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The combination of various 2D layered materials in multilayer heterostructures arises great interest in
the current science. Due to the large variety of electronic properties of the group of 2D layered materials
the combination opens a new pathway towards ultrasmall electronic devices. In this contribution we
present a full mathematical description of multilayer heterostructure samples and their diffraction
patterns including a proposal of a consistent assignment of the superstructure diffraction spots. A 27 nm
thick MoS2–graphite heterostructure was produced and fully analysed with the methods presented in
this paper.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

Two-dimensional materials consist of covalently joined layers,
which are vertically stacked by van der Waals forces. The elec-
tronic properties of layered materials vary from pure insulators to
metallic conductors and can even be dependent on the number of
layers [1]. The combination of different types of bonds within one
material leads to remarkable inter- and intra-layer transport
properties. The combination of two-dimensional materials in
multilayer heterostructures is expected to open up a broad field of
application in electronics and sensor technology [2,3]. It is there-
fore essential to investigate the fundamental properties of such
systems.

A matter of particular interest is the formation of a Moiré
pattern caused by the superposition of several layered materials.
This superstructure appears in diffraction patterns of the hetero-
structure and contains all information about the interlayer struc-
tural properties. A full mathematical description of the super-
structure in real space and reciprocal space is presented in Section
2. The corresponding nomenclature for the appearing spots in the
diffraction pattern of a free-standing multilayer heterostructure is
explained in Section 3. A free-standing sample preparation enables
us to study the characteristics of a multilayer van der Waals het-
erostructure without the influence of any substrate effect. Our
preparation procedure follows a proposal by Jannik Meyer [4],
Senftleben).
which is based on the exfoliation method by Andre Geim and
Konstantin Novoselov [5]. This preparation method is presented in
Section 4 and already has proved to be successful in the pre-
paration of free-standing samples of few-layer graphite [6] and
molybdenum disulphide.

In general, Ultrafast Electron Diffraction (UED) is a direct ap-
proach to study structural dynamics following optical excitation
[6–14]. In this contribution we use the experimental UED set-up
presented in Section 5 to take static diffraction patterns of a free-
standing sample of a molybdenum disulphide–graphite hetero-
structure. Finally we present a fully characterized free-standing
sample of a molybdenum disulphide–graphite heterostructure and
a complete assignment of its static diffraction pattern in Section 6.
2. Mathematical description of Moiré pattern

In this section we will focus on the discussion of the super-
structure symmetry and its mathematical description. The math-
ematical description of the superstructure is essential for the
complete assignment of the diffraction pattern of a van der Waals
heterostructure. The combination of two hexagonal two-dimen-
sional materials leads to the formation of a Moiré pattern. The
superstructure arises from the superposition of atomic positions in
real space, the corresponding diffraction pattern in Fourier space is
built by a two-dimensional convolution of the diffraction patterns
of the individual materials. This leads to additional superstructure
diffraction spots encircling every material Bragg spot. The origin of
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Fig. 1. Schematic example of the origin of the superstructure in real space and reciprocal space. The combination of molybdenum disulphide (red) and graphite (blue), which
are misaligned by an angle of φ¼�7.3°, leads to the formation of a Moiré pattern in real space. The corresponding unit cell with lattice constant ́LMoire is plotted in green. The
superstructure in real space arises from the superposition of atomic positions, the corresponding diffraction pattern in Fourier space is built by a two-dimensional con-
volution of the diffraction patterns of the individual materials. This leads to additional superstructure diffraction spots (green) encircling every material Bragg spot. The
superstructure is rotated by an angle α with respect to the lattice orientation of molybdenum disulphide. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 2. The in-plane real-space lattice coordinates of the hexagonal materials are

described by a set of basis vectors (→ → )a a,1 2 and (
→ →

)b b,1 2 which we choose to be
→ = ( − )a 3 , 1a

1 2
and → = ( )a a 0, 12 . The angle between the real-space basis vectors

is 120° and a is the real-space lattice constant of the first material. The second
lattice with lattice constant b is rotated anticlockwise with respect to lattice a by an
angle of φ. The example is shown for φ¼�7.3°. The corresponding lattice
vectors are then obtained to be φ φ φ φ

