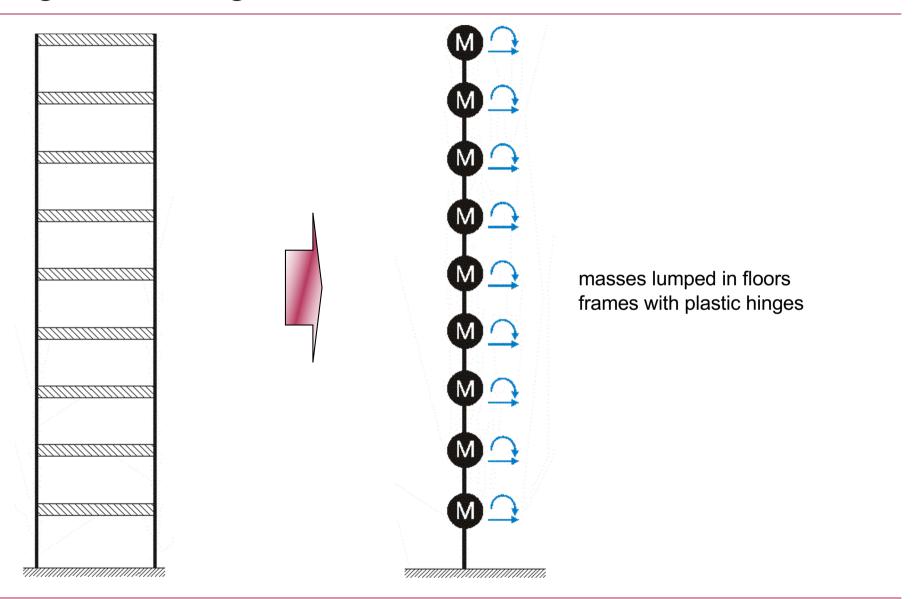
Introduction to Earthquake Engineering

Response Analysis

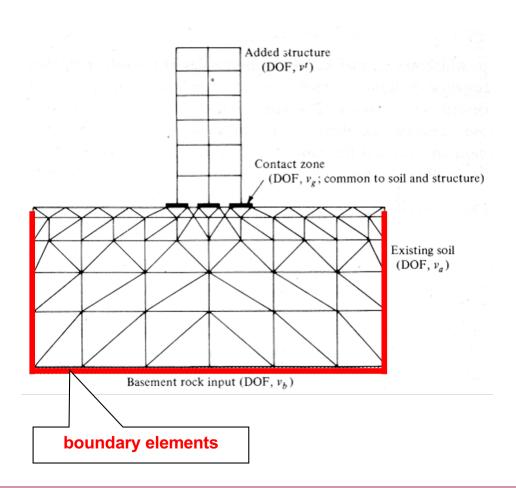
Prof. Dr.-Ing. Uwe E. Dorka

Modeling of buildings

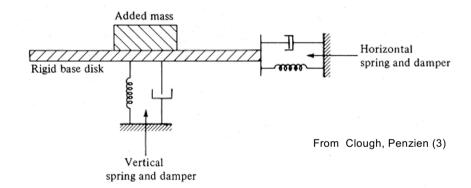


Soil-structure interaction

structure with soil in FE and BE

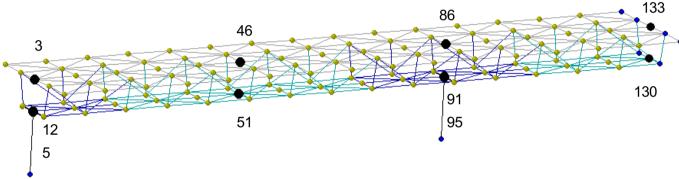


simplified model



Modeling of bridges

Model with 20 dynamic DOFs superstructure, bearings and columns with FE ⇒ multiple base input



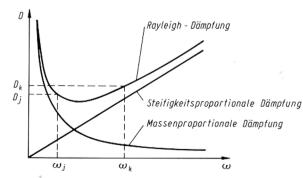
ピコい	aian	_aar	nping:
ı va v	ciui	-uai	HUHHU.
- ,	- 0		1 0

$$\underline{C} = \alpha \underline{M} + \beta \underline{K} \qquad \alpha = \frac{2 \cdot \omega_1 \cdot \omega_2}{\omega_2^2 - \omega_1^2} (\omega_2 \cdot D_1 - \omega_1 \cdot D_2) \qquad \beta = \frac{2 \cdot (\omega_2 \cdot D_2 - \omega_1 \cdot D_1)}{\omega_2^2 - \omega_1^2}$$

with D₁=D₂=5% and ω_1 =100.06, ω_2 =429.44 gives:

