0.5

0

5

10
0

5
10

0.0
0.1

0.2

0.3

0.4

(d)

r= 1.5

0 10 20 30 40 50
Time ( s)

0.5

0.0

0.5

1.0

1.5

A
m

p
lit

u
d
e
 (
n
m

)

(a)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

a
rg

(c
ij)

r= 0 r= 0.5 r=1.5

cij cij cij

n

n

n

n

n

n

Figure 5.7.: (a) Amplification of the axial oscillation amplitude by squeezing the
working medium after interaction with both baths. The simulations
are performed with Th = 0.11mK and Tc = 0.1mK. The blue, orange,
and green curves represent the trajectories for r = 0, 0.5 and 1.5, re-
spectively. (b-d) Excerpt of the density matrices after interacting with
the hot bath and the squeezing operation, where the color encodes the
phase of the entries arg(cij).

squeezing needs be applied in phase, which means that the phase α = 0. In the hot
limit h̄ωx0 ≪ kBT eq. (5.24) can be written as

∆z′ =
4γh̄

mω2
z

(
cosh(2r) + sinh(2r)/(4κ2 − 1)

)
∆T. (5.25)

To quantify the enhancement of the applied squeezing to the working medium, define
the squeezing amplification factor

A =
∆z′

∆z
= cosh(2r) + sinh(2r)/(4κ2 − 1), (5.26)

where ∆z denotes the growth of the amplitude without squeezing. In fig. 5.6 this
dependency is depicted as the green solid line. Furthermore, numerical simulations
are shown as green circles. The simulations were done at T1 = 0.11mK, T2 = 0.1mK
and κ = 10 with different squeezing amplitudes. This additional squeezing yields an
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amplification of the axial oscillation by an order of magnitude, allowing for detec-
tion of much smaller temperature difference which in the scheme above would not
be detectable due to experimental constraints.
To point out that quantum squeezing is applied, the squeezing operation must sup-
press fluctuations below the symmetric quantum limit in one of the quadrature
components. From the uncertainty principle it follows that the canonical conjugate
quadrature component will have increased fluctuations.
To satisfy this condition, the variance of one of the quadratures needs to be smaller
than 1/4. This corresponds to a phase in which the Glauber-Sudarshan distribution
is negative [Sud63; Wal83], which yields the following condition:

1

4
(2nth + 1)e±2r <

1

4
. (5.27)

This bound is illustrated in fig. 5.6. In the case for the simulated data the squeezing
amplitude needs to be r > 0.77 in order to violate eq. (5.27). This value is depicted
by the horizontal dashed line and the shaded region corresponds to the regime of
quantum squeezing. In the white region where classical squeezing, the signal is still
amplified. This amplification is considerable small. To get a significant enhancement
of the oscillation one is required to enter the quantum regime. For further insight
the simulated axial trajectories for r = 0, 0.5 and 1.5 are displayed in fig. 5.7a. The
initial position and velocity is chosen to be zero for all simulations. The correspond-
ing density matrices after interacting with the hot bath and the squeezing operation
are depicted in fig. 5.7b-d. The phase of the entries of the density matrices arg(cij)
is indicated by the color scale. The applied squeezing yields a higher occupation
number and excitation of the off-diagonal elements.
Squeezing in trapped ion experiments has been demonstrated by fast trap volt-
age control [Hei90; Alo13; Bur19] or dynamic optical forces [Mee96; Din14; Mas19].
The motional state is modulated at twice the trapping frequency. In a recent ex-
perimental implementation of a quantum absorption refrigerator [Mas19] squeezing
operations of up to r = 2 was realized with two detuned lasers.
Even though the relation between temperature and axial oscillation growth is not
as simple as the free running system, this scheme can be implemented to evaluate
even smaller temperature differences.
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6. Summary and Outlook
In this thesis the feasibility of a sensitive thermal probe with a single atom has
been demonstrated by analytical and numerical methods. The system can detect
temperature differences as small as 2µK. Even higher sensitivity can be achieved
by implementing squeezing operations on the working medium after the bath in-
teractions. The presented scheme is independent of the base temperature and only
requires Doppler cooling as initialization. To highlight is that the presented scheme
is capable to measure small temperature differences even at high base temperatures,
corresponding to the limit of h̄ωx0 ≪ kBT .
Furthermore, this scheme can be used to characterize non-thermal baths. The cor-
responding effective temperature of the working medium after thermalization can
be estimated in a similar fashion. Because the dynamics in the axial degree of free-
dom depends on the radial degree of freedom, if the type of bath is known, one can
qualitatively evaluate the corresponding operation on the ion. The properties of the
radial degrees of freedom are only measured indirectly, which allows the engine to
preserve its quantum features during its free evolution.