→
= ( + − )b 3 cos sin , 3 sin cosb

1 2
and

φ φ
→

= ( − )b b sin , cos2 . The set of reciprocal in-plane lattice vectors (→* →*)a a,1 2 and

(
→* →*

)b b,1 2 is by definition also rotated anticlockwise by an angle of φ. The first order
reciprocal lattice vector of the Moiré pattern

→
́kMoire is obtained by subtraction of the

reciprocal lattice vectors
→*

− →*b a1 1 .
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the peaks leads to the fact that every superstructure diffraction
spot with the same relative orientation to a specific material Bragg
spot contains the same information. A schematic example of the
formation of a Moiré superstructure and the corresponding dif-
fraction pattern by the combination of molybdenum disulphide
and graphite is shown in Fig. 1.

Due to the fact that the materials are stacked along their axis of
six-fold rotational symmetry, this six-fold rotational symmetry is
preserved in the multilayer heterostructure. The missing periodi-
city along the c-axis leads in the case of a combination of two
different materials to the space group 6, as in our case, or to 6 mm
if the rotational angle between the layers is either φ¼0° or φ¼30°
and thus, the presence of sv mirror planes is allowed. In both cases
we do not observe any symmetry elements that are affecting the
coordinate along the c-axis. Therefore, we will only consider the
in-plane contributions when developing a mathematical descrip-
tion for the arising Moiré pattern.

The in-plane real-space lattice coordinates of any hexagonal
material can be described by a set of basis vectors →a1 and

→a2 which
we choose according to Fig. 2 to be:
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−
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The angle between the real-space basis vectors is 120° and a is the
real-space lattice constant of the specific material. The corre-
sponding reciprocal lattice vectors are then obtained to be:
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being the length of the reciprocal lattice vector.

The spatial properties in real space of this lattice (described by
a function (→)f ra ) can be represented by an infinite Fourier series
with, in general, complex valued coefficients cj k
a
, [15].
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The second lattice with lattice constant b is rotated anticlockwise
with respect to lattice a by an angle of φ. This leads to the fol-
lowing set of reciprocal lattice vectors for the second lattice.
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In accordance with (3), the spatial properties in real space of the
second lattice b are described by a function (→)f rb which can also
be represented by an infinite Fourier series with complex valued
coefficients cj k

b
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We define a lattice mismatch δ between the lattice constants of
the two lattices involved.

δ = − = −
*
* ( )

b
a

a
b

1 1 6

As a standard we always choose the lattice with the larger real-
space lattice constant to be lattice a, the one with the smaller real-
space lattice constant to be lattice b. That results in ≥a b or * ≤ *a b
respectively and δ< ≤0 1. Due to the six-fold rotational symmetry
of the van der Waals heterostructure we also restrict φ to

φ− ° < ≤ °30 30 .

2.1. First order Moiré pattern

As the Moiré superstructure arises from a superposition of two
lattices a and b in real space, the spatial properties of this super-
structure can be described by the following function (→)f r , which
can always be formally represented by an infinite Fourier series
with respect to the basis vectors of lattice a [15]. This Fourier ex-
pansion is modulated by factors aj k

M
, , which are periodic.
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First order reciprocal lattice vectors of the Moiré pattern can be
obtained from the difference between the respective reciprocal
lattice vectors of the materials.
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The positions of the Moiré pattern diffraction spots can be fully
described by the length of the corresponding reciprocal lattice
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and the angle α between the reciprocal lattice vector →*a1 and
→

́kMoire.
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2.2. Description of all possible Moiré patterns

The description given so far applies for the first order diffrac-
tion spots of the Moiré pattern. But in addition higher order dif-
fraction spots of the Moiré superstructure occur in the diffraction
pattern of a van der Waals heterostructure. These higher order
diffraction spots arise from a correlation of higher order Bragg
peaks of the individual materials, i.e. from a linear combination of

the basis vectors →*a1 and →*a2 as well as
→*
b1 and

→*
b2 .