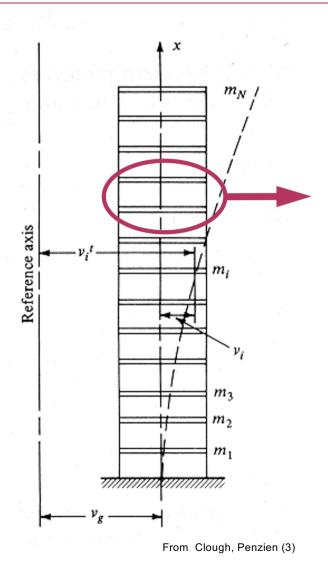
 α = 8.11515890

 β = 0.00018886

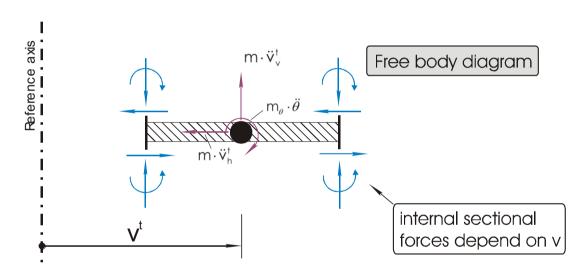


master node	DOF	
3	1	х
	2	у
5	3	Х
	4	у
12	5	Х
	6	у
46	7	у
	8	z
51	9	у
	10	Z
86	11	X
	12	у
91	13	Х
	14	у
95	15	Х
	16	у
130	17	у
	18	Z
133	19	у
	20	Z

Earthquake loading



lumped MDOF-sytem with rigid base translation (horizontal case)

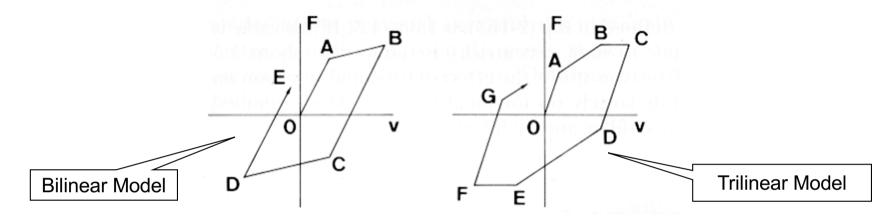


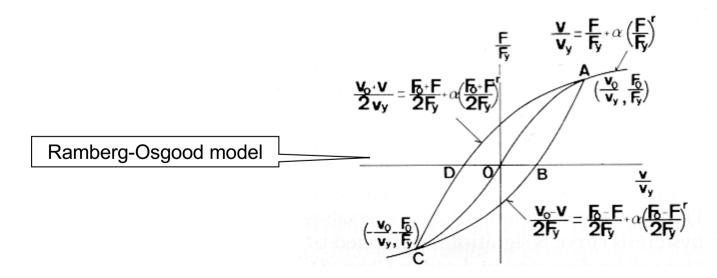
$$\mathbf{m} \cdot \ddot{\mathbf{v}}^t + \mathbf{c} \cdot \dot{\mathbf{v}} + \mathbf{k} \cdot \mathbf{v} = \mathbf{0}$$

$$v^t = v + \{j\} \cdot v_g$$
 where $~\{j\}$ — direction cosine, for buildings typically 1

$$\begin{aligned} m \cdot \ddot{v} + c \cdot \dot{v} + k \cdot v &= p_{eff}(t) \\ p_{eff}(t) &= -m \cdot \{j\} \cdot \ddot{v}_g(t) \end{aligned}$$

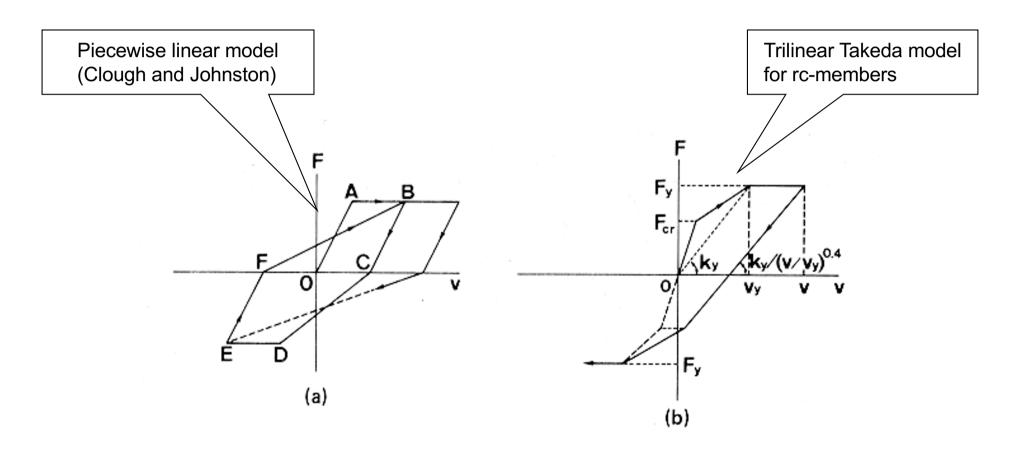
Hysteresis models (1D) – non-degrading models





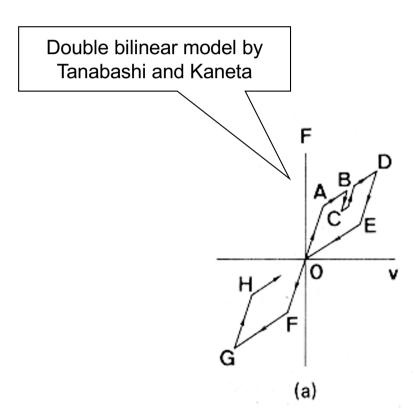
From Wakabayashi (1)

