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In this paper, the dynamic response of cable-stayed bridge loaded by a train of moving forces with
stochastic velocity is investigated. The cable-stayed bridge is modelled by Rayleigh beam with linear
elastic supports. The stochastic Melnikov method is derived and the mean-square criterion is used to
determine the effects of stochastic velocity and cables number on the threshold condition for the in-
hibition of smale horseshoes chaos in the system. The results indicate that the intensity of the random
component of the loads velocity can be contributed to the enlargement of the possible chaotic domain of
the system, and/or increases the chances to have a regular behavior of the system. On the other hand, the
presence of cables in cable-stayed bridges system increases it degree of safety and paradoxically can be
contributed to its destabilization. Numerical simulations of the governing equations are carried out to
confirm the analytical prediction. The effect of loads number on the system response is also investigated.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Cable-stayed bridges have become very popular over the last
three decades because of their aesthetic appeal, structural effi-
ciency, enhanced stiffness compared with suspension bridges, ease
of construction and comparatively small size of structures. Re-
sponse prediction of this type of bridges subjected to randomly
moving excitations is important for engineering practice [1,2].

The vibrations of a suspension bridge under a random train of
moving loads are discussed in detail by Bryja and Śniady [3–5].
Generally, a very important parameter in the study of the vibration
of bridges caused by moving loads is the velocity. Although there
is scarcity of publications on this subject, one can mention the
work of Zibdeh [6] who included the effect of random velocities on
the dynamic response of a bridge traversed by a concentrated load.
Chang et al. [7] investigated the dynamic response of a fixed–fixed
beam with an internal hinge on an elastic foundation, which is
subjected to a moving mass oscillator with uncertain parameters
such as random mass, stiffness, damping, velocity and accelera-
tion. In the same impetus, Śniady et al. [8,9] and Rystwej et al. [10]
ling and Simulation in En-
nce, University of Yaounde I,

bendjo).
investigated on the problem of a dynamic response of a beam and
a plate to the passage of a train of random forces. In this study they
assumed that the random train of forces idealizes the flow of ve-
hicles having random weights and travelling at the stochastic ve-
locity. They show the effect of these stochastic quantities on the
mean deflection of the beam.

On one hand, in all of the above-mentioned research, only the
effect of stochastic parameters of the moving loads on the prob-
abilistic features of the beam response namely the mean square
amplitude and the probability density function is carried out. To
the best knowledge of the authors, the effects of stochastic fluc-
tuations of the load velocity and the number of cables on the
possible appearance of horseshoes chaos in the cable-stayed
bridge system have not been explored by the researchers yet. Thus
in this paper, based on the Melnikov approach, which is widely
used by most researchers [11–15], all these effects on the ap-
pearance of transverse intersection of perturbed and unperturbed
heteroclinic orbits and the route to chaos are investigated.

Following this introduction, the effective model of cable-stayed
bridge is presented in Section 2. Also, the random Melnikov ana-
lysis for the examination of the effect of a noisy part of velocity of
moving loads and cables effects on the threshold condition for the
inhibition of chaos is extended. Section 3 presents some numerical
simulations to validate the theoretical predictions. Finally, Section
4 is devoted to the conclusion.
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2. The bridge model

This section is devoted to the presentation of the system
(Section 2.1), the corresponding reduced modal equations (Section
2.2). The last Section 2.3 is devoted to the theoretical analysis of
the random Melnikov analysis applied to the proposed model.

2.1. Mathematical modelling

The dynamic model of a cable-stayed bridge system in-
vestigated in this paper and shown in Fig. 1(a) is the semi-harp
type with two symmetrical spans. The cable-stayed bridge is
modelled by using a Rayleigh beam theory [16] (in order to take
into account the high frequency motion of the beam) of finite
length L with geometric nonlinearities on elastic supports with
linear stiffness Ki

c subjected to an axial compressive loads Th
c due

to the total contribution of the horizontal component of the tensile
cables and a series of lumped loads p moving along the beam in
the same direction with the same stochastic velocity vk (see Fig. 1
(b)). We assume that the mass of the cables is negligible and they
are regularly spaced on the beam. Since all the stay cable ancho-
rage sections are fixed to move both horizontally and vertically,
the whole pylon is assumed to be fixed.

