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Nonlinear mechanical resonators display rich and complex dynamics and are important in many areas of
fundamental and applied sciences. Here, we present a general strategy to generate mechanical non-
linearities for trapped particles by transverse driving in a funnel-shaped potential. Employing a trapped ion
platform, we study the nonlinear oscillation, bifurcation, and hysteresis of a single calcium ion and
demonstrate a 20-fold enhancement of the signal from a zeptonewton-magnitude harmonic force through
the effect of vibrational resonance. Our results represent a first step in combining the rich nonlinear
dynamics with the precision control over mechanical motions offered by atomic physics and open up
possibilities for exploiting nonlinear mechanical phenomena in the quantum regime.
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Nonlinear oscillators, whose dynamics go beyond the
simple description of linear equations of motion, are
ubiquitous in nature. Driven nonlinear oscillators can
exhibit complex behaviors such as squeezing [1,2], per-
sistent resonance [3], phase transitions [4–6], and
chaos [7,8]. They have a broad presence in many branches
of science and technology [9–15]. Compared to linear
oscillators, nonlinear oscillators can be more sensitive to
external forces, especially when they are tuned close to a
bifurcation point. The multistability of nonlinear oscillators
provides opportunities for signal enhancement through the
effects of stochastic and vibrational resonances [16–20].
The manifestation of these effects in mechanical systems
has primarily been investigated with clamped electro-
mechanical resonators [17,18,20]. Engineering mechanical
nonlinearities for single atoms trapped in ultrahigh vacuum
would allow for the combination of nonlinear dynamics
with the exquisite control over mechanical motion achiev-
able by laser cooling and enable nonlinear force amplifi-
cation on a new scale.
In this Letter, we present a strategy to create mechanical

nonlinearities through transverse driving of a particle
trapped in a funnel-shaped potential. This nonlinearity
arises from the coupling of radial and axial motion of the
particle imposed by the geometry of the potential [21,22].
We demonstrate this model experimentally using a single
calcium ion confined in a funnel-shaped Paul trap and

report the first observation of force amplification through
vibrational resonance in levitated systems. In particular, we
show that a zeptonewton-scale oscillatory force, which
displaces the ion by an amount comparable to its zero-point
motion, can be enhanced by a factor of 20.
As illustrated in Fig. 1(a), our system consists of a single

ion in a modified Paul trap. In contrast to conventional
linear Paul traps, the two pairs of blade electrodes are
inclined with respect to the axial z axis [21,22]. We perform
numerical field simulations using the boundary element
method [23] to obtain the electrostatic potential. As
displayed in Fig. 1(b), this arrangement leads to a fun-
nel-shaped potential in which the radial confinement
becomes stronger with increasing axial position z. To trap
a charged particle, the two pairs of blades are driven by
bipolar radio frequency signals �Ṽrf at a frequency of
11 MHz. This creates a secular trapping potential in the
radial directions for a 40Caþ ion. The blue and red dots in
Fig. 1(c) display the measured secular trapping frequencies
along the two radial principal axes x and y as a function of
z. The results can be well recovered by the linear relation
ωx;yð1þ z=l0Þ, with ωx;y ≃ 2π × f1.14; 1.15g MHz the
trapping frequencies at z ¼ 0 and l0 ¼ 1.81 mm a para-
meter describing the length of the funnel. In the axial
direction, the ion is weakly confined by positive dc voltages
(Vdc) applied on the two end caps, resulting in a trapping
frequency of Ω ≃ 2π × 100 kHz.
The motion of the ion is subject to continuous damping

in all three directions achieved through Doppler cooling
using a laser red detuned to its 42S1=2 − 42P1=2 transition
[see inset of Fig. 1(a)]. A second laser at 866 nm repumps
the metastable 32D3=2 state to facilitate a closed-cycle
transition. In addition to the damping, the x and z motion
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are driven by external forces FxðtÞ and FzðtÞ. Since the two
radial modes are detuned in frequency by 8 kHz, narrow
band modulation of the force Fx allows selective excitation
of each radial mode. We consider that only the x mode is
driven and set y ¼ 0 for all times. In the relevant regime of
the experiment, the impact of the funnel shape is weak,
jz=l0j ≪ 1. Keeping the z dependence of the secular
potential in linear order only, we obtain the Hamiltonian
for the two-dimensional oscillation dynamics:

H ¼ p2
x þ p2

z

2m
þ 1

2
mΩ2z2 þ 1

2
mω2

x

�
1þ 2

z
l0

�
x2

− FxðtÞx − FzðtÞz: ð1Þ

Here,m represents the mass of the 40Caþ ion. The driving
forces have three distinct contributions: (i) Fx is realized by
modulating the intensity of the cooling laser to produce a
near-resonant radiation pressure force of magnitude F0 and
frequency ω0 ¼ ωx þ Δ ≫ Ω (with detuning Δ, jΔj ≪ Ω),
which drives the x motion of the ion; (ii) a weak signal
force of magnitude Fs and frequency ωs ≪ ω0 acting on
the axial mode, which we want to detect; (iii) the axial
enhancement force of strength Fe and frequency ωe, which
serves to enhance the detection of the signal force Fs. In the
experiment, the signal force is introduced by feeding in an
ac voltage Ṽs with an amplitude of 500 μV on one end cap
electrode. The detection scheme is not limited to electro-
static forces and should be applicable to any interaction that
leads to an axial displacement of the ion. The enhancement
force is applied in the same manner by exerting an ac
voltage Ṽe on the same end cap electrode, as shown in
Fig. 1(a). In summary, FxðtÞ ¼ F0 cosðω0tÞ and

FzðtÞ ¼ Fe cosðωetÞ þ Fs cosðωstÞ: ð2Þ

Note that the frequencies of these three forces fulfill the
relation ωs ≪ ωe ≪ ω0, as required for vibrational reso-
nance [19,20].
The equations of motion resulting from the Hamiltonian

(1) can be simplified by exploiting the separation of
timescales ω0 ≫ Ω. This is achieved by making the ansatz
xðtÞ ¼ αðtÞe−iω0t þ c:c: (with c.c. the complex conjugate),
where the amplitude α evolves on a timescale much slower
than 1=ω0, so that jα̈j ≪ ω0jα̇j and jα̇j ≪ ω0jαj. Averaging
over one drive period 2π=ω0 and performing a rotating-
wave approximation yields the approximate equation of
motion for the radial mode,

α̇ ¼ i

�
Δ − ωx

z
l0

�
αþ if0 −

γ

2
α; ð3Þ

with damping rate γ and driving strength f0 ¼ F0=4mωx.
This equation shows that the axial displacement z shifts the
resonance frequency of the radial oscillator by ωxz=l0.
The axial motion is described by

̈z ¼ −Ω2z −
2ω2

x

l0

jαj2 þ FzðtÞ
m

− γż; ð4Þ

which follows from the exact equations of motion via the
substitution x2 ¼ 2jαj2 due to the rotating-wave approxi-
mation. This equation implies that the instantaneous
displacement of the axial equilibrium position,

(a)

(b) (c)

(d)

(e)

(f)

FIG. 1. (a) Experimental setup. Intensity modulation of the
cooling laser excites the x mode of the ion. dc bias (Vdc) and two
ac voltages (Ṽs, Ṽe) are applied to the end cap electrodes. Inset: a
simplified energy level diagram for the 40Caþ ion. (b) Electrostatic
potential obtained from numerical simulations. (c) Dependence
of radial trapping frequencies on the axial position. The dots
represent measured data and the lines display linear fits. (d) Re-
sponse of the x mode to a descending frequency sweep. Each
column represents the projection of a fluorescence image along
the z axis. The red lines display the extracted oscillation
amplitude. (e) Response of the axial mode. The red line indicates
the axial equilibrium position z0. (f) The amplitude of axial
displacement plotted against the radial oscillation amplitude. The
solid line shows the predictions following Eq. (5) in the absence
of FzðtÞ.
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z0 ¼ −2
ω2
x

Ω2

jαj2
l0

þ FzðtÞ
mΩ2

; ð5Þ

is determined by the radial oscillation amplitude as well as
by the external force (2). We note that micromotion at the
trap radio frequency [24] introduces an extra displacement
in the axial direction, which enters Eq. (5) in an additive
manner. The amplitude of this displacement is 2 orders of
magnitude smaller than that introduced by the secular
motion and plays a minor role.
The coupling of radial and axial dynamics described by