In this case we describe the reciprocal lattice vectors
→
ka and

→
kb

of the two materials as a linear combination of their basis vectors.
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In accordance with (7) and (8), the reciprocal lattice vector of the
Moiré pattern is calculated by the interaction between the two

reciprocal lattice vectors
→
ka and

→
kb. Only one reciprocal lattice

vector of the superstructure will be considered in the further de-
scription, because due to the sixfold symmetry of the Moiré pat-
tern (space group 6), the second reciprocal basis vector can be
calculated by a rotation of 60° of the first basis vector.
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The length of the reciprocal lattice vector of the superstructure is
then given by:
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The real-space lattice constant of the superstructure | |( | )L mn rs can be
calculated from the length of the reciprocal lattice vector | |( | )k mn rs .
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In addition, the angle α( | )mn rs between the standard reciprocal
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The first order description is fully covered by this extended
description.

3. Labelling of the diffraction spots of a multilayer
heterostructure

In this section we will describe how we propose to label the



Fig. 3. Derivation of the nomenclature of the superstructure diffraction spots. The superstructure diffraction spots which are encircling every material Bragg spot are derived
from specific difference between the lattice vectors of the individual materials. The schematic on the left shows the position of the superstructure diffraction peaks (orange
circles) in relation to the position of a material Bragg spot (black square). On the right hand side, the corresponding lattice vector difference is plotted. We propose to label
the superstructure peaks according to the reciprocal lattice vectors they originate from. These reciprocal lattice vectors can be described as a linear combination of the
reciprocal basis vectors, as shown in (12). As a standard we always put the material with the smaller reciprocal lattice constant at first. So, the superstructure diffraction spots
are labelled ( |mn rs) with m and n being the in-plane scalar factors of the primary material and r and s the in-plane scalars of the material with the larger reciprocal lattice
constant. As the reciprocal lattice vectors occur as material Bragg spots in the diffraction pattern, the scalars m, n, r and s correspond to the in-plane Miller indices h and k of
the matching Bragg spots. The labels of the first (No. 1–6) and second order (No. 7–12) superstructure diffraction spots are given in the scheme at the upper left. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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diffraction spots in a diffraction pattern of a multilayer hetero-
structure. Similar to the common Miller index labelling for crys-
talline Bragg peaks we label the superstructure peaks according to
the respective reciprocal lattice vectors that have been derived in
the previous section.

As already mentioned we use the convention that lattice a has
the larger real-space lattice constant than lattice b. Initially, the
diffraction spots of the material with larger real-space lattice con-
stant are labelled with the Miller indices (hkl)a as in a usual dif-

fraction pattern. In the next step, the basis vectors
→*
b1 and

→*
b2 are

chosen such that φ− ° ≤ < °30 30 applies. On that basis, the dif-
fraction spots of lattice b are labelled with the Miller indices (hkl) b.

The superstructure diffraction spots are then labelled according
to the reciprocal lattice vectors they originate from. These re-
ciprocal lattice vectors can be described as a linear combination of
the reciprocal basis vectors, as shown in (12). The length of the
superstructure reciprocal lattice vector ( | )k mn rs as well as its or-
ientation angle α( | )mn rs can be described by the scalars m, n, r and s
of the linear combination. Therefore, we propose to label the su-
perstructure diffraction spots with ( | )mn rs (see Fig. 3). This label-
ling method uses the same reference frame, e.g. the same set of
basis vectors, for the labelling of both the material Bragg spots as
well as the superstructure diffraction spots.