The deformed beam can be described by the transverse de-
flection ( )=W W X t, and the rotation of the cross section of the
beam θ¼ ( )θ X t, . By Considering the classical damping force model
for the viscosity materials and Newton's second law of motion for
an infinitesimal element of the beam, the equation of motion for

the small deformations ( )θ ⋍ ∂
∂
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In which mb, EI, ρ, Ra, c, ( )W X t, are the beam mass per unit length,
the flexural rigidity of the beam, beam material density, the
transverse Rayleigh beam coefficient, the damping coefficient and
Fig. 1. Sketch of (a) the cable-stayed bridge system, (b) equivalent model under
stochastic moving loads. The gravitational forces are represented by arrows p,
whose separations are not uniform, for the speeds vk are not identical.
the transverse defection of the beam at point X and time t re-
spectively. Th

c is the axial compressive loads due to the total
contribution of the horizontal component of the tensile cables. In

Eq. (1), ∂
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the nonlinear rigidity of beam essentially due to the Euler law
which states that the bending moment of the beam is proportional
to the change in the curvature produced by the action of the load
[17,18]. This nonlinear term is obtained by using the Taylor ex-
pansion of the exact formulation of the curvature up to the second
order. The term on the right-hand side of Eq. (1) is used to describe
the series of random moving loads over the beam. ( )−X t tk k is the
distance covered by the kth force to the time t.

= ( − )t k d v1 /k 0¼deterministic arriving time of the kth load at the
beam. d is the spacing loads, δ (·) denotes the Dirac delta function,
Nv is the total number of moving loads. To facilitate a compact
representation of the equations, a window function εk is defined:
ε = 0k when the load has left the beam and ε = 1k while the load is
crossing the beam [19]. Nc is the number of cables acting on the
bridge and δ [ − ]X i L

Nc
give the position of each action. Ki

c is the

linear stiffness of the cables. Their expression according to the
particular characteristics of the stay cables is given by [22]
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where αi is the angle between the ith cable and the bridge deck, Ei,
Ai, Li are Young's Modulus, the cross section and the length of the
ith cable respectively. For a finite, simply supported beam, the
boundary and initial conditions have the forms
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It is well known that a more realistic and practical model of
highway traffic loads takes into account the features of the Poisson
process [20], or the ones of renewal counting process [21] to re-
present the vehicular traffic. So to derive the proposed model of
external forces, we take into account the randomness of the ve-
locity and assume the similar form of loads studied by Nikkhoo
et al. [19]. The random velocities are assumed to be Gaussian
distributed, i.e. that the loads travel with velocities vk Gaussian
distributed around the average speed v0 [8]

σ ξ( − ) = ( − ) = + ( − )

≤ ( − ) ≤ ( )

dX t t
dt

v t t v t t

X t t L0 4

k k
k k v k k

k k

0

Here ( − )v t tk k is the stochastic velocity of the kth force, v0 the
mean value of velocity, sv its standard deviation and ξ ( − )t tk k the
velocity disturbances which we assume to be independent and
stationary white noise random processes; i.e.
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The brackets ≺⋯≻ denote the time average.

2.2. Modal equations

If one takes into account the boundary conditions, the trans-
versal deflection ( )W X t, for the simply-supported beam can be
represented in a series form as

( ) ( )∑ π=
( )=

∞ ⎛
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n X
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where ( )q tn is the amplitude of the nth mode, and ( )πn X Lsin / is the
solution of the eigenvalue problem which depends on the
boundary conditions of the free oscillations of the beam. It is
convenient to adopt the following dimensionless variables:
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q
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n
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0

The equivalent stochastic dimensionless modal equation is ob-
tained by substituting Eqs. (2) and (4) into Eq. (1) and considering
the first mode of vibration in which almost the energy is con-
centrated:
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Here lr is a reference length of the beam and τ τ( − )W k is a unit
Wiener stochastic process.

Eq. (8) amounts to a stochastic Duffing oscillator which de-
scribes the unbounded or catastrophic motion of the beam for:
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The catastrophic behavior of the beam is related to the config-
uration of the potential of the system, as described in detail in Ref.
[23].

For the analytical purpose, let us consider the simplest case
when the beam is subjected to the passage of a single moving load
( = )N 1v . Also, we assume in the first case (ε = 0k ) that the dynamic
response function is equal to zero ( τϑ( ) = 0) and for the second
case (ε = 1k ) the response function is calculated from the equation
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αis the total contribution of the stay cables structures on the dy-
namics of the cable-stayed bridges system. This is the main result
of this part: The sudden appearance on the right-hand side of Eq.
(12) of a harmonic function with constant amplitude and random
phases (mathematically equivalent to frequency fluctuations of a
nonmonochromatic drive [24]), which amounts to a bounded or
sine-Wiener noise η τ( ) [25], whose covariance is given by
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In the following, the prediction of chaotic behavior for Eq. (12) will
be investigated.
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pace portrait (open lines) of the Catastrophic system Eq. (12) for α = 4.2 (b).
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2.3. Melnikov analysis and random chaos prediction

The aim of this subsection is to show the effect of stochastic
velocity of the moving loads and the cables contribution on the
basin boundaries. This is done by one of a few methods allowing
analytical prediction of chaos occurrence: Melnikov method [11–
15].