In the scheme presented here one has to manually couple the ion to the hot/cold
bath. However, if one prepares the experiment, that two laser beams with different
detunings are placed spatially separated, one can employ due to the intrinsic prop-
erties of the heat engine an autonomous heat engine. The different detunings of the
lasers are corresponding here to different thermal reservoirs at different tempera-
tures. This due to the Doppler temperature being dependent on the temperature.
Once the ion is thermalizing to the ”hotter” (i.e. more blue detuned) laser the ion
is experience the force due to the higher temperature. The ion will be displaced by
this force along the axis until it reaches the ”cold” (i.e. more red detuned) laser.
This laser cools the radial degree of freedom to its respective Doppler temperature.
This will decrease the displacing force along the axis and the ion is experiencing the
pondermotive force of the harmonic axial confinement. Due to this force the ion will
propagate in the opposite direction as before until it reaches the interaction region
of the ”hot” laser.
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A. Appendix

A.1. Laplace Transform
A commonly employed method for solving linear time-invariant differential equations
is the Laplace transform. This transform is defined as

f̃(s) = L[f(t)] =
∫ ∞

0

dtf(t) exp(−st), (A.1)

where s ∈ C. Here f(t) denotes an arbitrary function which is continuous on the
interval [0, t], t ∈ R>0. This transformation can be employed to convert differential
equation, which have elaborate solutions, to form which can be solved by algebraic
means. The found solution can be transformed back to the initial problem using the
inverse Laplace transform.

f(t) = L−1
[
f̃(s)

]
(A.2)

The Laplace transform is also useful for finding the solution of derivatives, given an
initial condition x(0).

L
[

dx(t)
dt

]
= sL[x(t)]− x(0) (A.3)

For n-th order derivatives the transform can be obtain by applying eq. (A.3) n times.

L
[

dnx(t)

dtn

]
= snL[x(t)]− sn−1x(0)− · · · − dn−1x

dtn−1
(0) (A.4)

A useful relation is the convolution theorem, with which the reader might be familiar
from Fourier transform. The Laplace transform of the convolution of two real valued
functions a(t) and b(t) is equivalent to the multiplication of the Laplace transformed
of each function.

L [a(t) ∗ b(t)] = L [a(t)] · L [b(t)] (A.5)

A.1.1. Solving the driven harmonic oscillator using the Laplace
transform method

To solve an damped and driven harmonic oscillator

s2L[x(t)]− sx(0)− v(0) +
γ

m
sL[x(t)]− γ

m
x(0) + ω2L[x(t)] = 1

m
L[f(t)] (A.6)
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For sake of brevity we will introduce the notations x̃(s) := L[x(t)] and f̃(s) :=
L[f(t)]. Furthermore, we denote γ0 = γ/(2m). This equation reads in the new
notation:

s2x̃(s)− sx(0)− v(0) + 2γ0sx̃(s)− 2γ0 + ω2x̃(s) =
1

m
f̃(s). (A.7)

