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Abstract
We investigate the applicability of neural networks (NNs) for the automated generation of
effective computer models for coherent light–matter interactions. The simulation of
Autler–Townes doublets from strong-field ionization of potassium atoms is chosen as a test
system that exhibits distinct quantum-mechanical effects. Shaped femtosecond laser pulses are
employed for studying the response of a quantum-mechanical system to a large variety of
different electric fields, and the resulting data can be used for training a NN. We show that a
NN is able to approximate the investigated process in parameter regions sampled by the
training data and that it can be employed for the interpolation of control landscapes.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Despite the considerable increase in computing power,
ab initio calculations, e.g., for the prediction of light–matter
interactions remain limited to small molecular systems to
date. However, information on this interaction may be
extracted directly from experimental data. In this context,
the manipulation of light fields with femtosecond laser pulse
shapers [1] opens up new possibilities, as the ability for almost-
arbitrary field tailoring provides us with an opportunity for
testing the response of quantum systems with respect to a large
number of different electromagnetic fields. Thus it should
be possible to obtain a significant amount of information not
available with ordinary, unshaped laser pulses. However, the
question arises of how to process these data, i.e., which pulse
shapes should be employed, and by which means the complex
system response can be evaluated in a general fashion.

While optimization schemes such as evolutionary
algorithms or simulated annealing are well suited for finding
the best laser pulse shape according to a specific optimization
objective in quantum control scenarios [2–13], they are not
designed for and are not capable of evaluating the system’s
responses in a systematic fashion. Hence other methods

might be better suited for the specific purpose of analysing
light-driven quantum-mechanical processes. In this case,
the objective of such methods should not be to optimize a
certain quantum-mechanical process or to reach user-specified
quantum states, but rather to obtain some kind of model for
the system response to applied light fields. Neural networks
(NNs) [14, 15] can be employed for the automated generation
of approximated input–output maps, and we have recently
introduced them for the modelling of simple test systems,
namely second harmonic generation (SHG) and molecular
fluorescence [16].

In this contribution, we study the applicability of NNs
to predict photoelectron spectra from strong-field ionization
of potassium atoms. The potassium atom, irradiated by an
intense femtosecond laser field, represents a fully coherent
system, i.e., no decoherence mechanisms are operative on
the interaction time scale, and thus the quantum-mechanical
phase is well defined and preserved. As described in
section 2, the process considered here is based on a REMPI-
type (resonance-enhanced multiphoton ionization) excitation
scheme. However, unlike conventional REMPI schemes,
which usually are related to the weak-field regime, excitation
by strong laser fields will effectively induce population
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Figure 1. Schematic of the input–output map for the physical model system. The quantum system, i.e., the potassium atom (centre),
comprises the two-level system |4s〉–|4p〉 (thin black lines) coupled to an ionic continuum. Interaction with an intense shaped femtosecond
laser field displayed in the frequency domain (left) yields energy-resolved photoelectron spectra (right). With regard to the NN, a suitable
representation of the laser electric field, taken at discrete sampling points xi , serves as an input for the NN to model the quantum system.
The resulting photoelectron spectrum, sampled at a finite number of energy intervals oj , represents an output, with the laser–atom
interaction providing a functional input–output map.

depletion and Rabi-cycling within the resonant subsystem.
REMPI excitation of coherent systems in strong laser fields
provides an ideal test bed to evaluate the performance of NNs in
approximating the response of coherent quantum-mechanical
systems. In general, the dynamics of the potassium atom
induced by shaped strong laser fields will depend critically
on all details of the laser pulse such as the pulse energy, the
pulse envelope, the instantaneous frequency and phase jumps.
Strong-field ionization of potassium atoms by resonant, shaped
laser fields has been studied recently [17]. It was pointed out
that the control mechanism at play in the light–atom interaction
is the selective population of dressed states (SPODS) [18–21].
Besides the sensitivity to the pulse shape—as exemplified by
variations of the absolute pulse intensity as well as the relative
intensities of pulses within a sequence [21, 22]—SPODS
critically depends on variations of the optical phase. The
influence of changes in the instantaneous frequency has been
demonstrated using chirped pulses [20] and was discussed
in terms of rapid adiabatic passage (RAP) [23]. Likewise,
discrete temporal phase jumps are capable of realizing SPODS
with high efficiency as was demonstrated by the use of double
pulses and multipulse sequences [21, 22]. In this case, the
physical mechanism is based on photon locking (PL) [24,
25]. Together with the nonlinearity of the photoelectron
signal due to the multi-photon ionization step, the prediction
of photoelectron spectra for a given input electric field is a
complex and challenging task for a NN.

