Prof. Dr. Arno Müller

Fachgebietsleiter Entwicklungsgenetik

Standort
Universität Kassel
FB 10 / Institut für Biologie
Fachgebiet Entwicklungsgenetik
Heinrich-Plett-Straße 40
34132 Kassel
Raum
IBC, 2403
Sprechstunde

nach Vereinbarung


Publikationen

Ziegler, H., Gimbel, K., Bothor, J.-M., Ziepprecht, K., Meier, M., Müller, H.-A., 2021. Das Schüler- und Öffentlichkeitslabor Science Bridge als Lehr-Lern-Labor, in: Bosse, D., Wodzinski, R., Griesel, C. (Hrsg.), Lehr-Lern-Labore der Universität Kassel - Forschungsbasierte Verknüpfung von Theorie und Praxis unter
dem Aspekt der kognitiven Aktivierung. Kassel university press, Kassel, S. 48–65.
https://forschung.uni-kassel.de/converis/portal/detail/Publication/73021071
Ziegler, H., Gimbel, K., Bothor, J.-M., Zieprecht, K., Meier, M., Müller, H.-A., 2021. Das Schüler- und Öffentlichkeitslabor Science Bridge als Lehr-Lern-Labor, in: Bosse, D., Wodzinski, R., Griesel, C. (Hrsg.), Lehr-Lern-Labore der Universität Kassel – Forschungsbasierte Verknüpfung von Theorie und Praxis unter dem Aspekt der kognitiven Aktivierung. Kassel university press, Kassel, S. 48–65.
https://forschung.uni-kassel.de/converis/portal/detail/Publication/71420937
Castillo, U. del, Müller, H.-A., Gelfand, V.I., 2020. Kinetochore protein Spindly controls microtubule polarity in Drosophila axons. Proceedings of the National Academy of Sciences of the United States of America 117, 12155–12163. https://doi.org/10.1101/2020.03.20.000364
https://forschung.uni-kassel.de/converis/portal/detail/Publication/63896371
Müller, H.-A., Winklbauer, R., 2020. Editorial for special issue “Gastrulation: from transcriptional patterning to morphogenetic movement”. Mechanisms of Development 164, 103643. https://doi.org/10.1016/j.mod.2020.103643
https://forschung.uni-kassel.de/converis/portal/detail/Publication/65135219
Gheisari, E., Aakhte, M., Müller, H.-A., 2020. Gastrulation in Drosophila melanogaster: Genetic control, cellular basis and biomechanics. Mechanisms of Development 163, 103629. https://doi.org/10.1016/j.mod.2020.103629
https://forschung.uni-kassel.de/converis/portal/detail/Publication/65135391
Liu, B., Gregor, I., Müller, H.-A., Großhans, J., 2020. Fluorescence fluctuation analysis reveals PpV dependent Cdc25 protein dynamics in living embryos. PLoS Genetics 16, e1008735. https://doi.org/10.1371/journal.pgen.1008735
https://forschung.uni-kassel.de/converis/portal/detail/Publication/63901081
D’Ignazio, L., Shakir, D., Batie, M., Müller, H.-A., Rocha, S., 2020. HIF-1β Positively Regulates NF-κB Activity via Direct Control of TRAF6. International Journal of Molecular Sciences 21, 3000. https://doi.org/10.3390/ijms21083000
https://forschung.uni-kassel.de/converis/portal/detail/Publication/63896069
Beati, S.A.H., Langlands, A., ten Have, S., Müller, H.-A., 2019. SILAC-based quantitative proteomic analysis of Drosophila gastrula stage embryos mutant for fibroblast growth factor signaling. Fly 1–19. https://doi.org/10.1080/19336934.2019.1705118
https://forschung.uni-kassel.de/converis/portal/detail/Publication/60959692
Müller, H.-A., 2018. More diversity in epithelial cell polarity: A fruit flies’ gut feeling. PLOS Biology 16, e3000082. https://doi.org/10.1371/journal.pbio.3000082
https://forschung.uni-kassel.de/converis/portal/detail/Publication/65300177
Clemente, G.D., Hannaford, M.R., Beati, S.A.H., Kapp, K., Januschke, J., Griffis, E.R., Müller, H.-A., 2018. Requirement of the Dynein-Adaptor Spindly for Mitotic and Post-Mitotic Functions in Drosophila. Journal of Developmental Biology 6, 9. https://doi.org/10.3390/jdb6020009
https://forschung.uni-kassel.de/converis/portal/detail/Publication/51819986