This method was extended to study stochastic dynamical sys-
tem by Frey and Simiu [26]. To apply this method, we introduce a
small parameter μ in Eq. (12) and rewrite the governing system as
the following set of first order differential equation:

( )
τ τ

τ α τ β τ μ λ τ η τ
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For μ = 0, and after assuming that τ τϑ = ϑ( ) = ( )y y; , the system
of Eq. (14) is the Hamiltonian system with Hamiltonian function
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Fig. 2(a) shows an increases of an energy barrier of our system
when the contribution of cables α varies. As β < 0, the system has
three equilibrium points: a center point ( )ϑ = 0, 0e0 and two

saddles ( )α βϑ = − −( + )1 / , 0e1 and ( )α βϑ = −( + )1 / , 0e2 , as

shown in Fig. 2(b). The saddle points are connected by heteroclinic
orbits that satisfy the following equation:
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Melnikov theory defines the condition for the appearance of the
so-called transverse intersection points between the perturbed
and the unperturbed separatrix or the appearance of the fractality
or erosion on the basin of attraction. This theory can be applied to
Eq. (14) by using formula given by Wiggins in [12] as follows:
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In the following, we consider the simple zeros of the mean-
square of the output analyzed through the random Melnikov
function. The impulse response function of the system (14) is
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Here ω( )ηS is the spectral density of the noise η τ( ) defined by
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Therefore, smale chaos appears (in mean-square response) when
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where λ Γ( )/ cr is the critical parameter for the chaotic motion of the
nonlinear system. The integral in Eq. (24) can be computed nu-
merically. One can thus get the threshold of bounded excitation
amplitude versus the standard deviation of the stochastic velocity
for different values of the mean driving frequency Ω, for α = 0.0
(no cables) (as shown in Fig. 3(a)) and for α = 4.2 (with 18 cables)
(as shown in Fig. 3(b)). From Fig. 3, we can see that the threshold
curve is a continuous line in the space γ λ Γ( ) ∈ R, / 2. We observe
that the area above the curves indicates the domain where the
system goes from periodic to random as γ increases progressively,
while below them the motion of system goes from chaos to ran-
dom chaos as γ increases from zero and becomes more and more
random and less chaotic as γ further increases. This domain is
especially sensitive to initial conditions and fractal basin bound-
aries. Likewise, for certain values of the intensity of stochastic
velocity γ γ( ∈ [ ])0, limit , the increasing of mean driving frequencyΩ
still increases the chaotic field of the system. This effect does not
appear any more for γ γ> limit (see Fig. 3(a)), the case is opposite.
Fig. 3(b) illustrates the same effect while showing the contribution
of the stay cables on the results obtained previously.

On the other hand, the effect of cable connections on the
threshold amplitude of sine-Wiener noise excitation for the onset
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Fig. 3. Effects of the mean driving frequency Ω on the threshold curve of horseshoes chaos: (a) for α = 0.0 (no cables) and (b) for α = 4.2 (with 18 cables).
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of chaos in the model is investigated as shown in Fig. 4. It is clear
that the increase of number of stay cables first increases the
threshold, and then decreases it. It is also shown from this figure
that the lowest number of cables is dangerous for the stability of
the structure, while the highest number contributed to increase
the degree of safety of the bridge. The intensity of the random
component of the loads velocity γ influences considerably this
previous results as shown in Fig. 4.

Fig. 5 shows the correspondence between the parameter s and
the number of connections Nc. This result is obtained after a
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(λ
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) cr
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Fig. 4. Effects of stay cables contributions α on the threshold
rigorous dimensioning of the model (noticed that the di-
mensioning of the model only takes into account the case of
eighteen cables). We observe that by increasing the number of
cables, their contribution on the dynamic of the bridge also in-
crease and then starting from the 16th cable, saturates.