The pulse-shaping experiment shown schematically in
figure 1 can be interpreted in the following way: the electric
field of the shaped laser pulse serves as an input to the
investigated quantum system, the potassium atom. The
resulting photoelectron spectrum can then be regarded as the
output, with the atom–laser interaction providing a functional
input–output map. It is our goal to approximate this input–
output map, and hence the atom’s response to electric fields,
by employing a neural network. Various trial pulses and
the corresponding photoelectron spectra obtained from a
simulation of the REMPI process in the potassium atom will be

used to train the NN, which will then be employed to generalize
beyond the training data set by predicting control landscapes.
While the full multidimensional quantum control landscape as
introduced by Rabitz et al [26–28] is generally not amenable
to practical studies, lower dimensional subspaces—which we
likewise refer to as control landscapes in the remainder of this
paper—can be recorded by systematically varying few control
parameters to change the input electric field. Experimentally,
these landscapes, in which a control objective derived from
observables is plotted as a function of selected parameters
[18, 29–32], directly reflect the system’s response to the
different pulse shapes and give an indication about possible
control mechanisms.

2. Simulation of physical system

The physical system we want the network to approximate
consists of the two potassium bound states |4s〉 and |4p〉,
strongly driven by a resonant shaped femtosecond laser pulse
and weakly coupled to a continuum of ionic states, as depicted
in figure 1 (centre). Resonant one-photon excitation and
absorption of two further photons from the same laser field
constitute a 1 + 2 photon REMPI process. As was shown
recently [17], photoelectrons produced during the strong-
field excitation of the atom directly map the non-perturbative
dynamics of the neutral system. Thus, information on both the
population and the quantum-mechanical phase of the bound
states can be extracted from the photoelectron spectrum [22].
An intuitive physical picture of this scenario was devised in
terms of SPODS. A description in the framework of dressed
states is especially suited for this process, since ionization
occurs simultaneously to excitation, and the dressed states,
i.e., the eigenstates of the two-level system and the light field,
are probed, rather than the bare atomic states. The splitting of
the dressed-state eigenenergies (thick and dotted black lines
in figure 1 (centre)), which is proportional to the laser field
strength, is mapped into the photoelectron spectrum, which
gives rise to the well-known Autler–Townes (AT) doublet [33].
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Making use of the fact that the coupling among the two
bound states is much stronger than the coupling of either
bound state to the continuum, the numerical calculation of
the photoionization process is divided into two steps. First,
the strong-field interaction of the shaped laser pulse with
the neutral system is treated by solving the time-dependent
Schrödinger equation (TDSE) [34]

ih̄
d

dt

(
c4s

c4p

)
= −h̄

2

(
0 �(t)

�∗(t) 0

) (
c4s

c4p

)
(1)

in the interaction picture, applying the rotating-wave
approximation (RWA) and using the short-time propagator
method. Herein, c4s and c4p are the time-dependent probability
amplitudes of the corresponding quantum states and �(t)

denotes the complex Rabi frequency. Introducing the 4s → 4p
transition dipole moment (along the laser polarization) µ, the
Rabi frequency is related to the laser electric field E(t) by
h̄�(t) = µE(t).

In the second step, the two-photon ionization starting from
the 4p state is evaluated in the framework of second-order
perturbation theory. The final photoelectron amplitude then
reads [36–39]

c(ωe) ∝
∫ ∞

−∞
c4p(t)E

2(t) ei(ωe+ωIP −ω4p)t dt, (2)

with h̄ωe being the kinetic excess energy of the emitted
electron, h̄ωIP the potassium ionization potential and h̄ω4p

the eigenenergy of the 4p state.
Pulse shaping is carried out in the frequency domain, as

summarized in [35]. To this end a bandwidth-limited 30 fs
full-width at half-maximum (FWHM) Gaussian laser pulse
with amplitude A(ω) is spectrally phase modulated, allowing
for second- and third-order polynomial phase functions
ϕ(ω) = φ(n)/n!(ω −ω0)

n, sinusoidal phase functions ϕ(ω) =
A sin[(ω − ω0)τ + φ0] as well as linear combinations of the
form:

ϕ(ω) = A sin[(ω − ω0)τ + φ0] +
φ(2)

2
(ω − ω0)

2. (3)

The laser central frequency ω0 coincides with the 4s → 4p
transition frequency. From the modulation function ϕ(ω) the
modulated spectral electric field is calculated as

E(ω) = A(ω) e−iϕ(ω) (4)

and the temporal electric field is obtained via inverse Fourier
transformation E(t) = F−1[E(ω)](t). The pulse energy was
chosen such that the dressed states exhibit a maximum energy
splitting of 210 meV in accordance with the experimental
observations in [19].

