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Chapter 1   

Introduction 

Background 

Rural-urban transformation are taking place around the world. The transformation process is pro-

jected to increase from 2018-2050 mainly in Asia and Africa. In which, India, China and Nigeria 

will account to its major (35%) share (United Nations 2018). Bengaluru in southern India is a 

representative of many fast-growing cities in Asia. It is the second fastest growing megacity 

(India’s 10 fastest growing cities 2008) in India, due to its information technology sector and mod-

erate climatic conditions.  The majority of the India’s population (60%) depends on the agriculture 

sector for their livelihood (Arjun 2013) and, thus, the loss of agricultural land due to increasing 

population and expansion of urban areas is a growing problem. With arable land becoming less 

available, it is very important to feed the growing population by crop intensification. Appropriate 

application of nutrients and water play a key role in maximising crop yields. 

Agriculture in India mainly depends on monsoon rainfall, surface water and ground water irriga-

tion. The variability of monsoon rainfall is highly fluctuating and in order to grow multiple crops 

throughout the year, farmers are highly dependent on local irrigation systems (Ferrant et al. 2017). 

Irrigated crop production accompanied by fertilizer application has enabled the country with suf-

ficient food production and is a major contributor to the green revolution (Thenkabail et al. 2009). 

Hence, early estimation of yield may allow better planning and forecasting of market prices and 

may support a higher food security based on regional, national and global demand and supply. In 

this context, remote sensing (RS) can be an effective tool in monitoring crop production (Aasen et 

al. 2015; Rouse et al. 1974) and estimating yield (Warren and Metternicht 2005). RS allows to 

collect data about crop production using non-destructive methods (Burkart et al. 2015) on a large 

scale for many fields at the same time. 

As India has multiple cropping seasons in one year, agricultural systems require continuous multi-

temporal remote sensing data to monitor the crop state and for crop identification (Hannerz and 

Lotsch 2008; Mondal et al. 2014). Evaluation of the crop state helps to identify the required amount 

of nutrients and water supply. Crop identification may allow to assess the effect of urbanisation 
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such as the changing local demand influences the cropping pattern. Precision agriculture (PA) has 

been widely used for two decades but its use not common among finger millet, lablab and horti-

cultural crops yet. The small land holdings, planting density and complex plant architecture of the 

crops complicate PA. Sensors from terrestrial (Nidamanuri and Zbell 2011) (Dayananda et al. 

2019) to airborne (Moeckel et al. 2018), and spaceborne (Panigrahy and Sharma 1997) are being 

used to monitor agro-environmental systems. Recently, unmanned aerial vehicles (UAV) are being 

used to a large extent, than satellite and airborne platforms since they are more independent from 

conditions such as cloud cover, revisiting time and image resolution (C. Zhang and Kovacs 2012). 

The flexibility of UAV to carry various sensors i.e. RGB (red, green, blue) cameras (Moeckel et 

al. 2018), multispectral sensors (Maimaitijiang et al. 2017) or hyperspectral (HS) sensors (Aasen 

and Bolten 2018) with deploy mission and spatial resolution make them more advantageous. UAV-

borne RGB cameras and HS sensors are increasingly used in monitoring crop production and es-

timation of biomass. 

UAV-borne RGB camera  

UAV are considered as a promising platform for capturing detailed imagery from agricultural 

fields (Malambo et al. 2018). UAV RS has been successfully used in extracting detailed infor-

mation on crop health (Selsam et al. 2017), crop biomass development (N. Yu et al. 2016) and 

crop water status (Park et al. 2017). UAV with RGB based cameras are considered as a valuable 

tool in the estimation of crop phenotypic characters. Plant height is an important phenological 

indicator of crop growth and biomass (Lati et al. 2013; Madec et al. 2017). Traditional crop height 

measurements are time-consuming and difficult to implement on a large scale. Therefore, crop 

height derived from multi-view RGB images has been recently used in barley (Bendig et al. 2014), 

maize (Li et al. 2017), vineyards (Weiss and Baret 2017), wheat (Schirrmann et al. 2016), sorghum 

(Malambo et al. 2018) and alfalfa (Parkes et al. 2016). A computer vision technique called struc-

ture from motion (SfM) is used to obtain 3D point cloud from the UAV-borne RGB images and 

the crop height data is derived from the point cloud (Grüner, Astor, and Wachendorf 2019; 

Wijesingha et al. 2019). Despite application of 3D point clouds based on UAV imagery using SfM, 

they are mostly used in single date or short crop growth cycles. Hence a detailed study on the entire 

cropping season is of utmost importance. The assessment of UAV-borne RGB imagery utilised for 
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extracting crop height data of vegetable crops with the aim of estimating biomass for complete 

cropping season is presented in chapter 2. 

Hyperspectral Sensors 

HS remote sensing is widely used in agricultural applications where data is collected from ground, 

aerial and space platforms. Mostly, HS sensors provide near-continuous narrow band spectral data 

from 400 nm to 2500 nm. It has been proven that spectral reflectance from the crop that is measured 

by HS sensor can be employed for detection of its N concentration (Vigneau et al. 2011; K. Yu et 

al. 2013), biomass (Yue, Feng, Jin, et al. 2018) and water stress (Krishna et al. 2019; F. Zhang and 

Zhou 2019). Development of HS sensors and their application in estimation of biomass has gained 

an increasing attention in recent years. Multi-temporal HS data was utilised to estimate crop bio-

mass of crops such as rice (Aasen et al. 2014), wheat (Honkavaara et al. 2013; Yue et al. 2017) 

and maize (Wang et al. 2017). Lablab, maize and finger millet are the major crops grown in the 

state of Karnataka. However, no multi-temporal HS studies on estimation of biomass with different 

levels of nitrogen and water supply have been carried out. Multi-year data of complete crop growth 

cycles due to changes in agronomic practices and climatic conditions are always better for the 

prediction of the biomass. Hence, a multiple year data set has been used for the estimation of 

biomass of monsoon crops using terrestrial HS imaging during the complete growing season in the 

study presented in chapter 3. 

Data fusion of UAV RGB imagery and hyperspectral sensors 

The availability of different sensor systems enables sensor fusion i.e. the combination of different 

datasets from two or more sensors with different characteristics (Pohl and van Genderen 1998). 

Sensor data fusion may allow a more holistic interpretation of the relationship between RS data 

and crop parameters. Fusing data acquired with various different sensors have improved the pre-

diction performance of vegetation parameters such as leaf area index and biomass of various crops, 

such as maize (Gao et al. 2013), winter wheat (Yue, Feng, Yang, et al. 2018), soybean 

(Maimaitijiang et al. 2017) and barley (Rischbeck et al. 2016). 

Terrestrial HS and UAV-borne RGB data were used exclusively in the estimation of crop height 

and biomass for cereal, legume and vegetable crops in chapter 2 and 3. Hence the data fusion of 
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terrestrial HS and UAV-borne RGB data was used for the estimation of height and biomass of 

vegetable crops during the entire cropping season (see chapter 4). 

Research objectives 

Focussing on different aspects of multiple cropping seasons in India, experimental fields were 

studied in monsoon (June to October) and dry season (January to May) at University of Agricul-

tural Sciences (UAS), Bengaluru, India. Two experimental fields rainfed and drip irrigated were 

maintained with varying N levels and water supply (see Chapter 9, Gallery). Lablab, maize and 

finger millet were grown in both experiments during the monsoon season. The vegetable crops, 

tomato, cabbage and eggplant were grown in a drip irrigated experiment during the dry season. 

The RS measurements with UAV-borne RGB and terrestrial HS camera were collected along with 

the ground truth biomass samples and height measurements throughout the cropping season. The 

following hypothesis were addressed: 

(i) Remote sensing can be used to estimate the biomass of vegetable crops using UAV. 

(ii) Terrestrial HS imaging can be used to estimate the biomass of monsoon crops. 

(iii) Fusion of height and spectral data may improve biomass estimation capability of veg-

etable crops when compared to individual sensor data (UAV-borne RGB or HS). 

(iv) Biomass estimation accuracies may vary for N levels, sampling dates and water supply 

of the crop. 

Thus, for the assessment of multi-temporal biomass in cereals, legume and vegetable crops using 

RS measurements, the research objectives of the thesis were: 

(i) To predict crop height and biomass of vegetable crops using UAV-borne RGB imagery. 

(ii) To assess monsoon crop biomass using terrestrial HS imaging. 

(iii) To estimate the vegetable crop biomass using data fusion from two sensors that is 

UAV-borne RGB imagery and terrestrial HS imaging. 

(iv) To monitor the performance of biomass estimation models at different stages of crop 

development and at different N levels and water supply for monsoon crops. 



  Chapter 1 

 5 

(v) To evaluate the variations of prediction accuracy with the machine learning (ML) meth-

ods applied to vegetable crops. 

(vi) To identify important spectral bands affecting the estimation of biomass. 
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Chapter 2  

Estimation of Vegetable Crop Parameter by Multi -temporal 

UAV-Borne Images 

Abstract  

3D point cloud analysis of imagery collected by unmanned aerial vehicles (UAV) has been shown 

to be a valuable tool for estimation of crop phenotypic traits, such as plant height, in several spe-

cies. Spatial information about these phenotypic traits can be used to derive information about 

other important crop characteristics, such as fresh biomass yield, which cannot be derived directly 

from the point clouds. Previous approaches have often only considered single date measurements 

using a single point cloud derived metric for the respective trait. Furthermore, most of the studies 

focused on plant species with a homogenous canopy surface. The aim of this study was to assess 

the applicability of UAV imagery for capturing crop height information of three vegetable crops: 

eggplant, tomato, and cabbage with a complex vegetation canopy surface during a complete crop 

growth cycle to infer crop biomass. Additionally, the effect of crop development stage on the re-

lationship between estimated crop height and field measured crop height was examined. Our study 

was conducted in a multi-factorial experiment at the University of Agricultural Sciences, GKVK 

campus, Bengaluru, India. For all crops, crop height and the biomass were measured at five dates 

during one crop growth cycle between February and May 2017 (average crop height was 42.5, 

35.5, and 16.0 cm for eggplant, tomato, and cabbage). Using a structure from motion approach, a 

3D point cloud was created for each crop and sampling date. In total, 14 crop height metrics were 

extracted from the point clouds. Machine learning methods were used to create prediction models 

for vegetable crop height. The study demonstrates that the monitoring of crop height using an UAV 

during an entire growing period can result in detailed and precise estimates of crop height and 

biomass for all three crops (R² ranging from 0.87 to 0.97, bias ranging from −0.66 to 0.45 cm). 

The effect of crop development stage on the predicted crop height was found to be substantial (e.g., 

median deviation increased from 1% to 20% for eggplant) influencing the strength and consistency 

of the relationship between point cloud metrics and crop height estimates and, thus, should be 

further investigated. Altogether the results of the study demonstrate that point cloud generated 

from UAV-based RGB imagery can be used to effectively measure vegetable crop biomass in 
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larger areas (relative error = 17.6%, 19.7%, and 15.2% for eggplant, tomato, and cabbage, respec-

tively) with a similar accuracy as biomass prediction models based on measured crop height (rel-

ative error = 21.6, 18.8, and 15.2 for eggplant, tomato, and cabbage). 

Introduction 

The ability to non-destructively collect information about crops makes remote sensing a less time 

consuming and less labour-intensive tool in agricultural science than traditional methods of crop 

growth monitoring. Unmanned aerial vehicles (UAV) have emerged as a promising remote sensing 

platform to capture detailed imagery from agriculture crop fields [1]. The ability of UAVs to col-

lect data over wide areas in flexible intervals makes them a superior tool compared to satellite or 

airborne remote sensing [2]. UAV systems equipped with RGB (red, green, blue) cameras are 

widely distributed, but systems with other cameras installed (e.g., multi-spectral cameras) are also 

getting increasingly available. Detailed information about crop health [3], crop biomass develop-

ment [4], and crop water status [5] have been already successfully extracted from UAV remote 

sensing for various agriculture crops. 

Collecting information about phenotypic traits, such as plant height or biomass, at high temporal 

resolution, is essential for many site-specific management practices or plant physiological studies 

[6]. Plant height is considered as a good indicator for plant growth and biomass [7,8]. However, 

the use of classical ground-based height measurements is time consuming and can rarely be applied 

non-destructively across larger areas in a repetitive manner [8]. Alternative methods based on Li-

DAR (light detection and ranging) [9,10], ultrasonic sensors [11], or high resolution RGB imagery 

[12] have been developed recently. While LiDAR sensors provide highly accurate and dense 3D 

point measurements of crop surfaces, they are still very expensive, and require specific expertise 

for handling of sensors and the subsequent analysis of the data [13]. Although less cost intensive 

alternatives exist (Ehlert 2010), they cannot be used to cover large areas due to their limited mo-

bility. Ultrasonic sensors are considered as low-cost and user-friendly approach, but are often lim-

ited by their spatial resolution and their susceptibility to wind [14]. RGB image-based detection of 

crop height is the most recently evolving approach for many different crops, including barley [12], 

maize [15], vineyards [16], wheat [17], sorghum [1], or alfalfa [18]. Especially, 3D point clouds 

generated from UAV-borne RGB images using SfM (structure from motion) techniques offer new 

options for deriving crop height information [1]. Despite the successful application of 3D point 
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clouds based on UAV imagery and the SfM procedure, many studies have been limited to single 

acquisition dates or only short periods in the crop growth cycle. In addition, most of the studies 

concentrate on crops, which are characterized by homogenous crop surfaces. To our knowledge, 

no study has yet tested the application of UAV-borne RGB imagery for estimating vegetable crop 

height over an entire cropping season. 

The aim of this study, therefore, was to assess the applicability of UAV-borne RGB imagery for 

capturing crop height information of three vegetable crops eggplant, tomato, and cabbage over an 

entire cropping season. These three crops are major vegetable species in the larger area of Benga-

luru, Karnataka, India. They represent three different crop growth forms, and canopy shape pattern 

ranging from a less complex ball shape for cabbage, to a complex multi-layer appearance for to-

mato and eggplant. The specific objectives of this study therefore were (1) evaluating the ability 

of UAV imagery and SfM techniques to model the height of three vegetable crops over an entire 

crop growth cycle, (2) monitoring the effect of the crop development on the model prediction 

quality of crop height values using UAV imagery, (3) quantifying the effect of crop growth form 

on the crop height models, and (4) evaluating the applicability of the crop height models for esti-

mating the biomass of vegetable crops. 

Methods 

Study Site 

The study was conducted on the experimental farm of the University of Agricultural Sciences 

(UAS), Bengaluru (12°58′20.79′′N, 77°34′50.31′′E, 920 asl), India (Figure 1A), where Kandic 

Paleustalfs and Dystric Nitisols are the dominating soil types. The mean annual temperature is 

29.2 °C, with an average precipitation of 923 mm, of which most occurs during the monsoon sea-

son from June to October [19]. 
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Figure 1. (A) Political map of India showing the location of Bengaluru, (B) layout of the field experiment 

at University of Agricultural Sciences, GKVK Campus, Bengaluru. S indicates plots in which destructively 

measured parameters were taken (i.e. biomass harvest). H indicates plots in which non-destructive meas-
urements were conducted (i.e. spectral sampling). S plots were used for model calibration, while H plots 

were used for model validation. 

Experimental Design 

The field experiment was established in 2016 with a respective typical rainy and dry season crop 

rotation. Within the rainy season (Kharif, July to October) maize (Zea mays L., cultivar 

Nithyashree), millet (Eleusine coracana Gaertn., cultivar MR 65), and lablab (Lablab purpureaus 

L. Sweet, cultivar: HA 4) were grown, while in the dry season (Rabi, January to May), tomato 

(Solanum lycopersicum L., cultivar NS-501), eggplant (Solanum melongena L., cultivar: Ankur), 
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and cabbage (Brassica oleracea L., cultivar: Unnati) were grown on the experimental site (Figure 

1B). The aim was to include the most commonly grown crops in the greater region of Bengaluru 

in the field experiment. The selection of crops and cultivars was based on recommendations of 

scientists at UAS. During the dry season, crops were irrigated with a drip irrigation system. The 

split-plot experiment comprised 12 main plots (12 × 18 m), whereby each treatment was replicated 

four times (Figure 1A). In each main plot, three subplots (6 × 12 m) with different levels of nitro-

gen (N) fertilizer were randomly allocated. Besides a blanket application of phosphorus and po-

tassium (40 kg P ha-1 and 20, 24, and 50 kg K ha-1 for eggplant, tomato, and cabbage), the mean 

N rate (50 kg N ha-1 as urea for eggplant, 46 kg N ha-1 for tomato, and 60 kg N ha-1 for cabbage) 

reflected the recommended N dose in the region, whereas the high (+50%) and low (−50%) dose 

represented additional intensities typical to the study area. Nitrogen application was split into two 

dressings to reduce leaching losses by the typically strong rainfalls after fertilizer application. As 

fertilizers were not distributed evenly on the total plot area, but directly applied to individual 

plants, no nutrient deficiency was noticeable in either treatment. To allow for destructive meas-

urements, each plot was divided equally in a sampling sub-subplot (S-plot; Figure 1B), which was 

used for all destructive biomass samplings and a harvest sub-subplot (H-plot) for undisturbed crop 

growth and non-destructive measurements, such as determination of plant height. The S- and H-

plots had a size of 6 × 6 m each. The layout thus comprised a total of 36 subplots (3 crops × 3 

fertilizer treatments × 4 replicates). 

