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Short and Ultr12. Short and Ultrashort Laser Pulses

In this contribution some basic properties of fem-
tosecond laser pulses are summarized. In Sect. 12.1
we start with the linear properties of ultrashort
light pulses. Nonlinear optical effects that would
alter the frequency spectrum of an ultrashort pulse
are not considered. However, due to the large
bandwidth, the linear dispersion is responsible
for dramatic effects. For example, a 10 fs laser
pulse at a center wavelength of 800 nm propagat-
ing through 4 mm of BK7 glass will be temporally
broadened to 50 fs. In order to describe and
manage such dispersion effects a mathematical
description of an ultrashort laser pulse is given first
before we continue with methods how to change
the temporal shape via the frequency domain. The
chapter ends with a paragraph on the powerful
technique of pulse shaping, which can be used
to create complex-shaped ultrashort laser pulses
with respect to phase, amplitude and polarization
state.

In Sect. 12.2 the generation of femtosecond
laser pulses via mode locking is described in simple
physical terms. As femtosecond laser pulses can
be generated directly from a wide variety of lasers
with wavelengths ranging from the ultraviolet
to the infrared no attempt is made to cover the
different technical approaches.
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In Sect. 12.3 we deal with the measurement of
ultrashort pulses. Traditionally a short event has
been characterized with the aid of an even shorter
event. This is not an option for ultrashort light
pulses. The characterization of ultrashort pulses
with respect to amplitude and phase is therefore
based on optical correlation techniques that make
use of the short pulse itself. Methods operating in
the time–frequency domain are especially useful.

A central building block for generating femtosecond
light pulses are lasers. Within only two decades of
the invention of the laser the duration of the short-
est pulse shrunk by six orders of magnitude from the
nanosecond regime to the femtosecond regime. Nowa-
days femtosecond pulses in the range of 10 fs and below
can be generated directly from compact and reliable
laser oscillators and the temporal resolution of mea-
surements has outpaced the resolution even of modern
sampling oscilloscopes by orders of magnitude. With
the help of some simple comparisons the incredibly
fast femtosecond time scale can be put into perspective:
on a logarithmic time scale one minute is approx-
imately half-way between 10 fs and the age of the

universe. Taking the speed of light in vacuum into ac-
count, a 10 fs light pulse can be considered as a 3 μm
thick slice of light whereas a light pulse of one sec-
ond spans approximately the distance between earth and
moon. It is also useful to realize that the fastest mo-
lecular vibrations in nature have an oscillation time of
about 10 fs.

It is the unique attributes of these light pulses that
open up new frontiers both in basic research and for
applications. The ultrashort pulse duration for exam-
ple allows the motion of electrons and molecules to be
frozen by making use of so-called pump probe tech-
niques that work similar to strobe light techniques.
In chemistry complex reaction dynamics have been
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1048 Part C Coherent and Incoherent Light Sources

measured directly in the time domain and this work
was rewarded with the Nobel price in chemistry for
A. H. Zewail in 1999. The broad spectral width can be
used for example in medical diagnostics or – by taking
the longitudinal frequency comb mode structure into ac-
count – for high-precision optical frequency metrology.
The latter is expected to outperform today’s state-of-
the-art caesium clocks and was rewarded with the 2005
Nobel price in physics for J. L. Hall and T. W. Hänsch.
The extreme concentration of a modest energy content
in focused femtosecond pulses delivers high peak in-
tensities that are used for example in a reversible light
matter interaction regime for the development of nonlin-
ear microscopy techniques. The irreversible light matter
regime can be for example applied to nonthermal ma-

terial processing leading to precise microstructures in
a whole variety of solid state materials. Finally the
high pulse repetition rate is exploited, for example, in
telecommunication applications.

These topics have been reviewed recently in [12.1].
The biannual international conference series Ultrafast
Phenomena and Ultrafast Optics, including the corre-
sponding conference proceedings, cover a broad range
of applications and latest developments.

Besides the specific literature given in the individ-
ual chapters some textbooks devoted to ultrafast laser
pulses are recommended for a more in-depth discussion
of the topics presented here and beyond (see, for ex-
ample, [12.2–5] and especially for the measurement of
ultrashort pulses see [12.6]).

12.1 Linear Properties of Ultrashort Light Pulses

12.1.1 Descriptive Introduction

It is quite easy to construct the electric field of
a Gedanken optical pulse at a fixed position in space,
corresponding to the physical situation of a fixed de-
tector in space. Assuming the light field to be linearly
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Fig. 12.1a–d Electric field E(t) and temporal amplitude function
A(t) for a cosine pulse (a), a sine pulse (b), an up-chirped pulse
(c) and a down-chirped pulse (d). The pulse duration in all cases
is Δt = 5 fs. For (c) and (d) the parameter a was chosen to be
±0.15/fs2

polarized, we may write the real electric field strength
E(t) as a scalar quantity whereas a harmonic wave is
multiplied with a temporal amplitude or envelope func-
tion A(t)

E(t) = A(t) cos(Φ0 +ω0t) (12.1)

with ω0 being the carrier circular (or angular) fre-
quency. The light frequency is given by ν0 = ω0/2π.
In the following, angular frequencies and frequencies
are only distinguished from each other via their nota-
tion. For illustration we will use optical pulses centered
at 800 nm, corresponding to a carrier frequency of
ω0 = 2.35 rad/fs (oscillation period T = 2.67 fs) with
a Gaussian envelope function (the numbers refer to
pulses that are generated by the widely spread femtosec-
ond laser systems based on Ti:sapphire as the active
medium). For simple envelope functions the pulse dura-
tion Δt is usually defined by the FWHM (full width at
half-maximum) of the temporal intensity function I (t)

I (t) = 1

2
ε0cn A(t)2 , (12.2)

with ε0 being the vacuum permittivity, c the speed of
light and n the refractive index. The factor 1/2 arises
from averaging the oscillations. If the temporal inten-
sity is given in W/cm2 the temporal amplitude A(t) (in
V/cm for n = 1) is given by

A(t) =
√

2

ε0c

√
I (t) = 27.4

√
I (t) . (12.3)

Figure 12.1a displays E(t) for a Gaussian pulse with
Δt = 5 fs and Φ0 = 0. At t = 0 the electric field strength
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Short and Ultrashort Laser Pulses 12.1 Linear Properties of Ultrashort Light Pulses 1049

reaches its maximum value. This situation is called
a cosine pulse: for Φ0 = −π/2 we get a sine pulse
E(t) = A(t) sin(ω0t) (Fig. 12.1b) where the maxima of
the carrier oscillations do not coincide with the maxi-
mum of the envelope A(t) at t = 0 and the maximum
value of E(t) is therefore smaller than in a cosine pulse.
In general Φ0 is termed the absolute phase or carrier-
envelope phase and determines the temporal relation
of the pulse envelope with respect to the underlying
carrier oscillation. The absolute phase is not impor-
tant if the pulse envelope A(t) does not significantly
vary within one oscillation period T . The longer the
temporal duration of the pulses, the more closely this
condition is met and the decomposition of the elec-
tric field into an envelope function and a harmonic
oscillation with carrier frequency ω0 (12.1) is mean-
ingful. Conventional pulse characterization methods as
described in Sect. 12.3 are not able to measure the abso-
lute value of Φ0. Furthermore the absolute phase does
not remain stable in a conventional femtosecond laser
system. Progress in controlling and measuring the ab-
solute phase has been made only recently [12.7–10] and
experiments depending on the absolute phase are start-
ing to appear [12.11–13]. In the following we will not
emphasize the role of Φ0 any more.

In general, we may add an additional time depen-
dent phase function Φa(t) to the temporal phase term in
(12.1)

Φ(t) = Φ0 +ω0t +Φa(t) (12.4)

and define the momentary or instantaneous light fre-
quency ω(t) as

ω(t) = dΦ(t)

dt
= ω0 + dΦa(t)

dt
. (12.5)

This additional phase function describes variations of
the frequency in time, called a chirp. In Fig. 12.1c,d
Φa(t) is set to be at2. For a = 0.15/fs2 we see a linear
increase of the frequency in time, called a linear up-
chirp. For a = −0.15/fs2 a linear down-chirped pulse
is obtained with a linear decrease of the frequency in
time. However, a direct manipulation of the temporal
phase cannot be achieved by any electronic device. Note
that nonlinear optical processes such as, for example,
self-phase modulation (SPM) are able to influence the
temporal phase and lead to a change in the frequency
spectrum of the pulse. In this chapter we will mainly fo-
cus on linear optical effects where the spectrum of the
pulse is unchanged and changes in the temporal pulse
shape are due to manipulations in the frequency domain
(Sect. 12.1.3). Before we start, a more mathematical de-
scription of an ultrashort light pulse is presented.

12.1.2 Mathematical Description

For the mathematical description we followed the
approaches of [12.4, 14–19]. In linear optics the su-
perposition principle holds and the real-valued electric
field E(t) of an ultrashort optical pulse at a fixed point
in space has the Fourier decomposition into monochro-
matic waves

E(t) = 1

2π

∞∫
−∞

Ẽ(ω)eiωt dω . (12.6)

The, in general complex-valued, spectrum Ẽ(ω) is ob-
tained by the Fourier inversion theorem

Ẽ(ω) =
∞∫

−∞
E(t)e−iωt dt . (12.7)

Since E(t) is real-valued Ẽ(ω) is Hermitian, i. e., obeys
the condition

Ẽ(ω) = Ẽ∗(−ω) , (12.8)

where ∗ denotes complex conjugation. Hence know-
ledge of the spectrum for positive frequencies is
sufficient for a full characterization of a light field with-
out DC component we can define the positive part of the
spectrum as

Ẽ+(ω) = Ẽ(ω) for ω ≥ 0 and

0 for ω < 0 . (12.9)

The negative part of the spectrum Ẽ−(ω) is defined as

Ẽ−(ω) = Ẽ(ω) for ω < 0 and

0 for ω ≥ 0 . (12.10)

Just as the replacement of real-valued sines and cosines
by complex exponentials often simplifies Fourier anal-
ysis, so too does the use of complex-valued functions
in place of the real electric field E(t). For this pur-
pose we separate the Fourier transform integral of E(t)
into two parts. The complex-valued temporal function
E+(t) contains only the positive frequency segment
of the spectrum. In communication theory and optics
E+(t) is termed the analytic signal (its complex conju-
gate is E−(t) and contains the negative frequency part).
By definition E+(t) and Ẽ+(ω) as well as E−(t) and
Ẽ−(ω) are Fourier pairs where only the relations for the
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Fig. 12.2 Electric field E(t), temporal intensity I (t), additional tem-
poral phase Φa(t), instantaneous frequency ω(t), spectrum |Ẽ(ω)|,
spectral intensity I (ω), spectral phase ϕ(ω) and group delay Tg(ω)
of a pulse that looks complicated on first glance (having a relatively
simple spectral phase ϕ(ω)). When measured with a spectrome-
ter the spectral intensity as a function of wavelength is usually
obtained, and the corresponding transformation on the basis of
I (λ)dλ = I (ω)dω yields I (λ) = −I (ω)2πc/λ2 where the minus
sign indicates the change in the direction of the axis. To avoid phase
jumps when the phase exceeds 2π, phase unwrapping is employed.
That means adding or subtracting 2π to the phase at each disconti-
nuity. When the intensity is close to zero, the phase is meaningless
and usually the phase is not plotted in such regions (phase blanking)

positive-frequency part are given as

E+(t) = 1

2π

∞∫
−∞

Ẽ+(ω)eiωt dω (12.11)

Ẽ+(ω) =
∞∫

−∞
E+(t)e−iωt dt . (12.12)

These quantities relate to the real electric field

E(t) = E+(t)+ E−(t)

= 2 Re{E+(t)}
= 2 Re{E−(t)} (12.13)

and its complex Fourier transform

Ẽ(ω) = Ẽ+(ω)+ Ẽ−(ω) . (12.14)

E+(t) is complex-valued and can therefore be expressed
uniquely in terms of its amplitude and phase

E+(t) = |E+(t)|eiΦ(t)

= |E+(t)|eiΦ0 eiω0t eiΦa(t)

=
√

I (t)

2ε0cn
eiΦ0 eiω0t eiΦa(t)

= 1

2
A(t)eiΦ0 eiω0t eiΦa(t)

= Ec(t)eiΦ0 eiω0t (12.15)

where the meaning of A(t), Φ0, ω0 and Φa(t) is the
same as in Sect. 12.1.1 and Ec(t) is the complex-
valued envelope function without the absolute phase
and without the rapidly oscillating carrier-frequency
phase factor, a quantity often used in ultrafast optics.
The envelope function A(t) is given by

A(t) = 2|E+(t)| = 2|E−(t)| = 2
√

E+(t)E−(t)

(12.16)

and coincides with the less general expression in (12.1).
The complex positive-frequency part Ẽ+(ω) can be
analogously decomposed into amplitude and phase

Ẽ+(ω) = |Ẽ+(ω)|e−iφ(ω)

=
√

π

ε0cn
I (ω)e−iφ(ω) , (12.17)

where |Ẽ+(ω)| is the spectral amplitude, φ(ω) is the
spectral phase and I (ω) is the spectral intensity pro-
portional to the power spectrum density (PSD) – the
familiar quantity measured with a spectrometer. From
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Fig. 12.3a–o Examples for changing the temporal shape
of a 800 nm 10 fs pulse via the frequency domain (except
(n)). Left: temporal intensity I (t) (shaded), additional tem-
poral phase Φa(t) (dotted), instantaneous frequency ω(t)
(dashed), right: spectral intensity I (ω) (shaded), spectral
phase φ(ω) (dotted) and group delay Tg(ω) (dashed) for a:
(a) bandwidth-limited Gaussian laser pulse of 10 fs dura-
tion; (b) bandwidth-limited Gaussian laser pulse of 10 fs
duration shifted in time to −20 fs due to a linear phase
term in the spectral domain (φ′ = −20 fs); (c) symmetri-
cal broadened Gaussian laser pulse due to φ′′ = 200 fs2;
(d) third-order spectral phase (φ′′′ = 1000 fs3) leading to
a quadratic group delay. The central frequency of the pulse
arrives first, while frequencies on either side arrive later.
The corresponding differences in frequencies cause beats
in the temporal intensity profile. Pulses with cubic spectral
phase distortion have therefore oscillations after (or before)
a main pulse depending on the sign of φ′′′. The higher the
side pulses, the less meaningful the FWHM pulse dura-
tion; (e) combined action of all spectral phase coefficients
(a)–(d). Phase unwrapping and blanking is employed when
appropriate �

(12.8) the relation −φ(ω) = φ(−ω) is obtained. As will
be shown in Sect. 12.1.3 it is precisely the manipulation
of this spectral phase φ(ω) in the experiment which –
by virtue of the Fourier transformation (12.11) – creates
changes in the real electric field strength E(t) (12.13)
without changing I (ω). If the spectral intensity I (ω) is
manipulated as well, additional degrees of freedom are
accessible for generating temporal pulse shapes at the
expense of lower energy.

Note that the distinction between positive- and
negative-frequency parts is made for mathematical cor-
rectness. In practice only real electric fields and positive
frequencies are displayed. Moreover, as usually only
the shape and not the absolute magnitude of the enve-
lope functions in addition to the phase function are the
quantities of interest, all the prefactors are commonly
omitted.

