
Short course on chaos theory
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We have linear and non-linear case

F(t)

P

θ

 2 sin F t   

The equation of motion :

Consider the case of pendulum

 2 F t   

Linear case:

Linear case:
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Non-linear case:    2 3 5 61 1
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-Periodic ω
- Bi-periodic 2ω
-Quasi periodic 3ω-4ω
- Chaotic 5ω an so on
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-The presence of non-linearity gives some news information 
on the dynamics of the system

-  3a b F t      
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z
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
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 


    

- Fixed points    , 0,0f z 



Attractor of fixed points
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Autonomous system

F(t)=0



According to mechanical Structures the best situation is to be able 
to prevent chaotic motion.5
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Some indicators
- Phase portrait: A phase portrait is a geometric representation of the 

trajectories of a dynamical system in the phase plane.

- Poincaré Section: is a method to transform a continuous dynamical process 

in time into a set of difference equations, known in modern parlance as a 

map.

- Bifurcation: A bifurcation or branching is a qualitative state change in non 
linunder the influence of a parameter of system

- Lyapunov exponent: is a quantity that characterizes the rate of separation 

of infinitesimally close trajectories.

- The Basin of Attraction offers a global perspective to analyze robustness of 

limit-cycle walking It represents the set of all initial conditions on the 

Poincaré section from which the system will converge to the fixed point(s).
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- Shilnikov Method: Condition to have chaos on a system

- Lelnikov Method : Starting point for successive route to chaos

The transverse intersection between pertubed and non pertubed
separateix
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The Melnikov function help to obtain the starting point for a 

successive route to chaotic dynamics
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t_0 is the distance between the transversere intersection between

pertubed and unpertubed separatrix

In the littérature the only way to prevent that, is to derive 
in the space parameters of the systems the Melnikov 
function

         0 0 0, 11pM t g u t g u t t t dt



  



This means that if the potential of the system in non degenerated

one can not calculate the Menikov function
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If the potential is degenarated that means that we could Homoclinic or Heteroclinic

separatrix



 This has nothing to do with phase diagram
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The equation of separatrix can be calculated using the hamiltonian

of the system

gp is a periodic pertubation function  and  0 1 2;g g g

 
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AS an example, let us considered the case of Duffing equation



The simplest example is The Duffing equation (or Duffing oscillator), named after Georg Duffing (1861–

1944), is a non-linear differential equation of the second order used to model certain forced and damped

oscillators. The equation is written:

Where δ is the damping, a the frequency of system and b the nonlinear term due to the stiffness.

This mathematical model describes the evolution of any physical system in the vicinity of a stable

equilibrium position, making it a transversal tool used in many fields: mechanics, electricity and

electronics, optics.

Depending on the signs of parameters a and b, his oscillator describes two symmetrical configurations of

the potential well:

 Case 1 : a<0 and b>0 we have a two-well potential (see figure 1a)

 Case 2 : a>0 and b<0 we have a catastrophic potential well (see figure 2a). The latter is a typical

characteristic encountered in real physical structures

   3

0 cos 1x x ax bx f t    
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Eq 1 can be rewritten as a system of first order equations:

3

0

(2)
cos

x y

y ax bx y f t 




    

For the determination of fixed points, we suppose that:

On obtains:
00 0and f  

3
(3)

x y

y ax bx




  

For initial conditions 0 0x and y 

One obtains three fixe points depending of signs of a and b:

0
, (4)

0
0 0

a a
xx x

andb b
y

y y

   
        

            

Depending of values of signs of a and b these fixe points can be stables or unstables.
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2- Potential curves and separatrix equations

3( )F gradU and U Fdx with F x x       

The equilibrium condition is written by :

Consider the two forms of Duffing equation:

0F  

 41 1
( ) 5

2 4
U x ax bx 

0 0( )x x U x 

 
2

0 02
( ) 0 ( ) 0 6

dU d U
x and x

dx dx


 
2

0 02
( ) 0 ( ) 0 7

dU d U
x and x

dx dx


•Stable equilibrium point:

Un point x0 is a stable equilibrium point if for                                      is minimal

•Unstable equilibrium point:

Un point x0 is an  ustable equilibrium point if   for                                   is maximal

0 0( )x x U x 
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Figure1b: Phase diagram a<0 and b>0 Figure2b: Phase diagram a>0 and b<0

Figure 1a: Potential curve a<0 and b>0 Figure2a : Potential curve a>0 and b<
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Fig 3:  Sphace Diagram in 3D describing the motion of the particle in the the

differents wells
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The homoclinic orbit connectes the unstable point xu0 to itself (see Fig. (4a) ) and 

the heteroclinic orbit (see Fig. 4(b)) connectes the unstable points xu2 and xu1.