As the superstructure arises from the superposition of atomic
positions in real space, the corresponding diffraction pattern in
Fourier space is built by a two-dimensional convolution of the
diffraction patterns of the individual materials. This leads to the
additional superstructure diffraction spots encircling every mate-
rial Bragg spot. The origin of the peaks leads to the fact that every
superstructure diffraction spot with the same relative orientation
to a specific material Bragg spot contains the same information.
Therefore, the declaration of the corresponding material Bragg
spot, a specific superstructure diffraction spot is located at, is not
necessary.
4. Preparation and characterization of free-standing single
crystalline heterostructures

Our method for the preparation of free-standing multilayer
heterostructures follows two different procedures. These proce-
dures are on the one hand based on a method which was primarily
realised by Jannik Meyer in 2005 at the University of California in
Berkeley [16]. The second procedure is based on a method pro-
posed in 2014 by Andres Castellanos-Gomez [17]. The principle of
mechanical exfoliation introduced by Konstantin Novoselov and
Andre Geim [5] provides the basis for both procedures.

The method by Jannik Meyer uses semiconductor grade ad-
hesive tape for multiple mechanical exfoliation steps to cleave the
layered material. The procedure by Andres Castellanos-Gomez
uses transparent viscoelastic stamps made from commercially
available gel film instead of adhesive tape for the mechanical ex-
foliation steps. Already during exfoliation, this method allows the
determination of the thickness of a desired sample by measure-
ment of the transmittance. In both methods, the obtained few
layers of single crystal flakes are deposited on an oxide coated
silicon wafer. Flakes of adequate size are characterized by optical
reflection microscopy and atomic force microscopy.

In order to prepare free-standing samples, the flakes have to be
transferred onto a Quantifoil TEM gold grid which is covered by an
amorphous carbon film. This film is selectively removed from one
grid hole via laser machining before the transfer process in order
to reduce the background signal in the electron diffraction pat-
terns and to avoid additional substrate effects in the experiments.
In addition, the experimental set-up requires samples of about

μ100 m diameter. The desired sample flake is transferred onto the
grid by an etching process of the silicon dioxide using potassium
hydroxide.

The preparation of multilayer heterostructures uses the
exfoliation procedure for the materials of interest separately. The



Fig. 4. Stepwise process of preparation of a multilayer van der Waals heterostructure. In a first step the graphite sample is transferred to the modified grid. Subsequently the
molybdenum disulphide flake is transferred on top of the graphite sample on the grid. The dashed red line indicates the contour of the graphite flake, while the dashed white
line shows the shape of the molybdenum disulphide flakes. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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multilayer heterostructure is then successively built up by re-
petition of the transfer process. We prepared a free-standing
sample of a molybdenum disulphide–graphite heterostructure by
the procedure mentioned above. As it can be seen in Fig. 4 the
graphite sample flake was transferred onto the empty modified
grid. In a second step a sample flake of molybdenum disulphide
was transferred on top of the free-standing graphite sample (see
Fig. 4(c) and (d)).

The free-standing samples can be characterized easily by de-
termination of the transmittance of bright white light. The trans-
mittance of the sample is dependent on the thickness of the ma-
terial layers according to Beer-Lambert's law. Up to ten layers a
linear decrease of the transmittance with the number of layers is a
good assumption. In case of graphite the absorption of white light
per layer is 2.3% [18] while molybdenum disulphide is reported to
absorb 5.5% of white light per layer [19]. Measurement of the
transmittance of the first material and of the whole hetero-
structure allows to reliably determine the thickness of both
materials.