The temporal phase Φ(t) (12.4) contains frequency-
versus-time information, leading to the definition of the
instantaneous frequency ω(t) (12.5). In a similar fashion
φ(ω) contains time-versus-frequency information and
we can define the group delay Tg(ω), which describes
the relative temporal delay of a given spectral compo-
nent (Sect. 12.1.3)

Tg(ω) = dφ

dω
. (12.18)
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All quantities discussed so far are displayed in Fig. 12.2
for a pulse that initially appears to be complex. Usu-
ally the spectral amplitude is distributed around a center
frequency (or carrier frequency) ω0. Therefore – for
well-behaved pulses – it is often helpful to expand the
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Fig. 12.3 (f) π step at the central frequency; (g) π step displaced
from central frequency; (h) sine modulation at central frequency
with φ(ω) = 1 sin(20 fs(ω−ω0)); (i) cosine modulation at central
frequency with φ(ω) = 1 cos(20 fs(ω−ω0)); (j) sine modulation at
central frequency with φ(ω) = 1 sin(30 fs(ω−ω0))

spectral phase into a Taylor series

φ(ω) =
∞∑
j=0

φ( j)(ω0)

j! · (ω−ω0) j

with φ( j)(ω0) = ∂ jφ(ω)

∂ω j

∣∣∣∣
ω0

= φ(ω0)+φ′(ω0)(ω−ω0)

+ 1

2
φ′′(ω0)(ω−ω0)2

+ 1

6
φ′′′(ω0)(ω−ω0)3 + . . . (12.19)

The spectral phase coefficient of zeroth order describes
in the time domain the absolute phase (Φ0 = −φ(ω0)).
The first-order term leads to a temporal translation of
the envelope of the laser pulse in the time domain
(the Fourier shift theorem) but not to a translation of
the carrier. A positive φ′(ω0) corresponds to a shift
towards later times. An experimental distinction be-
tween the temporal translation of the envelope via linear
spectral phases in comparison to the temporal trans-
lation of the whole pulse is, for example, discussed
in [12.20, 21]. The coefficients of higher order are re-
sponsible for changes in the temporal structure of the
electric field. The minus sign in front of the spectral
phase in (12.17) is chosen so that a positive φ′′(ω0)
corresponds to a linearly up-chirped laser pulse. For
illustrations see Figs. 12.2 and 12.3a–e.

There is a variety of analytical pulse shapes where
this formalism can be applied to get analytical ex-
pressions in both domains. For general pulse shapes
a numerical implementation is helpful. For illustrations
we will focus on a Gaussian laser pulse E+

in(t) (not
normalized to pulse energy) with a corresponding spec-
trum Ẽ+

in(ω). Phase modulation in the frequency domain
leads to a spectrum Ẽ+

out(ω) with a corresponding elec-
tric field E+

out(t) of

E+
in(t) = E0

2
e
−2 ln 2 t2

Δt2 eiω0t . (12.20)

Here Δt denotes the FWHM of the corresponding in-
tensity I (t). The absolute phase is set to zero, the carrier
frequency is set to ω0, additional phase terms are set to
zero as well. The pulse is termed an unchirped pulse in
the time domain. For Ẽ+

in(ω) we obtain the spectrum

Ẽ+
in(ω) = E0Δt

2

√
π

2 ln 2
e− Δt2

8 ln 2 (ω−ω0)2
. (12.21)
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The FWHM of the temporal intensity profile I (t)
and the spectral intensity profile I (ω) are related by
ΔtΔω = 4 ln 2, where Δω is the FWHM of the spectral
intensity profile I (ω).

Usually this equation, known as the time–bandwidth
product, is given in terms of frequencies ν rather than
circular frequencies ω and we obtain

ΔtΔν = 2 ln 2

π
= 0.441 . (12.22)

Several important consequences arise from this ap-
proach and are summarized before we proceed:

• The shorter the pulse duration, the larger the spectral
width. A Gaussian pulse with Δt = 10 fs centered
at 800 nm has a ratio of Δν/ν ≈ 10%, correspond-
ing to a wavelength interval Δλ of about 100 nm.
Taking into account the wings of the spectrum,
a bandwidth comparable to the visible spectrum is
consumed to create the 10 fs pulse.• For a Gaussian pulse the equality in (12.22) is
only reached when the instantaneous frequency
(12.5) is time-independent, that is the temporal
phase variation is linear. Such pulses are termed
Fourier-transform-limited pulses or bandwidth-
limited pulses.• Adding nonlinear phase terms leads to the inequality
ΔtΔν ≥ 0.441.• For other pulse shapes a similar time-bandwidth in-
equality can be derived

ΔtΔν ≥ K . (12.23)

Values of K for different pulse shapes are given in
Table 12.1 and [12.22].• Sometimes pulse durations and spectral widths
defined by the FWHM values are not suitable mea-
sures. This is, for example, the case in pulses with
substructure or broad wings causing a considerable
part of the energy to lie outside the range given by
the FWHM. In these cases one can use averaged
values derived from the appropriate second-order
moments [12.4, 23]. By this it can be shown [12.6,
24, 25] that, for any spectrum, the shortest pulse
in time always occurs for a constant spectral phase
φ(ω). Taking a shift in the time domain also into ac-
count a description of a bandwidth-limited pulse is
given by

Ẽ+(ω) = |Ẽ+(ω)|e−iφ(ω0) e−iφ′(ω0)(ω−ω0) .
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Fig. 12.3k–m Amplitude modulation: (k) symmetrical clipping of
spectrum; (l) blocking of central frequency components; (m) off
center absorption. (n–o) Modulation in time domain: (n) self-phase
modulation. Note the spectral broadening; (o) double pulse with
pulse to pulse delay of 60 fs
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Table 12.1 Temporal and spectral intensity profiles and time bandwidth products (ΔνΔt ≥ K ) of various pulse shapes;
Δν and Δt are FWHM quantities of the corresponding intensity profiles. The ratio ΔtintAC/Δt, where ΔtintAC is the
FWHM of the intensity autocorrelation with respect to background (Sect. 12.3.2), is also given. In the following formu-
las employed in the calculations we set ω0 = 0 for simplicity.

Gaussian: E+ (t) = E0

2
e−2 ln 2

( t
Δt

)2
Ẽ+ (ω) = E0Δt

2

√
π

2 ln 2
e− Δt2

8 ln 2 ω2
,

Sech: E+ (t) = E0

2
sech

[
2 ln

(
1+√

2
) t

Δt

]
Ẽ+ (ω) = E0Δt

π

4 ln
(

1+√
2
)

× sech

⎛
⎝ πΔt

4 ln
(

1+√
2
)ω

⎞
⎠ ,

Rect: E+ (t) = E0

2
t ∈

[
−Δt

2
,
Δt

2

]
, 0 elsewhere Ẽ+ (ω) = E0Δt

2
sinc

(
Δt

2
ω

)
,

Single sided Exp.: E+ (t) = E0

2
e− ln 2

2
t

Δt t ∈ [0, ∞] , 0 elsewhere Ẽ+ (ω) = E0Δt

2iΔt ω+ ln 2
,

Symmetric Exp.: E+ (t) = E0

2
e− ln 2 t

Δt Ẽ+ (ω) = E0Δt ln 2

Δt2ω2 + (ln 2)2
.
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Short and Ultrashort Laser Pulses 12.1 Linear Properties of Ultrashort Light Pulses 1055

Table 12.2 Temporal broadening of a Gaussian laser pulse Δtout in fs for various initial pulse durations Δt and various
values of the second-order phase coefficient φ′′, calculated with the help of (12.26). (The passage of a bandwidth-limited
laser pulse at 800 nm through 1 cm of BK7 glass corresponds to φ′′ = 440 fs2. For the dispersion parameters of other
materials see Table 12.3. Dispersion parameters of further optical elements are given in Sect. 12.1.3)

φ′′

Δt(fs) 100 fs2 200 fs2 500 fs2 1000 fs2 2000 fs2 4000 fs2 8000 fs2

5 55.7 111.0 277.3 554.5 1109.0 2218.1 4436.1

10 29.5 56.3 139.0 277.4 554.6 1109.1 2218.1

20 24.3 34.2 72.1 140.1 278.0 554.9 1109.2

40 40.6 42.3 52.9 80.0 144.3 280.1 556.0

80 80.1 80.3 81.9 87.2 105.9 160.1 288.6

160 160.0 160.0 160.2 160.9 163.9 174.4 211.7

One feature of Gaussian laser pulses is that adding
the quadratic term 1

2φ′′(ω0)(ω−ω0)2 to the spectral
phase function also leads to a quadratic term in the tem-
poral phase function and therefore to linearly chirped
pulses. This situation arises for example when passing
an optical pulse through a transparent medium as will
be shown in Sect. 12.1.3. The complex fields for such
laser pulses are given by [12.26, 27]

Ẽ+
out(ω) = E0Δt

2

×

√
π

2 ln 2
e− Δt2

8 ln 2 (ω−ω0)2
e−i 1

2 φ′′(ω0)(ω−ω0)2

(12.24)

E+
out(t) = E0

2γ
1
4

e− t2
4βγ eiω0t ei(at2−ε) (12.25)

with

β = Δt2
in

8 ln 2
, γ = 1+ φ′′2

4β2
, a = φ′′

8β2γ
,

and

ε = 1

2
arctan

(
φ′′

2β

)
= −Φ0 .

For the pulse duration Δtout (FWHM) of the linearly
chirped pulse (quadratic temporal phase function at2)
we obtain the convenient formula

Δtout =
√

Δt2 +
(

4 ln 2
φ′′
Δt

)2

. (12.26)

The statistical definition of the pulse duration derived
with the help of the second moment of the intensity
distribution uses twice the standard deviation σ to char-
acterize the pulse duration by

2σ = Δtout√
2 ln 2

, (12.27)

which is slightly shorter than the FWHM. These val-
ues are exact for Gaussian pulses considering only the
φ′′ part and can be used as a first estimate for temporal
pulse broadening whenever φ′′ effects are the dominant
contribution (Sect. 12.1.3). Some values of the symmet-
ric pulse broadening due to φ′′ are given in Table 12.2
and exemplified in Fig. 12.3c.

Spectral phase coefficients of third order, i. e.,
a contribution to the phase function φ(ω) of the form
1
6φ′′′(ω0) · (ω−ω0)3 are referred to as third-order dis-
persion (TOD). TOD applied to the spectrum given by
(12.21) yields the phase-modulated spectrum

Ẽ+
out(ω) = E0Δt

2

×

√
π

2 ln 2
e− Δt2

8 ln 2 (ω−ω0)2
e−i 1

6 φ′′′(ω0)·(ω−ω0)3

(12.28)

and leads to asymmetric temporal pulse shapes [12.27]
of the form

E+
out(t) = E0

2

√
π

2 ln 2

Δt

τ0
Ai

(
τ − t

Δτ

)
e

ln 2
2 ·

2
3 τ−t
τ1/2 eiω0t

with τ0 = 3

√ |φ′′′|
2

φ3 = 2(ln 2)2φ′′′

Δτ = τ0 sign(φ′′′)

τ = Δt4

16φ3
and τ1/2 = φ3

Δt2
(12.29)

where Ai describes the Airy function. Equation (12.29)
shows that the temporal pulse shape is given by the prod-
uct of an exponential decay with a half-life period of τ1/2
and the Airy function shifted by τ and stretched by Δτ .
Figure 12.3d shows an example of a pulse subjected to
TOD. The pulse shape is characterized by a strong initial
pulse followed by a decaying pulse sequence. Because
TOD leads to a quadratic group delay the central fre-
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1056 Part C Coherent and Incoherent Light Sources

Table 12.3 Dispersion parameters n, dn/dλ, d2n/dλ2, d3n/dλ3, Tg, GDD and TOD for common optical materials
for L = 1 mm. The data were calculated using Sellmeier’s equation in the form n2(λ) − 1 = B1λ

2/
(
λ2 −C1

)+
B2λ

2/
(
λ2 −C2

)+ B3λ
2/

(
λ2 −C3

)
and data from various sources (BK7, SF10 from Schott – Optisches Glas catalogue;

sapphire and quartz from the Melles Griot catalogue)

Material λ (nm) n(λ) dn
dλ

·10−2 d2n
dλ2 ·10−1 dn3

dλ3 Tg GDD TOD

(1/μm)
`

1/μm2
´ `

1/μm3
´

(fs/mm)
`

fs2/mm
´ `

fs3/mm
´

BK7 400 1.5308 −13.17 10.66 −12.21 5282 120.79 40.57

500 1.5214 −6.58 3.92 −3.46 5185 86.87 32.34

600 1.5163 −3.91 1.77 −1.29 5136 67.52 29.70

800 1.5108 −1.97 0.48 −0.29 5092 43.96 31.90

1000 1.5075 −1.40 0.15 −0.09 5075 26.93 42.88

1200 1.5049 −1.23 0.03 −0.04 5069 10.43 66.12

SF10 400 1.7783 −52.02 59.44 −101.56 6626 673.68 548.50

500 1.7432 −20.89 15.55 −16.81 6163 344.19 219.81

600 1.7267 −11.00 6.12 −4.98 5980 233.91 140.82

800 1.7112 −4.55 1.58 −0.91 5830 143.38 97.26

1000 1.7038 −2.62 0.56 −0.27 5771 99.42 92.79

1200 1.6992 −1.88 0.22 −0.10 5743 68.59 107.51

Sapphire 400 1.7866 −17.20 13.55 −15.05 6189 153.62 47.03

500 1.7743 −8.72 5.10 −4.42 6064 112.98 39.98

600 1.7676 −5.23 2.32 −1.68 6001 88.65 37.97

800 1.7602 −2.68 0.64 −0.38 5943 58.00 42.19

1000 1.7557 −1.92 0.20 −0.12 5921 35.33 57.22

1200 1.7522 −1.70 0.04 −0.05 5913 13.40 87.30

Quartz 300 1.4878 −30.04 34.31 −54.66 5263 164.06 46.49

400 1.4701 −11.70 9.20 −10.17 5060 104.31 31.49

500 1.4623 −5.93 3.48 −3.00 4977 77.04 26.88

600 1.4580 −3.55 1.59 −1.14 4934 60.66 25.59

800 1.4533 −1.80 0.44 −0.26 4896 40.00 28.43

1000 1.4504 −1.27 0.14 −0.08 4880 24.71 38.73

1200 1.4481 −1.12 0.03 −0.03 4875 9.76 60.05

quency of the pulse arrives first, while frequencies on
either side arrive later. The corresponding differences in
frequencies cause beats in the temporal intensity pro-
file explaining the oscillations after (or before) the main
pulse. The beating is also responsible for the phase
jumps of π which occur at the zeros of the Airy func-
tion. Most of the relevant properties of TOD modulation
are determined by the parameter Δτ , which is propor-
tional to 3

√|φ′′′|. The ratio Δτ/Δt determines whether
the pulse is significantly modulated. If |Δτ/Δt| ≥ 1,
a series of sub-pulses and phase jumps are observed. The
sign of φ′′′ controls the time direction of the pulse shape:
a positive value of φ′′′ leads to a series of post-pulses
as shown in Fig. 12.3d whereas negative values of φ′′′
cause a series of prepulses. The time shift of the most
intense sub-pulse with respect to the unmodulated pulse

and the FWHM of the sub-pulses are on the order of Δτ .
For these highly asymmetric pulses, the FWHM is not
a meaningful quantity to characterize the pulse duration.
Instead, the statistical definition of the pulse duration
yields a formula similar to (12.26) and (12.27)

2σ =
√

Δt2

2 ln 2
+8(ln 2)2

(
φ′′′
Δt2

)2

. (12.30)

It is a general feature of polynomial phase modulation
functions that the statistical pulse duration of a modu-
lated pulse is

2σ =
√

τ2
1 + τ2

2 , (12.31)

where τ1 = Δt/
√

2 ln 2 is the statistical duration of the
unmodulated pulse [cf. (12.21)] and τ2 ∝ φ(n)/Δtn−1
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Short and Ultrashort Laser Pulses 12.1 Linear Properties of Ultrashort Light Pulses 1057

a contribution only dependent on the nth-order spectral
phase coefficient. As a consequence, for strongly modu-
lated pulses, when τ2 
 τ1, the statistical pulse duration
increases approximately linearly with φ(n).