Eqs. (3) and (5) is key to the emergence of nonlinearity in this
system. We verify this coupling by coherently driving the
radial oscillator with the force Fx and observing the response
in the axial direction. To do so, the modulation frequency of
the cooling laser ω0 is reduced stepwise across ωx. In each
step, a fluorescence image of the ion is recorded. The
integration timeof the camera is 400ms. Each frame therefore
averages over many axial and radial oscillation cycles. The
images are then projected along the radial and axial axes to
separate the responses along these two directions. The axial
force Fz is not applied during this measurement. Figure 1(d)
shows the response of the radial mode as a function of the
frequency detuning Δ. As ω0 approaches the resonance
frequency, a coherent oscillation of the radial mode is excited.
Here, only one flank of the oscillation is visible in the images
due to a phase delay between the ion motion and the laser
drive [25]. As the modulation frequency crosses ωx, the
coherent oscillation persists for an extended range. The
increase of radial oscillation amplitude is accompanied with
an axial shift in the negative direction of the z axis, i.e., the
open end of the funnel, as displayed in Fig. 1(e). Narrow band
intensity modulation of the cooling laser allows selective
excitations of both x and y modes and quantitative compari-
son of the radial-axial coupling with Eq. (5). The results are
displayed in Fig. 1(f). The slight mismatch between theory
and experimental data at high oscillation amplitude is due to a
reduced photon scattering rate and thus a smaller mean
radiationpressure force as the ionmovesout of the laser focus.
At further frequency detuning, the oscillator experiences

an abrupt change in both the radial and axial directions and
resumes its initial position. Such an abrupt change is a
signature of bistability. Duffing-type bistability of trapped
ions can arise from the intrinsic anharmonicity of linear
Paul traps [26]. Here, the nonlinearity stems from the
radial-axial coupling imposed by the funnel-shaped poten-
tial. This can be intuitively understood as shifting toward
the open side of the funnel softens the radial spring and
leads to an amplitude-dependent radial trapping frequency,
i.e., a Duffing-type response [27].
To confirm the intuition, we solve the averaged radial

amplitude equation (3). We use that the axial motion
adiabatically follows the radial motion since jΔj ≪ Ω.
One can thus average over one axial oscillation period
2π=Ω, replace z by z0 in Eq. (3), and obtain

α̇ ¼ i½Δ − δðtÞ�αþ iξjαj2αþ if0 −
γ

2
α: ð6Þ

This equation describes a Duffing oscillator with a
linear drive f0 and a parametric drive that modulates
the detuning by δðtÞ ¼ ωxFzðtÞ=ml0Ω2. Here, the para-
meter ξ ¼ 2ω3

x=Ω2l2
0 quantifies the nonlinearity due

to the radial-axial coupling. In our experiment, ξ=2π ¼
9.04 × 1013 Hz=m2 and significantly exceeds the intrinsic
nonlinearity of the secular trapping potential.
Since the parametric driving frequencies [see Eq. (2)] are

both much smaller than the damping rate, ωs ≪ ωe ≪ γ,
the Duffing oscillator relaxes for each δðtÞ toward a
quasistationary state with the square of the amplitude
jα0ðtÞj2 determined by the third-order polynomial equation:

jα0ðtÞj2 ¼
f20

½Δ − δðtÞ þ ξjα0ðtÞj2�2 þ γ2=4
: ð7Þ

The solutions of this equation as a function of the detuning
Δ are displayed in Fig. 2(a). Depending on the driving
strength, it has either a single stable solution or three

(a)

(b)

FIG. 2. (a) Solutions of jα0j for γ ¼ 2π × 250 Hz and driving
strengths denoted in the legend. (b) The emergence of bistability.
The red lines show the radial amplitude when performing
descending frequency sweeps and the blue lines represent the
outcome for ascending sweeps.
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stationary solutions, of which two are stable and
one is unstable [27]. In the latter case, an adiabatic ramping
of the detuning through the bistable region leads to
hysteresis.
To verify the emergence of bistability, we gradually

increase the modulation depth of the laser intensity, which
increases the amplitude of the driving force. The results are
displayed in Fig. 2(b). Under weak driving, the same
Lorentzian-shaped response is observed for ascending
(blue lines) and descending (red lines) sweeps. As the
driving force increases, the line shape becomes unsym-
metric and abrupt changes appear on the side of negative
detuning. With stronger driving, the jumps occur at differ-
ent frequency detunings for descending and ascending
sweeps, confirming that jα0j has more than one stable
solution in this regime. As predicted by theory, the
hysteresis region opens gradually as the driving force
further increases.
Having characterized our system, we demonstrate that

this nonlinear oscillator can be utilized for amplifying
small signals through a scheme analogous to vibrational
resonance [20]. To start, we exert the signal force Fs by
switching on the ac voltage Ṽs with an amplitude of 500 μV
at frequency ωs ¼ 2π × 0.5 Hz [see Fig. 1(a) and the
illustration in Fig. 3(a)]. In this step, the radial forcing is
not applied (Fx ¼ 0). The resulting signal force has a peak-
to-peak amplitude of 2.4 zN and leads to a periodic
displacement of �45 nm of the axial oscillator. This
displacement is comparable to the zero-point fluctuation
of the axial mode, which amounts to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=2mΩ

p
≈ 36 nm.