Aakhte, M., Akhlaghi, E.A., Müller, H.-A., 2018. SSPIM: a beam shaping toolbox for structured selective plane illumination microscopy. Nature 8, 10067. https://doi.org/10.1038/s41598-018-28389-8
https://forschung.uni-kassel.de/converis/portal/detail/Publication/51819599
Bandarra, D., Biddlestone, J., Mudie, S., Müller, H.-A., Rocha, S., 2015. HIF-1 alpha restricts NF-kappa B-dependent gene expression to control innate immunity signals. Disease Models and Mechanisms 8, 169–181. https://doi.org/10.1242/dmm.017285
https://forschung.uni-kassel.de/converis/portal/detail/Publication/40760225
Mariappa, D., Zheng, X., Schimpl, M., Raimi, O., Ferenbach, A.T., Müller, H.-A., van Aalten, D.M.F., 2015. Dual functionality of O-GlcNAc transferase is required for Drosophila development. Open Biology 5, 150234. https://doi.org/10.1098/rsob.150234
https://forschung.uni-kassel.de/converis/portal/detail/Publication/40759969
Radermacher, P.T., Myachina, F., Bosshardt, F., Pandey, R., Mariappa, D., Mueller, H.-A.J., Müller, H.-A., Lehner, C.F., 2014. O-GlcNAc reports ambient temperature and confers heat resistance on ectotherm development. Proceedings of the National Academy of Sciences 111, 5592–5597. https://doi.org/10.1073/pnas.1322396111
https://forschung.uni-kassel.de/converis/portal/detail/Publication/40760807
Hain, D., Langlands, A., Sonnenberg, H.C., Bailey, C., Bullock, S.L., Müller, H.-A., 2014. The Drosophila MAST kinase Drop out is required to initiate membrane compartmentalisation during cellularisation and regulates dynein-based transport. Development 141, 2119–2130. https://doi.org/10.1242/dev.104711
https://forschung.uni-kassel.de/converis/portal/detail/Publication/40761385
Bandarra, D., Biddlestone, J., Mudie, S., Müller, H.-A., Rocha, S., 2014. Hypoxia activates IKK-NF-kappa B and the immune response in Drosophila melanogaster. Bioscience Reports 34, e00127429–440. https://doi.org/10.1042/BSR20140095
https://forschung.uni-kassel.de/converis/portal/detail/Publication/40765711
Muha, V., Müller, H.-A., 2013. Functions and Mechanisms of Fibroblast Growth Factor (FGF) Signalling in Drosophila melanogaster. International Journal of Molecular Sciences 14, 5920–5937. https://doi.org/10.3390/ijms14035920
https://forschung.uni-kassel.de/converis/portal/detail/Publication/40765144
Mariappa, D., Sauert, K., Marino, K., Turnock, D., Webster, R., van Aalten, D.M.F., Ferguson, M.A.J., Müller, H.-A., 2011. Protein O-GlcNAcylation Is Required for Fibroblast Growth Factor Signaling in Drosophila. Science Signaling 4, ra89. https://doi.org/10.1126/scisignal.2002335
https://forschung.uni-kassel.de/converis/portal/detail/Publication/40761005
Van Uden, P., Kenneth, N.S., Webster, R., Müller, H.-A., Mudie, S., Rocha, S., 2011. Evolutionary Conserved Regulation of HIF-1 beta by NF-kappa B. Public Library of Science Genetics 7, e1001285. https://doi.org/10.1371/journal.pgen.1001285
https://forschung.uni-kassel.de/converis/portal/detail/Publication/40764732
Clark, I.B.N., Muha, V., Klingseisen, A., Leptin, M., Müller, H.-A., 2011. Fibroblast growth factor signalling controls successive cell behaviours during mesoderm layer formation in Drosophila. Development 138, 2705–2715. https://doi.org/10.1242/dev.060277
https://forschung.uni-kassel.de/converis/portal/detail/Publication/40764907
Winklbauer, R., Müller, H.-A., 2011. Mesoderm layer formation in Xenopus and Drosophila gastrulation. PHYSICAL BIOLOGY 8, 045001. https://doi.org/10.1088/1478-3975/8/4/045001
https://forschung.uni-kassel.de/converis/portal/detail/Publication/40760455
Haines, D., Bettencourt, B., Okamura, K., Csorba, T., Meyer, W., Jin, Z., Biggerstaff, J., Siomi, H., Hutvagner, G., Lai, E.C., Welte, M., Müller, H.-A., 2010. Natural Variation of the Amino-Terminal Glutamine-Rich Domain in Drosophila Argonaute2 Is Not Associated with Developmental Defects. PLoS ONE 5, e15264. https://doi.org/10.1371/journal.pone.0015264
