

Exercises for Electromagnetic Field Theory I (EFT I)
SS 2002
University of Kassel
Department of EE/CS
Electromagnetic Theory

Sheet 2

Exercise 3 (Gauss' Electric Law)
A sphere with the radius R_{0} centered at the coordinate origin is charged with an inhomogeneous electric charge density given by

$$
\varrho_{\mathrm{e}}(R)=\left\{\begin{array}{ll}
\varrho_{\mathrm{e} 0} \frac{R}{R_{0}} & R<R_{0} \\
0 & R>R_{0}
\end{array} .\right.
$$

Here $\varrho_{e 0}$ and R_{0} are given constants. The sphere is filled with vacuum and is embedded in vacuum.

Figure 1: Spherically symmetric electric charge density distribution
a) Determine the electric flux density $\underline{\mathbf{D}}(\underline{\mathbf{R}})$.
b) Determine the electric field strength $\underline{\mathbf{E}}(\underline{\mathbf{R}})$.
c) Sketch the charge density, $\left(\varrho_{\mathrm{e}}(R)\right)$, the electric flux density, $(\underline{\mathbf{D}}(R))$ and the electric field strength, $(\underline{\mathbf{E}}(R))$, for $0 \leq R \leq 2 R_{0}$.

Exercise 4

Given is a circular cylinder with the height $2 Z_{0}$ and the Radius R_{0} around the z-axis (compare figure 2):

$$
Z=\left\{(r, \varphi, z) \mid 0 \leq r \leq R_{0}, 0 \leq \varphi \leq 2 \pi,-Z_{0} \leq z \leq Z_{0}\right\}
$$

In this cylinder there is a time harmonic current density distribution with:

$$
\underline{\mathbf{J}}_{\mathrm{e}}(\underline{\mathbf{R}}, t)=\varrho_{\mathrm{e} 0} \frac{1}{3} \frac{r^{2}}{R_{0}} \cos \left(\frac{\pi}{2} \frac{z}{Z_{0}}\right) \omega \cos (\omega t) \underline{\mathbf{e}}_{r}, \quad-Z_{0} \leq z \leq Z_{0}, \quad 0 \leq r \leq R_{0}
$$

$\varrho_{\mathrm{e} 0}$ is a constant charge density with the unit $\frac{A s}{m^{3}}$.
The excitation needs to be causal, that yields:

$$
\begin{aligned}
\underline{\mathbf{J}}_{\mathrm{e}}(\underline{\mathbf{R}}, t) & =\underline{\mathbf{0}}, & & t \leq 0, \\
\varrho_{\mathrm{e} 0}(\underline{\mathbf{R}}, t) & =0, & & t \leq 0 .
\end{aligned}
$$

Figure 2: Circular cylinder with height $2 Z_{0}$ and radius R_{0}.
a) Determine the electric current $i_{\mathrm{e}}(t)$ through the closed surface of the cylinder Z.
b) Sketch the electric current $i_{\mathrm{e}}(t)$ over the circular frequency ω, for $\omega \geq 0$ and $t=1 \mathrm{~s}$.
c) Determine the charge density distribution $\varrho_{\mathrm{e}}(\underline{\mathbf{R}}, t)$ inside the cylinder Z for $t \geq 0$ using the continuity equation:

$$
\nabla \cdot \underline{\mathbf{J}}_{\mathrm{e}}(\underline{\mathbf{R}}, t)-\frac{\partial}{\partial t} \varrho_{\mathrm{e}}(\underline{\mathbf{R}}, t)=0 .
$$

d) Evaluate the volume integral

$$
\iiint_{Z} \frac{\partial}{\partial t} \varrho_{\mathrm{e}}(\underline{\mathbf{R}}, t) d V
$$

Which physical value did you just calculate?

Exercise 5

A positive point charge is given at the origin. The resulting electric field is then given by

$$
\underline{\mathbf{E}}(\underline{\mathbf{R}})=\frac{Q_{\mathrm{e}}}{4 \pi \varepsilon_{0}} \frac{\mathbf{R}}{R^{3}}
$$

A positive point charge is to be moved from the position $P_{1}(a, 0,0)$ to position $P_{2}(-a, b, c)$. Compute the integral

$$
\int_{C} \underline{\mathrm{E}}(\underline{\mathbf{R}}) \cdot \underline{\mathrm{dR}}
$$

for both paths C_{1} and C_{2} in the picture.
To do this, parametrize the path (if nescessary in parts) into

$$
\underline{\mathbf{R}}(t)=x(t) \underline{\mathbf{e}}_{x}+y(t) \underline{\mathbf{e}}_{y}+z(t) \underline{\mathbf{e}}_{z}
$$

using t as contour parameter, form $\underline{\mathbf{d R}}$ and evaluate the integral.

Figure 3: Movement through the field of a point charge on two different paths