Plant Sampling and Measurements 

To calculate average crop height, the height of 30 plants in each S- and H-plot was measured with 

a ruler to the nearest 0.1 cm (Figure 2) whereby the distance from the ground to the topmost veg-

etative element was determined. The measurements were conducted at five dates throughout the 

growing season (Table A1 and Figure A1, see Appendix). To measure total biomass (including 

fruits when present at later growth stages), three randomly selected plants were harvested 5 cm 

above ground in all S-plots (Figure 2). At each harvest, the biomass (t ha-1) was weighted in the 

field and averaged for each plot. 

RGB Imagery Sampling 

Prior to destructive sampling, each main plot was scanned using a RGB camera mounted on a 

UAV (DJI 3 Professional, DJI, Shenzhen, Guangdong, China). The camera model used was the 
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standard DJI FC300X with a focal length of 3.61mm. At every sampling date, flights were con-

ducted for each plot using the autopilot and the software Pix4D Capture (Pix4D SA, Lausanne, 

Switzerland). The flight path was kept constant throughout all sampling dates and for all dates. 

For capturing the images, a gridwise flight path was defined, for which the area of the main plot 

was overlaid with a grid of several perpendicular flight lines. The flight delivered nadir images, 

which were used to generate a 3D point cloud. On average ~200 images each with a resolution of 

4000 × 3000 pixels were taken during each flight (Figure 2). The images were taken with an 80% 

forward and side overlap, whereby the flight altitude was set to 20 m (ranging from 17 m to 24 m, 

due to variations in the built-in GPS of the drone). The flying height represented a compromise of 

getting enough images (ranging from 189 to 219) for the point cloud processing and still covering 

the plot in as little time as possible. The variation in the flying height also leads to variation in the 

mean ground resolution ranging between 6 and 8 mm per pixel. In total, 60 flights (4 main plots × 

3 crops × 5 sampling dates) were conducted. The flights were conducted only on days with no or 

only low wind, to reduce the effect of moving plants during recording. The spatial position of each 

image was measured by the internal GPS of the UAV (spatial accuracy ~2 m). However, its accu-

racy is not sufficient for direct georeferencing. Thus, for each main plot, four permanent ground 

control points (GCPs) were measured at the corners of the plot using a differential GPS (Trimble 

Inc., Sunnyvale, CA, USA) with a spatial accuracy of ~5 cm. These GCPs were subsequently used 

for georeferencing, geo-correction and co-registration of the images. 

Point Cloud Processing 

To receive point cloud data from the UAV images, a SfM algorithm was applied (Figure A1, Ap-

pendix). The first step of the algorithm is to extract features in each image that can be matched to 

their corresponding features in other images [20,21]. Prior to this matching step, the SfM performs 

a bundle adjustment among the images, based on matching features between the overlapped im-

ages to estimate interior and exterior orientation of the onboard sensor. Applying a multi-view 

stereo matching algorithm to the images, a dense point cloud is generated [22,23]. All images were 

processed using the software Photoscan Pro (AgiSoft LLC, St. Petersburg, Russia). The bundle 

adjustment was conducted with the high accuracy settings and a key point limit of 100,000 and a 

tie point limit of 1000. The resulting sparse point cloud was georeferenced using the GCPs to 

ensure precise alignment and georeferencing of the point cloud. The RMS of the projections ranged 
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from 0.2 to 0.4. All GCPs were manually identified in the raw images, and their coordinates were 

fed into the Photoscan software. The spatial error of the GCP for all datasets ranged from 5–20 

cm. The accuracy decreased towards the end of growing season, due to difficulties in identifying 

the GCP due to overgrowing (Figure 2). Subsequently, the dense point cloud was processed using 

the “medium quality” setting. Although higher quality settings were possible, the medium quality 

was selected to reduce processing time. Depth filtering allows removing outliers within the point 

cloud and was set to “medium” following [24]. Afterwards, the point clouds were divided into 

corresponding S- and H-plot. 

 

Figure 2. Process chain of the analysis, the yellow box (left) describes the biomass sampling and modelling, 

the green box (centre) shows the crop height sampling, and the blue box (right) describes the point cloud 

processing. S-plot indicates plots in which destructively measured parameters were sampled (i.e. biomass 
harvest). H indicates plots in which only non-destructive measurements were conducted (i.e., spectral sam-

pling). S plots were used for model calibration, while H plots were used for model validation. * Green-Red 

Vegetation Index. 
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Ground Classification 

Besides the x-, y-, z-coordinates, each point is associated with a red, green, and blue color infor-

mation. This color information was used to calculate the Green-Red Vegetation Index (GRVI, 

Equation (1); [25]). The GRVI has been shown to be efficient in spectrally discriminating vegeta-

tion from soil [26]. 

GRVI =
(Green − Red)

(Green + Red)
 

with Green and Red indicating the green and red color information for all points of the point cloud. 

Low GRVI values are characterized by small differences between Green and Red colors, which is 

typical for soil. Vegetation, on the other hand, is characterized by larger differences between the 

Green and Red color values, which would lead to higher GRVI values. Using an unsupervised k-

means algorithm, all points were classified into vegetation or ground, based on the GRVI values. 

For this, the k-means algorithm classified all points into k classes (here, k = 2) based on the small-

est distance of the points to the mean of the class centroid. This classification was done for all plots 

and sampling dates individually. The classified ground points were subsequently used for the cre-

ation of a digital elevation model (DEM) using Delaunay triangulation (Figure 2). The DEM had 

a resolution of 1 m, which was a compromise between available ground points and necessary in-

terpolation. To normalize the height information of the vegetation points, from each z-value, the 

corresponding DEM value was subtracted. This allowed for calculation of the height of each veg-

etation point above ground surface (Figure 2). The resulting average point density of the vegetation 

point cloud was 955 points m−2 and 988 points m−2 for the S- and H-plot, respectively. As plant 

individuals were continuously removed from the S-plot during the growing season, the total stand-

ing biomass in the S-plot steadily decreased. This, however, did not affect the presented approach, 

as the non-vegetated areas were removed using the GRVI values from the drone imagery, and so 

the average crop height was only based on actual existing plant individuals. For each plot and 

sampling date, 14 different point cloud metrics were calculated (Table 1). For each height metric 

only, the points classified as vegetation were used for calculation (Table A2, see Appendix). The 

selection of the metrics was based on the results from studies focusing on forest biomass estimation 

[27,28]. The extraction and handling of the point cloud was done using the lidR package [29] of 

the program R [30]. 
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Table 1. Height metrics derived from point clouds and used as explanatory variables in modelling crop 

height in a multi-factorial field experiment at University of Agricultural Sciences, GKVK Campus, Benga-

luru, India. 

Metric Description 

Hmin Minimum crop height 

Hmax Maximum crop height 

Hmean Mean crop height 

Hsd Standard deviation of crop height 

Hmedian Median crop height 

Hskew Skewness of crop height 

Hkurt Kurtosis of crop height 

Hcv Coefficient of variation crop height 

Hq70 70th percentile of crop height 

Hq80 80th percentile of crop height 

Hq90 90th percentile of crop height 

Hq95 95th percentile of crop height 

Hq99 99th percentile of crop height 

Hrelief 
Crop canopy relief height  

(Hmean-Hmin)/(Hmax-Hmin) 

 

Statistical Methods 

In a first step, the effect of fertilizer treatment and sampling date on the measured crop height was 

tested using ANOVA. Prior to the ANOVA, the values were tested for normality of residuals and 

homoscedasticity, and if necessary, were transformed. A significant effect of the fertilizer would 

imply that the crop height modelling should be done separately for each N level. To predict crop 

height, two machine learning methods were used, namely random forest regression (RFR) [31] 

and support vector regression (SVR) [32]. Both methods were chosen because they can handle the 

high intercorrelation of the point cloud metrics (Table 1). Partial least squares regression (PLSR), 

another common machine learning method, was also tested for their predictive abilities. However, 

PLSR did not outperform RFR and SVR, and was thus removed from the further presentations. 

For model calibration, only point clouds from the S-plot were used, while for validation of the 
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model prediction quality, the point clouds from the H-plot were used. The RFR and SVR calcula-

tions were done using the packages randomForest [33] and e1071 [34] in R [30]. 

To evaluate model prediction quality, the explained variance using the pseudo-R2 (Equation (2) 

was used, as well as the root mean square error (RMSE) of the predicted values, that is, values 

from the H-plot (Equation (3). Additionally, the bias was calculated (Equation (4). To evaluate the 

prediction performance for each sampling date, the deviation of the predicted values from the 

measured height values, scaled by the mean of the measured height values, were used. For the 

comparison of the models, also, the relative error (rel.err.) was calculated (Equation (5). To assess 

the applicability of the predicted crop height as an estimator of biomass, a linear regression was 

calculated between the predicted crop height and the biomass for the H-plot. The model prediction 

quality was evaluated using the R2 and RMSE. 

𝑃𝑠𝑒𝑢𝑑𝑜 − 𝑅2 = [1 −
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦̅𝑖)
2𝑛

𝑖=1

] 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦̂𝑖 − 𝑦𝑖)

2𝑛
𝑖=1

𝑛
 

𝑏𝑖𝑎𝑠 =
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)

𝑛

𝑖=1
 

𝑟𝑒𝑙. 𝑒𝑟𝑟. =  
𝑅𝑀𝑆𝐸

max(𝑦𝑖) − min (𝑦𝑖)
 

 

with  𝑦𝑖 being the measured crop height values, and 𝑦̂𝑖 the predicted crop height values. 𝑦̅𝑖 indicates 

the average measured crop height, and n is the number of samples. 

Results  

To test for the combined effects of sampling date and N-fertilizer on the average crop height, a 

two-factorial ANOVA was conducted (Table 2). For all three crops, the interaction term of sam-

pling date and N fertilizer was not significant, while the effect of sampling date was highly signif-

icant. This is not surprising, as it was assumed that crop height increases similarly with increasing 

crop age at all N levels, whereby as stated earlier, the range of occurring N supply to crops was 

limited. 
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Table 2. Effects of sampling date and N fertilizer on average crop height for eggplant, tomato, and 

cabbage grown in a multi-factorial field experiment at University of Agricultural Sciences, GKVK 

Campus, Bengaluru, India. 

 p-value 

 Sampling Date (SD) N Fertilizer (NF) SD × NF 

Eggplant <0.001 0.141 0.453 

Tomato <0.001 0.978 0.720 

Cabbage <0.001 0.454 0.691 

 

Crop Height Estimation  

To predict mean crop height, 14 point cloud-derived crop height metrics were used (Table 3). The 

correlation among the metrics ranged from 0.01 to 0.98, with an average intercorrelation of 0.45, 

indicating a moderate intercorrelation (Table 3). Thus, regression methods, which can handle in-

tercorrelations among the explanatory variables, like RFR or SVR, should be preferred to classical 

ordinary least squares regression models. 

Table 3. Correlation among the point cloud derived crop height metrics in a multi-factorial field 

experiment at University of Agricultural Sciences, GKVK Campus, Bengaluru, India. 

 Hmin Hmax Hmean Hsd Hmedian Hskew Hkurt Hcv Hq70 Hq80 Hq90 Hq95 Hq99 

Hmax 0.01             

Hmean 0.38 0.36            

Hsd 0.1 0.67 0.75           

Hmedian 0.53 0.15 0.83 0.33          

Hskew −0.06 0.64 −0.19 0.13 −0.25         

Hkurt −0.02 0.55 −0.08 0.07 -0.09 0.84        

Hcv −0.04 0.82 0.01 0.42 -0.14 0.7 0.45       

Hq70 0.24 0.43 0.97 0.86 0.67 −0.14 −0.06 0.08      

Hq80 0.18 0.43 0.91 0.91 0.53 −0.1 −0.05 0.11 0.98     

Hq90 0.15 0.49 0.86 0.95 0.45 −0.05 −0.04 0.19 0.95 0.98    

Hq95 0.12 0.55 0.79 0.97 0.39 0.01 −0.02 0.27 0.89 0.91 0.97   
Hq99 0.07 0.74 0.62 0.92 0.29 0.23 0.1 0.51 0.71 0.73 0.81 0.9  

Hrelief 0.34 −0.33 0.38 −0.04 0.57 −0.57 −0.3 −0.35 0.24 0.16 0.08 0.01 −0.14 

 

The measured average crop height values versus the predicted crop height values are shown for 

eggplant, tomato, and cabbage (Figure 3). Two machine learning methods were tested: (top) ran-
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dom forest regression, and (bottom) support vector regression. For RFR, the best model was ac-

quired for cabbage (pseudo-R2 = 0.97, RMSE = 1.3, bias = 0.01). For eggplant and tomato the 

results were similarly good (eggplant: pseudo-R2 = 0.93, RMSE = 6.86, bias = 0.14, tomato: 

pseudo-R2 = 0.89, RMSE = 5.49, bias = 0.45) (Figure 3). For SVR, the results were always weaker 

than for RFR, with a pseudo-R2 for eggplant, tomato, and cabbage of 0.91, 0.87, and 0.89, respec-

tively. The RMSE and the bias, on the other hand, showed larger errors for the SVR models (egg-

plant: RMSE = 7.36, bias = −0.66, tomato: RMSE = 5.91, bias = 0.91, and cabbage: RMSE = 2.31, 

bias = −0.24). 

 

Figure 3. Field measured average crop height versus predicted average crop height for random forest re-

gression (top) and support vector regression (bottom). From the left to the right, the results are presented 

for eggplant, tomato, and cabbage. 

 

Crop Height Deviation within the Growing Season 

To check whether the predictability of the average crop height varied between RFR and SVR along 

the growing season, the deviation of the predicted from the measured crop height was calculated 

(Figure 4). For eggplant the median deviation was between 1–20% for all sampling dates for both 

RFR and SVR. An increase of the relative deviation was visible from sampling date 1 to 5, except 
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for sampling date 3, for which both methods overestimated the measured average crop height. For 

tomato, the relative deviation shows no clear pattern along the sampling dates for both RFR and 

SVR. The median deviation for RFR was lowest for sampling date 1 (−0.009) and highest for 

sampling date 4 (0.16). For SVR, the fluctuation shows a higher amplitude than for RFR, ranging 

from 0.06 to −0.19. For cabbage, the deviation was lowest for RFR across all sampling dates, 

ranging from −0.008 in sampling date 2, to 0.10 for sampling date 5. For SVR, the highest devia-

tion was found for sampling date 1 (−0.2). For the other sampling dates, the deviation was compa-

rable to the results from the RFR. 

 

Figure 4. Relative deviation of the predicted crop height values based on random forest regression (top) 

and support vector regression (bottom) from the measured crop height values for each sampling date (01-

05). From the left to the right, the results are presented for eggplant, tomato, and cabbage. 
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Crop Biomass Estimation  

To test whether the predicted crop height values are reliable estimators for the biomass of the three 

crops, a log-linear model was calibrated with the predicted crop height values as predictors and 

the biomass of the H-plot as dependent variable (Figure 5). The predicted crop height values were 

based on RFR. The models for all three crops showed significant relationships with R² values from 

0.90 (RMSE = 6.01 t ha−1) for eggplant, 0.88 (RMSE = 3.76 t ha−1) for tomato, and 0.95 (RMSE 

= 9.97 t ha−1) for cabbage. In order to compare the model based on the predicted crop height with 

a model based on the measured crop height, a log-linear model was also calibrated with the meas-

ured average crop height (Figures 5 and 6). For eggplant, the model on the measured crop height 

showed a higher relative error (rel.err. = 21.6%) than the model based on the predicted crop height. 

For tomato the model based on the measured crop heights showed a slightly lower error of 18.3% 

and for cabbage the relative error was the same (rel.err. = 15.2%) for both models. 

 

Figure 5. Biomass versus the (top) field measured crop height and (below) predicted crop height based on 

random forest regression. 
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Figure 6. Predicted versus observed biomass values based on (top) field measured crop height and (bottom) 

predicted crop height. The symbols indicate the five sampling dates: (square) sampling date 1, (circle) sam-

pling date 2, (triangle) sampling date 3, (plus) sampling date 4, and (cross) sampling date 5. The black lines 

indicate the 1:1 fit of the values. 

Discussion 

The aim of the current study was to assess the applicability of UAV-borne RGB imagery for cap-

turing crop height information for the three vegetable crops (eggplant, tomato, and cabbage), and 

to assess whether the developed methods can be used over an entire cropping season. Overall, 

results indicate that a successful estimation of crop height for vegetable crops with very different 

crop growth forms could be achieved (with R² value ranging from 0.89 for tomato to 0.97 for 

cabbage). These results are similar to multi-temporal crop height models for maize and sorghum 

(ranging from 0.68 to 0.78) [1], although, in contrast to this study, no systematic bias according to 

the vegetable growth stage could be found. 

Our experiment shows that UAV-borne RGB imagery in combination with SfM techniques can be 

used to estimate vegetable crop height during the complete growing period. The suggested method 

using several extracted crop height metrics from 3D point data was used previously in forestry 
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research [27], and in agroecological research [35]. For example, [35] used a group of point cloud 

derived height metrics to estimate variations of maize crop height at landscape scale. The ad-

vantage of this method in comparison to the more frequently used single best metric approach is 

that the information content about crop height differs for each single metric, as can be seen in the 

correlation among all metrics (Table 3). This indicates that multiple crop height metrics predict 

biomass information more comprehensively than single crop height metrics. Modern machine 

learning methods can handle highly intercorrelated variables [36] better than ordinary least squares 

regression models, and should therefore be the tool of choice for the prediction of crop height 

based on multiple crop height metrics from UAV-borne RGB imagery. The results showed no 

clear superiority of RFR over SVR, although RFR always yielded slightly better results (Figure 

3). The slightly better performance might be explained by the lower sensitivity to data skewness 

and to model overfitting [37]. 