With initial conditions x(0) = x0 and v(0) = v0 the equation becomes

[
s2 + 2γ0s+ ω2

]
x̃(s)− sx(0)− v(0)− 2γ0x0 =

1

m
f̃(s) (A.8)[

s2 + 2γ0s+ ω2
]
x̃(s) =

1

m
f̃(s) + sx0 + v0 + 2γ0x0 (A.9)

x̃(s) =
1
m
f̃(s) + sx0 + v0 + 2γ0x0

s2 + 2γ0s+ ω2
. (A.10)

Let us now examine the denominator.

s2 + 2γ0s+ ω2 = s2 + 2γ0s+ γ20 − γ20 + ω2 (A.11)
= (s+ γ0)

2 + ω2 − γ20 (A.12)
= (s+ γ0)

2 + Ω2 (A.13)

Here, Ω := ω2 − γ20 .

x̃(s) =
1
m
f̃(s) + sx0 + v0 + 2γ0x0

(s+ γ0)
2 + Ω2

(A.14)

x̃(s) =
1
m
f̃(s)

(s+ γ0)
2 + Ω2

+
sx0 + γ0x0

(s+ γ0)
2 + Ω2

+
v0 + γ0x0

(s+ γ0)
2 + Ω2

(A.15)

x̃(s) =
1

mΩ

Ωf̃(s)

(s+ γ0)
2 + Ω2

+
sx0 + γ0x0

(s+ γ0)
2 + Ω2

+
v0 + γ0x0

(s+ γ0)
2 + Ω2

Ω

Ω
(A.16)

With the help of the following Laplace inverse transforms, we can determine the
trajectory in the time domain. [Obe73]

eαt sin(βt) = L−1

[
β

(s− α)2 + β2

]
(A.17)

eαt cos(βt) = L−1

[
s− α

(s− α)2 + β2

]
(A.18)
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Thus, the inverse Laplace transform eq. (A.16) reads.

x(t) = L−1 [x̃(s)] (A.19)

= L

[
1

mΩ

Ωf̃(s)

(s+ γ0)
2 + Ω2

+
sx0 + γ0x0

(s+ γ0)
2 + Ω2

+
Ω

(s+ γ0)
2 + Ω2

v0 + γ0x0
Ω

]
(A.20)

= L−1

[
1

mΩ

Ωf̃(s)

(s− (−γ0))2 + Ω2

]
+ L−1

[
x0

s− (−γ0)
(s− (−γ0))2 + Ω2

]
(A.21)

+ L−1

[
Ω

(s− (−γ0))2 + Ω2

v0 + γ0x0
Ω

]
(A.22)

=
1

mΩ
exp (−γ0t) sin (Ωt) · L−1

[
f̃(s)

]
+ x0 exp (−γ0t) cos (Ωt) (A.23)

+
v0 + γ0x0

Ω
exp (−γ0t) sin (Ωt) (A.24)

However, we are examining in this work thermally distributed ensembles. Therefore,
the particles are Gaussian distributed with x0 = ⟨x⟩ = 0 and v0 = ⟨v⟩ = 0. This
means that for such an ensemble the equation of motion reads

x(t) =
1

mΩ
exp (−γ0t) sin (Ωt) · L−1

[
f̃(s)

]
(A.25)

We will denote the force independent term as impulse response function H(t).

H(t) =
1

mΩ
exp (−γ0t) sin (Ωt) (A.26)

A.2. Implementation of the Strömer-Verlet method
In this chapter, an implementation of the Strömer-Verlet method is presented. As
an example, we will use a harmonic potential which confines a particle in three
dimension. The acceleration can be calculated by simply taking minus the derivative
of the potential with respect to the coordinate and divide it by the mass.