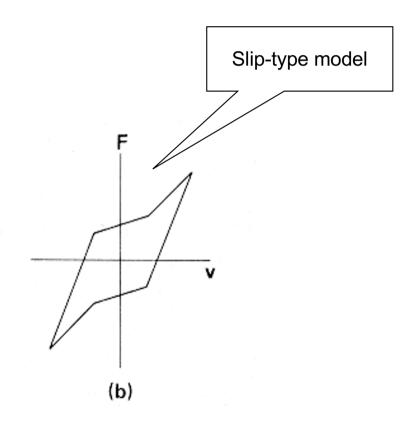
Hysteresis models (1D) – degrading models



From Wakabayashi (1)

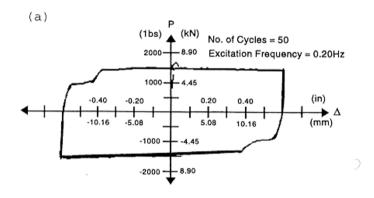
Hysteresis models (1D) – slip-type models





From Wakabayashi (1)

Example for slip-type hysteresis model (friction connection with multiple stops)



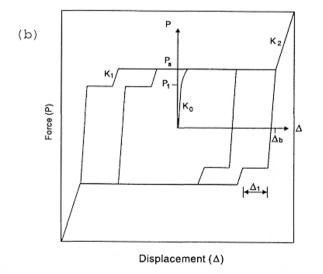
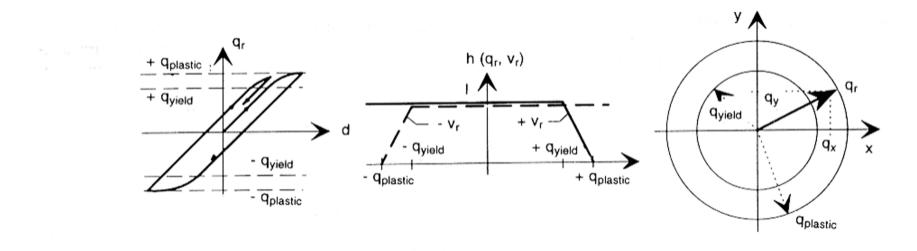


Table 4.2 Hysteretic Model with Multilevel Bearing Stops

```
Define \Delta_2 = \Delta_1 + (P_s - P_1)/K_1
If |P| < P_1 then
       Elastic loading or unloading
       \dot{P} = K_0 \dot{\Delta}; \dot{\gamma} = 0
Elseif P\dot{\Delta} \leq 0 and |\Delta| \leq \Delta_b then
       Unloading within hysteresis block
       If \Delta_1 < \gamma \operatorname{sgn}(\dot{\Delta}) < \Delta_2 then
           Inner bearing unloading
           \dot{P} = K_1 \dot{\Delta}; \dot{\gamma} = \dot{\Delta}
       Else
           Elastic unloading
           \dot{P} = K_0 \dot{\Delta}; \dot{\gamma} = 0
       Endif
Elseif |\Delta| < \Delta_b then
       Loading within hysteresis block
       If \gamma \operatorname{sgn}(\dot{\Delta}) < \Delta_1 then
           Slippage
           \dot{P}=0; \dot{\gamma}=\Delta
       Elseif \gamma \operatorname{sgn}(\Delta) < \Delta_2 then
           Inner bearing
           \dot{P} = K_1 \dot{\Delta}; \dot{\gamma} = \dot{\Delta}
        Elseif |P| < P_s then
           Elastic loading
           \dot{P} = K_0 \dot{\Delta}; \dot{\gamma} = 0
        Else
           Slippage
           P = 0; \dot{\gamma} = 0
        Endif
 Else
        Outer bearing loading or unloading
        \dot{P} = K_2 \dot{\Delta}; \dot{\gamma} = 0
 Endif
```

2D hysteresis model (2D Bouc-When)



From Pradlwarter, Schuëller, Dorka (7)

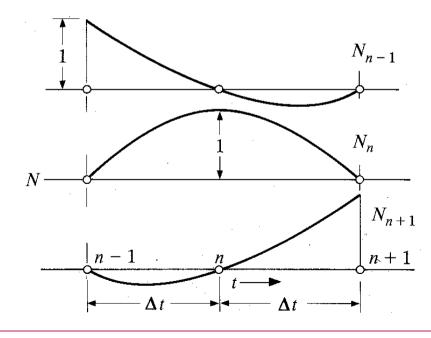
Time history analysis

Time discretization:

Dynamic equilibrium: $M \frac{d^2}{dt^2} x + C \frac{d}{dt} x + Kx + f_r = p(t)$

with f_r: vector of non-linear restoring forces

Shape functions for discretizing x in time:



$$N_{n-1} = \frac{\xi \cdot (1 + \xi)}{2};$$

$$N_{n-1} = (1 - \xi) \cdot (1 + \xi);$$

$$N_{n+1} = -\frac{\xi \cdot (1 - \xi)}{2}$$

with:
$$\xi = \frac{t}{\Delta t}$$

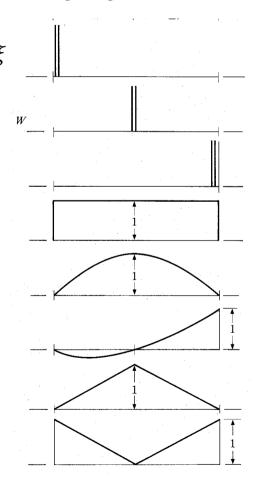
Weighted residual formulation

$$\int_{-1}^{1} W \begin{bmatrix} M \cdot \left(u^{n-1} \frac{d^2}{dt^2} N_{n-1} + u^n \frac{d^2}{dt^2} N_n + u^{n+1} \frac{d^2}{dt^2} N_{n+1} \right) \\ + C \cdot \left(u^{n-1} \frac{d}{dt} N_{n-1} + u^n \frac{d}{dt} N_n + u^{n+1} \frac{d}{dt} N_{n+1} \right) \\ + K \cdot \left(u^{n-1} N_{n-1} + u^n N_n + u^{n+1} N_{n+1} \right) \\ + f_*^{n-1} N_{n-1} + f_*^n N_n + f_*^{n+1} N_{n+1} \end{bmatrix} d\xi$$

$$f_* = f_r - p$$

$$\gamma = \frac{\int_{-1}^{1} W\left(\xi + \frac{1}{2}\right) d\xi}{\int_{-1}^{1} W d\xi}$$
$$\beta = \frac{\int_{-1}^{1} W \frac{1}{2} (1 + \xi) \xi d\xi}{\int_{-1}^{1} W d\xi}$$

Weighting functions W:



γ	β	
$-\frac{1}{2}$	0	
1/2	0	Central explicit
3/2	1	Backward
$\frac{1}{2}$	1/6	
1/2	1/10	Linear acceleration
3 2	<u>4</u> 5	Galerkin
1/2	$\frac{1}{12}$	Fox Goodwin
1/2	1/4	Average acceleration

3-point recurrence scheme

$$u^{n+1} = [M + \gamma \Delta t C + \beta \Delta t^{2} K]^{-1} \cdot$$

$$\begin{cases} \left[2M - (1 - 2\gamma) \Delta t C - \left(\frac{1}{2} - 2\beta + \gamma\right) \Delta t^{2} K \right] \cdot u^{n} \\ - \left[M - (1 - \gamma) \Delta t C + \left(\frac{1}{2} + \beta - \gamma\right) \Delta t^{2} K \right] \cdot u^{n-1} \\ + \beta \Delta t^{2} f_{*}^{n+1} + \left(\frac{1}{2} - 2\beta + \gamma\right) \Delta t^{2} f_{*}^{n} \\ + \left(\frac{1}{2} + \beta - \gamma\right) \Delta t^{2} f_{*}^{n-1} \end{cases}$$

$$u^{n+1} = u_0 + G(f_r^{n+1})$$

with:

$$u_{0} = [M + \gamma \Delta t C + \beta \Delta t^{2} K]^{-1} \cdot \left[2M - (1 - 2\gamma) \Delta t C - \left(\frac{1}{2} - 2\beta + \gamma\right) \Delta t^{2} K \right] \cdot u^{n} \right]$$

$$- \left[M - (1 - \gamma) \Delta t C + \left(\frac{1}{2} + \beta - \gamma\right) \Delta t^{2} K \right] \cdot u^{n-1}$$

$$- \beta \Delta t^{2} p^{n+1} + \left(\frac{1}{2} - 2\beta + \gamma\right) \Delta t^{2} f_{*}^{n}$$

$$+ \left(\frac{1}{2} + \beta - \gamma\right) \Delta t^{2} f_{*}^{n-1}$$

$$G = \beta \Delta t^2 [M + \gamma \Delta t C + \beta \Delta t^2 K]^{-1}$$

Stability and accuracy

Solution for linear SDOF-

system:

$$y(t) = Ye^{vt}$$

and its recurrent form:

$$y_{n+1} = Ye^{v(t+\Delta t)} = (e^{v\Delta t})Ye^{vt} = \lambda y_n$$

yields a characteristic equation:

$$\lambda^2[m + \gamma \Delta t c + \beta \Delta t^2 k]$$

$$+\lambda \left[-2m + (1 - 2\gamma)\Delta tc + \left(\frac{1}{2} - 2\beta + \gamma\right)\Delta t^{2}k \right]$$
$$+ \left[m - (1 - \gamma)\Delta tc + \left(\frac{1}{2} + \beta - \gamma\right)\Delta t^{2}k \right] = 0$$

exact solution:

$$|\lambda| = 1$$

stable solution with numerical

$$|\lambda| < 1$$

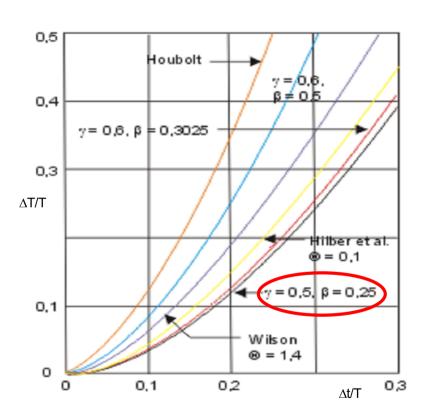
damping:

unstable solution:

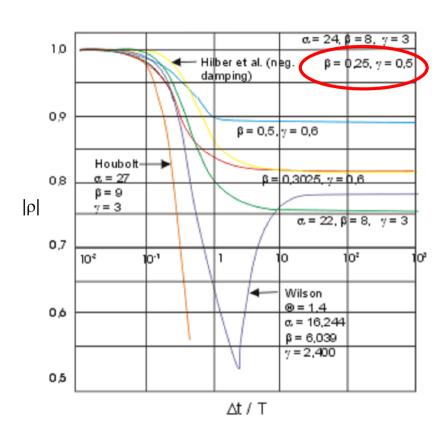
$$|\lambda| > 1$$

Stability and accuracy

period elongation



numerical damping



$$\gamma = 0.5$$
 $\beta = 0.25$

unconditionally stable Newmark scheme without numerical damping

Newton-Raphson iteration within a time step

$$u^{n+1} = u_0 + G(f_r^{n+1})$$

Since the response f_r at time n+1 is not known, an iteration within each time step is required to solve this equation:

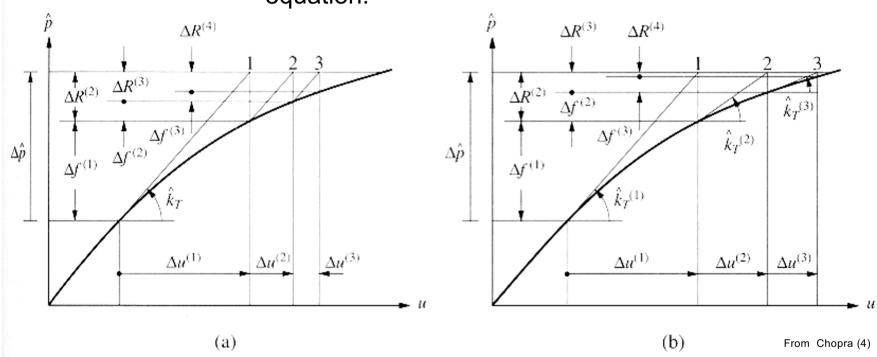


Figure 5.7.3 Iteration within a time step for nonlinear systems: (a) modified Newton-Raphson iteration; (b) Newton-Raphson iteration.

Newton-Raphson iteration within a time step

TABLE 5.7.1 MODIFIED NEWTON-RAPHSON ITERATION

1.0 Initialize data.

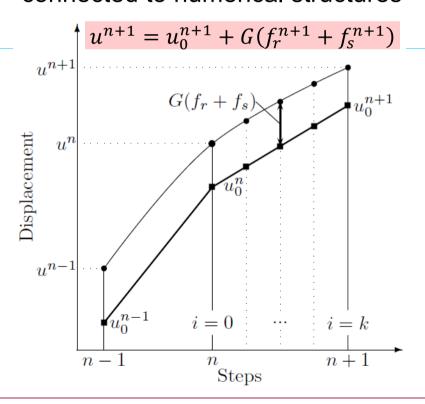
$$u_{i+1}^{(0)} = u_i$$
 $f_S^{(0)} = (f_S)_i$ $\Delta R^{(1)} = \Delta \hat{p}_i$ $\hat{k}_T = \hat{k}_i$

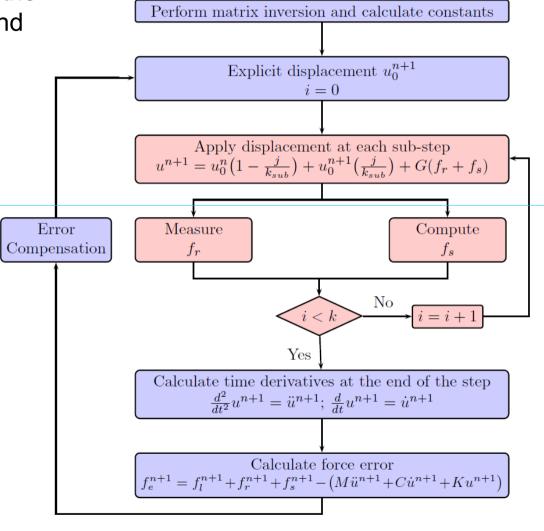
- 2.0 Calculations for each iteration, j = 1, 2, 3, ...
 - 2.1 Solve: $\hat{k}_T \Delta u^{(j)} = \Delta R^{(j)} \Rightarrow \Delta u^{(j)}$.
 - 2.2 $u_{i+1}^{(j)} = u_{i+1}^{(j-1)} + \Delta u^{(j)}$.
 - 2.3 $\Delta f^{(j)} = f_S^{(j)} f_S^{(j-1)} + (\hat{k}_T k_T) \Delta u^{(j)}$.
 - 2.4 $\Delta R^{(j+1)} = \Delta R^{(j)} \Delta f^{(j)}$.
- 3.0 Repetition for next iteration. Replace j by j + 1 and repeat calculation steps 2.1 to 2.4.