UAV-borne RGB imagery-based crop height values indicate a systematic deviation from the field 

measured crop height values (Figure 4). The apparent increase in the median bias, from early 

growing stages to the late stages for eggplant and cabbage, indicates an increasing overestimation 

of the vegetable crop height by the prediction model. A similar trend is evident in [1] for maize 

and sorghum. They state that the deviations are mainly due to time lags between the UAV-based 

measurements and the field-based measurements. For the current study, the sampling date was 

identical for both UAV and field measurements, indicating that other factors might be the reason 

for the deviation. The biased estimation is more likely a result from inaccuracies in the point cloud 

generation process and is, thus, likely to be related to a biomass increase during the crop develop-

ment, which could complicate the SfM processing [38]. For tomato, this trend in bias could not be 

found, but in contrast to the other two crops tomato was tied up to horizontal threads from sampling 

date 3, to prevent molding of the fruits. This agricultural practice might also be the reason for the 

high bias values for tomato at sampling date 4 (Figure 4). In addition to the deviations in estimated 

crop height from the SfM algorithm, the field-based height measurements are not bias-free. For 

the present study, the maximum height of any vegetation part at each measurement point was used 

for the height measurements, which could lead to an overestimated average plot crop height. 

The three vegetable crops examined in the present study represent different growth forms with 

different internal vegetation structures. While cabbage is characterized by a relatively flat and 
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round shape with compact structure, tomato and eggplants are growing taller, which is character-

istic for more complex structures. In comparison to tomato, eggplant has larger leaves and thicker 

stems. These vegetation characteristics lead to differences in the biomass and vegetation structure, 

particularly at the end of the growing season (Figure 5), and could have affected the vegetable crop 

height estimation [39]. Despite these variations, no difference in model prediction quality was 

found (Figures 3 and 4). These results agree with the results of [39], who have shown that, with 

high spatial resolution UAV-borne RGB imagery, even small structural details can be successfully 

differentiated. 

Crop height is considered as an important indicator for biomass of crops such as maize [35], barley 

[12], sorghum [1], and poppy [40]. The predicted vegetable crop height values of the present study 

show strong and highly significant relationships to the biomass for all three crops (Figure 5). The 

model prediction quality (measured as R²) was better in the present study than in the study by [36], 

who estimated maize aboveground biomass using UAV-borne RGB imagery. However, in addi-

tion to being only a single date data [35], the flying height of the UAV used by [35] was much 

higher (130 m) than the flying height (20m) maintained in this study, leading to manifold differ-

ences in the spatial resolution of imagery. In a similar study, [41] found a comparably strong rela-

tionship between UAV-borne RGB derived from multi-temporal crop height and barley dry matter 

yield (R² = 0.85). The accuracies of the models based on the predicted crop height showed similar 

prediction qualities than the corresponding models based on field-based crop height values (Figure 

5). This supports the idea that point cloud analysis could replace intensive field campaigns for 

measuring crop height with a similar prediction accuracy for the crop biomass. Both modelling 

approaches showed clear deviations for the late growing stages (growing stage 4 and 5; Figure 6). 

These deviations indicate that height is a less accurate estimator of biomass for crops during late 

growing stages. The results of the present study support the finding of other studies that high res-

olution multi-temporal crop height information is needed for successful estimation of crop biomass 

[10,41]. Alternative plant phenotypic traits, such as plant volume, may even yield more accurate 

predictors for biomass [40]. Thus, future studies should evaluate the further potential of 3D point 

cloud analysis for estimating key plant phenotypic traits, which can be used as reliable predictors 

for plant biomass. Furthermore, the results indicate that for a successful estimation of biomass, 

height information alone is not enough. Evolving sensor fusion approaches might improve the 

model prediction performance, as it has been shown for example for grassland biomass [42,43]. 
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Uncertainties, Errors, and Accuracies 

Disturbances of vegetation canopy through environmental conditions (e.g., wind, clouds) can af-

fect point cloud creation and lead to inaccuracies during the point cloud processing. While wind 

can move the vegetation canopy and, thus, may lead to a distortion of height, clouds can lead to 

differences in the RGB values which were used for ground classification. However, as the average 

canopy height was used, we assume these effects are minor, and no UAV flight was conducted 

during high wind conditions. 

For a successful height estimation, a highly precise georeferencing is mandatory. Four GCPs (as 

used in this study) represent the minimum number of control points for georeferencing. More 

GCPs could have led to a more accurate representation of the actual crop height. To keep the 

relative error between the measurements constant, permanent GCPs were used. 

Accurate estimation of height for each vegetation point needs an accurate DEM model. While at 

the beginning of the growing season, plenty of space among individual plants allows for identify-

ing enough ground points for an accurate calculation of the DEM, much of the ground is covered 

by vegetation at later crop growth stages, which reduces the amount of ground-classified points. 

This problem is not prominent for cabbage, as there was always enough space between the plant 

individuals, whereas tomato and eggplant developed a dense vegetation cover with progressing 

growing season. 

Although the accuracies of the biomass prediction models based on the estimated crop height were 

similar to the predicted biomass based on the measured crop height, circa 10% of the variation in 

the biomass values remained unexplained. The relationship between height and biomass is expo-

nential, indicating that at this stage large values of vegetation height are not a stable estimator of 

biomass anymore. A reason for this might be that the linear relationship between biomass and crop 

height is only valid at the beginning of the growing season, whereas with progressing growing 

season biomass further increases, which is rather due to the growth of fruits than due to height 

increase. 

Conclusions 

High resolution subplot level estimation of crop phenotypic traits from UAV-borne RGB imagery 

is fast emerging as one of the time and cost effective remote sensing tool for agricultural crops. 
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The processing and analysis approach developed in this study, based on the extraction of several 

height parameter from the 3D point clouds and machine learning regression methods, exhibit stable 

model prediction quality for biomass during the entire growing period and for the three vegetable 

crops eggplant, tomato, and cabbage. However, the results also show that crop height information, 

based on UAV imagery analysis, is affected by vegetable crop internal structure and agricultural 

management. Further research is needed to examine the effect of other crop phenotypic traits on 

model prediction quality. Overall, the study demonstrated that time-consuming manual height 

measurement can be replaced by remote sensing approaches for field vegetable crops, and recom-

mend further multi-site and multi-crop studies to better understand the temporal variation between 

field measured crop height and crop height, based on UAV-borne RGB-based 3D point clouds. In 

the future, the suggested approach could be used for a real-time evaluation of vegetable biomass. 

Appendix A 

Table A1. Sampling dates for studied crops in a multi-factorial field experiment at University of 

Agricultural Sciences, GKVK Campus, Bengaluru, India. 

 Eggplant Tomato Cabbage 

Sampling date 1 08.03.2017 09.03.2017 07.03.2017 

Sampling date 2 29.03.2017 30.03.2017 28.03.2017 

Sampling date 3 20.04.2017 18.04.2017 10.04.2017 

Sampling date 4 16.05.2017 04.05.2017 11.05.2017 

Sampling date 5 13.06.2017 05.06.2017 07.06.2017 
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Appendix B 

Table A2. Values of mean and standard deviation (brackets) for parameter used in the present study. The values for the height metrics and 

the measured canopy height are based on the values from the S- and H-plot (n = 24). The biomass information is based on the values from 

the H-plot (n = 12) in a multi-factorial field experiment at University of Agricultural Sciences, GKVK Campus, Bengaluru, India. 

Crop 

Sam-

pling 

date 

Meas-

ured 

Crop 

height 

Biomass 

[kg m−2] 
Hmin Hmax Hmean Hsd Hmedian Hskew Hkurt Hcv Hq70 Hq80 Hq90 Hq95 Hq99 Hrelief 

C
a
b
b
a
g
e 

1 
5.856 

(0.379) 

0.028 

(0.028) 

0.001 

(0) 

0.173 

(0.417) 

0.017 

(0.050) 

0.028 

(0.107) 

0.005 

(0.001) 

3.669 

(3.537) 

46.453 

(97.946) 

0.989 

(0.437) 

0.042 

(0.145) 

0.066 

(0.248) 

0.081 

(0.306) 

0.089 

(0.316) 

0.109 

(0.329) 

0.099 

(0.056) 

2 
11.936 

(1.020) 

0.139 

(0.139) 

0.001 

(0) 

0.168 

(0.508) 

0.012 

(0.012) 

0.02 

(0.057) 

0.007 

(0.001) 

1.742 

(0.673) 

3.857 

(3.906) 

1.005 

(0.688) 

0.026 

(0.039) 

0.034 

(0.056) 

0.051 

(0.116) 

0.080 

(0.234) 

0.108 

(0.328) 

0.132 

(0.035) 

3 
14.947 

(1.061) 

0.446 

(0.446) 

0.001 

(0) 

0.198 

(0.446) 

0.017 

(0.007) 

0.021 

(0.042) 

0.013 

(0.001) 

1.685 

(1.356) 

6.123 

(12.136) 

0.933 

(0.737) 

0.035 

(0.022) 

0.042 

(0.034) 

0.055 

(0.063) 

0.075 

(0.130) 

0.132 

(0.322) 

0.153 

(0.052) 

4 
22.296 

(0.892) 

2.746 

(2.746) 

0.001 

(0) 

0.235 

(0.374) 

0.035 

(0.005) 

0.032 

(0.031) 

0.029 

(0.002) 

1.132 

(1.417) 

2.738 

(12.325) 

0.854 

(0.462) 

0.070 

(0.016) 

0.080 

(0.024) 

0.095 

(0.044) 

0.114 

(0.086) 

0.177 

(0.298) 

0.207 

(0.047) 

5 
24.967 

(1.029) 

4.972 

(4.972) 

0.001 

(0) 

0.320 

(0.643) 

0.035 

(0.004) 

0.030 

(0.022) 

0.029 

(0.002) 

1.283 

(1.885) 

5.397 

(22.835) 

0.825 

(0.401) 

0.069 

(0.011) 

0.078 

(0.015) 

0.093 

(0.027) 

0.108 

(0.052) 

0.166 

(0.233) 

0.186 

(0.054) 

E
g
g
p
la

n
t 

1 
8.744 

(0.883) 

0.015 

(0.015) 

0.001 

(0) 

0.445 

(1.299) 

0.006 

(0.002) 

0.014 

(0.033) 

0.005 

(0.001) 

4.546 

(6.417) 

75.084 

(171.526) 

1.631 

(2.860) 

0.011 

(0.005) 

0.013 

(0.007) 

0.018 

(0.016) 

0.021 

(0.017) 

0.076 

(0.174) 

0.095 

(0.056) 

2 
20.020 

(1.736) 

0.099 

(0.099) 

0.001 

(0) 

0.100 

(0.013) 

0.018 

(0.004) 

0.016 

(0.003) 

0.012 

(0.003) 

1.321 

(0.248) 

1.451 

(1.016) 

0.928 

(0.067) 

0.038 

(0.007) 

0.044 

(0.008) 

0.053 

(0.009) 

0.060 

(0.009) 

0.074 

(0.009) 

0.168 

(0.030) 

3 
44.833 

(3.433) 

0.727 

(0.727) 

0.001 

(0) 

0.456 

(0.260) 

0.042 

(0.004) 

0.034 

(0.003) 

0.035 

(0.004) 

1.450 

(0.493) 

6.031 

(9.016) 

0.812 

(0.038) 

0.084 

(0.008) 

0.095 

(0.009) 

0.114 

(0.010) 

0.132 

(0.010) 

0.176 

(0.016) 

0.112 

(0.047) 

4 
68.798 

(4.790) 

2.239 

(2.239) 

0.001 

(0) 

0.326 

(0.103) 

0.074 

(0.039) 

0.049 

(0.015) 

0.066 

(0.042) 

0.877 

(0.395) 

0.894 

(1.329) 

0.719 

(0.108) 

0.134 

(0.056) 

0.149 

(0.058) 

0.171 

(0.061) 

0.191 

(0.062) 

0.229 

(0.063) 

0.226 

(0.097) 

5 
70.315 

(4.778) 

1.902 

(1.902) 

0.001 

(0) 

0.271 

(0.042) 

0.054 

(0.010) 

0.042 

(0.007) 

0.045 

(0.009) 

1.100 

(0.167) 

1.185 

(0.719) 

0.786 

(0.036) 

0.107 

(0.019) 

0.121 

(0.021) 

0.144 

(0.024) 

0.164 

(0.026) 

0.204 

(0.030) 

0.199 

(0.033) 

Crop 

Sa

mpl

ing 

dat

e 

Measured 

crop height 

Biomass 

[kg m−2] 
Hmin Hmax Hmean Hsd Hmedian Hskew Hkurt Hcv Hq70 Hq80 Hq90 Hq95 Hq99 Hrelief 

T
o
m

a
to

 

1 
9.249 

(0.592) 

0.014 

(0.014) 

0.001 

(0) 

0.088 

(0.187) 

0.008 

(0.011) 

0.011 

(0.033) 
0.005 (0) 

2.253 

(1.805) 

14.877 

(22.386) 

0.833 

(0.408) 

0.018 

(0.035) 

0.022 

(0.046) 

0.035 

(0.102) 

0.044 

(0.132) 

0.059 

(0.162) 

0.129 

(0.056) 

2 
24.544 

(2.504) 

0.050 

(0.050) 

0.001 

(0) 

0.131 

(0.240) 

0.009 

(0.006) 

0.013 

(0.025) 

0.006 

(0.001) 

2.852 

(0.848) 

13.540 

(9.779) 

1.079 

(0.576) 

0.020 

(0.018) 

0.024 

(0.026) 

0.037 

(0.054) 

0.054 

(0.106) 

0.084 

(0.169) 

0.091 

(0.027) 

3 
43.651 
(4.829) 

0.360 
(0.360) 

0.001 
(0) 

0.500 
(0.534) 

0.033 
(0.006) 

0.036 
(0.007) 

0.021 
(0.006) 

2.880 
(4.579) 

69.698 
(311.362) 

1.078 
(0.128) 

0.076 
(0.012) 

0.090 
(0.014) 

0.113 
(0.020) 

0.137 
(0.031) 

0.192 
(0.064) 

0.089 
(0.030) 

4 
53.727 

(5.782) 

1.140 

(1.140) 

0.001 

(0) 

0.611 

(0.374) 

0.060 

(0.030) 

0.061 

(0.038) 

0.038 

(0.011) 

1.718 

(0.403) 

4.884 

(3.454) 

0.974 

(0.126) 

0.136 

(0.080) 

0.160 

(0.097) 

0.198 

(0.120) 

0.232 

(0.137) 

0.306 

(0.159) 

0.108 

(0.033) 

5 
46.474 

(3.091) 

0.827 

(0.827) 

0.001 

(0) 

0.305 

(0.134) 

0.017 

(0.005) 

0.021 

(0.010) 

0.010 

(0.002) 

4.061 

(1.885) 

37.573 

(41.772) 

1.220 

(0.213) 

0.039 

(0.013) 

0.048 

(0.018) 

0.065 

(0.029) 

0.084 

(0.045) 

0.139 

(0.075) 

0.060 

(0.023) 
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Appendix C 

 

Figure A1. Exemplary pictures of three crops used in the study. Top: Point clouds. Bottom: Photographs. 

From left to right: Tomato, cabbage, and eggplant. All images and point clouds were collected at the second 

sampling date. 
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Chapter 3 

Multi-temporal monsoon crop biomass estimation using hyper-

spectral imaging 

Abstract  

Hyperspectral remote sensing is considered to be an effective tool in crop monitoring and estima-

tion of biomass. Many of the previous approaches are from single year or single date measure-

ments, even though the complete crop growth with multiple years would be required for an appro-

priate estimation of biomass. The aim of this study was to estimate the fresh matter biomass (FMB) 

by terrestrial hyperspectral imaging of the three crops lablab, maize and finger millet under differ-

ent levels of nitrogen (N) fertiliser and water supply. Further, the importance of the different spec-

tral regions for the estimation of FMB was assessed. The study was conducted in two experimental 

layouts (rainfed (R) and irrigated (I)) at the University of Agricultural Sciences, GKVK campus, 

Bengaluru, India. Spectral images and the FMB were collected over three years (2016–2018) dur-

ing the growing season of the crops. Random forest regression method was applied to build FMB 

models. R² validation (R²val) and relative root mean square error prediction (rRMSEP) was used to 

evaluate the FMB models. The Generalised model (combination of R and I data) performed better 

for lablab (R²val = 0.53, rRMSEP = 13.9%), maize (R²val = 0.53, rRMSEP = 18.7%) and finger 

millet (R² val = 0.46, rRMSEP = 18%) than the separate FMB models for R and I. In the best derived 

model, the most important variables contributing to the estimation of biomass were in the wave-

length ranges of 546–910 nm (lablab), 750–794 nm (maize) and 686–814 nm (finger millet). The 

deviation of predicted and measured FMB did not differ much among the different levels of N and 

water supply. However, there was a trend of overestimation of FMB at the initial stage and under-

estimation at the later stages of crop growth.  

Introduction 

The majority of India’s population (60%) depends on the agricultural sector for their livelihood 

[1]. Agriculture depends mainly on monsoon rainfall, surface water and ground water irrigation. 