https://forschung.uni-kassel.de/converis/portal/detail/Publication/40760607
Müller, H.-A., Kessler, T., 2009. Cleavage of Armadillo/beta-catenin by the caspase DrICE in Drosophila apoptotic epithelial cells. BMC Developmental Biology 9, 15. https://doi.org/10.1186/1471-213X-9-15
https://forschung.uni-kassel.de/converis/portal/detail/Publication/40759490
Müller, H.-A., Klingseisen, A., Clark, I.B.N., Gryzik, T., 2009. Differential and overlapping functions of two closely related Drosophila FGF8-like growth factors in mesoderm development. Development 136, 2393–2402. https://doi.org/10.1242/dev.035451
https://forschung.uni-kassel.de/converis/portal/detail/Publication/40759711
Van Impel, A., Schumacher, S., Draga, M., Herz, H.-M., Grosshans, J., Müller, H.-A., 2009. Regulation of the Rac GTPase pathway by the multifunctional Rho GEF Pebble is essential for mesoderm migration in the Drosophila gastrula. Development 136, 813–822. https://doi.org/10.1242/dev.026203
https://forschung.uni-kassel.de/converis/portal/detail/Publication/40761168
Müller, H.-A., 2008. Immunolabeling of Embryos, in: Dahmann, C. (Hrsg.), Drosophila. Humana Press, Totowa, NJ, S. 207–218. https://doi.org/10.1007/978-1-59745-583-1_12
https://forschung.uni-kassel.de/converis/portal/detail/Publication/65300028
Meyer, W.J., Schreiber, S., Guo, Y., Volkmann, T., Welte, M.A., Müller, H.-A., 2006. Overlapping functions of argonaute proteins in patterning and morphogenesis of Drosophila embryos. PLoS Genetics 2, e1341224–1239. https://doi.org/10.1371/journal.pgen.0020134
https://forschung.uni-kassel.de/converis/portal/detail/Publication/40762162
Grosshans, J., Wenzl, C., Herz, H., Bartoszewski, S., Schnorrer, F., Schwarz, H., Müller, H.-A., 2005. RhoGEF2 and the formin dia control the formation of the furrow canal by directed actin assembly during Drosphila cellularisation. Development 132, 1009–1020. https://doi.org/10.1242/dev.01669
https://forschung.uni-kassel.de/converis/portal/detail/Publication/40767221
Schuhmacher, S., Gryzik, T., Tannebaum, S., Müller, H.-A., 2004. The RhoGEF Pebble is required for cell shape changes during cell migration triggered by the Drosophila FGF receptor Heartless. Development 131, 2631–2640. https://doi.org/10.1242/dev.01149
https://forschung.uni-kassel.de/converis/portal/detail/Publication/40767884
Müller, H.-A., Yoshida, S., Wodarz, A., Ephrussi, A., 2004. PKA-R1 spatially restricts Oskar expression for Drosophila embryonic patterning. Development 131, 1401–1410. https://doi.org/10.1242/dev.01034
https://forschung.uni-kassel.de/converis/portal/detail/Publication/40766790
Gryzik, T., Müller, H.-A., 2004. FGF8-like1 and FGF8-like2 Encode Putative Ligands of the FGF Receptor Htl and Are Required for Mesoderm Migration in the Drosophila Gastrula. Current Biology 14, 659–667. https://doi.org/10.1016/j.cub.2004.03.058
https://forschung.uni-kassel.de/converis/portal/detail/Publication/65299736
Müller, H.-A., Bossinger, O., 2003. Molecular networks controlling epithelial cell polarity in development. Mechanisms of Development 120, 1231–1256. https://doi.org/10.1016/j.mod.2003.06.001
https://forschung.uni-kassel.de/converis/portal/detail/Publication/40766176
Müller, H.-A., 2003. Epithelial polarity in flies: More than just crumbs. Developmental Cell 4, 31. https://doi.org/10.1016/S1534-5807(02)00408-2
https://forschung.uni-kassel.de/converis/portal/detail/Publication/40764582
Grosshans, J., Müller, H.-A., Wieschaus, E., 2003. Control of cleavage cycles in Drosophila embryos by fruhstart. Developmental Cell 5, 285–294.