It is not always advantageous to expand the phase
function φ(ω) into a Taylor series. Periodic phase func-
tions, for example, are generally not well approximated
by polynomial functions. For sinusoidal phase functions
of the form φ (ω) = A sin (ωΥ +ϕ0) analytic solutions
for the temporal electric field can be found for any ar-
bitrary unmodulated spectrum Ẽ+

in(ω). To this end we
consider the modulated spectrum (Sect. 12.1.3)

Ẽ+
out(ω) = Ẽ+

in(ω)e−iA sin(ωΥ+ϕ0) , (12.32)

where A describes the amplitude of the sinusoidal mod-
ulation, Υ the frequency of the modulation function (in
units of time) and ϕ0 the absolute phase of the sine
function. Making use of the Jacobi–Anger identity

e−A sin(ωΥ+ϕ0) =
∞∑

n=−∞
Jn (A)e−in(ωΥ+ϕ0) , (12.33)

where Jn(A) describes the Bessel function of the first
kind and order n, we rewrite the phase modulation func-
tion

M̃(ω) =
∞∑

n=−∞
Jn (A)e−in(ωΥ+ϕ0) (12.34)

to obtain its Fourier transform

M(t) =
∞∑

n=−∞
Jn (A)e−in ϕ0δ (nΥ − t) , (12.35)

where δ (t) describes the delta function. Since mul-
tiplication in the frequency domain corresponds to
convolution in the time domain, the modulated tempo-
ral electrical field E+

out(t) is given by the convolution of
the unmodulated field E+

in(t) with the Fourier transform
of the modulation function M(t), i. e., E+

out(t) = E+
in(t)∗

M(t). Making use of (12.35) the modulated field reads

E+
out(t) =

∞∑
n=−∞

Jn (A)E+
in(t −nΥ )e−inϕ0 . (12.36)

Equation (12.36) shows that sinusoidal phase modula-
tion in the frequency domain produces a sequence of
sub-pulses with a temporal separation determined by the
parameter Υ and well-defined relative temporal phases
controlled by the absolute phase ϕ0. Provided the in-
dividual sub-pulses are temporally separated, i. e., Υ

is chosen to exceed the pulse width, the envelope of
each sub-pulse is a (scaled) replica of the unmodu-

lated pulse envelope. The amplitudes of the sub-pulses
are given by Jn (A) and can therefore be controlled by
the modulation parameter A. Examples of sinusoidal
phase modulation are shown in Fig. 12.3h–j. The influ-
ence of the absolute phase ϕ0 is depicted in Fig. 12.3h
and i, whereas Fig. 12.3j shows how separated pulses
are obtained by changing the modulation frequency Υ .
A detailed description of the effect of sinusoidal phase
modulation can be found in [12.28].

12.1.3 Changing the Temporal Shape
via the Frequency Domain

For the following discussion it is useful to think of an
ultrashort pulse as being composed of groups of quasi-
monochromatic waves, that is of a set of much longer
wave packets of narrow spectrum all added together co-
herently. In vacuum the phase velocity vp = ω/k and
the group velocity vg = dω/dk are both constant and
equal to the speed of light c, where k denotes the wave
number. Therefore an ultrashort pulse – no matter how
complicated its temporal electric field is – will maintain
its shape upon propagation in vacuum. In the follow-
ing we will always consider a bandwidth-limited pulse
entering an optical system such as, for example, air,
lenses, mirrors, prisms, gratings and combinations of
these optical elements. Usually these optical systems
will introduce dispersion, that is a different group veloc-
ity for each group of quasi-monochromatic waves, and
consequently the initial short pulse will broaden in time.
In this context the group delay Tg(ω) defined in (12.18)
is the transit time for such a group of monochromatic
waves through the system. As long as the intensities are
kept low, no new frequencies are generated. This is the
area of linear optics and the corresponding pulse prop-
agation has been termed linear pulse propagation. It is
convenient to describe the passage of an ultrashort pulse
through a linear optical system by a complex optical
transfer function [12.4, 25, 29]

M̃(ω) = R̃(ω)e−iφd , (12.37)

that relates the incident electric field Ẽ+
in(ω) to the out-

put field

Ẽ+
out(ω) = M̃(ω)Ẽ+

in(ω) = R̃(ω)e−iφd Ẽ+
in(ω) ,

(12.38)

where R̃(ω) is the real-valued spectral amplitude re-
sponse describing for example the variable diffraction
efficiency of a grating, linear gain or loss or direct am-
plitude manipulation. The phase φd(ω) is termed the
spectral phase transfer function. This is the phase ac-
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1058 Part C Coherent and Incoherent Light Sources

cumulated by the spectral component of the pulse at
frequency ω upon propagation between the input and
output planes that define the optical system. It is this
spectral phase transfer function that plays a crucial role
in the design of ultrafast optical systems. Note that
this approach is more involved when additional spatial
coordinates have to be taken into account as, for exam-
ple, in the case of spatial chirp (i. e., each frequency
is displaced in the transverse spatial coordinates). Ne-
glecting spatial chirp this approach can be taken as
a first-order analysis of ultrafast optical systems. Al-
though inside an optical system this condition might
not be met, usually at the input and output all fre-
quencies are assumed to be spatially overlapped for
this kind of analysis. Note also that the independence
of the different spectral components in this picture
does not mean that the phase relations are random –
they are uniquely defined with respect to each other.
That means that the corresponding pulse in the time
domain (by making use of (12.11) and (12.13)) is com-
pletely coherent [12.30] no matter how complicated
the shape of the femtosecond laser pulse appears. In
the first-order autocorrelation function a coherence time
of the corresponding bandwidth-limited pulse would
be observed. Only in the higher-order autocorrelations
the uniquely defined phase relations show up (exam-
ples of second-order autocorrelations for phase- and
amplitude-shaped laser pulses are given in Fig. 12.27).
Figure 12.3f–j exemplifies the temporal intensity, spec-
tral intensity and related phase functions for often
employed phase functions. Figure 12.3k–m displays the
same quantities for amplitude modulation. Figure 12.3n
is an example for self-phase modulation and Fig. 12.3o
shows a double pulse with pulse to pulse delay of
60 fs.

In the following discussion we will concentrate
mainly on pure phase modulation and therefore set
R̃(ω) constant for all frequencies and omit it initially.
To model the system the most accurate approach is to
include the whole spectral phase transfer function. Of-
ten however only the first orders of a Taylor expansion
around the central frequency ω0 are needed.

φd(ω) = φd(ω0)+φ′
d(ω0)(ω−ω0)

+ 1

2
φ′′

d(ω0)(ω−ω0)2

+ 1

6
φ′′′

d (ω0)(ω−ω0)3 + . . . . (12.39)

If we describe the incident bandwidth-limited pulse by
Ẽ+

in(ω) = |Ẽ+(ω)|e−iφ(ω0) e−iφ′(ω0)(ω−ω0) then the over-

all phase φop of Ẽ+
out(ω) is given by

φop(ω) = φ(ω0)+φ′(ω0)(ω−ω0)

+φd(ω0)+φ′
d(ω0)(ω−ω0)

+ 1

2
φ′′

d(ω0)(ω−ω0)2

+ 1

6
φ′′′

d (ω0)(ω−ω0)3 + . . . (12.40)

As discussed in the context of (12.19) the constant
and linear terms do not lead to a change of the tem-
poral envelope of the pulse. Therefore we will omit
in the following these terms and concentrate mainly
on the second-order dispersion φ′′ (also termed the
group velocity dispersion (GVD) or group delay disper-
sion (GDD)) and the third-order dispersion φ′′′ (TOD)
whereas we have omitted the subscript d. Strictly they
have units of fs2/rad and fs3/rad2, respectively, but usu-
ally the units are simplified to fs2 and fs3.

A main topic in the design of ultrafast laser systems
is the minimization of these higher dispersion terms
with the help of suitably designed optical systems to
keep the pulse duration inside a laser cavity or at the
place of an experiment as short as possible. In the fol-
lowing we will discuss the elements that are commonly
used for the dispersion management.

Dispersion Due to Transparent Media
A pulse traveling a distance L through a medium with
index of refraction n(ω) accumulates the spectral phase

φm(ω) = k(ω)L = ω

c
n(ω)L , (12.41)

which is the spectral transfer function due to propaga-
tion in the medium as defined above.

The first derivative

dφm

dω
= φ′

m = d(kL)

dω
= L

(
dω

dk

)−1

= L

vg
= Tg

(12.42)

yields the group delay Tg and describes the delay of
the peak of the envelope of the incident pulse. Usually
the index of refraction n(ω) is given as a function of
wavelength λ, i. e., n(λ). Equation (12.42) then reads

Tg = dφm

dω
= L

c

(
n +ω

dn

dω

)
= L

c

(
n −λ

dn

dλ

)
.

(12.43)

As different groups of the quasi-monochromatic
waves move with different group velocities the pulse
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will be broadened. For second-order dispersion we ob-
tain the group delay dispersion (GDD)

GDD = φ′′
m = d2φm

dω2
= L

c

(
2

dn

dω
+ω

d2n

dω2

)

= λ3L

2πc2

d2n

dλ2
. (12.44)

For ordinary optical glasses in the visible range we en-
counter normal dispersion, i. e., red parts of the laser
pulse will travel faster through the medium than blue
parts. So the symmetric temporal broadening of the
pulse due to φ′′ will lead to a linearly up-chirped
laser pulse as discussed in the context of (12.19) and
Fig. 12.3c. In these cases the curvature of n(λ) is pos-
itive (upward concavity) emphasizing the terminology
that positive GDD leads to up-chirped pulses.

For the third-order dispersion (TOD) we obtain

TOD = φ′′′
m = d3φm

dω3
= L

c

(
3

d2n

dω2
+ω

d3n

dω3

)

= −λ4L

4π2c3

(
3

d2n

dλ2
+λ

d3n

dλ3

)
. (12.45)

Empirical formulas for n(λ) such as Sellmeier’s equa-
tions are usually tabulated for common optical materials
so that all dispersion quantities in (12.43–12.45) can
be calculated. Parameters for some optical materials are
given in Table 12.3 for L = 1 mm.

Note that in fiber optics a slightly different terminol-
ogy is used [12.25]. There the second-order dispersion
is the dominant contribution to pulse broadening. The
β parameter of a fiber is related to the second-order
dispersion by

β =
d2φm
dω2

∣∣∣
ω0

L

[
ps2

km

]
, (12.46)

where L denotes the length of the fiber. The dispersion
parameter D is a measure for the group delay dispersion
per unit bandwidth and is given by

D = ω2
0

2πc
|β|

[ ps

nm km

]
. (12.47)

Angular Dispersion
Transparent media in the optical domain possess pos-
itive group delay dispersion leading to up-chirped
femtosecond pulses. To compress these pulses, optical
systems are needed that deliver negative group delay
dispersion, that is systems where the blue spectral com-
ponents travel faster than the red spectral components.

Convenient devices for that purpose are based on angu-
lar dispersion delivered by prisms and gratings. We start
our discussion again with the spectral transfer func-
tion [12.4]

φ(ω) = ω

c
Pop(ω) , (12.48)

where Pop denotes the optical path length. Equa-
tion (12.48) is the generalization of (12.41). The group
delay dispersion is given by

d2φ

dω2
= 1

c

(
2

dPop

dω
+ω

d2 Pop

dω2

)
= λ3

2πc2

d2 Pop

dλ2

(12.49)

and is similar to (12.44). In a dispersive system the op-
tical path from an input reference plane to an output
reference plane can be written

Pop = l cos α , (12.50)

where l = l(ω0) is the distance from the input plane to
the output plane for the center frequency ω0 and α is the
angle of rays with frequency ω with respect to the ray
corresponding to ω0. In general, it can be shown [12.4]
that the angular dispersion produces negative group de-
lay dispersion

d2φ

dω2
≈ − lω0

c

(
dα

dω

∣∣∣∣
ω0

)2

. (12.51)

No chirp

Down chirp

Time

lp= l (ω0)

Up chirp

a)

b)

Fig. 12.3a,b Prism sequences for adjustable group delay dispersion.
(a) Two-prism sequence in double-pass configuration (b) four-prism
sequence. Note that the spatial distribution of the frequency (spa-
tial chirp) after the second prism can be exploited for phase and/or
amplitude manipulations
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For pairs of elements (prisms or gratings) the first
element provides the angular dispersion and the sec-
ond element recollimates the spectral components
(Fig. 12.3). Using two pairs of elements permits the lat-
eral displacement of the spectral components (spatial
chirp) to be canceled out and recovers the original beam
profile.

Prism Sequences. Prism pairs [12.31] are well suited to
introduce adjustable group delay dispersion (Fig. 12.3).
Negative group delay dispersion is obtained via the an-
gular dispersion of the first prism where the second
prism is recollimating the beam. Recovering the orig-
inal beam can be accomplished by either using a second
pair of prisms or by using a mirror. Inside a laser cav-
ity one can use either the four-prism arrangement or
the two-prism arrangement for linear cavities together
with a retroreflecting mirror. Outside a laser cavity
the two-prism arrangement is often used, where the
retroreflecting mirror is slightly off-axis to translate the
recovered beam at the entrance of the system to be
picked of by an additional mirror. There is also pos-
itive group delay dispersion in the system due to the
material dispersion of the actual glass path the laser
beam takes through the prism sequence. By translat-
ing one of the prisms along its axis of symmetry it
is possible to change the amount of glass and there-
fore the amount of positive group delay dispersion.
These devices allow a convenient continuous tuning of
group delay dispersion from negative to positive val-
ues without beam deviation. The negative group delay
dispersion via the angular dispersion can be calculated
with the help of (12.48) and (12.50). In the case of min-
imum deviation and with the apex angle chosen so that
the Brewster condition is satisfied (minimum reflection
losses), the spectra phase introduced by a four-prism se-
quence φp (ω) can be used to approximate the group
delay dispersion by [12.4]

d2φp

dω2
≈ −4lpλ

3

πc2

(
dn

dλ

)2

(12.52)

and the corresponding third-order dispersion yields ap-
proximately

d3φp

dω3
≈ 6lpλ

4

π2c3

dn

dλ

(
dn

dλ
+λ

d2n

dλ2

)
. (12.53)

In order to determine the total GDD and TOD of the
four-prism sequence the corresponding contributions of
the cumulative mean glass path L (12.44), (12.45) have

to be added

d2φfour−prism

dω2
≈ d2φm

dω2
+ d2φp

dω2

= λ3L

2πc2

d2n

dλ2
− 4lpλ

3

πc2

(
dn

dλ

)2

,

(12.54)

d3φfour−prism

dω3
≈ d3φm

dω3
+ d3φp

dω3

= −λ4L
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dλ2
+λ

d3n

dλ3

)

+ 6lpλ
4

π2c3
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dλ

(
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dλ
+λ

d2n

dλ2

)
.

(12.55)

For a more-detailed discussion and other approaches to
the derivation of the total GDD and TOD for a prism
sequence see [12.31–35].

In principle one can get any amount of negative
group velocity using this method. However a prism
distance exceeding 1 m is often impractical. Higher
amounts of positive group delay dispersion might be
compensated for by the use of highly dispersive SF10
prisms but the higher third-order contribution pre-
vent the generation of ultrashort pulses in the 10 fs
regime. Fused quartz is a suitable material for ul-
trashort pulse generation with minimal higher-order
dispersion. For example a four-prism sequence with
lp = 50 cm of fused quartz used at 800 nm yields
roughly d2φp/dω2 ≈ −1000 fs2. Estimating a cumula-
tive glass path of L = 8 mm when going through the
apexes of the prisms yields d2φm/dω2 ≈ 300 fs2. In this
way a maximum group delay dispersion of +700 fs2 can
be compensated.

Note that in such prism sequences the spatial dis-
tribution of the frequency components after the second
prism can be exploited. Simple apertures can be used to
tune the laser or to restrict the bandwidth. Appropriate
phase or amplitude masks might be inserted as well.

Grating Arrangements. Diffraction gratings provide
group delay dispersion in a similar manner to prisms.
Suitable arrangements can introduce positive as well
as negative group delay dispersion (see below). When
introducing negative group delay dispersion the corre-
sponding device is termed a compressor, while a device
introducing positive group delay dispersion is termed
a stretcher. Grating arrangements have the advantage
of being much more dispersive but the disadvantage
of introducing higher losses than prism arrangements.
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Short and Ultrashort Laser Pulses 12.1 Linear Properties of Ultrashort Light Pulses 1061

As intracavity elements they are used, for example, in
high-gain fiber lasers. Outside laser cavities gratings are
widely used:

• To compensate for large amounts of dispersion in
optical fibers.• For ultrashort pulse amplification up to the petawatt
regime with a technique called chirped pulse ampli-
fication (CPA) [12.36]: In order to avoid damage to
the optics and to avoid nonlinear distortion of the
spatial and temporal profile of the laser beam, ultra-
short pulses (10 fs to 1 ps) are typically stretched in
time by a factor of 103 –104 prior to injection into
the amplifier. After the amplification process the
pulses have to be recompressed, compensating also
for additional phase accumulated during the ampli-
fication process. The topic is reviewed in [12.37].• For pulse-shaping applications (Sect. 12.1.3).• In combination with prism compressors to compen-
sate third-order dispersion terms in addition to the
group delay dispersion [12.38]. This was the com-
bination employed to establish the long standing
world record of 6 fs with dye lasers in 1987 [12.39].

