Übungen zur Vorlesung Quantenmechanik für Nanostrukturwissenschaftler und Lehrer

Exercise 3

Task 1

If possible, normalize the following wavefunctions:

a)
$$\psi(x) = A \cdot \sin(kx)$$

b) $\psi(x) = A \cdot e^{-x^2/\alpha}$ (AID: $\int_{-\infty}^{\infty} e^{-\alpha x^2} dx = \sqrt{\frac{\pi}{\alpha}}$)
c) $\psi(x) = A \cdot (1 + x^2)^{-1/2}$

Task 2

The solutions for a particle in an infinitely high potential well

$$V(x) = \begin{cases} 0 & 0 \le x \le L \\ \infty & \text{sonst} \end{cases}$$

is given by $u_n(x) = A \cdot \sin\left(\frac{n\pi x}{L}\right)$ with $E_n = \frac{\hbar^2 \pi^2 n^2}{2mL^2}$.

- a) Show, that the solutions can be normalized by calculating A. Show that the normalized $u_n(x)$ fulfill the following orthonormality condition $\int_0^L u_n^*(x)u_m(x) = \delta_{nm}$.
- **b)** Calculate the time evolution $\Psi(x,t)$ for the wavefunction $\Psi(x,0) = \frac{1}{\sqrt{L}} (\sin(\frac{\pi x}{L}) + \sin(\frac{2\pi x}{L})).$

Task 3

The quantum system is given by the potential V(x). The ground state ψ_0 with the energy E_0 and the first two excited states ψ_1 and ψ_2 with the eigenenergy E_1 and E_2 are known. The system is now brought into the state

$$\Psi(x,t=0) = \frac{1}{2}\psi_0 + \frac{1}{2}\psi_1 + \frac{1}{\sqrt{2}}\psi_2$$

- a) Show that $\Psi(x, t = 0)$ is normalized correctly. AID: ψ_0 , ψ_1 and ψ_2 are already normalized.
- b) At the time t = 10 s the energy is measured. Which results for the measurments are possible and how possible are those?