Since the variability of monsoon rainfall is high, it forces the farmers to adapt their irrigated areas 

to local water availability [2]. Irrigated crop production is a major contributor to the green revolu-

tion, which has enabled the country to be self-sufficient [3], accompanied by fertiliser application, 



Chapter 3 

 33 

chemical weed and pest control. Timely fertiliser application with water supply is essential for a 

successful crop. Spectral data from Remote Sensing (RS) have been studied for many years for an 

assessment of nutrient and water variability for yield optimisation [4–6]. 

RS can be an effective tool in monitoring crop production [7–9] and estimating yield [10,11]. Early 

estimation of yield may allow better planning and forecasting the market prices and support food 

security based on the regional, national and global demand and supply. RS allows collecting in-

formation about crop production using non-destructive methods [12] on a large scale for many 

fields at the same time. Hyperspectral (HS) RS provides continuous narrow spectral data from 400 

to 2500 nm and have been proved to capture the variations in spectral response of the crop for the 

detection of nitrogen (N) content [13,14], biomass [15] and water stress [6,16]. Development of 

HS sensors and their application in estimating crop biomass from multi-year data [17] has gained 

increasing attention in recent years. Multi-temporal images provide more information on vegeta-

tion phenology under wet and dry conditions than a single image [18]. Many studies related to 

multi-temporal hyperspectral imaging have been published on crops such as rice (Oryza sativa L.) 

[19], wheat (Triticum aestivum L.) [20,21], and maize (Zea mays L.) [10]. Besides maize, lablab 

(Lablab purpureus L.), and finger millet (Eleusine coracana L.) are primary crops in the semi-arid 

region of South India. The state of Karnataka generates the major share of lablab (90%) [22] and 

finger millet (62.01%) [23] production of India. However, well-defined multi-year studies on the 

estimation of biomass for maize, lablab and finger millet using multi-temporal hyperspectral data 

under varying nitrogen (N) fertiliser and water supply levels are lacking. 

The aim of this study was to assess the potential of terrestrial hyperspectral imaging for the esti-

mation of monsoon crop biomass based on data from three years (2016–2018). The specific ob-

jectives of the study were: (1) to develop statistical models to predict the fresh matter biomass 

(FMB) of the three crops: lablab, maize and finger millet; (2) to assess the effect of different levels 

of N and water supply on the predicted FMB value for a wide range of crop phenology over the 

complete growing period; and (3) to evaluate the importance of spectral regions in the resulting 

models and understand the causal relationships of the model. 

Methods 

The study was conducted during 2016–2018 at GKVK campus of University of Agricultural Sci-

ences, Bengaluru (UASB) located in the eastern dry zone of Karnataka state, India 
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(12°58′20.79′′N, 77°34′50.31′′E, 920 m.a.s.l) (Figure 7a). The soils of the study area are formed 

by Kandic Paleustalfs and Dystric Nitisols as dominant soil types and the climate is described as 

a tropical savanna climate with a rainy season from June to October. Mean annual temperature is 

29.2 °C with an average precipitation of 923 mm [24]. The total rainfall and mean temperature 

data of the monsoon cropping season varied from 2016 to 2018 (Table 4) [25]. 

Table 4. Total rainfall and mean temperature data of the cropping seasons in a multi-factorial field experi-

ment at University of Agricultural Sciences, GKVK Campus, Bengaluru, India. 

Years 2016 2017 2018 

Rainfall (mm) 403.4 763.2  264.8 

Temperature (°C) 23.51 23.48 23.28 

 

 

Figure 7. (a) Location of Bengaluru within India; (b) design of rainfed experimental layout; (c) design of 

irrigated experimental layout (adjusted from [11]). 
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Experimental Site  

Two experiments were established with different irrigation regimes: rainfed (R) and drip irrigated 

(I). Each year has two cropping seasons, namely rainy/monsoon season (July–November) and dry 

season (February–May). Even in the monsoon season, drip irrigation systems are common, as the 

southwest monsoons are getting increasingly unreliable and timely irrigation enhances crop 

productivity. In the rainy season, lablab (cultivars: HA 4 and HA 3), maize (cultivars: Nithyashree 

and NAH 1137) and finger millet (cultivars: GPU-28, MR-6 and ML-365) were cultivated in both 

experiments (Table A1) [26–30]. Fertiliser application was done by broadcasting at three levels of 

N fertilizer to all crops. At high levels, the complete 100% application of N (recommended dosage) 

was applied and a reduced amount was applied at medium and low levels, which varied across 

years (Table A2). To lablab, the complete N dosage was applied at the time of sowing and for 

maize and finger millet it was split into two halves, i.e. at the time of sowing and four weeks after 

sowing (top dressing) with the objective of supplying nitrogen to growing plants in the readily 

available form and avoid leaching losses by heavy rainfalls, which frequently occur after sowing. 

Phosphorous (P) and potassium (K) were applied completely to all crops at the time of sowing 

(Table A2). 

Each block of a particular crop had three experimental plots (6 m x 12 m) with three N levels (low, 

medium and high) arranged in a randomised block design (Figure 7). In this split plot experiment, 

each plot was subdivided into two sub plots (6 m each), one was used for destructive biomass 

sampling (S) and the other one was used for non-destructive spectral measurements (H). In total, 

36 plots (3 crops x 4 blocks x 3 fertiliser levels) were used for the spectral and biomass sampling 

(Figure 7).  

Spectral Data Measurements 

Three hyperspectral images were taken in each H subplot using the full-frame hyperspectral cam-

era UHD 185-Firefly [31] mounted on a terrestrial tripod. The distance between the camera and 

the plant canopy height was 1.5 m throughout the growth of the crop to cover the same area of 

approximately 1 m² in all images. The camera measured the spectral range from 450 to 998 nm, of 

which the wavelength between 470 and 950 nm was further analysed, as the signal-to-noise ratio 

was too low for the wavebands from 450 to 470 and 950 to 998 nm. The spectral range was divided 

into 121 bands with a band width of 4 nm. The focal length of the camera was 12.1 mm with the 
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image size of 50 x 50 pixels covering the area of 1 m x 1 m at the applied height (2 cm spatial 

resolution). Prior to the measurement, the camera was calibrated using a dark (cap covering the 

lens) and white reflectance plane (95% reflectance Zenith Lite) [32] to calculate reflectance di-

rectly from the measured radiance. Although light conditions varied throughout the three years 

due to different illumination angles, the goal was to keep it as constant as possible. During the 

calibration in the field, the integration time was automatically obtained. The spectral reflectance 

of each pixel was normalised by dividing with the maximum reflectance value of the same pixel 

to reduce temporal variation and random noise [33]. 

Each image contained non-vegetation elements such as soil, drip irrigation pipes and shadows. To 

reduce the effect of these elements, a two-step procedure was applied (Figure 8). First, the Nor-

malised Difference Vegetation Index (NDVI) [8] was calculated as the difference between reflec-

tance in the red (620–750 nm) and near-infrared (NIR) (750–1400 nm), divided by the sum of 

reflectance in the red and NIR spectral range. Second, a two-class k-means clustering algorithm 

was applied to separate vegetation and non-vegetation using the NDVI values. The two class cen-

troids were identified based on NDVI values in such a way that the distance between the centroids 

were minimised. Finally, only the pixels classified as vegetation were used to calculate the average 

spectral reflectance for each image. The three images collected in each plot were averaged result-

ing in one spectral reflectance curve per H subplot and sampling date.  

Biomass Sampling 

The fresh matter weight of 2–4 plants were determined in the field and extrapolated to 1 m². The 

maximum number of samples collected for a particular crop type in a particular growing season 

was 60 (5 sampling dates × 3 fertiliser treatments × 4 replicates), but the number of sampling 

varied among the three years (Table 5 ). 

Table 5. Total number of samples from multi-factorial field experiments rainfed (R) and irrigated (I) at 

University of Agricultural Sciences, GKVK Campus, Bengaluru, India. 

Experiments. Number of samples in R. Number of samples in I 

Year 2016 2017 2018 2016 2017 2018 

Lablab 60 60 12 52 60 12 

Maize 48 48 12 60 48 12 

Finger millet 60 36 12 52 36 12 

Total annual crop-wise 168 144 36 164 144 36 

Total experiment-wise 348 344 

Grand total 692 
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Figure 8. Workflow showing the data collection (green), data preparation (yellow) and data analysis (blue). 

Sampling Dates  

In 2016 (Y1), the sampling was done on five sampling dates (Y1S1–Y1S5) under both irrigation 

regimes (R and I) for the three crops. Rainfed maize at the final sampling date in 2016 (Y1S5) was 

not sampled due to technical difficulties with the sensor. In 2017 (Y2), there were five sampling 

dates (Y2S1–Y2S5) for lablab, four for maize (Y2S1–Y2S4) and three for finger millet (Y2S1–

Y2S3) in both irrigation regimes (R and I). In Y2, irrigated maize top-dressing fertilisation was 

mixed up for a few low, medium and high plots and hence the plots I07, I08, I09, I13, I14, and I15 

(Figure 7c) were eliminated from analysis for Sampling dates 2–4 (Y2S2–Y2S4). In 2018 (Y3), 

there was one sampling date (Y3S1) for all three crops. Assessment of phenological stages of the 

crop was carried out by recording the morphological characteristics of the plants according to Bi-

ologische Bundesanstalt, Bundessortenamt und Chemische Industrie (BBCH) [34]. In total, there 

were 11 sampling dates (BBCH 1–8) for 2016–2018 (Table A3). 

Statistical Analysis  

To predict the fresh matter biomass (FMB) from reflectance data, machine learning random forest 

regression (RFR) in caret package [35] was used [36]. As the original dataset was skewed towards 

one side, the FMB measured in the S subplots were cube root transformed to assure normal distri-

bution of the dataset although RFR does not require normal distribution of the FMB dataset. RFR 

is a regression tree technique, which builds multiple decision trees and ensembles them for an 

accurate prediction [36]. It is less sensitive to overfitting as the subsets are drawn randomly each 
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time. The regression trees has the ability to deal with complex relationships between variables for 

large datasets [37]. Each crop was modelled separately for the R and I experiment based on datasets 

of three years (6 models). Further, the datasets from both irrigation regimes on each crop were 

combined to check the robustness of the model independent of water supply in one Generalised 

model. To eliminate the bias involved in splitting the data into training and testing sets, 100 dif-

ferent random subsets (75% for training and 25% for testing) were generated based on the sampling 

dates for each crop separately. Using these random subsets, 100 RFR models were calibrated and 

validated to predict the FMB for each crop from reflectance data. All machine learning methods 

have specific configuration parameters called tune parameters or hyperparameters, which optimise 

the performance of the predictive modelling algorithm [38]. For RFR model, two tune parameters 

need to be determined, i.e. number of trees and mtry. The number of tree parameters was always 

kept to a default value of 500 and the mtry parameter value was tuned using the repeated cross-

validation (five-fold, three repeats) procedure. The mtry parameter value was set between 1 and 

15 and the optimum mtry parameter for each model was identified. The model estimation accuracy 

of FMB was evaluated using R² validation (R²val) (Equation (1)) [39], the root mean square error 

of prediction (RMSEP) (Equation (2)), and the relative root mean square error prediction (rRM-

SEP) (Equation (3)).  

𝑅𝑣𝑎𝑙
2 = [1 −

∑ (𝑦𝑖 − 𝑦̂𝑖)
2𝑛

𝑖=1

∑ (𝑦𝑖 − 𝑦̅𝑖)
2𝑛

𝑖=1

] 

𝑅𝑀𝑆𝐸𝑃 = √
∑ (𝑦̂𝑖 − 𝑦𝑖)

2𝑛
𝑖=1

𝑛
 

𝑟𝑒𝑙. 𝑅𝑀𝑆𝐸𝑃 =  
𝑅𝑀𝑆𝐸𝑃

max(𝑦𝑖) − min (𝑦𝑖)
 

where 𝑦𝑖 is the measured fresh matter biomass, 𝑦̂𝑖 is the predicted fresh matter biomass, 𝑦̅𝑖  is the 

average measured fresh matter biomass, and n is the number of samples. 

To determine the important wavelengths in the prediction of FMB, the best model was identified 

out of 100 FMB models on each crop based on the lowest RMSE value. From the best model, the 

wavelengths contributing above 75% in the prediction of FMB were identified. The normalised 

deviation between the predicted and observed FMB values were calculated and differences in the 

deviation based on N levels, sampling dates and water supply were examined (Equation (4)). 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐹𝑀𝐵 –  𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝐹𝑀𝐵 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐹𝑀𝐵 +  𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝐹𝑀𝐵
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Results  

In the rainfed experiment, the range of FMB (S sub-plot) over the three years 2016–2018 was 

0.16–14.6 t/ha for lablab, 0.76–67.71 t/ha for maize and 0.89–59.39 t/ha for finger millet (Figure 

9). Similarly, for irrigated experiment, it was 0.22–44.33 t/ha for lablab, 2.28–79.38 t/ha for maize 

and 0.91–69.63 t/ha for finger millet. Crop growth continuously increased until S3 or S4 and 

started to decrease at later stages in all crops and along the three years. The FMB was higher in I 

than R experiment except for finger millet at Y1S1 and Y2S2. 

 

Figure 9. Fresh matter biomass (FMB) in the rainfed (R) and irrigated (I) multi-factorial field experiments 

at University of Agricultural Sciences, GKVK Campus, Bengaluru, India from 2016–2018 (Y1–Y3). The 

diagrams show average values over three levels of N fertiliser application. 
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To gain an impression of the spectral variation for each crop, minimum, average and maximum 

spectral reflectance from the images of rainfed and irrigated experiments were determined for the 

three crops lablab, maize and finger millet during the three monsoon seasons (Figure 10). 

 

Figure 10. Minimum, average and maximum spectral reflectance curves of lablab, maize and finger millet 

for three levels of N and two levels of water supply during the three monsoon seasons. 

Crop Specific FMB Models  

To develop a prediction model for FMB, which is valid for varying conditions, individual FMB 

models were developed for two irrigation regimes (i.e., R and I) and a combination of the datasets 

of both irrigation regimes (i.e., Generalised model). The prediction accuracy of the FMB models 

varied between the crops and depended on the dataset (R, I, or Generalised) used for model devel-

opment (Figure 11). The lowest rRMSEP value nearing to zero was considered as a better model. 

Building the RFR models separately for both R and I treatments, the lowest median rRMSEP for 

lablab was found in I with 17.9% (R²val = 0.34) and for maize and finger millet in R experiment 

with 18.5% (R²val = 0.60) and 19.8% (R²val = 0.46), respectively. With the combined dataset, the 

rRMSEP for lablab was 13.9% (R²val = 0.53), for finger millet was 18% (R²val = 0.46) and for maize 
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was 18.7% (R²val = 0.53). Overall, compared to the experiment-wise modelling approach, model 

accuracy (in terms of rRMSEP) was higher for all crops when models were built with data from 

both water supply levels. 

 

Figure 11. Prediction accuracy measured as R²val (a) and rRMSEP (b) values of the models (Rainfed, 
Irrigated and Generalised) for fresh matter biomass of lablab, maize and finger millet. Models were built 

on data from three different years, three levels of N and two levels of water supply (i.e., rainfed and irri-

gated). 

In RFR modelling, the mtry parameter indicates the number of input variables randomly chosen at 

each node. Optimum mtry values (best tune values) were found to be 13, 7 and 7 for lablab; 8, 12 

and 13 for maize; and 8, 2 and 7 for finger millet, respectively, for the Rainfed, Irrigated and 

Generalised models. 

The randomised models were based on stratified (according to sampling date and fertilisation rate) 

randomly selected samples for the calibration and validation dataset (Figure 12). Having consid-

ered such random effects in RFR modelling, it becomes obvious that predictions show a substantial 

underestimation with increasing FMB values (Figure 12). 
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Figure 12. Plot of fit of the Generalised models for fresh matter biomass (FMB) of lablab, maize and finger 

millet. Each plot shows predictions from 100 RFR models with randomly selected calibration and validation 

data. Models were built on data from three different years andthree levels of N in multi-factorial field ex-
periments rainfed (R) and irrigated (I) at University of Agricultural Sciences, GKVK Campus, Bengaluru, 

India. 

Performance of the Generalised Models Considering N Application Rates, Sampling Dates and 

Water Supply  

The normalised deviation of predicted and measured biomass was used to check if the prediction 

accuracy of Generalised models varied among the three levels of N application (Figure 13). Over-

all, only minor deviations were found among low, medium and high levels of N supply for all 

crops between 2016 and 2018. 

 

Figure 13. Normalised deviation between predicted and measured biomass for lablab, maize, and finger 

millet at three levels of N application (low, medium and high). Predictions were based on the Generalised 
model. Values were averaged over 11 sampling dates (2016–2018) from multi-factorial field experiments 

rainfed (R) and irrigated (I) at University of Agricultural Sciences, GKVK Campus, Bengaluru, India. 
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Prediction accuracy of Generalised models varied strongly among the sampling dates (Figure 14). 

While in Y1, normalised deviation for lablab showed an irregular pattern, such as an overestima-

tion (Y1S1 and Y1S3), underestimation (Y1S2) and good concordance (Y1S4 and Y1S5). A de-

creasing trend of deviation was observed with increasing crop maturity in Y2. With maize, there 

was a general decline across sampling dates both in Y1 and Y2. With finger millet, there was 

overestimation for the early sampling dates (Y1S1–Y1S2 and Y2S1–Y2S2) followed by decreas-

ing underestimation for the later sampling dates in 2016 (Y1S3–Y1S5). Following this deviation, 

it can be concluded that crop phenology influenced model performance with a tendency towards 

overestimation of biomass at early stages and an underestimation at later stages of crop growth. 