In Fig. 12.4 the reflection of a laser beam from a grating
is displayed. The spectrum of an ultrashort laser pulse
will be decomposed after reflection into the first order
according to the grating equation

sin (γ )+ sin (θ) = λ

d
, (12.56)

where γ is the angle of incidence, θ is the angle of the
reflected wavelength component and d−1 is the grat-
ing constant. Blazed diffraction gratings have maximum
transmission efficiency when employed in the Littrow
configuration, i. e., γ = θ(λ0) = blaze angle. This has

θ (λ)
γ

d

Fig. 12.4 Reflection from a grating: the spectrum of an
ultrashort laser pulse will be decomposed after reflection
(γ = angle of incidence, θ(λ) = angle of reflection, d−1 =
grating constant)

θ (λ0)

l0

lg

γ

Blue

Red

Fig. 12.5 Grating compressor with parallel gratings and
a mirror for beam inversion (cf. the corresponding prism
setup in Fig. 12.3a). The red spectral components travel
a longer optical path than the blue spectral components (lg
denotes the distance between the grating; l0 denotes the
optical path for the center wavelength λ0 between two grat-
ings; both lengths are used by different authors in deriving
the group delay dispersion and the third order dispersion)

the additional advantage that astigmatism is minimized.
Blazed gold gratings with an efficiency of 90–95%
are commercially available with a damage threshold of
> 250 mJ/cm2 for a 1 ps pulse. For higher efficiency
and higher damage threshold dielectric gratings have
been developed, for example, dielectric gratings with
98% efficiency at 1053 nm and a damage threshold
> 500 mJ/cm2 for fs pulses are available.

A basic grating compressor (Fig. 12.5) consists
of two parallel gratings in a double-pass configura-
tion [12.40]. The first grating decomposes the ultrashort
laser pulse into its spectral components. The second
grating is recollimating the beam. The original beam is
recovered by use of a mirror that inverts the beam. As
in such a device the red spectral components experience
a longer optical path than the blue spectral components,
such an arrangement is suitable to compensate for ma-
terial dispersion.

In Fig. 12.6 different grating configurations are
displayed that produce: (a) zero, (b) positive and
(c) negative group delay dispersion. Between the grat-
ings an additional telescope is employed.

In Fig. 12.6a, a so-called zero-dispersion compres-
sor is depicted. The system consists of a telescope that
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a)

b)

c)

lt

lt

f f2f

a = 0

Blue

Red

f f2f

a > 0

Blue

Red

f

f

2f

a < 0

Blue

Red

Fig. 12.6a–c Different grating configurations that produce (a) zero,
(b) positive and (c) negative group delay dispersion. Arrangement
(a) corresponds to a zero-dispersion compressor, (b) to a stretcher
and (c) to a compressor. The zero-dispersion compressor is often
used in pulse-shaping devices. The dashed line in (a) indicates the
Fourier-transform plane, whereas the stretcher and compressor are
key components for chirped pulse amplification

images the laser spot on the first grating onto the sec-
ond grating. All wavelength components experience the
same optical path. In this manner zero net dispersion is
obtained. Due to the finite beam size on the grating the
components belonging to the same wavelength emerge
as a parallel beam and are focused with the lens of fo-
cal length f spectrally into the symmetry plane thus
providing a Fourier transform plane for pulse shaping,
masking or encoding (Sect. 12.1.3, Fig. 12.10).

Translating one of the gratings out of the focal plane
closer to the telescope (Fig. 12.6b) results in an arrange-
ment where the red components travel along a shorter
optical path. The device introduces positive group delay
dispersion (stretcher).

A compressor is realized by translating the grating
away from the focal plane (Fig. 12.6c).

The dispersion can be further modified by the use of
a magnifying telescope. In order to avoid material dis-
persion in the lenses and to minimize aberration effects,
reflective telescopes and especially Öffner telescopes
are usually employed [12.41, 42].

The phase transfer function φg for these arrange-
ments can be calculated with the help of a matrix
formalism [12.43] and considering the case of finite
beam size [12.44].

For a reflective setup (neglecting material dis-
persion) the group delay dispersion and the third-
order dispersion of the three telescope arrangements
(magnification = 1) in Fig. 12.6 can be described using
a characteristic length L

d2φg

dω2
= − λ3

πc2 d2

1

cos[θ (λ)]2
L , (12.57)

d3φg

dω3
= d2φg

dω2

3λ

2πc

(
1+ λ

d

tan[θ (λ)]
cos[θ (λ)]

)
. (12.58)

With the help of the grating equation (12.56) cos[θ(λ)]
is given by:

cos[θ(λ)] =
√

1−
(

λ

d
− sin γ

)2

. (12.59)

In reflective telescope setups usually only one grating
is employed using suitable beam-folding arrangements.
This reflects the situation when both gratings in
Fig. 12.6 are moved out of the focal plane symmet-
rically. For the telescope arrangements we therefore
obtain as the characteristic length L = 2 fa. Accord-
ing to Fig. 12.6 the parameter a is determined by the
distance of the grating to the lens

a = lt

f
−1

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Compressor: lt > f, a > 0

Zero-dispersion compressor: lt = f,

a = 0

Stretcher: lt < f, a < 0 .

(12.60)

For the grating compressor depicted in Fig. 12.5 the
characteristic length L is given by

L = l0 = lg√
1− (

λ
d − sin (γ )

)2
, (12.61)

where l0 is the optical path length of the center wave-
length λ0 between the gratings and lg is the distance of
the gratings.

For the compressor in Fig. 12.5 we obtain a group
delay dispersion of −1 × 106 fs2 (λ = 800 nm, d−1 =
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1200 l/mm, l0 = 300 mm; γ = 28, 6◦ (Littrow)) being
orders of magnitude higher than the example given for
the prism sequence.

Dispersion Due to Interference (Gires–Tournois
Interferometers and Chirped Mirrors)

The physics behind dispersion due to interference can
be illustrated in the following way [12.25]. Periodic
structures transmit or reflect waves of certain frequen-
cies. Strong Bragg-type scattering usually occurs for
wavelengths comparable to the periodicity of the struc-

Iin

n

100 % R

d

Iout

M1

θ

M2

Fig. 12.7 Schematic diagram of a Gires–Tournois interfer-
ometer (GTI)

Simple-chirped mirror

Substrate

Double-chirped mirror (DCM)

Substrate
AR

coating
Air

Red

Blue

Time

Up-chirped

Bandwidth
limited

Quarter-wave
section

Simple-chirp
section

Double-chirp
section

Matching
to air

a)

b)

Fig. 12.8a,b Schematic of different types of chirped mirrors: (a) simple chirped mirror; the wavelength-dependent pen-
etration depth is depicted. For a proper design, for example, an incoming up-chirped laser pulse can be transformed into
a bandwidth-limited pulse after reflection. (b) double chirped mirror; impedance matching by an additional antireflection
coating on top of the mirror and by a duty-cycle modulation inside the mirror

ture. In this context the periodicity induces a resonance
in the transfer function of the system, which then has
dispersion associated with it.

A Gires–Tournois interferometer (GTI) [12.45] is
a special case of a Fabry–Pérot interferometer in which
one mirror (M1) is a 100% reflector and the top mir-
ror (M2) is a low reflector, typically with a reflectivity
of a few percent (Fig. 12.7). The group delay dispersion
of such a device is given by (see for example [12.46]
or [12.3] and references therein)

d2φGTI
dω2

= −2t2
0 (1− R)

√
R sin ωt0

(1+ R −2
√

R cos ωt0)2
, (12.62)

where t0 = (2nd cos θ)/c is the round-trip time of the
Fabry–Pérot [12.47], n is the refractive index of the ma-
terial between the two layers, d is the thickness of the
interferometer and θ is the internal angle of the beam
between the layers. In this formula material dispersion
is neglected and R is the intensity reflectivity of the
top reflector. The group delay dispersion can be conve-
niently tuned either by tilting the device or by changing
the interferometer spacing. Increasing t0 increases the
dispersion, but at the same time reduces the frequency
range over which the group delay dispersion is constant.
These devices are typically used in applications em-
ploying pulses larger than 100 fs. For picosecond pulses
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1064 Part C Coherent and Incoherent Light Sources

the mirror spacing is on the order of several mm, for
femtosecond lasers the spacing has to be on the or-
der of a few μm. In order to overcome the limitations
for femtosecond applications, GTIs were constructed on
the basis of dielectric multilayer systems [12.48]. The
corresponding spectral transfer functions can be found
in [12.4].

Nowadays specially designed dielectric multilayer
mirrors offer a powerful alternative for dispersion
management. Usually a dielectric mirror consists of al-
ternating transparent pairs of high-index and low-index
layers where the optical thickness of all layers is chosen
to equal to 1/4 of the Bragg wavelength λB. Interfer-
ence of the reflections at the index discontinuities add
up constructively for the Bragg wavelength. If the opti-

a)

b)

Pulse shaper

Pulse shaper

Calculated modified
electric fields

Computer
learning

algorithm

Objective

Feedback
signal

Real
electric fields

Experiment

Fig. 12.9 (a) Pulse-shaping issues (schematic): creation of bandwidth-
limited pulses from complex-structured pulses (left to right).
Creation of tailored pulse shapes (right to left). (b) Adaptive fem-
tosecond pulse shaping: a femtosecond laser system (not indicated)
and a computer-controlled pulse shaper are used to generate spe-
cific electric fields that are sent into an experiment. After deriving
a suitable feedback signal from the experiment a learning algorithm
calculates a modified electric fields based on the information from
the experimental feedback signal and the user-defined control ob-
jective. The improved laser pulse shapes are tested and evaluated
in the same manner. Cycling through this loop many times results
in iteratively optimized laser pulse shapes that finally approach the
objective

cal thickness of the layers along the mirror structure is
varied, then the Bragg wavelength depends on the pen-
etration depth. Figure 12.8 shows an example where the
red wavelength components penetrate deeper into the
mirror structure then the blue wavelength components.
An up-chirped pulse impinging on the mirror sur-
face can be transformed into a bandwidth-limited pulse
after reflection from this mirror. A gradual increase
of the Bragg wavelength along the mirror producing
a negative group delay dispersion was demonstrated
by [12.49] and the corresponding mirror was termed
a chirped mirror, allowing for the construction of com-
pact femtosecond oscillators [12.50]. Of course the
Bragg wavelength does not have to be varied linearly
with the penetration depth. In principle chirp laws λB(z)
can be found for compensation of higher-order dis-
persion in addition. It was realized, that the desired
dispersion characteristics of the chirped mirrors can be
spoiled by spurious effects originating from multiple re-
flections within the coating stack and at the interface to
the ambient medium, leading to dispersion oscillations
(see the discussion on GTI). An exact coupled-mode
analysis [12.51] was used to develop a so-called double-
chirp technique in combination with a broadband
antireflection coating, in order to avoid the oscillations
in the group delay dispersion. Using accurate analytical
expressions double chirped mirrors could be designed
and fabricated with a smooth and custom-tailored group
delay dispersion [12.52] suitable for generating pulses
in the two cycle regime directly from a Ti:sapphire
laser [12.53]. Double chirping has the following mean-
ing: in conventional chirped mirrors, equal optical
lengths of high-index (hi) and low-index (lo) material
within one period are employed, i. e., Plo = Phi = λB/4.
Double chirping keeps the duty cycle η as an addi-
tional degree of freedom under the constraint: Plo +
Phi = (1−η)λB/2+ηλB/2 = λB/2. Dispersion oscilla-
tions could further be suppressed by a back-side-coated
double-mirror design [12.54].

Pulse Shaping
The methods for dispersion management described so
far are well suited to compensate higher-order disper-
sion terms in linear optical setups such as group delay
dispersion and third-order dispersion. Much greater
flexibility in dispersion management and the possibil-
ity of creating complex-shaped laser pulses with respect
to phase, amplitude and polarization state is given with
the help of (computer-controlled) pulse-shaping tech-
niques (Fig. 12.9a). The issue was recently reviewed by
Weiner [12.29, 55].
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A new class of experiments emerged in which
pulse-shaping techniques were combined with some
experimental signal embedded in a feedback learn-
ing loop [12.56–59]. In this approach a given pulse
shape is evaluated in order to produce an improved
pulse shape, which enhances the feedback signal (see
Fig. 12.9b). These techniques have an impact on an
increasing number of scientists in physics, chemistry,
biology and engineering. This is due to the fact that
primary light-induced processes can be studied and
even actively controlled via adaptive femtosecond pulse
shaping. For a small selection of work in various areas
see [12.60–71].

Because of their short duration, femtosecond laser
pulses cannot be directly shaped in the time domain.
Therefore, the idea of pulse shaping is to modulate the
incident spectral electric field Ẽ+

in(ω) by a linear mask,
i. e., the optical transfer function, M̃(ω) in the frequency
domain. According to (12.38) this results in an outgoing
shaped spectral electric field Ẽ+

out(ω) = M̃(ω)Ẽ+
in(ω) =

R̃(ω)e−iφd Ẽ+
in(ω). The mask may modulate the spectral

amplitude response R̃(ω) and the spectral phase transfer
function φd(ω). Furthermore, polarization shaping has
been demonstrated [12.72].

One way to realize a pulse shaper is the Fourier-
transform pulse shaper. Its operation principle is based
on optical Fourier transformations from the time do-
main into the frequency domain and vice versa. In
Fig. 12.10 a standard design of such a pulse shaper is
sketched. The incoming ultrashort laser pulse is dis-
persed by a grating and the spectral components are
focused by a lens of focal length f . In the back focal
plane of this lens – the Fourier plane – the spectral com-
ponents of the original pulse are separated from each
other, having minimum beam waists. By this means, the
spectral components can be modulated individually by
placing a linear mask into the Fourier plane. Afterwards,
the laser pulse is reconstructed by performing an in-
verse Fourier transformation back into the time domain.
Optically, this is realized by a mirrored setup consist-
ing of an identical lens and grating. The whole setup
– without the linear mask – is called a zero-dispersion
compressor since it introduces no dispersion if the 4 f
condition is met (see also Fig. 12.6a). As a part of such
a zero-dispersion compressor, the lenses separated by
the distance 2 f , form a telescope with unitary magnifi-
cation. Spectral modulations as stated by (12.38) can be
set by inserting the linear mask.

Due to the damage threshold of the linear masks
used, cylindrical focusing lenses (or mirrors) are nor-
mally used instead of spherical optics. The standard

Ein(ω)

M (ω)

Ein(t) Eout(t)

Eout(ω)

f f

Blue

Red

f f

Fig. 12.10 Basic layout for Fourier-transform femtosecond pulse
shaping

Blue

Red

CM FM G

Blue

Red

CM FM

FP

G

Fig. 12.11 Dispersion-optimized layout for Fourier trans-
form femtosecond pulse shaping. The incoming beam is
dispersed by the first grating (G). The spectral components
go slightly out of plane and are sagitally focused by a cylin-
drical mirror (CM) via a plane-folding mirror (FM) in the
Fourier plane (FP). Then the original beam is reconstructed
by a mirrored setup

design in Fig. 12.10 has the advantage that all optical
components are positioned along an optical line (grat-
ing in the Littrow configuration). For ultrashort pulses
below 100 fs, however, spatial and temporal reconstruc-
tion errors become a problem due to the chromatic
abberations introduced by the lenses. Therefore, lenses
are often replaced by curved mirrors. In general, optical
errors are minimized if the tilting angles of the curved
mirrors within the telescope are as small as possible.
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Electric ground (ITO)
Liquid crystal
Electrodes (ITO)

Light propagation

Voltage off Voltage on

Linear polarization

Fig. 12.12 Schematic diagram of an electronically addressed phase-
only liquid-crystal spatial light modulator (LC-SLM). By adjusting
the voltages of the individual pixels, the liquid-crystal molecules
reorient themselves on average partially along the direction of the
electric field. This leads to a change in refractive index and therefore
to a phase modulation which can be independently controlled for
different wavelength components

A folded, compact and dispersion optimized setup is de-
picted in Fig. 12.11 [12.73]. For ultrashort pulses in the
< 10 fs regime prisms have been employed as dispersive
elements instead of gratings [12.74].