From Chopra (4)

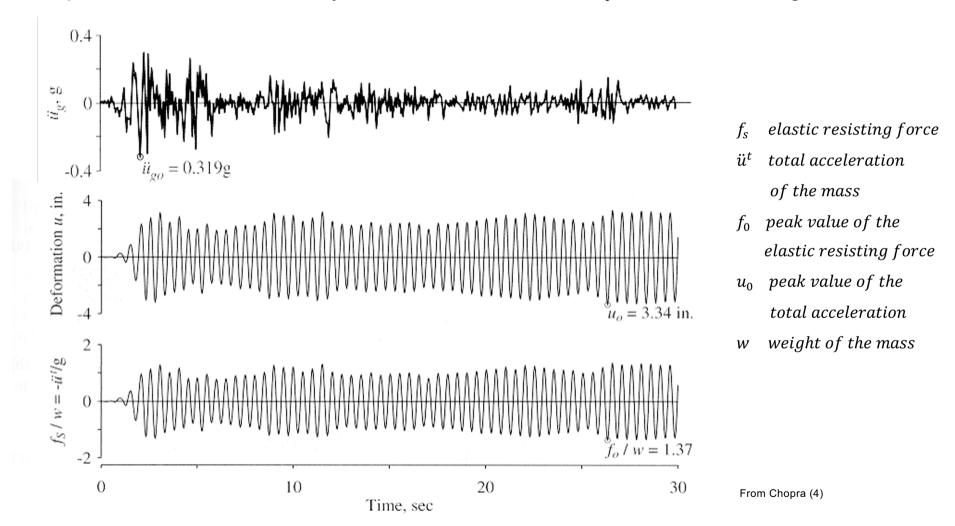
The Subfeed algorithm

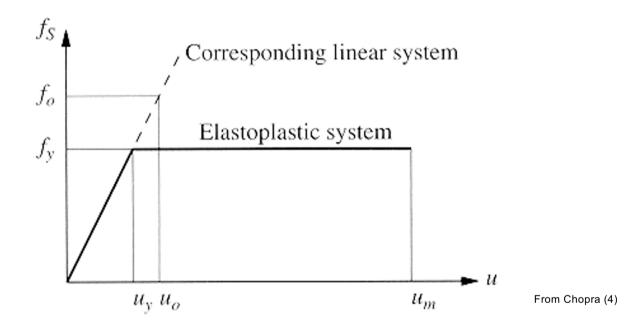
- Sub-stepping avoids iteration within the time step. This is 100-times faster and more robust.
- It can be used in so-called hybrid simulations where specimen are connected to numerical structures