We determine the axial trajectory of the ion through
superresolution localization microscopy by performing a
maximum likelihood estimation from the fluorescence
images [28]. The resulting axial trajectory is displayed in
the inset of Fig. 3(b). Here, the camera is sampled at about
8 Hz with an exposure time of 100 ms for each frame. On
average, N ¼ 240 photons are detected per frame. The
experimental axial Gaussian spread function has a standard
deviation of σ0 ¼ 1.64 μm and sets the lower bound of
estimating the axial center position σ0=

ffiffiffiffi
N

p ¼ 106 nm [28].
The harmonic nature makes it possible to identify this signal
in the Fourier domain. As shown in Fig. 3(b), a small peak at
0.5 Hz is barely visible in the Fourier spectrum.
Next, we force the radial oscillator to the bistable regime

by switching on the radial driving Fx. The frequency ω0 of
the driving force is tuned to the center of the bistable
region. The ion is initially prepared in the lower stable
branch. The signal force Fs shifts the ion’s motional state
along the lower branch adiabatically but is too weak to
induce a transition to the upper branch, as illustrated in
Fig. 3(c). The measured axial trajectory and the corre-
sponding Fourier spectrum are displayed in Fig. 3(d). The
noise floor is elevated in the Fourier spectrum, but no
enhancement of the signal at 0.5 Hz is observed.

In the last step, we apply a sinusoidal enhancement
signal Ṽe at ωe ¼ 2π × 50 Hz to one end cap, which exerts
a parametric drive on the radial oscillator. The frequency of
the enhancement force satisfies ωs ≪ ωe ≪ ω0 as required
for vibrational resonance [19,20]. By tuning the amplitude
of Ṽe such that the parametric drive brings the oscillator to
the boundaries of the bistable region, the signal force can
introduce jumps of the oscillator to the upper branch and
back [see Fig. 3(e)]. The inset of Fig. 3(f) shows the axial
trajectory of the ion and clearly evidences the switch
between two branches. In the Fourier spectrum, the strong
peak at 0.5 Hz lets us deduce an enhancement factor of 20
compared to the signals in Figs. 3(b) and 3(d). The maximal
amplification that can be achieved is determined by the
width of the hysteresis region. In our experiment, this is
limited by the saturation of the cooling transition, which
sets an upper bound to the radial driving force.
In summary, we have shown that a single ion confined

in a funnel-shaped potential exhibits a Duffing-type

(a) (b)

(c) (d)

(e) (f)

FIG. 3. Amplifying a weak signal force. (a) The weak signal
force Fs is applied on the axial oscillator, introducing a small
periodic axial displacement Δz which is barely visible in the
Fourier spectrum displayed in (b). The inset shows the extracted
axial center position as a function of time. (c) The radial drive Fx
is applied. No enhancement is observed in the Fourier spectrum
in (d). (e) The enhancement force Fe is switched on. The
trajectory in the inset of (f) shows clearly jumps between the
two stable branches. The Fourier spectrum in (f) has a prominent
peak at 0.5 Hz.
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nonlinearity. We demonstrated that this nonlinearity can be
exploited to amplify a zeptonewton-scale oscillatory force.
Our demonstration represents a first step in combining the
rich dynamics of nonlinear oscillators with the exquisite
control over mechanical motions offered by atomic physics
and opens possibilities for studying and exploiting non-
linear mechanical phenomena in single and few-body
systems close to their motional ground state. For instance,
future work might assess the role of nonlinearity in energy
transport through oscillator chains [29–31], study synchro-
nization of driven nonlinear oscillators in the quantum
regime [32,33], implement quantum sensing schemes
by exploiting spin-motional coupling [34], explore the
emergence of limit cycles [35], or investigate thermo-
dynamics with quantum nonlinear oscillators [36]. The
nonlinear force amplification scheme enables force detec-
tion in a broad low-frequency range with sensitivity at the
zeptonewton level. This complements the established force
detection schemes based on trapped ions, such as Doppler
velocimetry [37] and injection locking [38], which achieve
high sensitivity through operations close to the ion’s
mechanical resonances. The ability to enhance the detec-
tion of low-frequency periodic forces could be extended to
study particles that are cotrapped with the atomic ion, such
as cold neutral atoms [39–41] and molecular ions [42–44].
This would offer a promising route to detect forces that
have not yet been observed on molecular systems, such as
chiral optical forces [45–47], which are predicted to arise
when placing chiral molecules in a helicity-gradient optical
field and could reach the zeptonewton scale. Last but not
least, the geometry-induced nonlinearity could also be
exploited to generate nonclassical states of massive par-
ticles that lack sharp internal transitions, such as electrically
levitated nanoparticles [48–50].
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