A very popular linear mask for computer-controlled
pulse shaping in such setups is the liquid-crystal spa-
tial light modulator (LC-SLM). A schematic diagram
of an electronically addressed phase-only LC-SLM is
depicted in Fig. 12.12. In the Fourier plane the indi-

Input pulse

Mask

 Shaped output pulse
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ctr

al 
co
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nts

Fig. 12.13 Schematic illustration of shaping the temporal profile of
an ultrashort laser pulse by retardation of the spectrally dispersed
individual wavelength components in a phase only LC-SLM. The
LC-SLM is located in the Fourier plane of the setups displayed in
Figs. 12.10 and 12.11

vidual wavelength components of the laser pulse are
spatially dispersed and can be conveniently manipu-
lated by applying voltages at the separate pixels leading
to changes of the refractive index. Upon transmission
of the laser beam through the LC-SLM a frequency-
dependent phase is acquired due to the individual
pixel voltage values and consequently the individual
wavelength components are retarded with respect to
each other. Actual LC-SLMs contain up to 640 pix-
els [12.75]. In this way, an immensely large number
of different spectrally phase modulated pulses can be
produced. A phase-only LC-SLM does to a first ap-
proximation not change the spectral amplitudes and
therefore the integrated pulse energy remains constant
for different pulse shapes. By virtue of the Fourier trans-
form properties, spectral phase changes result in phase-
and amplitude-modulated laser pulse temporal profiles,
as depicted schematically in Fig. 12.13.

If such an LC-SLM is oriented at 45◦ with respect
to the linear polarization of the incident light field (ei-
ther with the help of a wave plate or a suitably designed
LC-SLM), polarization is induced in addition to retar-
dance. A single LC-SLM together with a polarizer can
be used therefore as an amplitude modulator. However,
this also leads to phase modulation depending on the
amplitude modulation level. For independent phase and
amplitude control dual LC-SLMs are currently used. In
such a setup a second LC-SLM is fixed back-to-back at
−45◦ with respect to the linear polarization of light in
front of the first LC-SLM and the stack is completed
with a polarizer. For an early setup for independent
phase and amplitude modulations see [12.76] whereas
modern configurations are described in [12.55]. Alter-
natively, simple amplitude modulation functions R̃(ω)
can be realized by insertion of absorbing material at
specific locations in the Fourier plane, thus eliminating
the corresponding spectral components within the pulse
spectrum [12.77].

For polarization shaping [12.72] the polarizer is
removed and spectral phase modulation can be im-
posed independently onto two orthogonal polarization
directions. The interference of the resulting elliptically
polarized spectral components leads to complex evolu-
tions of the polarization state in the time domain. As any
element between the LC-SLM stack and the experiment
can modify the polarization evolution, dual-channel
spectral interferometry and experimentally calibrated
Jones matrix analysis have been employed for char-
acterization [12.78]. A representation of a complex
polarization shaped pulse is displayed in Fig. 12.14.
Such pulses open up an immense range of applications,
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Fig. 12.14a,b Electric field representation for a polarization-
modulated laser pulse. Time evolves from left to right,
and electric field amplitudes are indicated by the sizes
of the corresponding ellipses. The momentary frequency
can be indicated by colors, and the shadows represent the
amplitude envelopes of the orthogonal electric field com-
ponents. (a) A Gaussian-shaped laser spectrum supporting
80 fs laser pulses is taken for an illustrative theoretical ex-
ample. (b) A complex experimentally realized polarization
modulated laser pulse is shown. The width of the temporal
window is 7.5 ps. (After [12.78])�

especially in quantum control, because vectorial proper-
ties of multiphoton transitions can be addressed [12.79,
80].

Another possibility to realize phase-only pulse
shaping is based on deformable mirrors consisting of
a small number (∼10) of electrostatically controlled
membrane mirrors [12.81]. These devices are placed in
the Fourier plane and by a slight out-of-plane tilt upon
reflection half of the optics can be saved (Fig. 12.15
for an illustration). The use of a micro-mirror array
with 240 × 200 pixels used in reflection and a waveform
update rate larger than 1 kHz has also been demon-
strated [12.82].

Acoustooptic modulators (AOMs) can be used for
programmable pulse shaping as well. Two different ap-
proaches exist.

One approach is depicted in Fig. 12.16 and is re-
viewed in [12.83, 84]. The AOM crystal is oriented
at the Bragg angle to the Fourier plane of a zero-
dispersion compressor. In the visible TeO2 crystals are
normally used whereas in the infrared InP crystals are
employed. A programmable radio-frequency (RF) sig-
nal driving the piezoelectric transducer of the AOM
creates an acoustic wave that propagates through the
crystal. As light travels at orders of magnitude faster
velocity, the acoustic wave can be considered as a fixed
modulated grating at the moment the spatially dis-
persed laser beam hits the crystal. The amplitude and
phase of the acoustic wave determine the diffraction
efficiency and phase shift at each point in space. The
beam is diffracted typically below 1◦ by the AOM
via the photoelastic effect. AOMs can place in the
order of thousand independent features onto the spec-
trum and have a significantly faster update rate than
an LC-SLMs. On the other hand the optical through-
put of such devices is well below 50% and typical
mode-locked laser sources running at 100 MHz repe-
tition rate in general cannot be pulse shaped because
the acoustic wave is traveling several tens of microns

a)

b)

in 10 ns. This is not a limitation for amplified ultrafast
laser systems where the pulse repetition rate is usually
slower than the acoustic aperture time, since this al-
lows the acoustic pattern to be synchronized to each
amplifier pulse and to be refreshed before the next pulse
arrives.

f

Silicon nitride membrane
coated with gold

Linear array of electrodes

f

Fig. 12.15 Schematic of a phase-only deformable-mirror pulse
shaper
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Fig. 12.16 Programmable pulse-shaping device based on the use of an acoustooptic modulator as the spatial light modu-
lator
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Fig. 12.17 Schematic of an acoustooptic programmable dispersive
filter (AOPDF)

The other AOM approach is based on an acoustoop-
tic programmable dispersive filter (AOPDF) and does
not need to be placed in the Fourier plane of a 4 f de-
vice [12.85–87]. A schematic of this device is shown
in Fig. 12.17. Again, a programmable signal driving the
piezoelectric transducer of the AOM creates an acoustic
wave that propagates through the crystal and reproduces
spatially the temporal shape of the RF signal. Two op-
tical modes can be coupled efficiently by acoustooptic
interaction only in the case of phase matching. If there is
locally only one spatial frequency in the acoustic grat-
ing, then only one optical frequency can be diffracted
at that position from the fast ordinary axis (mode 1) to
the slow extraordinary axis (mode 2). The incident opti-
cal short pulse is initially in mode 1. Different groups of

optical frequency components travel a different distance
before they encounter phase-matched spatial frequen-
cies in the acoustic grating. At that position part of the
energy is diffracted onto mode 2. The pulse leaving the
device at mode 2 will be made of all spectral compo-
nents that have been diffracted at the various positions.
If the velocities of the two modes are different, each
frequency will see a different time delay. The ampli-
tude of specific frequency components of the output
pulse is controlled by the acoustic power at the posi-
tion where that frequency components are diffracted.
With the help of a 2.5 cm long TeO2 crystal, a group
delay range of 3 ps, 6.7 fs temporal resolution and 30%
diffraction efficiency has been reported [12.86]. In gen-
eral pulse shapers based on LC-SLMs or deformable
mirrors have low transmission losses, are suitable also
for high-repetition-rate mode-locked laser oscillators,
do not impose additional chirp and have a low wave-
form update rate on the order of 10 Hz. Setups based on
AOMs have high transmission losses and impose addi-
tional chirp, but they have a waveform update rate on
the order of 100 kHz. Both AOMs and LC-SLMs can
impose on the order of 1000 independent features onto
the spectrum and are both suitable for amplitude and
phase modulation. Programmable polarization shaping
has been demonstrated so far only with LC-SLMs.

The programmable femtosecond pulse-shaping
techniques described so far allow control of the tempo-
ral profile of an output waveform in phase, amplitude
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Short and Ultrashort Laser Pulses 12.2 Generation of Femtosecond Laser Pulses via Mode Locking 1069

and polarization. This can be thought of as control
over one spatial dimension, the direction of propaga-
tion. With that respect this temporal-only pulse shaping
is one dimensional. Automated two-dimensional phase-
only pulse shaping employing an optically addressed
reflective two-dimensional SLM with negligible inter-
pixel gaps allows real-space pulse shaping, in which
a sample or device is irradiated with different tempo-

rally shaped waveforms at different locations [12.88].
The pulse-shaping arrangement is similar to conven-
tional 4 f spectral filtering arrangements, with the
difference that the incoming beam is expanded in
one dimension and the two-dimensional SLM is em-
ployed in a reflection geometry. Such a unit has been
employed for two-dimensional shaping of surface po-
laritons [12.89].

12.2 Generation of Femtosecond Laser Pulses via Mode Locking

Femtosecond laser pulses can be generated directly
from a wide variety of lasers with wavelengths ranging
from the ultraviolet to the infrared. This range is greatly
extended by the use of nonlinear frequency-conversion
techniques. Continuous tuning is achieved, for example,
via optical parametric oscillators followed by (cas-
caded) sum- and difference-frequency mixing. Tuning
of amplified femtosecond laser systems is achieved
via optical parametric amplifiers. The generation of
a white-light continuum is also a standard technique
for the generation of new wavelengths. With high-
power femtosecond laser systems the x-ray region can
be reached by focusing the radiation into a solid-state
material or via high-harmonic generation whereas the
latter technique also opens the door to the attosecond
regime. The THz spectral region can be accessed via
femtosecond lasers as well.

With very few exceptions the generation of ul-
trashort pulses relies on a technique known as mode
locking. The topic has been covered in review ar-
ticles [12.46, 90–93], in several books devoted to
ultrashort laser pulses [12.2–5, 94] and in general laser
text books [12.47, 95–97]. For a recent compilation
of mode locking different laser systems ranging from
solid-state lasers through fiber lasers to semiconductor
lasers see, for example, [12.98].

Here we will limit the description to the basic con-
cepts of mode locking.

A laser is typically constructed with a pair of mir-
rors separated by a distance L which enclose a gain
medium and other components. In a continuous-wave
(CW) laser or in a pulsed laser where the pulse dura-
tion is substantially greater then the cavity round-trip
time TRT

TRT = 2L

c
(12.63)

(c is the velocity of light and for simplicity the refractive
index is taken as unity) the radiation energy is spread

EM OC

2L 2L

L

Fig. 12.18 Simple snapshot representation of a mode-locked laser.
The pulse is propagating back and forth between the end mirror
(EM) and the output coupler (OC). The pulses in the output beam
are separated by 2L in space (or 2L/c = TRT in time). The dashed
box represents the gain medium and other laser components

out fairly uniform between the mirrors. The generation
of ultrashort laser pulses is based on the confinement of
the energy in the cavity into a small spatial region. This
single pulse bounces back and forth between the mir-
rors at the velocity of light. As indicated in Fig. 12.18
the output beam arises from partial transmission of the
intracavity pulse through the output coupler and there-
fore consists of a train of replicas of the cavity pulse
separated by 2L in space or by TRT in time. A laser
operating in this fashion is said to be mode locked for
reasons that will become apparent soon.

In order to understand the physics behind mode
locking a more precise discussion is necessary. Gener-
ally two conditions govern the frequency spectrum of
a laser. On the one hand the overall envelope of the spec-
trum is determined by the emission profile of the lasing
medium and by the characteristics of any wavelength
selective element within the cavity. On the other hand
for each transverse mode the cavity allows oscillations
only at discrete frequencies νn the so-called longitudi-
nal modes. Usually only one transverse mode namely
the lowest-order mode having a Gaussian profile is per-
mitted to oscillate in mode-locked laser systems. The
corresponding set of longitudinal modes consists of
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Intensity

Longitudinal modes

δv

Δv

vn

Loss line

Frequency

Gain curve

Allowed modes

Fig. 12.19 Longitudinal modes in a laser cavity. The spac-
ing δν of the modes is determined by the cavity length via
δν = c/2L = 1/TRT. Only those modes exceeding the loss
line will lase. The FWHM of the spectral intensity func-
tion δν is also indicated in addition. In lasers used for pulse
generation below 10 fs the number of modes lasing is of
the order 106

a picket fence of regularly spaced modes – also termed
the frequency comb – being separated by a frequency
of δν

δν = νn+1 −νn = c

2L
= 1

TRT
. (12.64)

Taking both conditions together the emission spectrum
of the laser will consist of those modes which have suf-
ficient gain to lie above the threshold for lasing. The
corresponding relationships are depicted in Fig. 12.19.
The total electric field E(t) resulting from such a multi-
mode oscillation at a fixed point in space, say at one of
the mirrors, is given by

E(t) =
N−1∑
n=0

En sin[2π(ν0 +nδν)t +ϕn(t)] , (12.65)

where N is the number of oscillating modes, ϕn(t) is the
phase of the nth mode and ν0 is the lowest-frequency
mode above the lasing threshold.

The average laser power output P(t) is proportional
to the square of the total electric field. Unless some
method of fixing the relative phases ϕn(t) of the modes
is used they will generally vary randomly in time. This
produces a random variation of the average laser power
output P(t) as a result of the random interference be-
tween modes.

If the phases are fixed with respect to each other
(ϕn(t) → ϕn), it can be shown that E(t) and accordingly
P(t) repeats with the period TRT. In the case that the

Electric field of
individual waveform

Total electrical
field E (t)

Laser power
output P (t)

Δt =

Ppeak

TRT
N

2L
c

P

Time t

TRT

E0sin [2π(v0+ 3δv) t]

E0sin [2π(v0+ 2δv) t]

E0sin [2π(v0+ δv) t]

E0sin (2π v0 t)

Fig. 12.20 Superposition of four sine waves with equal am-
plitude E0, differing in frequency by δν. The electric field
of the individual waveforms, the total electric field E(t ), its
envelope and the output power P(t ) as well as the average
power P̄ are shown

individual ϕn are randomly fixed, each noise spike in
the random but periodic laser output power has a du-
ration Δt roughly equal to 1/Δν with Δν being the
FWHM of the spectral intensity function (Fig. 12.22e,f).
Within this approach the properties of perfectly mode-
locked lasers are determined by a linear phase relation
ϕn = nα amongst the modes, that is, a constant phase re-
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lation between two adjacent modes. This is the so-called
mode-locking condition. To simplify the analysis of this
case identical amplitudes En = E0 for all modes are as-
sumed corresponding to a square gain profile and for
convenience α is set to zero. The summation of (12.65)
then yields

E(t) = E0 sin

[
2π

(
ν0 + N −1

2
δν

)
t

]
sin(Nπδνt)

sin(πδνt)
.

(12.66)

The resulting electric field consists of a rapid oscillating
part at the light central frequency νc = ν0 + N −1/2δν

with the envelope
∣∣sin(Nπδνt)/sin(πδνt)

∣∣ oscillating
with δν = 1/TRT. Averaging the fast oscillation νc the
output power P(t) is given by

P(t) = P0

(
sin(Nπδνt)

sin(πδνt)

)2

, (12.67)

where P0 is the average power of one wave.
A discussion of this equation yields important in-

sight into the properties of laser pulses generated via
mode locking:

1. The power is emitted in the form of a train of pulses
with a period corresponding to the cavity round-trip
time TRT = 1/δν.