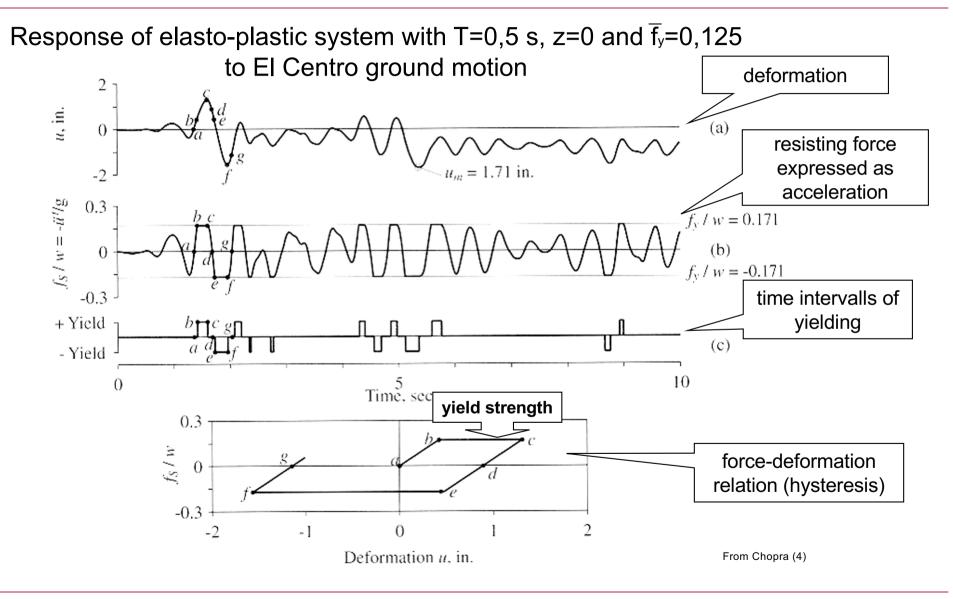


Response of linear SDOF-system with T=0,5 s and ζ =0 to El Centro ground motion

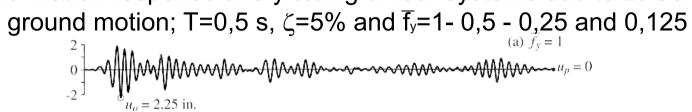


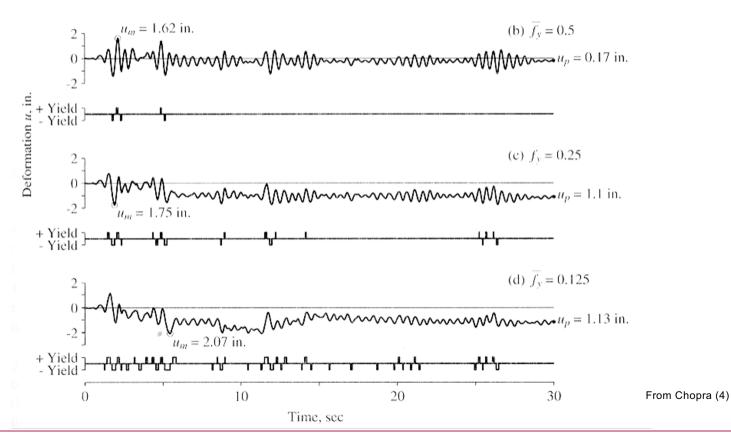


$$ar{f_y} = rac{f_y}{f_o} = rac{u_y}{u_o}$$
 normalized yield strength $\mu = rac{u_m}{u_y}$ ductility factor



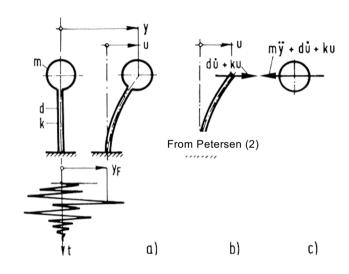
Deformation response and yielding of four systems due to El Centro

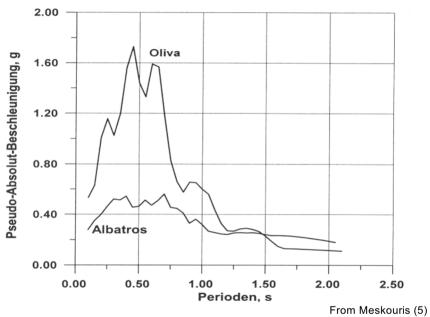




Response spectra

viscously damped SDOF oscillator





solving this equation for various ω and ζ , but only for one ground motion gives the maximum absolute acceleration of every SDOF system subjected to this ground motion

Elastic design spectra given in codes

The acceleration response spectra in EC 8 are given with respect to the subsoil classes

Table 3.1: Classification of subsoil classes

Subsoil class	Description of stratigraphic profile	Parameters		
		V _{s,30} (m/s)	N _{SPT} (bl/30cm)	c_u (kPa)
A	Rock or other rock-like geological formation, including at most 5 m of weaker material at the surface	> 800	-	_
В	Deposits of very dense sand, gravel, or very stiff clay, at least several tens of m in thickness, characterised by a gradual increase of mechanical properties with depth	360 – 800	> 50	> 250
С	Deep deposits of dense or medium- dense sand, gravel or stiff clay with thickness from several tens to many hundreds of m	180 – 360	15 - 50	70 - 250
D	Deposits of loose-to-medium cohesionless soil (with or without some soft cohesive layers), or of predominantly soft-to-firm cohesive soil	< 180	< 15	< 70
E	A soil profile consisting of a surface alluvium layer with $V_{s,30}$ values of class C or D and thickness varying between about 5 m and 20 m, underlain by stiffer material with $V_{s,30} > 800 \text{ m/s}$			
S_1	Deposits consisting – or containing a layer at least 10 m thick – of soft clays/silts with high plasticity index (PI > 40) and high water content	< 100 (indicative)		10 - 20
S ₂	Deposits of liquefiable soils, of sensitive clays, or any other soil profile not included in classes $A - E$ or S_1			

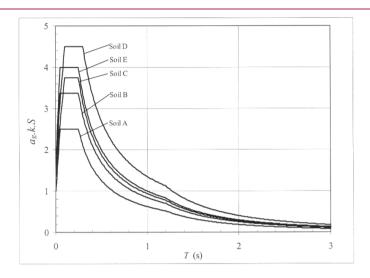


Figure 3.2: Elastic response spectrum, Type 2

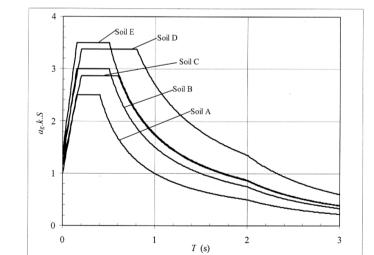
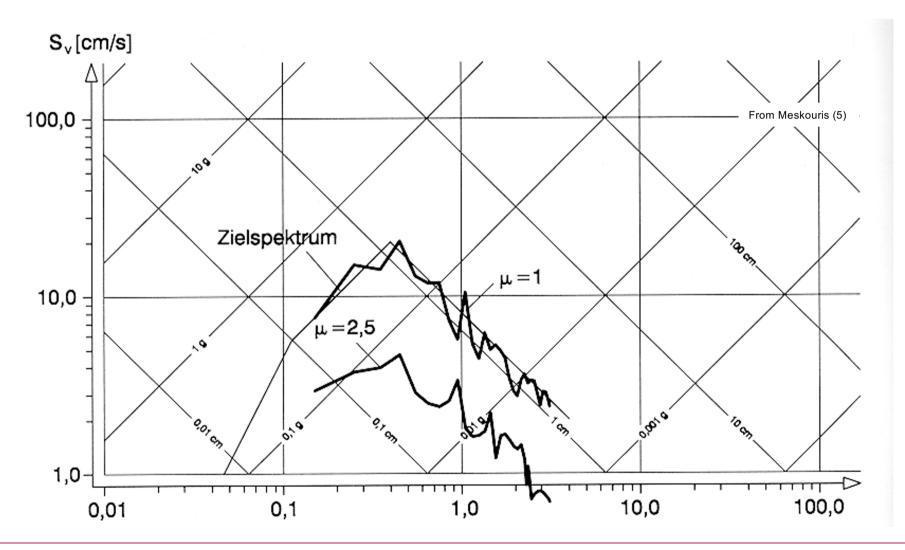


