Determinants of Station－Based Round－Trip Bikesharing

A case study of OV－fiets in The Netherlands

Florian Wilkesmann ${ }^{1}$ ，Danique Ton ${ }^{1,2}$ ，Rik Schakenbos ${ }^{2}$ ，Oded Cats ${ }^{1}$
${ }^{1}$ Delft University of Technology，Delft，The Netherlands；${ }^{2}$ NS Stations，The Netherlands

Aim of this research is to identify pre－COVID usage patterns within the train－system integrated bikesharing system OV－fiets

Descriptive analysis of eight exemplary stations－different patterns are unravelled

Similar pattern for most cities： Increase in spring Sharp decrease caused by summer holidays Increase towards autumn Decrease towards winter

Locations in bigger cities： Increase towards weekend， with peak on Friday

Locations in smaller cities： More rentals on working days Few rentals around weekend
Rentals throughout the day

Locations in bigger cities： Clear morning／evening peak High level throughout day

Locations in smaller cities： Distinct morning peak Low level rest of the day

Weekday vs．Weekend

Locations in bigger cities： No distinct peaks High level midday／afternoon

Locations in smaller cities No morning peak Slight increase midday

Locations in bigger cities： No change in morning peak Remaining day slight drop

Locations in smaller cities： Just slight reduction，cause could be lack of alternatives

Methodology

Data sources：

NS Stations：OV－fiets，station information，checkouts
National weather institute KNMI：Weather data
Public calendars：school holidays
Data processing
Aggregation on hourly level for year 2018
Combination of datasets
Filtering for coherent data
Determinant identification：
Multiple linear regression（MLR）including all stations in one dataset combined with backward search algorithm to identify most significant determinants
Additional MLRs performed per station to further assess station－specific performance，
see thesis for further insights（Wilkesmann，2022）

Descriptive analysis：

Aggregation and filtering of data to investigate potential patterns within the data Visualisation for appealing comparison
Forecasting（not covered in this poster，see thesis for further insights）：
－Usage of created insights to perform comparative application of multiple forecasting methods to assess suitability of hourly forecasting for station－based round－trip bikesharing

（Future）Relevance \＆Applicability

For current operators Information about determinants for systems＇ demand More efficient planning of shifts for employees and bike maintenance
\qquad Improved matching of supply and demand increases availability界员苗 Increased availability increases

For future operators Insights into usage of station－based round－ trip bikesharing Identification of potential of the system to enhance multimodal transportation local stakeholders Increase in multimodal trips，potential decrease in car usage Possible reduction of public transport usage in peak hours（for egress of train trips）

Outlook：

Application of hourly forecasting for following seven days using historical data to support operators＇ decision－making to improve service quality （use case on the right）

Main literature

Eren，E．，UZ，V．E．，2020．A review on bike－sharing：The factors affecting bike－sharing demand．Sustainable Cities and Society 54，101882．doi．org／10．1016／j．scs．2019．101882 Jonkeren，O．，Kager，R．，Harms，L．，Te Brömmelstroet，M．，2021．The bicycle－train travellers in the Netherlands：personal profiles and travel choices．Transportation 48，455－476． Schakenbos，R．，Ton，D．，2021．De Fietsende Treinreiziger：Spits of Dal Reiziger？Presented at the Colloquium Vervoersplanologisch Speurwerk，Utrecht． Todd，J．，O＇Brien，O．，Cheshire，J．，2021．A global comparison of bicycle sharing systems．Journal of Transport Geography 94．doi．org／10．1016／j．jtrangeo．2021．103119 Wilkesmann，F．，2022．Short－Term Forecast of Demand for Train Station－Based Round－Trip Bikesharing：A Case Study of OV－fiets in The Netherlands． resolver．tudelft．n／／uuid：bfcc3224－d5e5－4c12－babc－5f5e64cfe6d8

Contact

Florian Wilkesmann
＠florian＠wilkesmann．info
©＋49 1732735491