3. Neural network

A NN consists of neurons, which are basically simple
processors, connected to inputs, outputs and/or other neurons,
and arranged in layers as depicted in figure 2. This network
graph serves to illustrate the flow of information, and each
symbol (connecting lines, neurons) stands for a certain
mathematical operation. Information is treated in terms of
real-valued numbers xi that travel along connecting lines.
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Figure 2. Schematic representation of the NN architecture and
working principle. Neurons are depicted as spheres, and the flow of
information and error correction is indicated by right-pointing and
left-pointing arrows, respectively. If the weights wi are adjusted
correctly, the input vector is mapped onto the desired output vector
by the underlying functional map.

For information processing, each number is multiplied with
a weight wi associated with this connection. All (weighted)
information entering a neuron is then subjected to a so-called
propagation function h, in our case the weighted sum is formed
according to h = ∑

i wixi . The resulting ‘internal field’ h is
then inserted into the ‘activation function’ f (h), in our case
the error function,

f (h) = 2√
π

∫ h

0
e−t2

dt, (5)

and the resulting output is transmitted to the receiving neurons
or output channels in the same manner. The choice of this
nonlinear activation function allows for varying output signal
strength and saturation effects. It should be noted here
that the use of nonlinear activation functions is one of the
prerequisites for approximating nonlinear mappings, the other
is the presence of at least one hidden layer of neurons, which is
not directly connected to input and/or output nodes [14, 15].
We fulfil both requirements by employing the three-layer NN
depicted in figure 2 and the activation function in equation (5).

As the process we want to approximate with a NN depends
strongly on both the intensity and the phase of the electric field,
it is sensible to use representations of the electric field, either
in the frequency domain (equation (4)) or in the time domain,
as inputs to the network.

The spectral phases are applied in the simulation of the
potassium atom at 128 discrete frequencies, and hence the
spectral electric field is evaluated at 128 points. We have tested
spectral as well as temporal electric field representations, with
the real and imaginary parts of the electric field as inputs to
the NN, in total 256 variables (figures 1 (left) and 2 (left)).
Examples of these different input representations are shown in
figure 3. In figure 3(a) the spectral intensity (grey shaded) and
phase (black line) are shown for the spectral phase ϕ(ω) =
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Figure 3. Different representations used for the electric field.
(a) Spectral amplitude A(ω) (shaded background) and spectral
modulation function ϕ(ω) for the modulation parameters
A = 0.3 rad, τ = 140 fs, φ0 = −π/2 and φ(2) = 400 fs2 in (3).
(b) Decomposition of the spectral electric field E(ω) into its real
and imaginary parts. (c) Decomposition of the temporal electric
field E(t) into its real and imaginary parts.

0.3 rad sin[(ω − ω0)140 fs − π/2] + 1
2 × 400 fs2(ω − ω0)

2.
The real and imaginary parts of the resulting electric field are
shown in the frequency (figure 3(b)) and the time (figure 3(c))
domain. In the following section, we examine how well the
NN can be trained with these representations to simulate the
photoelectron spectrum for different pulse shapes.

The first layer of neurons processes the real (x1 . . . x128)

and imaginary (x129 . . . x256) parts separately, each with eight
neurons. The outputs of this first layer of neurons are then
transferred to the hidden layer, consisting of 24 neurons. These
are connected to the eight neurons of the output layer that
deliver the photoelectron spectrum for eight photoelectron
energy intervals (o1 to o8, confer figure 1) of equal width
between 0.25 and 0.77 eV.

There are many options how the input, output and hidden
neurons can be connected, and how the network parameters
are then adjusted [14, 15]. For our purpose we have chosen
a NN of the so-called feedforward-backpropagation type.
Feedforward means that information is passed through the
network in the forward direction only, i.e., from inputs towards
outputs; there are no connections between neurons of the
same layer or between layers other than one layer and the
next one towards the output. Backpropagation describes how
the most important parameters of the NN—the weights—are
adjusted to the values suited for the function we want the
network to approximate: The weights are initially assigned
random values, which is a prerequisite for the successful
performance of the NN; during a training process a large
number of examples, consisting of input–output pairs, are
presented to the NN. The input is entered into the network,
processed as described above and delivers certain values oj

at the output nodes. These values are then compared to
the correct, desired outputs. If there are any deviations, the

error—or rather its correction—is then propagated backwards
through the NN (from the output towards the input nodes)
using the ‘generalized delta rule’ (for details see [14, 16]).
This procedure is repeated until the overall error in the NN
outputs for all training data sets cannot be further reduced.