 

Figure 14. Normalised deviation between predicted and measured fresh matter biomass (FMB) for lablab, 

maize and finger millet at each sampling date (S1–S5) over three years (Y1–Y3). Predictions were based 
on the Generalised model. Values were averaged over 11 sampling dates (2016–2018) from multi-factorial 

field experiments rainfed (R) and irrigated (I) at University of Agricultural Sciences, GKVK Campus, Ben-

galuru, India. 

No systematic over- or underestimation was found for biomass prediction of the three crops at the 

two levels of water supply (Figure 15). Hence, model prediction was rather robust with slightly 

larger deviations for lablab at both water supply levels as compared to the other crops. 
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Figure 15. Normalised deviation between predicted and measured biomass for lablab, maize and 

finger millet at two levels of water supply (rainfed and irrigated). Predictions were based on the 

Generalised model. Values were averaged over 11 sampling dates (2016–2018) from multi-facto-

rial field experiments rainfed (R) and irrigated (I) at University of Agricultural Sciences, GKVK 

Campus, Bengaluru, India. 

Importance of Wavelengths  

Wavelengths of the crop reflectance helped in differentiating and identifying the crop traits based 

on their spectral region. The best model was identified out of 100 Generalised models on each crop 

based on the lowest RMSE value. From the best model, the wavelengths contributing above 75% 

in the prediction of FMB were identified (Figure 16). For lablab, a multitude of spectral bands 

from the green, red and near infrared (NIR) region (546–910 nm) contributed significantly to the 

estimation of biomass. Contrastingly, for maize, only wavelengths in the NIR region (750–794 

nm) and for finger millet in both the red and NIR region (686, 694, and 774–814 nm) were im-

portant. 
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Figure 16. Important wavelengths (score above 75) in the Generalised models for fresh matter biomass of 

lablab, maize and finger millet. Models were built on data from three different years (2016-2018) andthree 

levels of N from multi-factorial field experiments rainfed (R) and irrigated (I) at University of Agricultural 

Sciences, GKVK Campus, Bengaluru, India. 

Discussion  

The aim of the study was to estimate the monsoon crop biomass for three crops (lablab, maize and 

finger millet) based on terrestrial hyperspectral imaging during crop growth season across three 

years (2016–2018). With a high number of samplings during three consecutive monsoon seasons, 

a wide range of phenological stages of crops could be covered. This is important considering the 

validity range of prediction models, since the harvest time of crops varies considerably in agricul-

tural practice, for example due to nutrient and water availability and moisture content of grains. 

Thus, by our deliberate multi-temporal approach, the validity range of Generalised models was 

significantly broadened, which was further enhanced by the integration of crop measurements un-

der a wide range of N fertiliser and water supply. 

The FMB models were developed based on the predicted FMB values and tested with the observed 

FMB values for validation. Overall, the results indicate that the Generalised models had higher 

estimation accuracy (with rRMSEP ranging from 13.9% to 18.7%) for all the three crops, as com-

pared to the rainfed and irrigated models. One reason may be that, with the combination of data 
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from two experiments, representing severe water limitation (Rainfed experiment) and optimum 

water supply (Irrigated experiment), the range of crop productivity became much broader, which 

eventually may have increased the robustness of regression models. 

Similar prediction errors were found in a previous study for maize biomass by RGB images (rela-

tive error 16.66%, R² = 0.78) [40]. In contrast to our study, their models included canopy height 

parameter additional to RGB information, which shows the promising potential of structural data 

calculated with photogrammetric methods particularly when they are combined with data from 

other sensor types [11,41,42]. Although spectral information was limited to the Red Edge Modified 

Ratio Index (REMRI), the combination of spectral data with LiDAR-derived metrics produced 

only a slightly smaller error in the estimation of maize biomass [10] as compared to our study. 

However, as the sampling was done at only one date of one single year and because no defined N 

and water supply was applied, the transferability of such modelling approaches beyond the study 

area may be limited. 

Although lablab is an important legume in the food and cattle production system in India, this plant 

has not been subjected to any remote sensing assessment this far. The fact that it was the least 

productive crop in both experiments across all years, strongly reduced the range of FMB values 

for model calibration. However, the highest prediction errors obtained were between those of the 

more productive crops maize and finger millet. Similarly, finger millet is a rarely researched crop 

in terms of remote sensing. In a single-year satellite-based study with pearl millet, which exhibits 

a similar growth pattern as finger millet, Lambert et al. [43] found a strong relationship between 

Sentinel-2 based LAI data and crop biomass (R² = 0.84), which is much higher than in our study 

(R² = 0.46). Although neither sensors and platforms, nor the range of crop phenology and man-

agement were comparable, this study highlights the scope of well-informed satellite-based hyper-

spectral imagery, and proximal imagery may make important contributions to such developments, 

e.g., by the provision of crop-specific spectral libraries as a source of reference spectra that can aid 

the interpretation of hyperspectral and multispectral image [44]. 

Although we observed quite some deviation between predicted and observed FMB, the median 

was close to zero at all levels of N and water supply, when the Generalised models were used for 

all the three crops. This proves the robustness of models, which allow biomass prediction irrespec-

tive of varying nitrogen and water management practices. However, the pronounced pattern of 
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deviations along the sampling dates in Y1 and Y2 points at the limitations of models, which are 

solely built on spectral information. Although soil-containing pixels were masked out of the im-

ages prior to model calibration, a substantial overestimation of biomass at the initial sampling dates 

in the growing season occurred, while biomass was frequently underestimated at later sampling 

dates. The overestimation of biomass may be caused by weeds at the initial sampling dates as the 

effect of weeds could not be controlled in the estimation of biomass. Further, the prediction error 

for crops increased in the order lablab (13.9%), finger millet (18%) and maize (18.7%), which 

clearly shows that spectral information captured at the top canopy layer is increasingly less repre-

sentative of the biomass at lower layers of the canopy. This effect is also addressed as the “satura-

tion constraint” and was regularly found in previous studies (e.g., [45–47]) particularly when veg-

etation indices, such as the Normalised Differential Vegetation Index (NDVI), were used. Obvi-

ously, this problem cannot be circumvented by the use of individual spectral wavelengths instead 

of vegetation indices, but stresses the vital necessity to develop multi-sensor approaches, in which 

each sensor’s shortcomings are compensated by other sensors [10,48,49]. 

As a common trait for all three crops, wavelengths in the red-edge area were of utmost importance 

for the estimation of crop biomass. The Generalised model for lablab further comprised several 

wavelengths in the green, red and NIR region, indicating a larger number of variables in these 

models. Similar important bands were found by Manjunath et al. [50] in the discrimination of 

chickpea, pea and lentils. While in maize the most important variables were found in the red-edge 

region, the model of finger millet also contained wavelengths in the red region as important vari-

ables. For lablab, several bands were identified in the visible part of spectrum (450–750 nm) to be 

important for biomass prediction. These bands are known to be affected by plant pigments, espe-

cially by chlorophyll [51]. The ability of lablab to fix atmospheric nitrogen may have resulted in 

longer greenness of the leaves over the growing period, which leads to a higher reflectance at the 

green peak (~550 nm) and a higher absorbance in red (~650 nm). In general, the identified spectral 

bands confirm accepted knowledge about biomass-reflectance relationships [52].  

Potential and Limitations 

Although Generalised models performed better at various management practices, the application 

of terrestrial hyperspectral measurements is still time consuming and cannot be applied on larger 

scales. Contrarily, drone techniques carry great potential to collect hyperspectral imagery in a 



Chapter 3 

 
48 

comparable spatial resolution for larger areas. Another limitation is the dependence of the relative 

prediction error of the models from the growth development of the crops, which may have been 

enhanced by the change of crop varieties across years. 

Conclusions 

The results show that random forest regression modelling based on multi-temporal hyperspectral 

imagery allows the prediction of fresh matter biomass of three major food and feed crops in the 

monsoon season of southern India. The results of this study showed that Generalised models, 

which were built on crop data from both rainfed and irrigated conditions, are more robust than 

water management specific models. For all Generalised crop models, deviations between predicted 

and observed values were independent of N fertiliser and water supply, indicating a wide validity 

range of the models. However, an overestimation of crop biomass was detected at initial growth 

stages of crops along with an underestimation at the later stages of the crop growth, which was 

particularly pronounced with the more productive crops maize and finger millet. While wave-

lengths in the red edge region were important variables in all three Generalised crop models, sev-

eral others in the visible and near infrared region were important in models for lablab and finger 

millet. The results of this study suggest that, for the tested monsoon crops at advanced maturity, 

even hyperspectral information is not sufficient for an accurate biomass prediction. Data fusion 

from a combination of sensors may improve the prediction performance, as complementary sen-

sors can compensate for their respective deficiencies.  
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Appendix A 

Table A1. Varietal description of the crops lablab, maize and finger millet grown in three years (2016-

2018) from multi-factorial field experiments rainfed (R) and irrigated (I) at University of Agricultural Sci-

ences, GKVK Campus, Bengaluru, India. 

 

Crops 
Years 

grown 
Varieties Sowing 

Dura-

tion 

(days) 

Yield (t/ha) 

Salient features 
Rainfed 

Irri-

gated 

Lablab 

2016 

and 

2017 

HA 4  

(HA 3 x Magadi 

local) 

 
Can be grown through-

out the year as they are 

photo insensitive 

100–105 

 

Dry Seeds: 1–1.2,  

Green pods: 4.5–5 

Pods are constricted with 

characteristic odour (Sogadu) 

in all the three cropping sea-

sons 

 

2018 

HA 3  

(HA 1 x US 67-

31) 

 

95–100 
Dry Seeds: 0.8–0.9 

Green pods: 4.5–5 

Flat pods with no odour 

(Sogadu) 

Maize 

2016 

and 

2017 

Nithyashree 

(SKV-50 x NA1-

105) 

 

 Can be grown through-

out the year 

110–120 

Grain: 

7.41–

7.90 

Straw: 

19.77 

Grain: 

7.90–

8.40 

Straw: 

29.65 Tolerant to downy mildew, 

leaf blight and stem borer  

2018 

NAH 1137  

(Hema) 

 

110–120 

Grain: 

7.90–

8.40 

Straw: 

19.77 

Grain: 

8.89–

9.39 

Straw: 

29.65 

Finger 

millet 

2016 

GPU-28 

(Indaf 5 x (Indaf 9 

x IE 1012)) 

July–August 
110–115 

  
 Average Grain: 3.5–4 

Medium tall plants, 

semi compact ears with tip in-

curved fingers. Highly re-

sistant to finger and neck blast 

 

2017 

MR-6 

(African white x 

RoH 2) 

June–July 

 

120–125 

 
Average Grain: 3–3.5  

100–110 cm tall plants, 

open ears with tip incurved 

fingers 

 

2018 

ML-365 

(IE 1012 x Indaf 

5) 

 

June–August 

(Kharif monsoon) 

January–February 

(Rabi dry) 

110–115 

 
Average Grain: 5–5.5 

Medium height, semi 

compact ears with tip 

incurved fingers. Resistant to 

neck blast and tolerant to 

drought 

 

Table A2. Nitrogen (N), phosphorous (P2O5) and potassium (K2O) application rates to lablab, maize and 

finger millet crops in multi-factorial field experiments rainfed (R) and irrigated (I) at University of Agri-

cultural Sciences, GKVK Campus, Bengaluru, India during 2016–2018. 

Mineral 

fertilisation 

Lablab  Maize  Finger millet  

2016 2017 2018 2016 2017 2018 2016 2017 2018 

R I R I R I R I R I R I R I R I R I 

N (kg ha-1) § 25 25 25 25 25 25 100 150 100 150 150 150 50 100 50 100 50 50 

P2O5 (kg ha-1) 10 10 50 50 10 10 50 75 50 75 50 75 40 50 40 50 40 50 

K2O (kg ha-1) 10 10 25 25 10 10 37.5 50 25 40 37.5 50 37.5 50 37.5 50 37.5 50 
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§ Recommended application rate (referred to as high in Figure 1); averaged across years, medium applica-

tion rates were 53.3%, 56.2% and 58.3% from the high level for lablab, maize and finger millet, respec-

tively; low application rates in 2016 were 40.0%, 41.7% and 50.0% from the high level for lablab, maize 

and finger millet, respectively, and zero application was done in 2017 and 2018. 

Table A3. Phenological stages of lablab, maize and finger millet at the sampling dates in multi-factorial 

field experiments rainfed (R) and irrigated (I) at University of Agricultural Sciences, GKVK Campus, Ben-

galuru, India from 2016 to 2018 (BBCH scale). 

Rainfed experiment 

Sampling dates 
Lablab (BBCH/DAS*) Maize (BBCH/DAS*) Finger millet (BBCH/DAS*) 

2016 2017 2018 2016 2017 2018 2016 2017 2018 

1 2/40 2/23  3/42 1/25  2/44 2/30  

2 5/53 2/38  5/61 3/45  3/65 3/52  

3 6/63 5/47  7/81 6/67 7/79 5/94 5/81 5/79 

4 7/73 6/69 7/78 8/98 7/108  7/109   

5 8/89 8/89     8/126   

Irrigated experiment 

1 2/41 2/24  3/43 1/27  2/45 2/32  

2 6/56 5/39  5/62 3/46  3/66 3/53  

3 7/64 6/48  7/88 6/68 7/87 5/96 5/82 5/87 

4 7/74 7/72  7/100 7/110  7/110   

5 8/97 8/90 8/83 8/128   8/135   

   * DAS, Days after Sowing. 

BBCH:  

1: Leaf development 

2: Formation of side shoots/tillering 

3: Stem elongation 

5: Inflorescence emergence 

6: Flowering 

7: Development of fruit 

8: Ripening  
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Chapter 4 

Vegetable crop biomass estimation using hyperspectral in situ 

and RGB UAV data  

Abstract 

A sustainable agricultural intensification is necessary to cope with global population growth and 

increasing loss of agricultural land. Remote sensing (RS) has been an effective tool to monitor 

agricultural production systems and precision agriculture has been used for decades for field crops. 

Vegetable crops, on the other hand, have received less interest, although intensification in vegeta-

ble production requires particularly high levels of fertilizer and water. 

The primary objective of this study was to test the predictive performance of two types of RS data 

– crop height information derived from point clouds, and reflectance information from hyperspec-

tral imagery – to predict fresh matter yield (FMY) for three vegetable crops (eggplant, tomato, and 

cabbage). The study was conducted in an experimental layout at the University of Agricultural 

Sciences Bengaluru, India, using five sampling dates between May and June 2017. For the devel-

opment of the biomass retrieval models, four machine learning (ML) methods were tested (partial 

least squares PLS, support vector machines SVM, random forest RFR, and gradient boosting trees 

GBT). Furthermore, the effect of the sampling date on the FMY prediction was examined. 

The prediction accuracy for the three crops varied strongly depending on the ML method applied, 

and the RS dataset used. For all crops, RFR showed the best predictive performance, with an R²val 

of 0.97 for eggplant and tomato, and 0.93 for cabbage. The relative prediction error was below 10 

% for the three crops. The RS dataset resulting in the most accurate prediction of biomass differed 

between the crops. For eggplant and cabbage, the spectral datasets showed the best prediction (R²val 

= 0.97 and 0.93, nRMSE = 0.07 and 0.09 for eggplant and cabbage). For tomato, the height dataset 

(R²val = 0.97, nRMSE = 0.06) clearly outperformed the spectral dataset alone and the fusion of 

both datasets. For eggplant and tomato, an increasing trend towards underestimation of the meas-

ured biomass is apparent for the later growth stages (sampling date 4 and 5). However, no signif-

icant (p < 0.05) effect of the growth stage on the biomass prediction was found. 
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Overall, the results of the study prove that an estimation of vegetable crop FMY using point clouds 

and hyperspectral imagery is successful throughout the growing season. Although the fusion of 

both datasets did not outperform single dataset use, the results indicate that, more than one sensory 

dataset should be collected to assure an optimal biomass prediction model. 

Introduction 

In the course of increasing urbanisation, sustainable resource use has become a pressing issue 

(Rockström et al., 2009). In developing countries, the population is projected to double by 2050 

(UN, 2017), and the occupation of arable land by cities will be more than double. In combination 

with widespread malnutrition in such countries, especially in southern Asia, sustainable agriculture 

is necessary in order to increase food production (Tilman et al., 2011). For decades (e.g. Pettorelli 

et al., 2005; Tucker, 1979), remote sensing (RS) has been an effective tool to monitor agricultural 

production systems (Atzberger, 2013; Duncan et al., 2015). Particularly in countries with several 

cropping seasons per year, such as India, agricultural systems require multi-temporal RS data for 

a continuous evaluation of crop state and less ambiguous crop identification (Hannerz and Lotsch, 

2008; Mondal et al., 2014).While crop identification can help to examine effects of e.g. urbanisa-

tion on the farmers’ decisions to grow certain crops, an evaluation of the crop state can enable 

evaluation of the intensity (i.e. fertilization and irrigation) of the agricultural practice.  

Intensive vegetable production, which is increasingly characterised by frequent nitrogen (N) ferti-

lization (Thompson et al., 2018), requires rapid and frequent assessment of crop status (Padilla et 

al., 2018). While precision agriculture (PA) for field crops has been widely applied for two dec-

ades, it has a rather short history in horticulture (Zude-Sasse et al., 2016). The smaller field size 

and planting density as well as the complex plant architecture makes PA in horticulture complex 

(Zude-Sasse et al., 2016). Various sensors, from terrestrial (Nidamanuri and Zbell, 2011) and air-

borne (Moeckel et al., 2018) to satellite (Panigrahy and Sharma, 1997), have been used for inves-

tigating agro-environmental systems. Recently, unmanned aerial vehicles (UAV) have gained in-

terest as platforms for collecting RS information from agricultural fields (Moeckel et al., 2018). 