2. The peak power PPeak increases quadratically with
the number N of modes locked together: PPeak =
N2 P0. Mode locking is therefore useful to produce
high peak powers and by focusing the laser beam to
create high peak intensities; the average power P̄ of
both a mode-locked and a non-mode-locked laser is
given by P̄ = NP0.

3. The FWHM pulse duration Δt decreases linearly
with the number N of modes locked together or
equivalent is approximately the inverse of the gain
bandwidth Δν:

Δt ≈ TRT
N

= 1

Nδν
= 1

Δν
.

This is why in the past dye lasers and nowadays
solid-state lasers with large gain bandwidths are
used to create femtosecond pulses. Ultrafast dye-
laser generated pulses as short as 27 fs with around
10 mW of average power [12.99], whereas pulses
around 5–6 fs with around 100 mW average power
can be produced with Ti:sapphire lasers [12.53,
100]. In general the minimum pulse duration for
a given gain profile can be estimated via the band-
width product introduced in Sect. 12.1.2 and is
summarized for various line shapes in Table 12.1.

Laser power output P (t)

Δt

Δt

Δt
Ppeak

P

P

P

P

Ppeak

Ppeak N = 6

N = 4

N = 2

N = 1

Time t

Fig. 12.21 Comparison of the one-, two-, four- and six-
mode cases. An increase in the number of modes leads
to a decrease in pulse duration. The peak power Ppeak in-
creases quadratically with the number N of modes locked
together, whereas the average power P̄ of both a mode-
locked and a non-mode-locked laser scales linearly with N

The basic properties of mode locking are visualized
with the help of Figs. 12.20–12.22. Figure 12.20 depicts
the Fourier synthesis of a pulse obtained by the super-
position of four sine waves with same amplitude and
ϕn(t) = 0 according to (12.65), (12.66), and (12.67).

In Fig. 12.21 the dependence of the pulse duration
and peak power on the number of locked modes is il-
lustrated for this case. Finally in Fig. 12.22 the shape
of the average output power is displayed for N = 10
equally spaced modes with different relative amplitudes
and phase angles according to (12.65).

In the following we will summarize some more-
technical related considerations. Mode locking is es-
sentially achieved by applying a periodic loss (or gain)
modulation to the intracavity radiation whose period is
matched to the cavity round trip time. The mechanisms
can be described either in the frequency or time domain.
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Laser power output P (t)a)

Time tTRT

Laser power output P (t)d)

Time tTRT

Laser power output P (t)b)

Time tTRT

Laser power output P (t)e)

Time tTRT

Laser power output P (t)c)

Time tTRT

Laser power output P (t)f)

Time tTRT

Fig. 12.22a–f Output power for 10 equally spaced modes with dif-
ferent relative amplitudes (as indicated in the insets) and phase
angles (TRT is the round-trip time): (a) linear phase relation
ϕn = nα amongst the modes (i. e., a constant phase relation between
two adjacent modes) with α = 0, (b) linear phase relation ϕn = nα

with α = π, (c) Gaussian spectrum with five modes at FWHM and
linear phase relation with α = 0, (d) random spectrum and linear
phase relation with α = 0, (e) constant spectrum and random phase,
(f) constant spectrum and different random phase

In the frequency domain one can start the consid-
eration from the lowest-loss longitudinal mode. The
periodic modulation at the frequency of the round-trip
time leads to sidebands whose frequencies coincide
with those of the adjacent longitudinal laser modes. In

this way energy is shifted from one mode to adjacent
modes and as a result all longitudinal modes become fi-
nally locked in phase. In the time domain, the periodic
modulation can be visualized as an intracavity shutter
that is open once per round trip time. Such a station-
ary time window of minimum loss will provide a higher
net gain on each round trip for those photons that are
concentrated in that time window.

Approaches for providing the periodic modulation
are grouped into active and passive schemes, and hy-
brid schemes that make use of a combination of the
two. Active mode locking is obtained with an active
element within the laser cavity, for example an acous-
tooptic modulator, generating a loss modulation. The
modulation has to be precisely synchronized with the
cavity round trips. Modulating the gain is also pos-
sible and can be achieved by synchronous pumping.
In this case the amplifying medium of the laser is
pumped with the output of another mode-locked laser
whereby the cavity round-trip times for both lasers
have to be matched. Passive mode locking is obtained
by the laser radiation itself that produces the modula-
tion via the interaction with a nonlinear device in the
laser cavity. Typical nonlinear devices are some type
of saturable absorbers which exhibit an intensity de-
pendent loss as they interact with the laser radiation.
This modulation is thus automatically synchronized to
the cavity round-trip frequency. Because pulse timing
does not have to be externally controlled there is usually
no need for synchronization electronics, making pas-
sive schemes conceptually simpler compared to active
schemes. Originally organic dyes were used as real sat-
urable absorbers, for example to generate picosecond
pulses from solid-state lasers and pulses down to 27 fs
from dye lasers [12.99]. The shortest pulses nowadays
are generated in solid-state laser media, being passively
mode-locked using the optical Kerr effect. This ap-
proach was originated by [12.101]. Pulses with less than
6 fs are nowadays generated directly from Ti:sapphire
lasers with Kerr-lens mode locking [12.53, 100]. At
a center wavelength of 800 nm a pulse duration of
5.4 fs contains only two optical cycles at full-width half-
maximum of the pulse intensity.

12.3 Measurement Techniques for Femtosecond Laser Pulses

For energy, power, spectrum and spatial beam meas-
urements of ultrashort laser pulses standard laser
diagnostic techniques are employed [12.5, 47]. For

a measurement of the pulse duration or more inter-
esting of the time-dependent amplitude and phase of
an ultrashort laser pulse, dedicated methods have been
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developed and are described in several textbooks and
references therein [12.4–6]. Here the basic ideas and
underlying concepts are highlighted.

As the time and frequency domain are related by
the Fourier transformation (12.6, 12.7, 12.11, 12.12) it
should be sufficient to measure amplitude and phase
in only one of the domains. Let us first shortly re-
flect on the frequency domain. All spectrometers no
matter whether diffraction-grating or Fourier-transform
devices measure a quantity that is proportional to the
spectral intensity (Sect. 12.3.3) and therefore the phase
information is lost.

On the other hand direct electronic techniques
for temporal pulse-width measurements, consisting
of fast photodiodes and high-bandwidth (sampling)
oscilloscopes, are limited to the several-picosecond
regime. Fast photodiodes are therefore not suited to
record the temporal profile of an ultrashort laser
pulse. Often they are employed to check on the
mode-locked operation of an ultrafast oscillator or to
derive synchronization signals for amplification se-
tups or synchronized experiments. The only detector
that reaches a time resolution below one picosec-
ond is the streak camera. However, a characterization
of ultrashort pulses with respect to amplitude and
phase requires optical correlation techniques, espe-
cially methods that operate in the time–frequency

Light
intensity

Time Space

Incident light Slit

Lens

Trigger signal

Trigger signal

Sweep voltage

Incident light

Photocathode Accelerating
mesh

MCP Phosphor
screen

Space

Time

Phosphor screen

Phosphor image

Time

Streak image on
phosphor screen

Sweep
electrode

Sweep circuit

Fig. 12.23 Working principle (top) and timing (bottom) of a streak camera (after [12.102]). The spatial coordinate might
be a wavelength coordinate after having dispersed the ultrashort optical signal with the help of a polychromator

domain. The latter techniques will be described in more
detail.

12.3.1 Streak Camera

The basic principle of a streak camera is depicted in
Fig. 12.23. The ultrafast optical signal I (t) to be ana-
lyzed is focused on a photocathode, where the signal
is converted almost instantaneously into a number of
electrons. The electrons then pass through a horizon-
tal pair of accelerating electrodes and hit a phosphor
screen after passing an electron multiplier (MCP). The
screen is then imaged with the help of a highly sen-
sitive camera (not shown). The temporal resolution
relies on the concept of transferring a temporal pro-
file into a spatial profile. This is done by passing the
electron pulse between a pair of vertical sweep elec-
trodes. A high voltage is applied to the sweep electrodes
at a timing synchronized to the incident light. Dur-
ing this high-speed sweep the electrons arriving at
different times are deflected at different angles and con-
sequently hit the MCP at different vertical directions.
In this manner the vertical position on the phosphor
screen serves as a time axis. The brightness of the
signal is proportional to the intensity profile of the in-
cident ultrashort optical signal. The horizontal direction
of the image corresponds to the horizontal location of
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the incident light. For example if the streak camera
is used in combination with a polychromator the time
variation of the incident light with respect to wave-
length can be measured. Time-resolved spectroscopy
is therefore one of the application areas of these de-
vices. Commercial devices [12.102, 103] are quoted
with a temporal resolution of < 200 fs. Using differ-
ent photocathode materials a spectral response can be
achieved from 115 nm up to 1600 nm. X-ray streak cam-
eras with a temporal resolution of 1.5 ps are quoted as
well.

12.3.2 Intensity Autocorrelation
and Cross-Correlation

A widely used technique to estimate the pulse dura-
tion or to check whether a laser produces pulses rather
than statistical intensity fluctuations is to measure the
so-called intensity autocorrelation SintAC [12.104]

SintAC(τ) =
∞∫

−∞
I (t)I (t + τ)dt

=
∞∫

−∞
I (t)I (t − τ)dt = SintAC(−τ) . (12.68)

This is the time integral of one pulse intensity multi-
plied by the intensity of a time-shifted replica of the
same pulse as a function of the time shift τ . The in-
tensity autocorrelation has its maximum at τ = 0 and
is always symmetrical (12.68). In this fundamental ar-
rangement one pulse serves as a gate to scan the other.

Fig. 12.24a,b Optical layout for autocorrelation setups.
(a) Collinear autocorrelator (dispersion minimized): the
incoming pulse is split into two parts, where one is vari-
ably delayed with respect to the other. The pulses are
recombined and focused on a nonlinear signal generator
(NLSG). Second-harmonic generation in thin crystals and
two-photon absorption in semiconductor photodiodes are
commonly used for this purpose. Other second-order non-
linear effects can be used as well. The nonlinear signal
is measured as a function of delay. If the measurement
is performed with interferometric accuracy the interfero-
metric autocorrelation is recorded. If the setup averages
the fast oscillations of the light field (12.76) the inten-
sity autocorrelation with background is recorded, having
a center-to-offset ratio of 3 : 1 (12.77). (b) Noncollinear
autocorrelator for recording the background free intensity
autocorrelation (M = mirror; BS = beam splitter; SHG =
second harmonic generation; D = detector; L = lens) �

It can be realized with any interferometer (Fig. 12.24)
that splits the pulse into two pulses and recombines
them with an adjustable time delay between them. Note
within that context that, for example a 100 fs pulse
duration, corresponds to a spatial extent of 30 μm,
a dimension readily measurable with standard transla-
tion stages. Measuring the spatial overlap of the two
pulses requires a nonlinear process to generate a detec-
tion signal proportional to the intensity product of the
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b)
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two pulses. Second-harmonic generation in thin crystals
and two-photon absorption in semiconductor photodi-
odes [12.105,106] are commonly used (in a two-photon
diode the photon energy is within the band gap and
only simultaneous two-photon absorption can lead to
a signal). In the case of frequency-doubling crystals
thin crystals have to be used in order to ensure that
the ratio of the crystals phase-matching bandwidth to
the pulse spectral bandwidth is large. For 100 fs pulses
at 800 nm the beta-barium borate (BBO) crystal thick-
ness should not be thicker than ≈ 100 μm and crystals
as thin as 5 μm have been used to measure few-fs
pulses [12.6].

The intensity autocorrelation is obtained directly,
when the two time-delayed laser pulses are not recom-
bined collinearly but focused at a mutual angle into the
thin nonlinear crystal. This leads to the so-called back-
ground free intensity autocorrelation. For the collinear
setup the intensity autocorrelation is obtained by aver-
aging the fast oscillations of the light field (12.76).

The collinear intensity autocorrelation has a signal-
to-background ratio of 3 : 1 (12.77).

The intensity autocorrelation provides only limited
information on the pulse shape, because there are in-
finitely many symmetric and asymmetric pulse shapes
that lead to very similar symmetric autocorrelation
traces. The procedure to estimate a pulse duration from
intensity autocorrelations is to assume a pulse shape and
then to calculate the FWHM pulse duration Δt from the
known ratio with respect to the FWHM of the inten-
sity autocorrelation ΔtintAC. In this approach generally
Gaussian shapes or hyperbolic secant shapes are as-
sumed. The ratio ΔtintAC/Δt for various shapes [12.22]
is given in Table 12.1.

If a pulse I1(t) is characterized, for example, in such
a way it can be used to gate a second unknown pulse
I2(t) by measuring the intensity cross-correlation SintCC
with a suitable nonlinear second-order signal like, for
example, sum- or difference-frequency mixing or two-
photon photodiodes

SintCC(τ) =
∞∫

−∞
I1(t)I2(t + τ)dt . (12.69)

For Gaussian pulse shapes the corresponding FWHM
quantities are related by

Δt2
intCC = Δt2

1 +Δt2
2 . (12.70)

In general the second momenta of the individual pulses
have to be considered [12.23].

a)

b)
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Fig. 12.25 (a) Optical layout for a single-shot autocorrelator. The
delayed replicas of the incident pulse are focused with the help of
a cylindrical lens (CL) onto a second-harmonic generation (SHG)
crystal. The spatiotemporal overlap of the two spatially extended
pulses is measured via SHG and recorded with a camera (M =
mirror; BS = beam splitter). (b) Detail of (a). In the region of
spatiotemporal overlap, second-harmonic generation is induced via
type I phase matching and the autocorrelation in time is transformed
into a spatial intensity distribution along the x-axis (after [12.5])

For high-power femtosecond laser systems higher-
order cross-correlations Shigher order int CC are a very
convenient and powerful tool to determine intensity pro-
files by making use of nonlinear optical processes of the
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order n +1 and m +1

Shigher order intCC(τ) =
∞∫

−∞
In

1
(t)Im

2 (t + τ)dt . (12.71)

In this case the corresponding FWHM quantities assum-
ing Gaussian pulse shapes are given by

Δt2
higher-order intCC = 1

n
Δt2

1 + 1

m
Δt2

2 . (12.72)

The intensity autocorrelation does not necessarily have
to be recorded by moving one interferometer arm as
depicted in Fig. 12.24. In a so-called single-shot au-
tocorrelator [12.107, 108] the two pulses are coupled
noncollinearly into a thin frequency-doubling crystal
(Fig. 12.25). Only in a small region within the crys-
tal the pulses have spatiotemporal overlap. According
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to the geometry of the setup in Fig. 12.25b the delay
time τ is related to the spatial coordinate x0. Imaging
the frequency-doubled signal yields an intensity auto-
correlation as a function of the spatial coordinate

SintAC(x0) =
∞∫

−∞
I (x)I (x + x0)dx . (12.73)

These single-shot devices are especially suited for high-
intensity femtosecond laser pulses and are therefore
convenient tools to adjust low-repetition femtosecond
amplifiers. Phase-sensitive setups have also been re-
ported [12.108, 109].

12.3.3 Interferometric Autocorrelations

We will now discuss the case of a collinear autocorrela-
tion in more detail. The simplest interferometric signal
is that from a linear detector that records the intensity
of the recombined pulses. For identical electric fields
E of the two pulses, the signal Slinear interferometric AC as
a function of their relative delay τ is

Slinear interferometric AC(τ) =
∞∫

−∞
[E(t)+ E(t + τ)]2 dt

= 2

∞∫
−∞

I (t)dt

+2

∞∫
−∞

E(t)E(t + τ)dt

(12.74)

where we have skipped the prefactors defined in
Sects. 12.1.1 and 12.1.2. The signal consists of an off-
set given by the summed intensity of the two pulses
and the interference term that is described by an auto-
correlation of the electric field. The Wiener–Khintchine
theorem states that the Fourier transformation of the

Fig. 12.26a–e Quadratic interferometric autocorrelation
(a) and the isolated components S f0 , S f1 and S f2 in
the time domain (b)–(d) for a bandwidth-limited Gaus-
sian pulse of 10 fs pulse duration. Note that the offset in
(a) introduces an additive value at ω = 0 and (e) is there-
fore the Fourier transform of the offset-corrected curve.
Δtquadratic interferometric AC is indicated in (a) in addition
(in the figure qiAC is used as a shorthand notation for
quadratic interferometric AC) �
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Short and Ultrashort Laser Pulses 12.3 Measurement Techniques for Femtosecond Laser Pulses 1077

autocorrelation of the electric field yields the spec-
tral density [12.110] – a quantity that is proportional
to the spectral intensity I (ω), which is the ba-
sis for Fourier spectroscopy. A linear autocorrelation
therefore contains no information beyond the ampli-
tude of the spectrum and the total intensity of the
pulse.