The transmittance of the prepared free-standing heterostructure
sample displayed in Fig. 4 is determined to be 11%. As shown in Fig. 5
the transmittance of the pure free-standing graphite layer is 41%. The
transmittance of the pure molybdenum disulphide layer cannot be
measured directly due to underlying substrate (either graphite layer
or amorphous carbon film) but can be calculated from the trans-
mittance of the pure free-standing graphite layer ( =T I I/graphite graphite 0)
and the transmittance of the combined heterostructure
( =T I I/Hetero Hetero 0) by = =T I I T T/ /Hetero graphite Hetero graphiteMoS2

. This allows
the determination of the transmittance of the molybdenum dis-
ulphide layer to be 28%. This data shows that our free-standing
sample of a molybdenum disulphide–graphite van der Waals
Fig. 5. Determination of sample thickness by transmittance analysis. The left panel sho
sample (bottom) in transmission white light set-up. The transmittance along the dashed
red colour belongs to the heterostructure. The transmittance is a function of sample thick
The transmittance of the graphite layer was measured to be 41% which indicates 38 layer
to be 11%. Due to the transmittance of graphite the transmittance of the molybdenu
molybdenum disulphide. The van der Waals heterostructure is composed of 38 layers
references to color in this figure legend, the reader is referred to the web version of th
heterostructure contains about 38 layers of graphite and about 23
layers of molybdenum disulphide, thus twice as many layers of
graphite as of molybdenum disulphide.

The relative scattering intensity can be estimated from the
structure factors Fhkl which can be derived from the atomic form
factors fi of the individual atoms in a unit cell.
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This ratio reflects the fact that the graphite unit cell contains
four carbon atoms, while the unit cell of molybdenum disulphide
contains two formula units of MoS2. The scattering intensity is
proportional to | |Fhkl

2.
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The atomic form factors (fC¼6.0 e/atom, =f 42.4 e/atomMo ,
fS¼16.0 e/atom, energy range 40–60 keV) were taken from [20].
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≈ ≈
( )

F

F

F

F
16% or 2.6%

20

C C100,

100,MoS

100,
2

100,MoS
2

2
2

The difference in the scattering intensity complicates the diffrac-
tion pattern analysis and could be compensated by an appropriate
ws pictures of the pure graphite sample (top) and the multilayer heterostructure
lines is plotted in the right panel. The blue colour indicates the graphite sample, the
ness and can therefore be used to calculate the thickness of the two material layers.
s of graphite. The transmittance of the van der Waals heterostructure was measured
m disulphide can be determined to be 28%. This value arises from 23 layers of
of graphite and 23 layers of molybdenum disulphide. (For interpretation of the

is article.)
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ratio of number of layers of the different materials. But in order to
be able to look at possible energy transfer processes inside the
heterostructure sample, it is necessary to have a comparable
thickness of both materials.
5. Experimental set-up

The experimental set-up for transmission electron diffraction is
shown in Fig. 6. The current set-up uses a Ti:Sapphire laser am-
plifier system emitting laser pulses with a central wavelength of
Fig. 7. The diffraction pattern of the multilayer van der Waals heterostructure consists
material diffraction patterns are indicated by the open squares. The red squares corres
graphite diffraction peaks. The section displayed by the dashed white line is enlarged
encircling every material Bragg spot can be seen. It is also indicated that the angle φ bet
case it is determined to be �7.3°. (For interpretation of the references to color in this fi
795 nm and a pulse duration of 25 fs at a repetition rate of 5 kHz.
The electron pulses are generated by emission of photoelec-

trons from a gold photocathode placed inside the vacuum cham-
ber (1 mm sapphire coated with 3 nm Ti-Cr and 40 nm gold). The
required UV-pulses which are able to overcome the work function
are generated in a frequency conversion unit by successive second
harmonic generation and sum frequency generation to produce
the third harmonic of the infrared fs laser radiation from the
amplifier system (THG¼Third harmonic generation). After passing
a prism compressor for dispersion compensation the UV-pulses
are focused on the photocathode. The generated pulses of photo-
electrons are accelerated in direction of an anode by a voltage of
up to 40 kV. The electrons pass the anode through a hole of μ100 m
diameter and hit the sample placed behind. The scattered elec-
trons are focused by a magnetic lens on the detection unit which
uses micro-channel plates (MCP) to enhance the electron signal
and a P43 phosphor screen to convert the electron signal into light
signals. These light signals are then recorded by a 1 Megapixel
CCD-camera at a distance of 188 mm from the electron source. The
number of electrons per pulse is adjusted by control of the UV-
pulse energy.
6. Results