UAVs allow collection of data from large areas in a highly repetitive manner, which makes them 

more independent from e.g. weather conditions than satellite or airborne platforms (Zhang and 

Kovacs, 2012). Another advantage of UAV platform is their flexibility to carry various sensor 
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systems, such as RGB cameras (Moeckel et al., 2018), multispectral sensors (Maimaitijiang et al., 

2017), and hyperspectral sensors (Aasen and Bolten, 2018), for monitoring crop parameters. 

The availability of different sensor systems enables sensor fusion, i.e. the combination of datasets 

from two or more sensors with different characteristics (Pohl and van Genderen, 1998). Sensor 

fusion may allow a more holistic interpretation of the relationship between RS information and 

crop parameters. For example, the fusion of spectral reflectance information with data from an 

ultra-sound system showed an increased prediction performance for barley (Hordeum vulgare L.) 

yield (Rischbeck et al., 2016). Other studies have shown an increased prediction performance of 

vegetation parameters, such as leaf area index (LAI) and biomass for various crops, e.g. maize 

(Zea mays L.) (Gao et al., 2013), winter wheat (Triticum aestivum L.) (Yue et al., 2018), and soy-

bean (Glycine max L.) (Maimaitijiang et al., 2017), when spectral and structural information (based 

e.g. on RADAR, LiDAR, or photogrammetric methods) were combined. 

With the development of new sensor systems, the amount of data generated has increased tremen-

dously, creating a demand for statistical methods which can handle a large quantity and often re-

dundancy of data. Machine learning (ML) methods represent a group of empirical statistical meth-

ods able to handle huge amounts of data and intercorrelation of variables. Additionally, ML meth-

ods have frequently been used for modelling crop biomass with RS data (e.g. Maimaitijiang et al., 

2017; Moeckel et al., 2018; Rischbeck et al., 2016). Various ML methods have been introduced in 

the RS community in recent years (Wu et al., 2016), e.g. partial least squares (PLS) regression 

(Wold et al., 2008) and random forests (RFR) (Breiman, 2001).  Although a large variety of ML 

approaches are available, none of them consistently outperforms the others, thus requiring that 

multiple methods be tested in order to find the optimal statistical model. 

The primary objective of this study was to test the potential of two types of RS data – RGB (red-

green-blue) data acquired by a UAV and terrestrial hyperspectral data – to predict fresh matter 

biomass of three vegetable crops (eggplant, tomato, and cabbage). For establishing the empirical 

relationship, four different ML approaches were tested (partial least squares, support vector ma-

chines, random forest, and gradient boosting trees regression). The contribution and potential of 

data from each sensor individually (crop height values from the RGB dataset and spectral infor-

mation from the hyperspectral dataset) and from both sensors fused together were evaluated. We 

hypothesized that sensor fusion improves the predictive performance of the models for all crops. 
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Additionally, we expect that one ML approach alone will not deliver the optimal model all the 

time. 

Methods 

The data for this study was collected on the experimental farms of the University of Agricultural 

Sciences (UAS) in Bengaluru, India (12°58′20.79′′N, 77°34′50.31′′E, 920 asl) (Figure 17). The 

dominant soil types are Kandic Paleustalfs and Dystric Nitisols. The experimental site is charac-

terised by a tropical climate with a distinct monsoon season from June to October. The mean an-

nual temperature is 29.2 °C with an average precipitation of 923 mm (Prasad et al., 2016). 

 

Figure 17: a) Position of Bengaluru within India. b) Design of the experimental layout (adjusted from 

Moeckel et al., 2018). 

Field experiment 

The field experiment was established in 2016 and had a distinct rainy and dry season crop rotation. 

In the dry season (January to May), tomato (Solanum lycopersicum L.; cultivar: NS-501), eggplant 

(Solanum melongena L.; cultivar: Ankur), and cabbage (Brassica oleracea L.; cultivar: Unnati) 
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were grown (Fig. 1B) with the use of a drip irrigation system. Twelve main plots (12 × 18 m) were 

arranged in a split-plot experiment. Each treatment was replicated four times (Figure 17B). Three 

subplots (6 × 12 m) with three levels of nitrogen (N) fertilizer were randomized within each main 

plot (Moeckel et al., 2018). As fertilizer was directly applied to individual plants, no nutrient de-

ficiency was noticeable in any of the treatments. To allow for destructive measurements without 

disturbing neighbouring plants, each subplot was divided equally into a destructive sub-subplot 

for biomass sampling (S-plot; Figure 17B) and a non-destructive sub-subplot (H-plot) for spectral 

measurements. The S- and H-plots were 6 × 6 m each. The layout was thus comprised of a total of 

36 subplots (3 crops × 3 fertilizer treatments × 4 replicates).  

Plant sampling  

The total biomass (vegetative parts as well as fruits at later growth stages) was measured at five 

sampling dates between March and May 2017. Two randomly selected plants were harvested (2 

cm above the ground) in each S-plot (Figure 17b). At each sampling date, the biomass (t ha-1) was 

measured in the field. The total number of samples collected for each crop type was 60 (5 sampling 

dates × 3 fertilizer treatments × 4 replicates). 

Figure 18: Workflow describing the data collection (blue), data preparation (yellow), and data analysis 

scheme (green) from multi-factorial irrigated (I) field experiment at University of Agricultural Sciences, 

GKVK Campus, Bengaluru, India 

Sampling of height data 

At each sampling date, one RGB UAV flight for each plot was conducted using a DJI FC300X 

camera (focal length of 3.61 mm) mounted on DJI 3 Professional (DJI, Shenzhen, Guangdong, 
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China). The same grid-wise flight plan was conducted for each plot using autopilot and the soft-

ware Pix4D Capture (Pix4D SA, Lausanne, Switzerland). About 200 images were taken during 

each flight with an 80 % forward and side overlap (Figure 17). For a more detailed description of 

the flights, see (Moeckel et al., 2018). In total, 60 flights (4 main plots × 3 crops × 5 sampling 

dates) were conducted. As precise point cloud processing requires high spatial position accuracy, 

four permanent ground control points (GCPs) were measured in each main plot using a differential 

GPS (Trimble Inc. Sunnyvale, CA, USA) with a spatial accuracy of ~5 cm. These GCPs were 

subsequently used for georeferencing, geo-correction, and co-registration of the images. Point 

cloud data was derived from the UAV RGB images using the structure-from-motion algorithm 

from the software Photoscan Pro (AgiSoft LLC, St. Petersburg, Russia). The procedures are com-

prised of a feature extraction process combined with a bundle adjustment of the images (Lowe, 

2004; Snavely et al., 2008). Applying a multi-view stereo matching algorithm, a dense point cloud 

is generated (Mesas-Carrascosa et al., 2015; Westoby et al., 2012). The detailed procedure for the 

dense point cloud creation is described in Moeckel et al., (2018). For each point of the point cloud, 

the red and green information was used to calculate the Green-Red Vegetation Index (GRVI; 

Tucker, 1979). Following the procedure described in Moeckel et al., (2018), the GRVI was used 

for differentiating points representing ground and vegetation using a k-means classification. With 

the resulting ground points, a digital elevation model (DEM) was created using a Delaunay trian-

gulation with a spatial resolution of 1 m. The DEM was used to normalise the height information 

for all points classified as vegetation. The average density of the vegetation point clouds for all 

plots was 955 points m-². For each plot and sampling date, 13 point cloud metrics were derived 

from the vegetation point cloud (Table A supplementary). The selection of the metrics was based 

on the results from (Silva et al., 2017) and (Næsset and Økland, 2002). In contrast to Moeckel et 

al., (2018), the minimum crop height parameter was not used for analysis since the minimum 

height per plot was always zero after conducting height normalisation. The extraction of the point 

cloud was done using the lidR package (Roussel and Auty, 2017) and the program R (R Core 

Team, 2016). 

Sampling of spectral data 

Prior to the biomass sampling, three hyperspectral images were collected in each H-plot using the 

full-frame hyperspectral camera UHD 185-Firefly (UHD; Cubert GmbH, wwww.cubert-
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gmbh.de). Each image was collected above a randomly chosen plant. The distance between the 

plant and the camera was kept constant at 1.5 m throughout the growing season to keep the area 

covered by the image during plant growth constant. The camera measures incoming radiance in 

the spectral range from 450 to 998 nm. However, only the spectral range from 470 to 950 nm was 

analysed because of too much noise in the wavebands between 450 and 470 nm and 950 and 998 

nm. The band width was 4 nm, resulting in 120 bands for which the radiance was measured. The 

focal length of the camera is 12.1 mm, with an image size of 50 × 50 pixels, resulting in a spatial 

resolution of 0.02 m and a spectral sampling area of ~1 × 1 m at the applied measurement height. 

The camera was mounted on a tripod to reduce the effects of shading and movement by the human 

operator as well as to keep the measurement height constant. Prior to each measurement, the cam-

era was calibrated using a white calibration panel (95% reflectance Zenith Lite), allowing retrieval 

of reflectance information directly from the measured radiance. During calibration in the field, the 

integration time (the time over which light is received by the detector) was automatically deter-

mined. The reflectance for each image was normalised by dividing the reflectance information for 

each pixel by the maximum measured reflectance value for this pixel. This normalisation process 

allowed comparison of spectral information from different sampling dates. Each collected image 

contained non-vegetation pixels, e.g. soil, shadows, and pipes from the drip irrigation system. To 

reduce the effect of such disturbances, a two-step procedure was applied (Figure 18). First, the 

normalised difference vegetation index (NDVI) (Rouse, J. W., Jr. et al., 1974) was calculated for 

each image. The NDVI is calculated as the difference between reflectance in the red and near-

infrared (NIR) spectral range. As red and NIR are characterised by very low (red) and high (NIR) 

reflectance values for vegetation, they are widely used for differentiating vegetated from non-veg-

etated surfaces. As second step, a 2-class k-means classification algorithm was applied using the 

NDVI values. During this process, two class centroids are calculated by measuring the distance 

from all NDVI values to each other. The centroids are identified in a way that the distance between 

all pixel values and the corresponding centroids is minimised. Finally, the resulting mask (includ-

ing pixels of vegetated and non-vegetated surfaces) was used to calculate the average vegetation 

reflectance for each image and spectral band. All images collected in the same plot and at the same 

sampling date were averaged. This process results in one spectral reflectance curve per plot and 

sampling date. 

 



Chapter 4 

 
64 

Statistical analysis  

A two-factorial ANOVA was used to test for the combined effects of fertilizer and sampling date 

on the measured biomass. The residuals were checked for normality and homoskedasticity, and 

base 10 logarithmic transformations were applied as needed to achieve normally distributed resid-

uals. 

Supervised ML techniques were used to predict crop biomass for all three crops and identify the 

best parameter for prediction (height, spectral, or fusion). ML methods are empirical statistical 

approaches which can be used to establish statistical relationships between a multitude of explan-

atory variables (here: spectral bands and height parameters) and response variables (here: crop 

biomass). ML approaches not only allow specification of modelling error and quantification of 

uncertainty (Holloway and Mengersen, 2018), but also enable the use of highly correlated explan-

atory variables (Figure 19). Four ML techniques, i.e. partial least squares (PLS), support vector 

machines (SVM), random forest tree (RFR), and gradient boosting tree (GBT) regression were 

applied to calibrate the biomass prediction models. 

PLS regression searches for a set of latent variables which optimally represent the covariance be-

tween the explanatory and response variables. The prediction error of a PLS model decreases with 

every additional latent variable added to the model until an absolute minimum error is reached. 

However, this procedure can lead to an overparameterization of the model, resulting in an overop-

timistic model. To avoid overparameterization, the search for the optimal number of latent varia-

bles was limited to 12, representing 26 % of the total number of samples.  

SVM regression is a kernel-based statistical approach. The algorithm uses a kernel function to fit 

the training data to a hyperplane (Cortes and Vapnik, 1995). The radial basis function was used as 

a kernel. SVM is particularly suitable for fitting complex non-linear data. SVM models can be 

optimized by tuning several parameters. In the present study, the optimal model was identified 

using a systematic search for the best cost and sigma parameters (Karatzoglou et al., 2006).  

RFR is a tree-based ensemble learning technique combining the information from many independ-

ent decision trees to develop the final prediction model (Breiman, 2001). Determination of the 

optimal tree required optimization of the parameter mtry, defining how many of the total available 

explanatory variables will be randomly selected at each split in the regression tree. The number of 
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trees per iteration was kept constant at 500 in this study. GBT is another ensemble method, but 

unlike RFR, each tree is trained based on the results of the previous trees (Rich Caruana and 

Alexandru Niculescu-Mizil, 2006). 

For model calibration and validation, the dataset for each crop (n = 60) was split up into a calibra-

tion dataset (n = 45) and a validation dataset (n = 15) (Figure 18). The optimisation procedure for 

the model calibration of all four ML approaches was done using 10-fold group-leave out cross-

validation on the calibration dataset. To accomplish this, 40 samples were used for the model cal-

ibration, while the remaining five samples were used for model validation. This was repeated ten 

times, and the optimal parameters for the calibration model were determined subsequently based 

on the lowest root-mean-square-error (RMSE). 

The samples for the validation datasets were selected in a stratified random approach. For each 

sampling date, three samples of the available 12 samples (3 fertilizer treatments × 4 replicates) 

were randomly chosen and included in the validation dataset.  

To find the best combination of ML approach and variables (i.e. spectral, height, or a fusion of 

both datasets) for predicting the crop biomass, the explained variance using the R²val (Equation 1), 

the prediction error (RMSEval) (Equation 2), the relative prediction error (rel.RMSE) (Equation 3), 

and the bias (Equation 4) were calculated as follows: 

𝑅𝑣𝑎𝑙
2 = [1 −

∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦̅𝑖)2𝑛
𝑖=1

] 

𝑅𝑀𝑆𝐸𝑣𝑎𝑙 = √
∑ (𝑦̂𝑖 − 𝑦𝑖)2𝑛

𝑖=1

𝑛
 

𝑟𝑒𝑙. 𝑅𝑀𝑆𝐸 =  
𝑅𝑀𝑆𝐸𝑣𝑎𝑙

max(𝑦𝑖) − min (𝑦𝑖)
 

𝑏𝑖𝑎𝑠 =
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)

𝑛

𝑖=1
 

where 𝑦𝑖  is the measured biomass, 𝑦̂𝑖  is the predicted biomass,  𝑦̅𝑖 is the average measured biomass, 

and n is the number of samples. 
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Additionally, Taylor diagrams (Taylor, 2001) were used to evaluate the precision of the biomass 

models. Taylor diagrams provide a quick and easy visual comparison of the predicted versus ob-

served values for several models. For this purpose, the Pearson correlation coefficient (r), the root-

mean-square difference (RMSD), and the standard deviation of the predicted and observed values 

of the validation dataset were calculated for each of the 12 models for each crop. 

To examine whether the prediction accuracy of crop biomass is different throughout the growing 

season, an ANOVA was calculated with the deviation between the predicted and measured bio-

mass values as a response variable and sampling date as an explanatory variable.  

Results 

The biomass values for the three crops increased throughout the growing season. For eggplant, the 

range of all biomass values was from 0.013 to 35.62 t ha-1, while biomass yields were lower for 

tomato (ranging from 0.015 to 19.04 t ha-1) and higher for cabbage (ranging from 0.026 to 65.66 t 

ha-1). The biomass values for each crop were log10 transformed for the two-factorial ANOVA in 

order to achieve normally distributed residuals. The results of the ANOVA (Table 6) show that 

there was no significant effect of fertilizer on biomass, which can be explained by the insufficient 

range of the fertilizer treatments (Moeckel et al., 2018). The effect of sampling date was significant 

for all three crops, which was expected as the crops were growing throughout the season. There 

was no significant interaction effect.  

Table 6. Results of the two-factorial ANOVA testing the effect of sampling date (SD) and fertilizer (NF) 

on the measured biomass of eggplant, tomato, and cabbage from multi-factorial irrigated (I) field experi-

ment at University of Agricultural Sciences, GKVK Campus, Bengaluru, India.  

 p-values 

 Sampling Date (SD) N Fertilizer (NF) SD × NF 

Eggplant <0.001 0.805 0.670 

Tomato <0.001 0.177 0.575 

Cabbage <0.001 0.594 0.972 
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Prior to the ML analyses, the intercorrelation between all explanatory variables (i.e. 120 spectral 

bands and 13 height parameter) was examined. Figure 19 shows a clear intercorrelation between 

all explanatory variables. However, the pattern of the correlation matrix reveals differences be-

tween the three crops. While the wavebands in the near-infrared spectral region (NIR: 770 - 950 

nm) are highly correlated with the visible light bands (VIS: 470 -750 nm) for eggplant, this corre-

lation is much weaker for tomato and cabbage. For the 13 height parameters (Table A supplemen-

tary), strong correlations (between -0.75 and - 1) were found with bands from the VIS spectral 

range. The height parameters also showed a strong positive correlation among each other. 