4. Results and discussion

In order to provide a comprehensive set of data for training and
testing the NN, photoelectron spectra for different classes of
shaped laser pulses were generated, using the phase functions
and the numeric model described in section 2. The polynomial
phase parameters φ(n) were varied within the following limits:
from −2000 to +2000 fs2 for quadratic phases, and from
−15000 to +15 000 fs3 for cubic phases. For the sinusoidal
phases the frequency τ was fixed to 140 fs and amplitudes
A of 0.1, 0.2, . . . , 0.5 [rad] were used; the phase φ0, which
is the sine parameter the studied process is most sensitive
to, was varied from 0 to 2π . In total, circa 5000 pulses
and corresponding photoelectron spectra entered the training
procedure: 1000 for second- and third-order modulation
respectively and 630 for each value of the sine amplitude.

Simulated pulse shapes with either purely polynomial or
sinusoidal phases and resulting photoelectron spectra were
used for the training of the NN. The ability of the NN to learn
the mapping of the shaped electric field onto the photoelectron
spectrum from the training data set is shown in figure 4 for
two representative classes of pulse shapes. The contour plots
in the upper row show the photoelectron spectra resulting
from the numeric model of section 2 for second-order spectral
phases (left) and sinusoidal phases (right). The second row
shows the corresponding photoelectron spectra generated by
a NN with the spectral electric field E(ω) as input after the
training is completed. In both cases, the agreement between
the NN results and the exact results from the simulation is
satisfactory, both qualitatively and quantitatively (compare
figures 4(a) and (b) as well as figures 4(d) and (e)). The
last row shows the photoelectron spectra generated by a NN
with the temporal electric field E(t) as input. Compared to the
spectral input representation, the results are poor. While the
photoelectron spectra for phases of second order (figure 4(c))
resemble qualitatively the expected results (figure 4(a)), the
spectra for sinusoidal phases (figure 4(f)) show little variation
depending on the phase parameter φ0. Apparently, for this
input representation, the minimization of the training error led
to a network which always delivers the average spectrum. This
can be rationalized by the fact that in the spectral representation
all information is always contained in a limited frequency
interval, whereas in the time domain relevant information is
not a priori confined to a finite time interval. Moreover,
even simple spectral structures such as a phase jump of π

at the central frequency produce temporal fields which are
difficult to be implemented numerically. In our case, however,
undersampling of the input electric field was precluded by
a careful choice of both time and frequency interval and
resolution. Due to the above findings, the network with E(ω)

as input was used for predicting the control landscapes in the
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Figure 4. Contour plots of the photoelectron spectra for
second-order spectral phases ϕ(ω) = φ(2)/2(ω − ω0)

2 (left column)
and sinusoidal phases ϕ(ω) = 0.2 rad sin[(ω − ω0)140 fs + φ0] (right
column). The top row shows the simulation. In the second row,
results from the NN with E(ω) used as input are displayed. Results
obtained from the NN when E(t) is used as input are shown in the
bottom row.

remainder of this work, as it is able to reproduce the training
data accurately.

Ideally, one would hope that a network trained with
purely polynomial and sinusoidal phases could be able to
predict the outcome resulting from a linear combination of
second-order and sinusoidal phases. However, this expectation
turns out to be rather naive, given the complexity of the
coherent strong-field dynamics involved. As was pointed out
before, the physical process considered here is sensitive to
virtually all details of the laser pulse such as the pulse energy,
the pulse envelope, the instantaneous frequency and phase.
Therefore—also taking into account the nonlinearity of the
photoionization—a simple interdependence of parameters is
not to be expected. The mutual interdependence of chirps
and phase jumps is illustrated in figure 5, where exemplary
photoelectron spectra from (a) a purely sinusoidal modulation,
(b) a purely quadratic modulation and (c) a linear combination
of both types of modulation are compared. While both the
sinusoidal and the quadratic modulations alone lead to the
exclusive production of slow photoelectrons, i.e., the low
energetic AT component, this picture is completely inverted
in the case of the combined modulation. Now the production
of fast electrons is favoured and only the high energetic AT
component shows up in the spectrum. This reflects the fact