The diffraction pattern obtained from the free-standing sample
of a molybdenum disulphide–graphite van der Waals hetero-
structure is shown in Fig. 7. The sample was oriented in such a way
that the electron pulses first pass the molybdenum disulphide
layer and afterwards the graphite layer. This means that the gra-
phite layer is facing the detector side. The opposite orientation
of the diffraction patterns of the individual materials and the superstructure. The
pond to the Bragg peaks of molybdenum disulphide, the blue squares indicate the
on the left of the picture. Here, the twelve visible superstructure diffraction spots
ween the material layers can easily be extracted from the diffraction pattern. In this
gure legend, the reader is referred to the web version of this article.)



Table 1
Values of | |( | )k mn rs and α( | )mn rs from the diffraction pattern.

( |mn rs) Measurement Calculation from (14)–(16)

( | )k mn rs
α( | )mn rs ( | )k mn rs

α( | )mn rs ( | )L mn rs

( |01 01) 0.74 Å�1 28.7° 0.73 Å�1 29.2° 9.91 Å
|11 11) 1.28 Å�1 �1.3° 1.27 Å�1 �0.8° 5.72 Å
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yields the mirror image of the diffraction pattern. Because mo-
lybdenum disulphide possesses the larger real-space lattice con-
stant, it is chosen to be material a in this heterostructure. The
Bragg spots arising from molybdenum disulphide are plotted and
labelled in red, the Bragg spots of graphite in blue. The labelling
followed the rules we proposed in Section 3.

The scattering intensity is plotted on a logarithmic scale. The
integral intensity of the first order graphite Bragg spots are in the
range of 15% to 25% of the integral intensity of the first order Bragg
spots of molybdenum disulphide. This shows that although the
number of layers of both materials is of the same order of mag-
nitude (see Section 4), the ratio of scattering intensity is sufficient
for detailed diffraction pattern analysis.

It can be seen that the graphite layer is rotated by an angle of
φ¼�7.3°with respect to the molybdenum disulphide. The section
displayed by the dashed white line is enlarged on the left of the
whole diffraction pattern. In this section, the superstructure dif-
fraction spots which are encircling every material Bragg spot, are
clearly visible. The schematic below the enlarged section shows
the position of the superstructure diffraction spots with respect to
each Bragg spot.

The origin of the twelve visible superstructure diffraction spots
is explained in Fig. 3. The superstructure diffraction spots are la-
belled according to Section 3 and Eq. (14) with ( | )mn rs .

From the diffraction pattern analysis we determined the values
of ( | )k mn rs and α( | )mn rs and compared them to the values obtained
from (14) and (16). The values for the superstructure Bragg peaks
( |01 01) and ( |11 11) can be found in Table 1.

The rotational angle of φ¼�7.3° with respect to the mo-
lybdenum disulphide coincides with the rotational angle in the
example in Fig. 1. The superstructure unit cell was calculated with
(15) and (16). It can easily be seen that it matches the real-space
image quite well.
7. Conclusion

In this paper, we presented a full mathematical description of
Moiré superstructures in real space and reciprocal space. This
description is able to predict all structural parameters of van der
Waals heterostructures from the corresponding diffraction pat-
tern. A well working method was used for the preparation of really
free-standing multilayer heterostructures. The thickness of the
individual material layers was determined by transmission of
white light. The resulting diffraction pattern of the heterostructure
can be fully described and analysed. On that basis, further mea-
surements of the structural dynamics inside a van der Waals
heterostructure following ultrashort laser excitation are possible.
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