To detect the effect of loads number on the system response,
Eq. (8) is solved numerically using stochastic fourth-order Runge
Kutta method [27] and Fig. 6 is plotted. It is shown how an in-
crease of the number of moving loads affects the mean square
amplitude of the beam. In fact, when the value of Nv increases the
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) cr
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(λ
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γ = 0.5
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amplitude of sine-Wiener noise excitation for Ω = 0.75.
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Table 1
Values of the physical parameters of a cable-stayed bridge model, Fig. 1(a).

Physical parameters Symbols Values

Length of the bridge (m) L 628.1
Young modulus of the bridge deck (MPa) E 200.0

Cross-sectional area of the bridge deck ( )m2 S 4.8

Moment of inertia of the bridge deck ( )m4 I 12.0

Mass per unit length of the bridge deck ( )kg/m mb 37680.0
Damping coefficient of the bridge deck (N s/m) c 68.0
High length of the stay cables (m) L0 158.13
Young modulus of the cables (MPa) Ei 131.0

Cross-sectional area of the cables ( )m2 Ai × −5.48 10 4

Horizontal tension of the cables (N/m) Th
c

×5.3 106

Length of the pylon (m) H 45.7
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mean square vibration amplitude at the resonant state merely
increases.
3. Numerical results

To validate the accuracy of the proposed analytical predictions,
we solve numerically Eq. (12) using stochastic fourth-order Runge
Kutta method [27] to display the shape of the basin of attraction.
In calculation, the structural and material properties of a cable-
stayed bridge model are given in Table 1 as (see Refs. [28,29]).

The dimensionless parameters are β = − 0.92, λ = 0.009 (all
numerical results shown in this paper will use these parameters).
The other lengths of the cables are calculated by using the theo-
rem of Thalès, by assuming of course that the cables on both sides
of the towers which support them are parallel between them.
Moreover, the various angles ranging between the cables and the

bridge deck are evaluated by using the relation: ( )α = −cosi
l
L

1
2

c

i

where lc is the distance separating the two impacts points on the
bridge deck of the two symmetrical cables. Fig. 7 shows the se-
quence of the safe basin of system (14) plotted in order to verify
the results provided by the Melnikov analysis. We first observe
that for Ω = 0.75 and λ Γ( ) =/ 0.9, the shape of the basins bound-
aries is regular. This reliability can be periodic for lower values of
noise (Fig. 7(a), γ = 0.003) or random for higher values of noise
(Fig. 7(b), γ = 1.0). These observations had already been predicted
by the analytical developments presented in Section 2. Second, we
take Ω = 0.75 and λ Γ( ) =/ 0.15, the fractal boundaries of the safe
basins have turned up, especially when the intensity of stochastic
velocity is low (Fig. 7(c), γ = 0.003). By considering the highest
values of this intensity, another rich motion occurred in our sys-
tem: “Random chaos motion” (see Fig. 7(d), γ = 1.0), as predicted
by the frontier of Fig. 3(a). Fig. 8 reveals the interesting role of
cables stayed on the bridge safety. In fact, by increasing the
number of cables (increasing ofα) on the bridge that enlarges the
basin of attraction area and the fractality disappears progressively
(for the chosen parameters here, the system goes from random
chaos motion to random motion as α increases), increasing con-
sequently the degree of predictibility of the system. This leads us
to the conclusion that the numerical range is closed to the ana-
lytical one.
4. Conclusion

We have considered a stochastic dynamical system to inhibi-
tion of the chaotic responses on cable-stayed bridge subjected to
train of forces moving with stochastic velocity. To do so, we have
first modelled the cable-stayed bridge system by the full partial
differential equation that we have thereafter reduced to an effec-
tive a single nonlinear one-dimensional equation. Second, the
random terms have been modelled as equal weights moving with
disordered velocity, thus neglecting other effects as the spread of
the weights. Thereafter, the random Melnikov analysis has been
used to seek the effects of velocity (mean value and stochastic
value) and cable contribution on the structure failure, on the
structure unpredictibility, and on the possible appearance of
horseshoes chaos. We have found that the intensity of the random
component of the loads velocity causes an increases of the
threshold λ Γ( )/ cr and then increases the chances to have a regular
behavior of the bridge; after a maximum a further increase of the
noise causes a decrease of the threshold and then enlarges the
possible chaotic domain in parameter space. We have also sought
the effect of cable contribution on the beam safety and found that
the lowest number of cables is dangerous for the stability of the
structure, while the highest number contributed to increase the
degree of safety of the bridge. The identification of some rich dy-
namical behavior such as periodic, random, chaos and random
chaos in the proposed model has been investigated analytically
and validated numerically. Finally, we have shown how an in-
crease of the number of moving loads affects the mean square
amplitude of the beam.
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