https://forschung.uni-kassel.de/converis/portal/detail/Publication/40763790
Müller, H.-A., 2002. Germ cell migration: As slow as molasses. Current BIology 12, R612–R614. https://doi.org/10.1016/S0960-9822(02)01131-4
https://forschung.uni-kassel.de/converis/portal/detail/Publication/40765343
Yoo, S., Huh, J., Muro, I., Yu, H., Wang, L., Wang, S., Feldman, R., Clem, R., Müller, H.-A., Hay, B., 2002. Apoptosis inducers Hid, Rpr and Grim negatively regulate levels of the caspase inhibitor DIAP1 by distinct mechanisms. Nature Cell Biology 4, 416–424. https://doi.org/10.1038/ncb793
https://forschung.uni-kassel.de/converis/portal/detail/Publication/40765520
Müller, H.-A., 2001. Of mice, frogs and flies: Generation of membrane asymmetries in early development. Development, Growth and Differentiation 43, 327–342.
https://forschung.uni-kassel.de/converis/portal/detail/Publication/40766565
Tang, A., Neufeld, T., Rubin, G., Müller, H.-A., 2001. Transcriptional regulation of cytoskeletal functions and segmentation by a novel maternal pair-rule gene, lilliputian. Development 128, 801–813.
https://forschung.uni-kassel.de/converis/portal/detail/Publication/40768164
Tang, A., Neufeld, T., Rubin, G., Müller, H.-A., 2000. Lilliputian is required for cellularization and cell size regulation during Drosophila development, Molecular Biology of the Cell. AMER SOC CELL BIOLOGY.
https://forschung.uni-kassel.de/converis/portal/detail/Publication/40761664
Wang, S., Hawkins, C., Yoo, S., Müller, H.-A., Hay, B., 1999. The Drosophila caspase inhibitor DIAP1 is essential for cell survival and is negatively regulated by HID. Cell 98, 453–463. https://doi.org/10.1016/S0092-8674(00)81974-1
https://forschung.uni-kassel.de/converis/portal/detail/Publication/40767710
Knust, E., Müller, H.-A., 1998. Drosophila morphogenesis: Orchestrating cell rearrangements. Current Biology 8, R853–R855.
https://forschung.uni-kassel.de/converis/portal/detail/Publication/40764167
Müller, H.-A., Wieschaus, E., 1996. armadillo, bazooka, and stardust are critical for early stages in formation of the zonula adherens and maintenance of the polarized blastoderm epithelium in Drosophila. Journal of Cell Biology 134, 149–163. https://doi.org/10.1083/jcb.134.1.149
https://forschung.uni-kassel.de/converis/portal/detail/Publication/40763612
Müller, H.-A., Hausen, P., 1995. Epithelial cell polarity in early Xenopus development. Developmental Dynamics 202, 420405. https://doi.org/10.1002/aja.1002020410
https://forschung.uni-kassel.de/converis/portal/detail/Publication/40764389
Müller, H.-A., Kuhl, M., Finnemann, S., Schneider, S., Vanderpoel, S., Wedlich, D., Hausen, P., 1994. Xenopus cadherins: the maternal pool comprises distinguishable members of the family. Mechanisms of Development 47, 213–223.
https://forschung.uni-kassel.de/converis/portal/detail/Publication/40768396
Redies, C., Müller, H.-A., 1994. Similarities in structure and expression between mouse P-cadherin, chicken B-cadherin and frog XB/U-cadherin. CELL ADHESION AND COMMUNICATION 2, 511–520.
https://forschung.uni-kassel.de/converis/portal/detail/Publication/40767508
Müller, H.-A., Gawantka, V., Ding, X., Hausen, P., 1993. Maturation induced internalization of Beta(1)-Integrin by xenopus-occyties and formation of the maternal integrin pool. Mechanisms of Development 42, 77–88.
https://forschung.uni-kassel.de/converis/portal/detail/Publication/40765958
Müller, H.-A., 1992. Zur Regulation materneller Membranproteine in der Oogenese und der Oocytenreifung von Xenopus laevis in Hinblick auf die Enstehung apikobasolateraler Zellpolarität im frühen Embryo. Verlag Shaker, Aachen.
https://forschung.uni-kassel.de/converis/portal/detail/Publication/65299888
Dircksen, H., Müller, H.-A., Keller, R., 1991. Crustacean cardioactive peptide in the nervous system of the locust, Locusta migratoria: an immunocytochemical study on the ventral nerve cord and peripheral innervation. Cell and Tissue Research 263, 439–457. https://doi.org/10.1007/BF00327278
https://forschung.uni-kassel.de/converis/portal/detail/Publication/65299584
Angres, B., Müller, H.-A., Kellermann, J., Hausen, P., 1991. Differential expression of two cadherins in Xenopus laevis. Development 111, 829–844.
https://forschung.uni-kassel.de/converis/portal/detail/Publication/40763975