0.2 0.4 0.6 0.8

(a)

(b)

(c)

AT

)
(

Figure 5. Selected photoelectron spectra corresponding to
(a) sinusoidal phase modulation with parameters A = 0.4 rad,
τ = 140 fs and φ0 = 1.02 rad, (b) quadratic phase modulation with
φ(2) = 500 fs2 and (c) a linear combination of these two (see
equation (3)). The phase modulation functions ϕ(ω) are shown
schematically in the insets and the energy h̄ωAT marks the centre of
the AT doublet, separating slow from fast photoelectrons.

that in general the shape of the AT doublet resulting from
a combined phase modulation cannot be decomposed into
contributions of each elementary modulation, but arises from a
complex interplay of the modulation parameters, exemplifying
the quantum-mechanical nature of the underlying effects.
Taking into account this complexity of the strong-field-induced
dynamics it is not surprising that additional information is
needed for the NN to accurately predict two-dimensional
control landscapes. Shaped pulses resulting from a linear
combination of second-order and sinusoidal phases were used
to generate such control landscapes. The contour plots of
these control landscapes show the total photoelectron count
belonging to the high energetic component of the Autler–
Townes doublet (from 0.51 to 0.77 eV in figure 5) as a function
of second-order phase (from −1000 to +1000 fs2) and the
varied sinusoidal phase parameter, here φ0 (from 0 to 2π ), for
varying sine amplitude A and τ again fixed at 140 fs.

It turned out that after inclusion of few control landscapes
into the training data set (namely those with sine-parameters
A = 0.2 and A = 0.4, shown in figures 6(a) and (b)), the
network was quite capable of interpolating and extrapolating to
the control landscapes which were not included in the training
data. In figures 6(c)–(h) the control landscapes are depicted
for sine-parameters A = 0.1, A = 0.3 and A = 0.5, which
show the intensity of fast photoelectrons in dependence on the
applied second-order phase coefficient φ(2) and the sinusoidal
phase parameter φ0. The exact control landscapes from the
numeric model are shown in the second row, the corresponding
control landscapes approximated by the network in the bottom
row. Again, the agreement between the exact results and the
network approximation is convincing both qualitatively and
quantitatively. Apparently, the coherent dynamics induced
by shaped electromagnetic fields that were not included in the
training data set can be predicted by the network, provided that
the phase modulations of these new fields resemble at least to
some extent the phase modulations encountered during the
training process. It should be noted that the NN interpolation
and extrapolation for pulses that were previously ‘unknown’
to the NN (figures 6 (c)–(h)) works even if the landscapes
differ significantly from those used during the training process
(figures 6(a), (b)).
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Figure 6. Control landscapes—intensity of fast photoelectrons (cf figure 5) as a function of second-order phase φ(2) (from −1000 to
+1000 fs2) and the varied sinusoidal phase parameter, here φ0 (from 0 to 2π ), with τ fixed at 140 fs. In the top row, the exact results of the
numeric model that were used for the training process are shown for (a) A = 0.2 and (b) A = 0.4. The NN is then employed for
interpolating the control landscapes for different values of A. The simulated landscapes are shown in the second row, the corresponding NN
predictions in the bottom row for ((c) and (d)) A = 0.1 , ((e) and (f)) A = 0.3 and ((g) and (h)) A = 0.5.

5. Conclusions

We employed a neural network (NN) to predict photoelectron
spectra from resonant strong-field ionization of potassium
atoms. The application of NNs for the automated generation
of input-output maps of physical processes has been very
successful for comparatively simple systems, such as second-
harmonic generation (SHG) or molecular fluorescence yield
[16]. Here, a more complex situation was examined, where
the outcome of the light-driven process depends critically on
all details of the laser field. It turned out that the amount of data
required for the training strongly increase with the complexity
of the correlations which are to be modelled. Under such
conditions, extrapolation to regions of the parameter space
which were not covered at all by the training data is still a
challenge. However, reproduction of the training data worked
excellent, provided that an appropriate representation of the
input fields was used. Moreover, when taking two-dimensional
data the coherent strong-field dynamics could be predicted by
the NN for laser pulse shapes not included in the training data
set.

As a next step, it would be interesting to study the
applicability of NNs to the field of nonlinear spectroscopy [40],
in order to see if a NN can model the response function from
one spectroscopy technique (e.g. transient grating or photon
echo), and if this response function in turn could be used
to predict the outcome of different spectroscopy experiments
based on a nonlinearity of the same order.
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