A solution to this problem is a nonlinear detector
that is sensitive to the squared intensity and yields the
signal Squadratic interferometric AC

Squadratic interferometric AC(τ)

=
∞∫

−∞

{
[E(t)+ E(t + τ)]2}2 dt . (12.75)

Taking the electric field as E(t) = Re[A(t)eiΦa(t) eiω0t]
and defining S0 = ∫ ∞

−∞ A4(t)dt in order to normalize
one obtains, similar to [12.4, 111],

Squadratic interferometric AC(τ) = 1

S0

(
S f0 + S f1 + S f2

)
with

S f0 =
∞∫

−∞

[
A4(t)+2A2(t)A2(t + τ)

]
dt ,

S f1 = 2 Re

⎧⎨
⎩eiω0τ

∞∫
−∞

A(t)A(t + τ)

×
[

A2(t)+ A2(t + τ)
]

ei[Φa(t+τ)−Φa(t)] dt

⎫⎬
⎭ ,

S f2 = Re

⎡
⎣ei2ω0τ

∞∫
−∞

A2(t)A2(t + τ)

× ei2[Φa(t+τ)−Φa(t)] dt

⎤
⎦ , (12.76)

where Re denotes the real part. According to (12.48) the
signal Squadratic interferometric AC can be decomposed into
three frequency components, S f0 , S f1 and S f2 , at ω ≈ 0,
ω ≈ ±ω0, and ω ≈ ±2ω0, respectively, as illustrated in
Fig. 12.26.

S f0 corresponds to an intensity correlation with
background. It can be obtained either by Fourier fil-
tering or by averaging the fast oscillations in the
experiment directly. With (12.76) it follows that this

intensity autocorrelation has a center-to-offset ratio of

S f0 (0)

S f0 (∞)
=

∞∫
−∞

3A4(t)dt

∞∫
−∞

A4(t)dt

= 3

1
. (12.77)

S f1 is a sum of two mutual symmetric cross-correlations
and depends explicitly on the temporal phase Φa(t).

S f2 represents an autocorrelation of the second
harmonic field and is therefore related to the spec-
tral intensity of the second-harmonic spectrum. It
also depends on the temporal phase Φa(t). Note that
phase-modulated pulses having the same spectral in-
tensity can have very different spectral intensities after
frequency doubling (Fig. 12.27). This has been ex-
ploited in recent experiments [12.21, 112, 113]. Making
use of a pulse shaper (Sect. 12.1.3) that scans cali-
brated phase functions and at the same time measuring
the second-harmonic spectrum is a noninterferometric
method to characterize the spectral phase of ultra-
short laser pulses [12.114]. All three components add
constructively at τ = 0 and yield a center to back-
ground ratio of 8 : 1. This can be directly seen from
(12.75)

Squadratic interferometric AC(0)

Squadratic interferometric AC(∞)

=

∞∫
−∞

(E + E)4 dt

∞∫
−∞

E4 dt +
∞∫

−∞
E4 dt

=
16

∞∫
−∞

E4 dt

2
∞∫

−∞
E4 dt

= 8

1
.

(12.78)

The center-to-background ratios are used in experi-
ments to check the proper alignment of the interfer-
ometer. In order to derive phase information analytical
functions, for example Gaussians, can be fitted to the
Squadratic interferometric AC [12.111]. Taking the knowl-
edge of the spectrum into account iterative algorithms
that make no assumptions about the underlying pulse
shapes have been reported [12.115, 116]. Both ap-
proaches deliver meaningful results only for linear
chirps and in the case of nearly no noise. The in-
fluence of noise on autocorrelation measurements is
discussed in [12.4, 117]. This is an important point
as most often measurements are performed over an
average of pulse trains. Other sources of systematic
error in autocorrelation measurements are discussed
in [12.6].

Part
C

1
2
.3



1078 Part C Coherent and Incoherent Light Sources

The ratio ΔtintAC/Δt is only valid for the in-
tensity autocorrelation of a bandwidth-limited pulse.
For bandwidth-limited Gaussian pulses the FWHM of
a quadratic interferometric autocorrelation signal (taken
at 4 in a 8 : 1 plot as displayed in Fig. 12.26a) relates to
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Δtquadratic interferometric AC

Δt
= 1.6963 (12.79)
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for bandwidth-limited Gaussian pulses. Figure 12.27
compiles for different pulses the resulting interfero-
metric autocorrelation traces together with the intensity
autocorrelation and the spectrum at the second har-
monic of the fundamental.

12.3.4 Time–Frequency Methods

As described above, the interferometric autocorrela-
tion, even together with the independently measured
spectrum, does not give sufficient information to char-
acterize arbitrary-shaped ultrashort laser pulses with
respect to their temporal amplitude A(t) or temporal
intensity I (t) and the temporal phase function Φa(t)
or their frequency-domain counterparts (Sect. 12.1.2).

Fig. 12.27a–o Left: quadratic interferometric autocorre-
lation Squadratic interferometric AC(τ) (black) and intensity
autocorrelation Sint AC(τ) (grey) for the pulse shapes
of Fig. 12.3 with a central wavelength of 800 nm. The
temporal intensity I (t), the additional temporal phase
Φa(t) and the instantaneous frequency ω(t) are shown
in the insets. Right: corresponding power spectrum den-
sity PSD(ω) of SqiAC(τ) displayed in the region of the
second harmonic. Note that for pulses (a) to (j) the lin-
ear spectrum remains unchanged. (a) Bandwidth-limited
Gaussian laser pulse of 10 fs duration, (b) bandwidth-
limited Gaussian laser pulse of 10 fs duration shifted in
time to −20 fs due to a linear phase term in the spectral
domain (φ′ = −20 fs), (c) symmetrical broadened Gaus-
sian laser pulse due to φ′′ = 200 fs2, (d) third-order spectral
phase (φ′′′ = 1000 fs3) leading to a quadratic group de-
lay, (e) combined action of all spectral phase coefficients
(a)–(d), (f) π step at the central frequency, (g) π step
displaced from the central frequency, (h) sine modula-
tion at the central frequency with φ(ω) = 1 sin[20 fs(ω−
ω0)], (i) cosine modulation at the central frequency
with φ(ω) = 1 cos[20 fs(ω−ω0)], (j) sine modulation at
the central frequency with φ(ω) = 1 sin[30 fs(ω−ω0)],
(k) symmetrical clipping of spectrum, (l) blocking of the
central frequency components, (m) off-center absorption,
(n) self-phase modulation. Note the spectral broadening,
(o) double pulse, with a pulse-to-pulse delay of 60 fs. Note
that the second harmonic field E2(t) = A2(t)e2iΦa(t)e2iω0t

gives rise to the autocorrelation function Sf2 is related to
the second harmonic PSD, i. e. squared modulus of the
Fourier transform of E2(t) as displayed in the right col-
umn. Hence, the shape of the second harmonic PSD is
determined by phase modulation of the linear spectrum
and can be used to efficiently control two-photon resonant
processes [12.21, 112, 113] ��

Techniques have emerged that operate not in the time
or frequency domain but in the joint time–frequency do-
main, involving both temporal resolution and frequency
resolution simultaneously [12.24,118] and being able to
completely determine the pulse shape [12.6].
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a)

b)

c)

d)

e)

Electric field
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Frequency

Frequency
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Time t

Time t

Time τ

Time τ

τ1 τ2 τ3 τ4

τ1 τ2 τ3 τ4

g(t–τ)

Fig. 12.28a–e Illustration of a short-time Fourier transform of
a complicated electric field. (a) Electric field as a function of time;
(b) power spectrum density as a function of frequency; (c) gating the
electric field; four different time delays are shown; (d) power spec-
trum density for each gate; (e) spectrogram, revealing an oscillating
instantaneous frequency as a function of time being the origin for
the complicated electric field in (a)

For illustration purposes we start with an example
from music: in order to describe a line of music we
use notes. The frequency is indicated by the pitch of
the note and the duration of the note indicates how long

Ludwig van Beethoven Synphony No. 5
C minor op. 67
Allegro con brio

Audio frequency

Time (s)
0 0.5 1 1.5 2 2.5

a)

b)

Fig. 12.29a,b Sheet of music (a) and corresponding spec-
trogram (b) of Beethoven’s fifth symphony

the frequency has to be held. The sheet of music will
tell us in what order the notes have to be played and
additional information like piano and forte is given to
indicate the intensity to be played. The first few notes
of Beethoven’s fifth symphony are given as an example
in Fig. 12.29a. If an orchestra is playing the music and
we wish to graphically record the music, a spectrogram
Sspectrogram(ω, τ) is a useful quantity. A spectrogram of
a function f (t) is defined as the energy density spectrum
of a short-time Fourier transform STFT(ω, τ)

Sspectrogram(ω, τ) ≡ |STFT(ω, τ)|2

=
∣∣∣∣∣∣

∞∫
−∞

f (t)g(t − τ)e−iωt dt

∣∣∣∣∣∣
2

,

(12.80)

where g(t − τ) denotes the gate (or window) function.
The concept behind it is simple and powerful. If we
want to analyze what is happening at a particular time,
we just use a small portion of the signal centered at
that time, calculate its spectrum and do it for each
instant of time. A spectrogram corresponding to the
beginning of Beethoven’s fifth symphony is shown in
Fig. 12.29b.

Figure 12.28 shows the concept of STFT on a com-
plicated electric field of a laser. Once an electric field
is retrieved in amplitude and phase there are other
time – frequency distributions in use for displaying
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Fig. 12.30a–o Calculated FROG traces at correspond-
ing frequencies for various ultrashort pulse shapes with
a central wavelength of 800 nm according to the pulses
displayed in Fig. 12.3. Left: polarization gate (PG) FROG.
Right: second-harmonic generation (SHG) FROG. The
temporal intensity I (t), the additional temporal phase
Φa(t) and the instantaneous frequency ω(t) are shown
in the insets as a reminder. (a) Bandwidth-limited Gaus-
sian laser pulse of 10 fs duration, (b) bandwidth-limited
Gaussian laser pulse of 10 fs duration shifted in time to
−20 fs due to a linear phase term in the spectral domain
(φ′ = −20 fs), (c) symmetrical broadened up chirped Gaus-
sian laser pulse due to φ′′ = 200 fs2, (d) third-order spectral
phase (φ′′′ = 1000 fs3) leading to a quadratic group de-
lay, (e) combined action of all spectral phase coefficients
(a)–(d), (f) π step at the central frequency, (g) π step
displaced from the central frequency, (h) sine modula-
tion at the central frequency with φ(ω) = 1 sin[20 fs(ω−
ω0)], (i) cosine modulation at the central frequency
with φ(ω) = 1 cos[20 fs(ω−ω0)], (j) sine modulation at
the central frequency with φ(ω) = 1 sin[30 fs(ω−ω0)],
(k) symmetrical clipping of spectrum, (l) blocking of
the central frequency components, (m) off-center ab-
sorption, (n) self-phase modulation, (note the spectral
broadening), (o) double pulse, with a pulse-to-pulse delay
of 60 fs ��

the data like for example the Wigner [12.24, 119–122]
and Husimi representations [12.123, 124]. A quantity
closely related to the spectrogram is the sonogram
Ssonogram(ω, τ)

Ssonogram(ω, τ) ≡
∣∣∣∣∣∣

∞∫
−∞

f̃ (ω′)g̃(ω−ω′)e+iω′τ dω′
∣∣∣∣∣∣
2

,

(12.81)

where g̃(ω−ω′) is a frequency gate in analogy to the
time gate g(t −τ) used in the spectrogram. If g̃(ω) is the
Fourier transform of g(t) then it can be shown that the
sonogram is equivalent to the spectrogram [12.6].

In ultrafast optics, the gate to record the spectrogram
or the sonogram is usually the pulse itself.

Spectrogram-Based Methods
Recording a spectrogram is accomplished experimen-
tally by gating the pulse with a variable delayed
replica of the pulse in an instantaneous nonlinear op-
tical medium followed by spectrally resolving the gated
pulse. The basic optical layout of such a device is al-
most the same as a noncollinear autocorrelation setup
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depicted in Fig. 12.24b. Only the detector has to be re-
placed by a spectrometer and camera system in order
to spectrally resolve the gated pulse. The corresponding
technique has been termed frequency-resolved optical
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gating (FROG) and is described in great detail in [12.6,
125] and references therein.

Depending on the instantaneous nonlinear optical
effect used to gate the pulse in FROG, several differ-
ent FROG geometries have been investigated (the setup
of Fig. 12.24b would correspond to a second-harmonic-
generation (SHG) FROG). These geometries can also
be implemented as single-shot devices, similar to the
single-shot autocorrelator depicted in Fig. 12.25. The
FROG trace IFROG(ω, τ), that is a plot of frequency
(wavelength) versus delay, is a spectrogram of the com-
plex amplitude Ec (12.15). Neglecting any prefactors,
different nonlinear optical effects yield the following
expressions according to [12.6, 125].

Polarization-Gate (PG) FROG.

IPG
FROG(ω, τ) =

∣∣∣∣∣∣
∞∫

−∞
Ec(t) |Ec(t − τ)|2 e−iωt dt

∣∣∣∣∣∣
2

.

(12.82)

In a crossed-polarizer arrangement for the probe pulse
this technique makes use of induced birefringence in
fused silica in the presence of the gate pulse. The third-
order optical nonlinearity is the electronic Kerr effect.
The FROG traces obtained by this method are very in-
tuitive (Fig. 12.30).

Self-Diffraction (SD) FROG.

ISD
FROG(ω, τ) =

∣∣∣∣∣∣
∞∫

−∞
Ec(t)2 E∗

c (t − τ)e−iωt dt

∣∣∣∣∣∣
2

.

(12.83)

In this approach the two beams (with the same polar-
ization) generate a sinusoidal intensity pattern in the
nonlinear medium (for example, fused silica) and hence
introduce a material grating, which diffracts each beam.
One of the diffracted beams is then the signal beam sent
to the spectrometer.

Transient-Grating (TG) FROG.

ITG
FROG(ω, τ)

=
∣∣∣∣∣∣

∞∫
−∞

Ec1(t)E∗
c2(t)Ec3(t − τ)e−iωt dt

∣∣∣∣∣∣
2

. (12.84)

This is a three-beam setup, where two pulses are over-
lapped in time and space at the optical Kerr medium
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(for example fused silica), producing a refractive in-
dex grating similar as in SD FROG. In a TG a third
pulse is variably delayed and overlapped in the fused
silica and is diffracted by the induced grating, produc-
ing the signal beam for the spectrometer. The beams
in the TG geometry (three input and one output) are
kept nearly collinear and form a so-called boxcars ar-
rangement, where the four spots appear in the corners of
a rectangle when placing a card into the beams after the
nonlinear medium. As TG is a phase-matched process,
the sensitivity is higher compared to the SD approach.
Depending on which pulse is variably delayed – with
the other two coincident in time – the TG FROG trace is
mathematically equivalent to the PG FROG (pulse one
or three is delayed) or to the SD FROG (pulse two is
delayed).

Third-Harmonic-Generation (THG) FROG.

ITHG
FROG(ω, τ) =

∣∣∣∣∣∣
∞∫

−∞
Ec(t − τ)2 Ec(t)e−iωt dt

∣∣∣∣∣∣
2

.

(12.85)

This method makes use of third-harmonic generation as
the nonlinear process.