Figure 4a: Homoclinic orbit Figure 4b: Heteroclinic orbit
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The Melnikov’s theory consists to determine analytically the threshold value of external force, where the 

Horseshoe chaos appears in the system. 

Now, we consider the case of double Well.

Consider the generalized dynamical equation of a given system written in vector form:

3-Melnikov theory

     0 , 8pu g u g u t 

 ,u x y

 0 1 2;g g g the vector field chosen Hamiltonian with the energy H0 so that:

Where                            is the state vector,
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gp is a periodic pertubation function  and 
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Let us assume that the unperturbed Hamiltonian system possesses saddle points connected by a separatrix

or heteroclinic orbit  𝑢(t) or only one hyperbolic saddle point with a homoclinic orbit  𝑢(t). In the presence

of the perturbation 𝑔𝑝 𝑢, 𝑡 , the orbits are perturbed. When the perturbed and the unperturbed manifolds

intersect transverssaly, the geometry of the basin of attraction may become fractal, indicating the high

sensitivity to initial conditions, thus chaos. The Melnikov’s theory which gives the condition for the fractal

basin boundary can be given as follows:

For this model, we have:
 
 

 
3

0

0

,
10

0, cosp

g y ax bx

g y f t 

   


  
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         0 0 0, 11pM t g u t g u t t t dt




  



With −∞ ≺ 𝑡0 ≺ +∞. If 𝑀 𝑡0 has simple zeros so that for a given 𝑡0
𝑙one has 𝑀 𝑡0 = 0 with  𝑑𝐻 𝑡0 𝑑𝑡

at 𝑡 = 𝑡0
𝑙 (condition for transversal intersection), then Eq (1) can present fractal boundaries for motions

around different stable equilibrium points. To apply the Melnikov theorem to our model, we derive the

equations for the homoclinic and heteroclinic orbits. Let us first consider the case of the potential with two

wells (see Fig. 1(a)). For this case, we have to find the homoclinic orbits connecting the unstable point

(see Fig. 2(a)) 𝑥 = 0 to itself. Making use of integrals tables or the method of residues, we obtain the

homoclinic orbits defined by:
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         0 0 0cos 12ho hoM t y t f t t y t dt 
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    



23
 

2

0

cos

ho

ho

y dt
f

y t dt

















Fig 5: Melnikov Curve for appearance or disappearance of Chaos
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In order to confirm the analytical predictions from Melnikov’s theory, we analyse in this section the

regular or irregular geometries of the attraction basins by numerical resolution of Eq (1) by means of

Runge-Kutta algorithm of the fourth order. This irregular geometry of the basin of attraction is

characterized by the appearance of fractality [1] on the boundary of basin of attraction which reflects

the chaos, resulting indisputably from the greater sensitivity due to initial conditions.

4- Fractal basin boundary

Figure 6: Basins of attraction 



Exercice

 Consider a structure model by a  Duffing oscillator with catastrophic single 

well potential

 Derive the equilibrium points

 Calculate equation governing the Heteroclinic separatrix

 Calculate the Melnikov distance for transition to chaos

 Derive the condition for suppression of chaos on the structures
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Let the Hamiltonian H of the system

The equation of separatrix is obtained by posing:   H=cst
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  2 2 41 1 1
,

2 2 4
H x y y a x bx   For a<0 and b>0 the point            belongs at the separatrix
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For a>0 and b<0 the point                      belongs at the separatrix
𝑥 = −

𝑎

𝑏
𝑦 = 0

• The equation of separatrix is obtained by posing:   H=cst =
−𝒂𝟐

𝟒𝒃
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