 

Figure 19: Intercorrelation between all explanatory variables (i.e. 120 spectral bands and 13 height param-

eters) for a) eggplant, b) tomato, and c) cabbage from multi-factorial irrigated (I) field experiment at Uni-

versity of Agricultural Sciences, GKVK Campus, Bengaluru, India 

 

In total, 36 ML models were calibrated and validated using the test dataset (Figure 20, Table B of 

the supplementary materials). The prediction accuracy for the three crops varied strongly depend-

ing on the calibration model applied and dataset used (eggplant: R²val = 0.77 - 0.97, nRMSE = 0.07 

- 0.18, bias = -0.06 - 0.06; tomato: R²val = 0.59 - 0.97, nRMSE = 0.06 - 0.23, bias = -0.05 - 0.12; 

cabbage R²val = 0.76 - 0.93, nRMSE = 0.09 - 0.17, bias = -0.13 - 0.03) (Figure 5). Only the Taylor 

diagrams for tomato showed a larger variation of the RMSD (~0.1 - 0.5) and r (~0.8 - 0.99) values 

for all models (Figure 20B) compared to eggplant and cabbage, indicating dependencies of the 

selected ML approach and the used dataset for predicting tomato biomass. For eggplant, only PLS 

regression using the height parameters showed a lower predictive performance (based on RMSD 

and r) than the other models (Figure 20a). The models predicting cabbage biomass all showed a 

similar predictive performance (Figure 20 c). For all three crops, RFR showed the best results, 
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with an R²val of 0.97 for eggplant and tomato and 0.93 for cabbage (Figure 5). The relative predic-

tion error (nRMSE) was largest for cabbage (9 %), followed by eggplant (7 %) and tomato (6 %). 

For eggplant, the performance of RFR was only slightly better than the best model of the other 

methods (R²val = 0.92, 0.96, and 0.96, and nRMSE = 11 %, 7 %, and 8 % for PLS, SVR, and GBT, 

respectively). For tomato, the variation in prediction accuracy was the largest, with a R²val of 0.85, 

0.85, and 0.92 and an nRMSE of 14 %, 14 %, and 10 % for the best performing models of PLS, 

SVR, and GBT, respectively (Table B). For cabbage, the variation in prediction accuracy for the 

best performing models was low, with an R²val of 0.91, 0.90, and 0.89 and a relative error of 10 %, 

11 %, and 11 % for PLS, SVR, and GBT, respectively. 

 

Figure 20. Taylor diagrams displaying a statistical comparison of the 12 biomass estimation models and 

the observed data of the validation dataset for a) eggplant, b) tomato, and c) cabbage. The best model is 

located nearest to the observed point (•) on the x-axis while also having a relatively high correlation coef-

ficient (dotted lines) and low RMSD (green lines). 

 

In the following, the evaluation of the three sets of variables (spectral, height, and fusion) is de-

scribed for the best performing ML models (i.e. RFR) for all crops. The dataset resulting in the 

most accurate predicted biomass differed between the three crops. For eggplant (Figure 21a, Table 

B supplementary), the spectral and fusion datasets gave the same prediction accuracy (R²val = 0.97, 

nRMSE = 0.07, bias = -0.02), indicating that the height parameters did not improve the prediction 

model based solely on spectral data. For tomato (Figure 21b), the height dataset ( R²val = 0.97, 

nRMSE = 0.06, bias = 0.04) clearly outperformed the spectral dataset alone (R²val = 0.79, nRMSE 

= 0.16, bias = -0.01) and the fusion of both datasets (R²val = 0.90, nRMSE = 0.11, bias = 0.01) 

(Table B). The spectral dataset was best for predicting cabbage biomass (R²val = 0.93, nRMSE = 

0.09, bias = -0.03) (Figure 21c), but did not perform much better than the other two predictor 
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datasets (R²val = 0.88, nRMSE = 0.12, bias = -0.10 for the height parameters and R²val = 0.92, 

nRMSE = 0.10, bias = -0.04 for the fusion dataset). 

 

Figure 21. Predicted versus observed biomass based on the best machine learning method (i.e. random 

forest regression) based on the best performing explanatory set of variables for a) eggplant, predicted using 

the spectral variables, b) tomato, predicted using the height parameters, and c) cabbage, predicted using the 

spectral variables from multi-factorial irrigated (I) field experiment at University of Agricultural Sciences, 

GKVK Campus, Bengaluru, India . 

 

The effect of sampling date on the deviation between predicted and observed biomass (Figure 22), 

tested by ANOVA, was not significant. However, for eggplant and tomato (Figure 22a and b), an 

increasing trend towards underestimation of measured biomass is apparent for the later growth 

stages (i.e. sampling date 4 and 5). 

 

Figure 22. Normalized deviations of the predicted from the observed values for a) eggplant, b) tomato, and 

c) cabbage for each sampling date. The dotted line indicates zero deviation and thus perfect fit between 

measured and predicted biomass values. 
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Discussion 

The aim of this study was to develop RS models for predicting fresh biomass of three vegetable 

crops characterised by differing growth forms and internal vegetation structures. Overall, the re-

sults show that high prediction accuracy of fresh biomass can be achieved for vegetable crops with 

the chosen methods (R²val of 0.93 for cabbage and 0.97 for tomato and eggplant) (Table B supple-

mentary). The presented direct approach (i.e. predicting biomass directly from remotely sensed 

variables) resulted in much more accurate biomass estimates in comparison to indirect approaches 

(Madec et al., 2017; Moeckel et al., 2018). For example, Moeckel et al., (2018) used point cloud-

derived height parameters to estimate biomass of the same vegetable crops as in this study via the 

estimation of the crop height, resulting in a much higher prediction error for all three crops. While 

Moeckel et al., (2018) obtained the lowest relative prediction error for cabbage compared to the 

other crops (nRMSE = 15.2 %), the lowest relative prediction error in the present study was ob-

tained for tomato (nRMSE = 6%). Even for cabbage, the relative prediction error in the present 

study was much lower (nRMSE = 9 %) (Figure 20). Li et al., (2016) tested an approach using point 

cloud-derived variables and spectral data to predict crop biomass for maize and also achieved 

lower model accuracies than the present study. The lower accuracies may be partly explained by 

the fact that their spectral information was based on red, green and blue spectral values without 

the NIR region, which has been shown to be very important for biomass prediction of vegetation 

(Bendig et al., 2015).  

Regarding the tested ML methods, RFR showed the best prediction performance (based on     R2
val, 

nRMSE, and bias) for all three crops. RFR frequently outperforms other ML methods in predicting 

biomass from RS data in agriculture (Moeckel et al., 2018; Nasi et al., 2018) and forestry (Powell 

et al., 2010; Wu et al., 2016). RFR is less sensitive to overfitting than many other methods (Belgiu 

and Drăguţ, 2016), which might explain the outperformance. Nevertheless, a thorough evaluation 

of several ML methods should always be conducted, as there is no ML method which consistently 

outperforms the others under all circumstances (e.g. all ecosystem types and vegetation parame-

ters;Flach, 2012). To evaluate the effect of sampling date on biomass prediction, the deviation of 

the predicted and measured biomass values for each sampling date was estimated (Figure 22). No 

significant effect of sampling date on the deviation was found, which does not correspond with 

results of Malambo et al., (2018) for maize and sorghum and Moeckel et al., (2018) for eggplant, 

tomato and cabbage, who both found higher deviations for samples from the early crop stages. 
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Malambo et al., (2018) argued that a discrepancy in sampling time between the biomass and the 

RS-based sampling date could be the reason for the larger deviations. In Moeckel et al., (2018), 

the sampling dates for the biomass harvest and the RS sampling were the same and the author 

argued that the deviation was most likely driven by inaccuracies during the point cloud processing. 

The slight trend of increasing bias (i.e. biomass underestimation) for the late sampling dates for 

eggplant and tomato in the present study could be a result of the increased biomass values due to 

fruit growth, which is no longer related to crop height. Additionally, the reflectance of the entire 

plant might have changed throughout the growth of the fruits due to increasing water content (Ku-

runç and Ünlükara, 2009), possibly changing the relationship between biomass and reflectance 

(Yue et al., 2018). An inclusion of shortwave infrared (>950 nm) spectral information at later 

growth stages might reduce this bias (Rasooli Sharabian et al., 2013). 

For all three crops, the intercorrelation between the explanatory variables (i.e. spectral and height 

values) are different (Figure 19), particularly in the NIR spectral region, which is known to be 

strongly related to vegetation biomass and plant internal structure (Knipling, 1970). This could be 

explained by the different growth forms of the three crops. While eggplant and tomato become tall 

plants with a dense, closed canopy at the end of growth period, cabbage is characterized by a rather 

flat structure and open canopy. For tomato, the agricultural practice of tying up the plants with 

thread might have affected the relationship between biomass and reflectance of NIR. The results 

of this study therefore confirm the expectation that an individual evaluation of the relationship 

between biomass and RS variables is necessary for each crop, which has also been shown in e.g. 

(Malambo et al., 2018; Moeckel et al., 2018; Viña et al., 2011). 

To prove whether the fusion of spectral and height information can improve biomass predictions 

in comparison to single sensor use, a biomass estimation model based on spectral data and point 

cloud-derived height information alone and in combination was developed. The sensor data fusion 

did not result in the optimal performance for any of the crops. Although for some of the applied 

ML approaches, the best model was based on both spectral and height data together (e.g. for the 

cabbage PLS model, see Table B), the best model for each crop was always based on a single set 

of variables, i.e. either spectral or height. This could be partly be explained by data redundancy 

when using both datasets (Pohl and van Genderen, 1998). Wang et al., (2017), who evaluated 

sensor fusion for crop biomass estimation of maize, found only slight improvements when spectral 

and lidar data were used together (decrease in prediction error by 0.53 t ha-1), while Prošek and 
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Šímová, (2019) found a deterioration of prediction accuracy using fused datasets for species iden-

tification in shrublands. While for eggplant and cabbage, the spectral dataset delivered the best 

prediction accuracies, the model based on the height parameters was best for tomato. The tying up 

of tomato plants from sampling date 3 onwards directly affects the height measurements and thus 

the point cloud derivation and might be an explanation for the selection of the height parameters. 

These results confirm the expectation that an evaluation of two or more RS sets of variables re-

flecting different vegetation characteristics (i.e. spectral reflectance and structure) is as important 

(Prošek and Šímová, 2019; Tilly et al., 2014) as evaluating different ML methods (Nasi et al., 

2018; Powell et al., 2010). 

This approach should be further tested using a completely airborne data collection to validate the 

findings on larger scales and test whether the approach can be used to evaluate spatial variability 

of crop biomass under field conditions. This step would allow further development of precision 

agriculture in horticultural systems as it would allow to evaluate phenotypic characteristics of veg-

etable crops on large scales in a reliable way. The predictive performance of the identified models 

should be validated with RS data from further growing seasons to check the robustness of the 

results. Additionally, other sensor systems, such as a thermal imaging system (Maimaitijiang et 

al., 2017), should be tested for their predictive performance for vegetable crop biomass. 

Conclusions 

The estimation of vegetable crop fresh matter biomass using in-situ hyperspectral and RGB UAV 

imagery was successful throughout the growing season. The results also clearly demonstrated that 

optimal models differ among vegetable crops. Although the fusion of both datasets did not outper-

form single dataset use, the results indicate that, whenever possible, more than one sensory dataset 

should be collected to assure an optimal biomass prediction model. Furthermore, it has shown that 

evaluation of several ML methods using different strategies for building prediction models is 

worthwhile. 

Appendix A 

Table A Height parameters derived from point clouds and used as explanatory variables for 

modelling crop biomass from multi-factorial irrigated (I) field experiment at University of 

Agricultural Sciences, GKVK Campus, Bengaluru, India. The mean and standard deviation 

of each metric across all sampling dates and plots is given. 
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Metric Description Mean / Standard deviation 

Hmax Maximum crop height 0.288 / 0.496 

Hmean Mean crop height 0.029 / 0.028 

Hsd Standard deviation of crop height 0.029 / 0.041 

Hmedian Median crop height 0.022 / 0.021 

Hskew Skewness of crop height 2.171 / 2.661 

Hkurt Kurtosis of crop height 19.319 / 97.589 

Hcv Coefficient of variation for crop height 0.978 / 0.843 
Hq70 70th percentile of crop height 0.060 / 0.062 

Hq80 80th percentile of crop height 0.071 / 0.085 

Hq90 90th percentile of crop height 0.088 / 0.110 

Hq95 95th percentile of crop height 0.106 / 0.135 

Hq99 99th percentile of crop height 0.149 / 0.205 

Table B Overview of the prediction performance of the model validation for four ML approaches 

(PLS: partial least squares, SVM: support vector machines, RFR: random forest regression, and 

GBT: gradient boosting trees) and three crops (eggplant, tomato, and cabbage). Values in bold 

represent the model with the best prediction of biomass from multi-factorial irrigated (I) field ex-

periment at University of Agricultural Sciences, GKVK Campus, Bengaluru, India 

Crop 
Machine learning method 

used for analysis 

Variables used for predict-

ing biomass 
R2 RMSE nRMSE Bias 

Eggplant 

PLS Height 0.77 0.42 0.18 0.06 

 Spectral 0.91 0.26 0.11 0 

 Fusion 0.92 0.24 0.11 0.02 

SVM Height 0.96 0.17 0.07 -0.02 

 Spectral 0.95 0.19 0.08 -0.02 

 Fusion 0.95 0.18 0.08 -0.02 

RFR Height 0.94 0.21 0.09 0 

 Spectral 0.97 0.15 0.07 -0.02 

 Fusion 0.97 0.15 0.07 -0.02 

GBT Height 0.95 0.19 0.08 0.03 

 Spectral 0.95 0.18 0.08 -0.06 

 Fusion 0.96 0.18 0.08 -0.04 

Tomato 

PLS Height 0.79 0.34 0.16 0.05 

 Spectral 0.85 0.28 0.14 0.02 

 Fusion 0.73 0.39 0.19 0.12 

SVM Height 0.82 0.31 0.15 -0.05 

 Spectral 0.82 0.31 0.15 0.06 

 Fusion 0.85 0.29 0.14 0.1 

RFR Height 0.97 0.13 0.06 0.04 

 Spectral 0.79 0.34 0.16 -0.01 

 Fusion 0.9 0.23 0.11 0.01 

GBT Height 0.92 0.2 0.1 0.1 

 Spectral 0.59 0.47 0.23 0.12 

 Fusion 0.89 0.24 0.12 -0.01 

Cabbage 

PLS Height 0.81 0.36 0.15 -0.1 

 Spectral 0.87 0.29 0.12 0.03 

 Fusion 0.91 0.24 0.1 -0.01 

SVM Height 0.89 0.26 0.11 -0.09 

 Spectral 0.9 0.26 0.11 -0.03 

 Fusion 0.76 0.4 0.17 -0.13 

RFR Height 0.88 0.28 0.12 -0.1 

 Spectral 0.93 0.22 0.09 -0.03 

 Fusion 0.92 0.23 0.1 -0.04 

GBT Height 0.85 0.32 0.14 -0.08 

 Spectral 0.89 0.26 0.11 -0.01 

 Fusion 0.86 0.3 0.13 -0.03 
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Chapter 5 

Synthesis 

General discussion  

The fresh matter biomass (FMB) is one of the vital crop parameters that have been studied by 

many researchers on different crops (Wang et al. 2017; Yue et al. 2017). In previous studies, dif-

ferent types of RS data have been utilised to estimate crop FMB. However, no study focused on 

lablab, finger millet and vegetable crop biomass estimation using HS and UAV-borne RGB im-

agery for an entire cropping season, although they are the major crops grown in the region of 

Bengaluru. With this background, this thesis aimed to estimate the FMB of some of the cereals, 

legume and vegetable crops using low altitude remote sensing measurements i.e. UAV-borne 

RGB, terrestrial HS imaging and sensor data fusion. Biomass was estimated for two cropping sea-

sons, namely monsoon and dry season with different management conditions. Field trials were 

featured by different levels of N fertiliser and water supply i.e. rainfed and drip-irrigated experi-

ments. Due to multicollinearity of the HS data, ML regression models were employed to handle 

higher number of predictors. ML methods represent a group of empirical statistical methods which 

are frequently used for modelling crop biomass from RS data ( Maimaitijiang et al., 2017; Moeckel 

et al., 2018; Rischbeck et al., 2016). Further, various ML methods were utilised for RS based crop 

biomass estimation and modelling results varied based on the ML method. Therefore, different 

ML methods PLS, SVM, RFR and GBT were employed for biomass prediction model generation 

in the current study. 

To predict the crop height and assess biomass of vegetable crops using UAV-borne RGB imagery, 

14 different crop height metrics were generated from 3D point cloud using the SfM technique for 

an entire crop growing period (chapter 2). ML methods RFR and SVM were used to predict the 

crop height. RFR was found to perform best with crop height prediction (cabbage: pseudo-R2 = 

0.97, RMSE = 1.3, bias = 0.01, eggplant: pseudo-R2 = 0.93, RMSE = 6.86, bias = 0.14, tomato: 

pseudo-R2 = 0.89, RMSE = 5.49, bias = 0.45). It was found that crop height for vegetable crops 

could be estimated with R² ranging from 0.89 for tomato to 0.97 for cabbage with different crop 

growth forms. These results are similar to multi-temporal crop height models for maize and sor-

ghum (R² ranging from 0.68 to 0.78) (Malambo et al. 2018).  
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Along the crop growth stages there was a systematic deviation of the median from observed and 

predicted crop height. There was an increase in the median deviation values from early to late 

growth stage of the crop in cabbage and eggplant. Another study (Malambo et al. 2018) with maize 

and sorghum reported similar findings. In the cited study, there was a time lag between the UAV 

measurements and the field measurements, while in our study, there was no time difference be-

tween these measurements. Hence, the biased estimation of height might be from inaccuracies in 

the point cloud generation process. For tomato, there was high bias values at sampling date 4, as 

the plants were tied horizontally with the threads from sampling date 3. Plants were tied as an 

agricultural practice to prevent the fruits from moulding. 