Second-Harmonic-Generation (SHG) FROG.

ISHG
FROG(ω, τ) =

∣∣∣∣∣∣
∞∫

−∞
Ec(t)Ec(t − τ)e−iωt dt

∣∣∣∣∣∣
2

.

(12.86)

SHG FROG involves spectrally resolving a standard
SHG-based noncollinear intensity autocorrelator, which
always yields symmetric traces, resulting in a direction
of time ambiguity for the SHG FROG. This ambigu-
ity can experimentally be removed, for example, by
placing a piece of glass in the beam before the beam
splitter to introduce positive chirp or to create satel-
lite pulses via surface reflections. Because of its high
sensitivity and as it is based on a standard SHG auto-
correlator, this method is widely employed. Examples
of SHG FROG traces for various pulse shapes are given
in Fig. 12.30.

A comparison of the different approaches is given
in Table 12.4. Various calculated traces for common
ultrashort pulse distortions for the PG and the SHG
FROG geometries are given in Fig. 12.30. Calculated
FROG traces for the other beam geometries are given
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Table 12.4 Comparison of different FROG geometries (PG = polarization gate; SD = self-diffraction; TG = transient
grating; THG = third-harmonic generation; SHG = second-harmonic generation). Sensitivities are only approximate
and assume 800 nm 100 fs pulses focused to about 100 μm (10 μm for THG) to be measured. In the schematics only the
part involving the nonlinear optical effect characterized by its nonlinearity is displayed. Not shown are delay lines and
various lenses, as these are common to all setups and are similar to the optical layouts shown in Figs. 12.24b and 12.25.
Solid lines indicate input pulses; dashed lines indicate signal pulses. The frequencies shown (ω, 2ω, 3ω) are the carrier
frequencies of the pulses taking part and indicate whether the signal pulse has the same carrier frequency as the input
pulse or is shifted as in SHG and THG. D denotes a detector being composed of a spectrometer and camera system. (WP
= wave plate; P = polarizer) (after [12.6])

Geometry PG SD TG THG SHG

Nonlinearity χ(3) χ(3) χ(3) χ(3) χ(2)

Sensitivity ≈ 1 ≈ 10 ≈ 0.1 ≈ 0.03 ≈ 0.01

(single shot) (μJ)

Sensitivity ≈ 100 ≈ 1000 ≈ 10 ≈ 3 ≈ 0.001

(multi shot) (nJ)

Advantages Intuitive traces; Intuitive traces; Background-free; Sensitive; Very sensitive

automatic phase deep UV sensitive; very large

matching capability intuitive traces; bandwidth

deep UV capability

Disadvantages Requires Requires thin Three beams Unintuitive traces; Unintuitive traces;

polarizers medium; very short short λ signal

not phase λ signal

matched

Ambiguities None known None known None known Relative phase Relative phase

of multiple of multiple

pulses pulses

φ, φ±2π/3 φ, φ+π;

direction of time
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in [12.125]. Measured FROG traces for different ge-
ometries are compiled in [12.6].

It is important to note that knowledge of the spec-
trogram (or sonogram) of the electric field of an
ultrashort laser pulse is sufficient to completely deter-
mine the electric field in amplitude and phase (besides
some ambiguities such as the absolute phase) because
a spectrogram is equivalent to the two-dimensional
phase-retrieval problem in image science and astron-
omy [12.126]. In general, phase retrieval is the problem
of finding a function knowing only the magnitude (but
not the phase) of its Fourier transform. Phase retrieval
for a function of one variable is impossible. For ex-
ample, knowledge of a pulse spectrum does not fully
determine the pulse as infinitely many different pulses
have the same spectrum (Fig. 12.3a–j). However, phase

retrieval for a function of two variables is possible and
the FROG trace can be rewritten as the squared magni-
tude of a two-dimensional Fourier transform [12.125].
Very sophisticated iterative retrieval procedures, which
can rapidly retrieve the pulse from the FROG trace with
update rates up to several Hz, exist [12.127].

In the following some additional attributes of FROG
techniques, which also partially hold for sonogram
methods, are summarized:

• As the FROG trace consists of N × N points, while
the intensity and phase on the other hand only
have 2N points, the FROG trace overdetermines the
pulse. This gives rise to an increased robustness of
the two-dimensional methods and to an improved
immunity towards measurement noise. The noncon-
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Short and Ultrashort Laser Pulses 12.3 Measurement Techniques for Femtosecond Laser Pulses 1085

vergence of the FROG algorithm therefore can be
a hint of the presence of systematic errors.• Other than autocorrelation techniques, FROG of-
fers a built-in consistency check to detect systematic
errors. It involves computing the marginals of the
FROG trace, that is, integrals of the trace with re-
spect to delay or frequency. The marginals can be
compared to the independently measured spectrum
or autocorrelation. For an SHG FROG the time
marginal yields the intensity autocorrelation and
the frequency marginal yields the second-harmonic
spectrum. The marginals of the SHG FROG traces
in Fig. 12.30 are therefore given in the correspond-
ing pictures of Fig. 12.27.• FROG can also be used in a cross-correlation vari-
ant named XFROG [12.129]. In this case a known
pulse is used to gate an unknown pulse (usually
derived from the known one), where no spectral
overlap between the pulses is required. Via sum- or
difference-frequency generation or other nonlinear
processes, pulses in the ultraviolet (UV) and in-
frared (IR) spectral range can be characterized. The
technique has been refined for measuring pulses in
the attojoule (per pulse) regime and is capable of
measuring pulses with poor spatial coherence and
random phase, such as fluorescence [12.130].• In the sub-10 fs range SHG FROG has been demon-
strated down to 4.5 fs pulse durations with the help
of type I phase matching in a 10 μm thick BBO crys-
tal [12.131]. In this regime the noncollinear beam
geometry can also introduce beam smearing arte-
facts. Type II phase matching allows the use of
a collinear SHG FROG geometry, which is free
of geometrical smearing [12.132, 133]. The FROG
traces generated in this arrangement do not contain
the optical fringes associated with interferometric
autocorrelations and, therefore, can be processed by
existing SHG FROG algorithms.• Making use of a thick SHG crystal as a frequency
filter [12.134, 135] allows for the construction
of an extremely simple and robust FROG setup
that has been demonstrated for 800 nm pulses in
the range from 20 fs to 5 ps for different spec-
tral widths of the ultrashort pulses. The device
was termed grating-eliminated no-nonsense ob-
servation of ultrafast incident laser light E-fields
(GRENOUILLE) [12.6]. Spatial temporal distor-
tions such as spatial chirp and pulse front tilt can
also be measured via GRENOUILLE [12.136, 137]
(spatial chirp: each frequency is displaced in the
transverse spatial coordinates, often resulting from

Variable
frequency

filter

BS

E (t)

Nonlinear
medium

Nonlinear
signal

Detector

Variable delay

Fig. 12.31 Schematic of a frequency-domain phase measurement
(FDPM) or spectrally and temporally resolved upconversion tech-
nique (STRUT) apparatus

Reference in

Signal in

Spectrometer

E (t) Eref(t)

τ

Fig. 12.32 Basic setup for spectral interferometry (SI) to character-
ize the phase difference between an ultrashort (signal) pulse E(t)
and a time-delayed reference pulse Eref (t)

Grating
Cylindrical lens Detector

Signal

Reference

f

Fig. 12.33 Experimental setup for real-time spatial–spectral inter-
ference (SSI) measurements (after [12.128])

misaligned prism pairs and tilted windows; pulse
front tilt: the pulse group fronts (intensity contours)
are tilted with respect to the perpendicular to the
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Fig. 12.34a–o Calculated spectral interference (SI) and
spatial–spectral interference (SSI) traces for various ultra-
short pulse shapes with a central wavelength of 800 nm
according to the pulses displayed in Fig. 12.3. Left –
SI: the time delay between both pulses is 100 fs. Right:
SSI the angle 2Θ between both beams is 2◦. The tem-
poral intensity I (t), the additional temporal phase Φa(t)
and the instantaneous frequency ω(t) are shown in the
insets as a reminder. (a) Bandwidth-limited Gaussian
laser pulse of 10 fs duration, (b) bandwidth-limited Gaus-
sian laser pulse of 10 fs duration shifted in time to
–20 fs due to a linear phase term in the spectral do-
main (φ′ = −20 fs), (c) symmetrical broadened Gaussian
laser pulse due to φ′′ = 200 fs2, (d) third-order spectral
phase (φ′′′ = 1000 fs3) leading to a quadratic group de-
lay, (e) combined action of all spectral phase coefficients,
(a)–(d)(f) π step at the central frequency, (g) π step
displaced from the central frequency, (h) sine modula-
tion at the central frequency with φ(ω) = 1 sin[20 fs(ω−
ω0)], (i) cosine modulation at the central frequency
with φ(ω) = 1 cos[20 fs(ω−ω0)], (j) sine modulation at
the central frequency with φ(ω) = 1 sin[30 fs(ω−ω0)],
(k) symmetrical clipping of spectrum, (l) blocking of the
central frequency components, (m) off-center absorption,
(n) self-phase modulation, (note the spectral broadening)
(o) double pulse, with a pulse-to-pulse delay of 60 fs �, ��

propagation direction, resulting from residual an-
gular dispersion after pulse compressor or stretcher
units).• The wavelength limitation due to nonlinear optical
processes can be circumvented by the use of multi-
photon ionization as a nonlinearity. Measurements
of interferometrically recorded energy-resolved
photoelectron spectra generated by above-threshold
ionization were demonstrated to yield FROG-type
time–frequency distributions that were used to
characterize ultrashort laser pulses [12.138]). This
approach is potentially applicable to the XUV wave-
length region.

Sonogram-Based Methods
Recording the sonogram involves slicing the fre-
quency spectrum and measuring the arrival time of
the frequency components. Experimentally this can
be achieved, for example, by cross-correlation of
a pulse with a frequency-filtered replica of the pulse
in an instantaneous nonlinear medium (Fig. 12.31).
The corresponding technique is known as frequency-
domain phase measurement (FDPM) and is described
in [12.139]. The method gives information on the group
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delay and an integration can be performed that gives
the spectral phase function without any iterative al-
gorithm. An experimental realization has been termed
spectrally and temporally resolved upconversion tech-
nique (STRUT) [12.140] and also exists in a single-shot
version [12.141]. As the sonogram and the spectrogram
are mathematically equivalent FROG retrieval algo-
rithms (being in principle somewhat slower) can also be
used in this approach [12.141]. From a practical point of
view the method is experimentally more involved than
a FROG setup and it is less sensitive, because energy
is lost at the filter before the nonlinear medium. In the
SHG version, the STRUT apparatus and the FROG ap-
paratus are identical when removing the frequency filter
and using a spectrometer as the detector in Fig. 12.31.

12.3.5 Spectral Interferometry

The techniques described so far make use of nonlinear
optical processes in order to determine the amplitude
and phase of ultrashort laser pulses. Although, with
the help of SHG FROG, pulses down to the picojoule
regime can be measured in a multishot setup, shaped ul-
trashort laser pulses might spread out their energy over
a time scale of picoseconds and thus prevent character-
ization with the help of nonlinear processes. However,
as these pulses are usually created from an oscillator
or an amplifier a well-characterized reference pulse is
often available. This allows to make use of highly sen-
sitive linear techniques to determine the amplitude and
phase of an ultrashort laser pulse. The technique is
named spectral interferometry (SI), frequency-domain
interferometry or Fourier-transform spectral interferom-
etry [12.6, 142–145]. The basic SI setup is depicted in
Fig. 12.32. A well-characterized reference pulse Eref (t)
and a modified signal pulse E(t) derived from an ex-
periment or a pulse shaper are directed collinearly into
a spectrometer. The measured SI spectrum SSI(ω) is
proportional to the square of the Fourier transform of
the sum of the two fields:

SSI(ω) ∝ |Fourier transform {Eref (t)+ E(t − τ)}|2
∝ ∣∣Ẽref (ω)+ Ẽ(ω)e−iωτ

∣∣2
∝

∣∣∣√Iref (ω)e−iφref (ω) +√
I (ω)e−iφ(ω)−iωτ

∣∣∣2
= Iref(ω)+ I (ω)+√

Iref (ω)
√

I (ω)

× (eiφref (ω)−iφ(ω)−iωτ + c.c.)

= Iref(ω)+ I (ω)+2
√

Iref (ω)
√

I (ω)

× cos(φref (ω)−φ(ω)−ωτ) . (12.87)
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The phase difference

Δφ(ω) = φref(ω)−φ(ω) (12.88)

can be extracted from the measured SSI(ω). Using the
arcos function is not recommended because experimen-
tal noise can lead to large phase errors [12.145]. Com-
monly a Fourier-transform technique is used [12.145,
146] where the phase difference is extracted by the
Fourier transform of the measured spectrum, ignoring
the negative and zero-frequency components and shift-
ing the positive-frequency components to direct current
(DC) in order to remove the delay term e−iωτ . An in-
verse Fourier transform then yields the phase difference
Δφ(ω). With the help of the known reference phase
φref (ω), φ(ω) is finally obtained.

In the following some attributes of SI are summa-
rized:

• SI requires the spectrum of the reference pulse to
contain completely the spectrum of the unknown
pulse.• If the reference pulse and the signal pulse are iden-
tical, the phase difference is zero. The remaining
oscillations on the spectrum due to the delay term
are a convenient tool to adjust, for example, inter-
ferometric autocorrelator setups.• Using the FROG technique for characterization of
the reference pulse, the combined technique was
termed temporal analysis by dispersing a pair of
light E-fields (TADPOLE) [12.6, 147].• SI is a heterodyne technique and amplifies the gen-
erally weak signal pulse (12.87). With the help of
TADPOLE, pulse trains with an energy per pulse
in the zeptojoule (zepto = 10−21) regime have been
analyzed [12.147].• Once the reference phase is known, phase re-
trieval does not require an iterative procedure and
is therefore fast. This allows, for example, for
the synthesis of arbitrary laser pulse shapes with
the help of feedback-controlled femtosecond pulse
shaping techniques [12.148]. Together with its high
sensitivity, TADPOLE is well suited to the char-
acterization of complex-shaped femtosecond laser
pulses. Furthermore, in a dual-channel setup SI
has been used to characterize complex polarization-
shaped femtosecond laser pulses [12.78]. The setup
for the characterization of time-dependent polar-
ization profiles has been called polarization-labeled
interference versus wavelength for only a glint
(POLLIWOG) [12.149].
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Short and Ultrashort Laser Pulses References 1089

• SI can also be implemented in a spatial varia-
tion, where the reference pulse and the signal pulse
propagate at an angle of 2Θ with respect to each
other (Fig. 12.33). The frequency components of
the optical fields of the two propagating pulses are
mapped in one dimension by a diffraction grating
and a cylindrical lens and interfere at the focal plane
of the lens. The technique is called spatial–spectral
interference (SSI). The corresponding device is
a convenient tool for optimizing various setups such
as pulse shapers and compressors as the fringe
patterns are displayed in real time and the infor-
mation is encoded in an intuitively interpretable
pattern [12.128]. A comparison of calculated SI and
SSI traces for various ultrashort pulse distortions is
given in Fig. 12.34.• There also exists a self-referencing variant of SI that
does not require separate characterization of the ref-

erence pulse. This technique is called spectral phase
interferometry for direct electric field reconstruc-
tion (SPIDER) [12.17,150] and involves appropriate
temporal stretching of a reference pulse followed by
sum-frequency generation with two well-displaced
copies of the unstretched input pulse. This tech-
nique has been successfully demonstrated for the
characterization of ultrashort pulses in the few-cycle
regime [12.151]. Due to the nonlinear process in-
volved, SPIDER is less sensitive than TADPOLE.
A comparison of SHG FROG and SPIDER for
sub-ten-femtosecond pulse characterization is given
in [12.152]. A spatially resolved version of SPIDER
has also been demonstrated [12.153]. A setup that is
capable of characterizing a pulse at the interaction
point of an experiment, called zero additional phase
(ZAP) SPIDER, has been demonstrated for visible
and sub-20-femtosecond ultraviolet pulses [12.154].
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