1 #include <iostream>
2 #include <fstream>
3 #include <limits>
4 #define _USE_MATH_DEFINES
5 #include <math.h>
6

7 void stroemerVerlet(double * oldPos, double * oldVel,double * omega,
double dt, int dim, double * newPos,double * newVel) {

8 double * velHalf = new double[dim];
9 for (int i = 0; i < dim;++i) {

10 velHalf[i] = oldVel[i] + dt / 2.0*(-omega[i]*omega[i]*oldPos[i]);
11 }
12 for (int i = 0; i < dim; ++i) {
13 newPos[i] = oldPos[i] + dt * velHalf[i];
14 }
15 for (int i = 0; i < dim; ++i) {
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16 newVel[i] = velHalf[i]+dt / 2.0*(-omega[i] * omega[i] * newPos[i]);
17 }
18 delete[] velHalf;
19 }
20

21

22 int main(int argc, char ** argv) {
23

24 double finalTime = 1e-5;
25 double dt = sqrt(std::numeric_limits <double >::epsilon()*finalTime);
26 int steps = static_cast <int>(finalTime / dt);
27 std::cout << steps << std::endl;
28

29 //allocate array for position and velocity
30 double ** position = new double*[steps];
31 double ** velocity = new double*[steps];
32 for (int i = 0; i < steps; ++i) {
33 position[i] = new double[3];
34 velocity[i] = new double[3];
35 }
36 double * velHalf = new double[3];
37

38 //set initial conditions
39 position[0][0] = 1.0e-6;
40 position[0][1] = -1.0e-6;
41 position[0][2] = 1.0e-6;
42 velocity[0][0] = 0.0e-6;
43 velocity[0][1] = 0.0e-6;
44 velocity[0][2] = 0.0e-6;
45

46 //set frequency
47 double omega[3];
48 omega[0] = 2*M_PI*1.0e6;
49 omega[1] = 2 * M_PI*1.0e6;
50 omega[2] = 2 * M_PI*0.1e6;
51

52 for (int i = 1; i < steps; ++i) {
53 stroemerVerlet(position[i - 1], velocity[i - 1], omega, dt,3,

position[i], velocity[i]);
54 if (!(i % 100)) std::cout << i << " / " << steps << std::endl;
55 }
56

57 std::ofstream results;
58 results.open("results.txt");
59 for (int i = 0; i < steps; ++i) {
60 results << i * dt << '\t' << position[i][0] << '\t' << position[i

][1] << '\t' << position[i][2] << '\t' << velocity[i][0] << '\t' <<
velocity[i][1] << '\t' << velocity[i][2] << std::endl;

61 }
62

63 results.close();
64 std::cin.get();
65 return 0;
66 }
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B. List of publications
The following article has been published during the preparation of this thesis.

Single-atom heat engine as a sensitive thermal probe
A. Levy, M. Göb, B. Deng, K. Singer and E Torrontegui and D. Wang
New Journal of Physics 22, 093020 (2020).

We propose employing a quantum heat engine as a sensitive probe for thermal
baths. In particular, we study a single-atom Otto engine operating in an open ther-
modynamic cycle. Owing to its cyclic nature, the engine is capable of translating
small temperature differences between two baths into a macroscopic oscillation in a
flywheel. We present analytical and numerical modeling of the quantum dynamics
of the engine and estimate it to be capable of detecting temperature differences as
small as 2 µK. This sensitivity can be further improved by utilizing quantum re-
sources such as squeezing of the ion motion. The proposed scheme does not require
quantum state initialization and is able to detect small temperature differences in a
wide range of base temperatures.

The following article has been published unrelated to this work.

Transient Non-Confining Potentials for Speeding Up a Single Ion
Heat Pump
E. Torrontegui, S. T. Dawkins, M. Göb, K. Singer
New Journal of Physics 20, 105001 (2018).

We propose speeding up a single ion heat pump based on a tapered ion trap. If a
trapped ion is excited in an oscillatory motion axially the radial degrees of freedom
are cyclically expanded and compressed such that heat can be pumped between two
reservoirs coupled to the ion at the turning points of oscillation. Through the use of
invariant-based inverse engineering, we can speed up the process without sacrificing
the efficiency of each heat pump cycle. This additional control can be supplied with
additional control electrodes or it can be encoded into the geometry of the radial
trapping electrodes. We present novel insight how speed up only limited by the mag-
nitude of the control voltage can be achieved through the use of inverted harmonic
potentials. We have verified that stable trapping conditions can be achieved.
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