The predicted crop height from RFR was used as an estimator of biomass using linear regression 

in chapter 2. Cabbage, tomato and eggplant are featured by distinctively different growth struc-

tures. Cabbage is round and ball structured while being attached to the ground, tomato is more 

tender and delicate in growth and hence tied to strings for support. Eggplant is featured by dense 

growth with broad leaves and thick stem. Crop height is considered to be an essential indicator of 

biomass estimation in barley (Bendig et al. 2014), sorghum (Malambo et al. 2018) and poppy 

(Iqbal et al. 2017). The predicted crop height shows a strong and significant relationship with the 

biomass of all the three crops investigated in this study (chapter 2). The prediction accuracy of 

biomass was better in the present study than in previous studies (Garcia-Gutierrez et al. 2014), 

where UAV-borne RGB imagery was used to estimate maize biomass. Additionally, the current 

study comprised multi temporal biomass measurements at 20 m flying height, compared to 130 m 

flying height at a single date measurement (Li et al. 2016). Prediction accuracies of crop height 

derived biomass showed similar prediction qualities between predicted and field measured crop 

heights. This leads to the conclusion that RS can estimate the biomass of the vegetable crops egg-

plant, tomato and cabbage using UAV-borne RGB images. The analysis approach based on the 

extraction of several height parameter from 3D point clouds and ML regression methods showed 

a stable model prediction quality for biomass during the entire growing period. Therefore, time 

consuming intensive crop height measurements can be replaced by point cloud analysis which can 

provide a similar prediction accuracy for biomass. 

The modelling approach for height estimation of vegetable crops showed an increasing deviation 

during late growth stages (growth stage 4 and 5). This deviation indicates that crop height is a less 
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reliable indicator of biomass during late growth stages. The height of the crops stops to grow ver-

tically at a certain stage and starts growing horizontally with higher stem thickness and broadening 

of leaves. Hence, fusing various RS data might compensate for the weakness of an individual 

sensor data. 

Monsoon crop biomass (lablab, maize and finger millet) was estimated using terrestrial HS images. 

Treatments covered different N levels and water supply. Analysis was conducted using ML 

method RFR. The study covered a wide range of phenological stages during three consecutive 

cropping seasons in year 2016 (Y1), 2017 (Y2) and 2018 (Y3). Hence, it is an important aspect 

considering the validity range of generalised models with different levels of N fertiliser and water 

supply. The generalised models had the lowest prediction error (with rRMSEP ranging from 13.9 

% to 18.7 %) when compared to rainfed and irrigated experiments data models seperately. The 

range of crop productivity became much higher with a combination of data from two different 

water conditions, rainfed and irrigated experiments. Integration might have increased the robust-

ness of the regression models. Similar prediction errors (relative error 16.7%, R² = 0.78) were 

found in (Li et al. 2016) for maize biomass modelled from RGB images. In contrast to our study, 

Li et al. (2016) included canopy height parameter additional to RGB information. It shows the 

potential of structural data calculated with photogrammetric methods (Bendig et al. 2014; Moeckel 

et al. 2018). The highest error was found for the productive crops maize and finger millet. Simi-

larly, finger millet is also a rarely researched crop in the field of RS. The second hypothesis, that 

terrestrial HS imaging can be used to estimate the biomass of monsoon crops lablab, maize and 

finger millet, could be verified. Generalised models which were built on both rainfed and irrigated 

conditions, were more robust than the individual water supply specific models. 

The normalised deviation of median values from predicted and observed FMB values, based on N 

levels and water supply was close to zero. It shows the model is more robust, as the prediction of 

FMB is independent of N levels and water supply. Based on sampling dates, there was a particular 

pattern observed in the estimation of biomass in Y1 and Y2 points. Although the exclusion of soil 

spectral signatures was done, there was overestimation of biomass at the initial sampling dates of 

lablab, maize and finger millet. The overestimation might have resulted from the presence of weeds 

at the initial sampling dates. At the later stages, it was found there was an underestimation of 

biomass and the relative error increased in the order of lablab, finger millet and maize with the 
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increasing height of the crop. This indicates that higher parts of the plants masked reflectance 

information from lower parts of the plants. This effect  is known as “saturation constraint” and was 

regularly found in previous studies (Baez-Gonzalez et al. 2002; Freeman et al. 2007; Pimstein, 

Karnieli, and Bonfil 2007) mainly when NDVI was used. The increase in the relative error with 

increasing height of the plants and underestimation of biomass at later stages stresses the multi 

sensor approach which may overcome the shortcomings of individual sensors. According to our 

hypothesis, this proves that the normalised deviation of predicted and observed biomass, varies 

based on sampling dates in monsoon crops. But with different N levels and water supply, normal-

ised deviation did not vary much contradicting the hypothesis.  It could be shown that the gener-

alised model can estimate the biomass irrespective of different N levels and water supply. 

The important spectral bands affecting the estimation of biomass were found in the red-edge region 

of the electromagnetic spectrum for lablab, maize and finger millet. In the generalised model, lab-

lab had several important wavelengths in the green, red and NIR region indicating a large number 

of important variables in these models. Similar vital bands were found by (Manjunath, Ray, and 

Panigrahy 2011) in the discrimination of pulses like chickpea, pea and lentils. However, in maize 

and finger millet the most important variables were found in the red-edge region and the red region. 

The ability of the leguminous lablab to fix atmospheric nitrogen may have resulted in a longer 

greenness of the crop during the growing period. This leads to higher reflectance at the green peak 

(~550nm) and higher absorbance in red (~650 nm). In general, the identified spectral bands con-

firm the accepted knowledge about the biomass reflectance relationships. 

As an individual sensor was used for biomass estimation of the vegetable crops in chapter 2, sensor 

data fusion of UAV-borne RGB and terrestrial HS measurements were studied in chapter 4 to 

further improve the prediction accuracy. The objective was to test the predictive performance of 

these two RS data in FMB estimation for three vegetable crops (eggplant, tomato and cabbage). 

Out of the four different ML methods, RFR showed the best prediction accuracy (based on R²val 

and nRMSE) for all three crops. In the present study the lowest relative error was found for tomato 

(nRMSE = 6%) from height variable used for predicting biomass. However, for the same vegetable 

crops in chapter 2, the lowest relative error was found for cabbage (nRMSE = 15.2%) when com-

pared to other crops. Even for cabbage in chapter 4, the relative prediction error was much lower 

(nRMSE = 9%) from spectral variables. For the estimation of biomass, the sensor data fusion did 
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not outperform the individual sensors among all three vegetable crops. Additionally, it seems to 

be better to predict the FMB directly from the remotely sensed variables instead of using indirect 

approaches (Madec et al. 2017; Moeckel et al. 2018). As point cloud derived crop height modelling 

to estimate the biomass in chapter 2 resulted in a much higher prediction error for all three crops. 

Confounding our third hypothesis, sensor data fusion did not improve the prediction accuracies 

when compared to the use of an individual sensor, but each single sensor performed best in differ-

ent vegetable crops. Hence, different crop parameter measuring sensors might help to improve 

prediction accuracies of biomass. 

The inter-correlation between the spectral and height values were different particularly in the NIR 

region which is noticed to be strongly dependent on biomass and internal structures of the crop. 

As all these three vegetable crops have different growth forms, eggplant and tomato grow with 

height and form a dense canopy while cabbage is more flat and open. In tomato, the management 

practice of tying the plants with the thread might have affected the relationship of biomass and 

NIR reflectance. 

Based on the tested ML methods, RFR showed the best prediction performance for all three veg-

etable crops in chapter 4. The relative prediction error (nRMSE) was largest for cabbage (9 %), 

followed by eggplant (7 %) and tomato (6 %). For eggplant, the performance of RFR was only 

slightly better than the best model of the other methods (nRMSE = 11 %, 7 %, and 8 % for PLS, 

SVR, and GBT, respectively). For tomato, the variation in prediction error was the largest, with a 

nRMSE of 14 %, 14 % and 10 % for the best performing models of PLS, SVR, and GBT, respec-

tively. For cabbage, the variation in prediction error for the best performing models was low, with 

a relative error of 10 %, 11 %, and 11 % for PLS, SVR, and GBT, respectively. RFR frequently 

outperformed the other ML method in agricultural applications (Moeckel et al. 2018; Nasi et al. 

2018) and is less sensitive to overfitting than many other methods which might explain the best 

performance (Belgiu and Drăguţ 2016). However, a thorough evaluation of ML methods should 

be conducted, as there is no ML method which consistently outperforms the other method under 

all circumstances (e.g. all ecosystem and vegetation parameters;(Flach 2012). 

There was an underestimation of biomass at the later growth stages (sampling date 4 and 5) from 

the best models of RFR for eggplant, tomato and cabbage (chapter 4). This might have resulted 

from the increase in the biomass values and fruits size which is no longer related to the crop height. 



Chapter 5 

 
86 

Also, the reflectance of the entire plant might have changed due to the fruit growth and increase 

in the water content. It might alter the relationship between biomass and spectral reflectance (Yue, 

Feng, Yang, et al. 2018). Inclusion of shortwave infrared (>950 nm) spectral information at the 

later growth stages might reduce the bias (Rasooli Sharabian, Noguchi, and Ishi 2013). According 

to our hypothesis, the variation based on sampling dates was found for vegetable crops. However, 

for eggplant and tomato, an increasing trend of underestimation of normalised deviation of pre-

dicted and observed biomass was found for later crop growth stages. 

The developed FMB models for different cereals, legume and vegetable crops from the experi-

mental fields covered a wide range of crop phenology. As these crops are widely grown around 

the region of Bengaluru, the FMB models developed in experimental plots have to be validated in 

larger areas of field conditions to determine the robustness of the model. Terrestrial HS measure-

ments are time consuming and cannot be applied to large areas. Therefore, upscaling HS sensor 

with UAV might be a solution to measure the reflectance of crop canopies in larger areas. 

In the study of (Rama Rao, Garg, and Ghosh 2007), the possible integration of in-situ HS meas-

urements with space borne HS RS data for automatic identification and discrimination of various 

crop cultivars using crop specific spectral libraries was examined. Similarly, the terrestrial HS 

measurements can be used as reference data for identification and classification of crops from 

satellite images in larger area. Hereby, possible land use changes and socio-economic effects on 

the cropping patterns can be analysed. in rural urban gradient of Bengaluru. 

The FMB models developed in this thesis can be used by the implementing agencies of the gov-

ernment for yield estimation at field level. As the complete growing period of crops were covered, 

the current study might improve estimation of the yield already during early stages and enable 

interventions for yield improvement. The advanced RS technology with market forces may help 

in speculating the demand-supply and in stabilising the price fluctuations. It thereby might safe-

guard the farmers from a price crash and provide secure income. Additionally, crop insurance 

companies can make use of the FMB models through providing compensations based on the esti-

mated yield (Shirsath et al. 2019). When farming becomes profitable and the risk involved is re-

duced, it may reduce the rural youth from migrating to cities in search of employment and thereby 

reducing the rural-urban transformation. This study is applicable to one of the biggest transforming 

cities - Bengaluru - where rural-urban transformation is taking place at a faster pace. The outcome 
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of the studies in the thesis can be integrated with other disciplines of ecology, economics and social 

sciences for a holistic approach towards analysing patterns of change based on variability at dif-

ferent spatial scales in the rural-urban gradient. 
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Chapter 6 

Summary 

India, the agriculture based country with multiple cropping seasons and crop diversity is witness-

ing a rapid rural-urban transformation. To feed the growing population, various agro-technological 

advancements with crop intensification are of much interest. Therefore, with the aim of transfer-

ring technology from experimental fields to the practical farmers’ fields, estimation of biomass of 

major crops grown in Bengaluru were studied with terrestrial HS and UAV-borne RGB RS under 

various management levels. 

(i) The estimation of vegetable crop biomass using UAV-borne RGB 3D point clouds showed 

similar model prediction qualities in biomass estimation between measured and predicted 

crop heights. Hence, the method offers an alternative to time consuming height measure-

ments and the need of real-time evaluation of vegetable biomass. 

(ii) The multi-temporal biomass estimation of cereals and legume crops using terrestrial HS 

images had less relative errors for lablab followed by finger millet and maize. This indi-

cates the requirement of an additional sensor which can overcome declining model predic-

tion accuracy with increased plant height. 

(iii)The sensor data fusion did not improve the prediction accuracies when compared to data 

from an individual sensor. However, every single sensor performed best for different veg-

etable crops. Hence, multi sensor data has to be collected to improve the biomass estima-

tion of different crops. 

(iv) The estimation of biomass did not vary much for cereals and legume monsoon crops based 

on N levels and water supply. Whereas, there was overestimation in the initial sampling 

dates and underestimation at final sampling dates for lablab, finger millet and maize. From 

the best RFR model of two individual sensors in vegetable crops, an increasing underesti-

mation was found for eggplant, tomato and cabbage. 

(v) Out of the various ML methods, RFR was found to be outperforming in height and biomass 

estimation of all the crops in the study. 



Chapter 6 

 
89 

(vi) The important spectral bands in the estimation of cereals and legume monsoon biomass in 

generalised models were found in the red-edge region for all the three crops. However, 

several other wavelengths in the visible and near-infrared region were important in models 

for lablab and finger millet. 

With the evaluation of different remote sensing based spectral and 3D point cloud data for crop 

biomass estimation in southern India, the study can be further upscaled to UAV and spaceborne 

images to cover large areas of changing cropping pattern in the rural-urban gradient. 
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Chapter 7 

Zusammenfassung 

Indien, ein Land geprägt durch eine Landwirtschaft mit mehrfachen Hauptkulturen pro Jahr und 

einer hohen Kulturpflanzen-Diversität, erlebt eine rapide ländlich-urbane Transformation. Mit 

dem Bedarf der Nahrungsmittelversorgung einer wachsenden Bevölkerung steigt das Interesse an 

agro-technologischen Fortschritten und der Intensivierung der Anbauverfahren. Mit dem Ziel, 

technologische Erkenntnisse aus Feldexperimenten an Landwirte zu transferieren, wurde der 

Ertrag verschiedener in Bengaluru angebauter Hauptkulturen mittels eines terrestrisch, 

hyperspektralen- und eines drohnenbasierten RGB-Fernerkundungssystems unter verschiedenen 

Bewirtschaftungsformen untersucht. 

(i) Die Ertragsabschätzung aus 3D-Punktwolken, erzeugt aus drohnenbasierten RGB-Bildern, 

erzielte vergleichbare Schätzgenauigkeiten, wie Biomasseschätzungen mittels im Feld 

erhobener Vegetationshöhen. So stellt diese Methode eine Alternative zu zeitaufwändigen 

Höhenmessungen im Feld dar und liefert eine Echtzeit-Evaluierung von Feldfrucht-

Erträgen. 

(ii) Die multitemporale Ertragsabschätzung von Getreide und Gemüse mittels terrestrischer 

Hyperspektralbilder erzielte den geringsten relativen Fehler für LabLab, gefolgt von 

Fingerhirse und Mais. Dies zeigt, dass für Ertragsabschätzungen von hochwachsenden 

Kulturen der Bedarf nach alternativen Sensorsystem steigt. 

(iii)Die Sensor-Fusionierung erbrachte keine Verbesserung in der Ertragsabschätzung, 

verglichen mit Modellen aus einzelnen Sensordaten. Diese Einzelsensor-Modelle zeigten 

ihre Stärken vor allem in der Abschätzung einzelner Kulturarten. Für eine Abschätzung 

mehrerer Kulturarten gilt es jedoch, die Sensordaten zu kombinieren. 

(iv) Bei den Getreide- und Monsun-Gemüse-Kulturen variierte die Biomasseabschätzung nicht 

sonderlich hinsichtlich der N-Düngergabe und Bewässerungsvariante. Die Proben des 

ersten Messtermins wurden jedoch überschätzt und die des letzten Messtermins 

unterschätzt für LabLab, Fingerhirse und Mais. Das beste RFR-Modell aus Einzelsensor-
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Daten zeigte eine zunehmende Unterschätzung der Biomassewerte für Aubergine, Tomate 

und Kohl. 

(v) Aus zahlreichen Methoden des maschinellen Lernens erzielte die RFR die höchsten 

Schätzgenauigkeiten zur Höhen- und Biomasseabschätzung für alle Kulturen. 

(vi) Die wichtigsten Wellenlängenbereiche zur Schätzung von Getreide- und Gemüseerträgen 

befanden sich im Red-Edge-Bereich für alle drei Kulturen. Jedoch waren auch andere 

Wellenlängen aus dem sichtbaren und nah-infraroten Bereich wichtig bei der Modellierung 

der Biomasse von Lablab und Finger Hirse. 

Die Ansätze aus spektralen und 3D-Punktwolken-Daten zur Biomasseabschätzung in Süd-Indien 

können durch drohnen- und sattelitenbasierte Plattformen erweitert und für Aufnahmen von sich 

veränderndem Kulturpflanzenanbau in ländlich-urbanen Gradienten eingesetzt werden. 
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Gallery 

Lablab, finger millet and maize grown in rainfed and irrigated experi-

mental fields of monsoon season (June to October) 
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Eggplant, tomato and cabbage grown in irrigated experimental field of dry 

season (January to May) 
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