Figure 3.1: Elastic response spectrum, Type 1.

Elastic and inelastic response spectra



Modal analysis

linear equations of motion for a MDOF, homogeneous, un-damped case

$$m \cdot \ddot{u} + k \cdot u = 0$$

solving the eigenvalue problem gives us the modal matrix Φ

$$\Phi = [\Phi_1 \Phi_2 \Phi_3 \dots \Phi_n]$$

with this modal matrix, the equations of motion can be transform into modal coordinates

$$(\Phi^T \cdot m \cdot \Phi) \cdot \ddot{u} + (\Phi^T \cdot k \cdot \Phi) \cdot u = 0$$
$$M \cdot \ddot{\eta} + K \cdot \eta = 0$$

or for a damped case with ground acceleration:

$$(\Phi^T \cdot m \cdot \Phi) \cdot \ddot{u} + (\Phi^T \cdot c \cdot \Phi) \cdot \dot{u} + (\Phi^T \cdot k \cdot \Phi) \cdot u = -\Phi^T \cdot m \cdot \{j\} \cdot \ddot{u}_F(t)$$
$$M \cdot \ddot{\eta} + C \cdot \dot{\eta} + K \cdot \eta = 0$$

now we have uncoupled equations of motion for n SDOF-systems in modal coordinates

Modal analysis

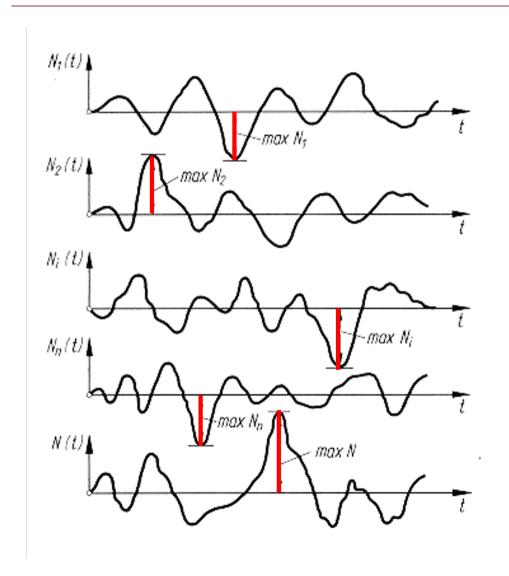
These n equations could be solved in known ways, so we get n solutions in modal coordinates in the time domain

$$\eta(t) = \begin{cases} \eta_1(t) \\ \eta_2(t) \\ \vdots \\ \eta_j(t) \\ \vdots \\ \eta_n(t) \end{cases}$$

With the modal matrix we are able to transform these solutions back into local coordinates

$$u(t) = \Phi \cdot \eta(t) = \begin{cases} u_1(t) \\ u_2(t) \\ \vdots \\ u_j(t) \\ \vdots \\ u_n(t) \end{cases}$$

Modal analysis using response spectra



The modal responses attain their peaks at different time instants. How do we have to combine these peak values?

$$S = \sum_{j=1}^{n} |S_j|$$
 Superposition of absolute values

$$S = \sqrt{\sum_{j=1}^{n} S_j^2}$$

Square - Root - Sum - of - Square (SRSS)

$$S = \sqrt{\sum_{j=1}^{n} \sum_{k=1}^{n} S_j \cdot \rho_{jk} \cdot S_k}$$

 $\rho_{jk} = correlation coefficient$ Complete Quadratic Combination (CQC)

References

- (1) Wakabayashi –Design of Earthquake-Resistant BuildingsMcGraw-Hill Book Company
- (2) Petersen –Dynamik der BaukonstruktionenVieweg
- (3) Clough, Penzien –
 Dynamics of Structures
 McGraw-Hill
- (4) Chopra –
 Dynamics of Structures
 Prentice Hall

- (5) Meskouris– Baudynamik Ernst & Sohn
- (6) Zienkiewicz– The Finite Element Method McGraw-Hill Book Company
- (7) Pradlwarter, Schuëller, Dorka Reliability of MDOF-systems with hysteretic devices, in Engineering Structures, Vol. 20, 1998 Elsevier