

$$\frac{\partial}{\partial t} \underline{p} = \nabla \cdot \underline{\underline{T}}$$
$$\frac{\partial}{\partial t} \underline{\underline{S}} = \operatorname{sym}\{\nabla \underline{v}\}$$

Exercises for Electromagnetic Field Theory I (EFT I) SS 2002

University of Kassel Department of EE/CS Electromagnetic Theory

Sheet 2

Exercise 3 (Gauss' Electric Law)

A sphere with the radius R_0 centered at the coordinate origin is charged with an inhomogeneous electric charge density given by

$$\varrho_{\rm e}(R) = \begin{cases} \varrho_{\rm e0} \frac{R}{R_0} & R < R_0 \\ 0 & R > R_0 \end{cases}$$

Here ρ_{e0} and R_0 are given constants. The sphere is filled with vacuum and is embedded in vacuum.

Figure 1: Spherically symmetric electric charge density distribution

- a) Determine the electric flux density $\underline{\mathbf{D}}(\underline{\mathbf{R}})$.
- b) Determine the electric field strength $\underline{\mathbf{E}}(\underline{\mathbf{R}})$.
- c) Sketch the charge density, $(\varrho_{e}(R))$, the electric flux density, $(\underline{\mathbf{D}}(R))$ and the electric field strength, $(\underline{\mathbf{E}}(R))$, for $0 \le R \le 2R_0$.

Exercise 4

Given is a circular cylinder with the height $2Z_0$ and the Radius R_0 around the z-axis (compare figure 2):

$$Z = \{ (r, \varphi, z) | 0 \le r \le R_0, 0 \le \varphi \le 2\pi, -Z_0 \le z \le Z_0 \}.$$

In this cylinder there is a time harmonic current density distribution with:

$$\underline{\mathbf{J}}_{\mathbf{e}}(\underline{\mathbf{R}},t) = \varrho_{\mathbf{e}0} \ \frac{1}{3} \ \frac{r^2}{R_0} \ \cos\left(\frac{\pi}{2} \frac{z}{Z_0}\right) \ \omega \ \cos(\omega t) \ \underline{\mathbf{e}}_r, \qquad -Z_0 \le z \le Z_0, \quad 0 \le r \le R_0.$$

 ρ_{e0} is a constant charge density with the unit $\frac{As}{m^3}$. The excitation needs to be causal, that yields:

Figure 2: Circular cylinder with height $2Z_0$ and radius R_0 .

a) Determine the electric current $i_{e}(t)$ through the closed surface of the cylinder Z.

- **b)** Sketch the electric current $i_{\rm e}(t)$ over the circular frequency ω , for $\omega \ge 0$ and t = 1s.
- c) Determine the charge density distribution $\rho_{e}(\underline{\mathbf{R}}, t)$ inside the cylinder Z for $t \geq 0$ using the continuity equation:

$$\nabla \cdot \underline{\mathbf{J}}_{\mathrm{e}}(\underline{\mathbf{R}},t) - \frac{\partial}{\partial t} \varrho_{\mathrm{e}}(\underline{\mathbf{R}},t) = 0.$$

d) Evaluate the volume integral

$$\iiint_{Z} \frac{\partial}{\partial t} \varrho_{\rm e}(\underline{\mathbf{R}}, t) dV.$$

Which physical value did you just calculate ?

Exercise 5

A positive point charge is given at the origin. The resulting electric field is then given by

$$\underline{\mathbf{E}}(\underline{\mathbf{R}}) = \frac{Q_{\rm e}}{4\pi\varepsilon_0} \frac{\underline{\mathbf{R}}}{R^3}$$

A positive point charge is to be moved from the position $P_1(a, 0, 0)$ to position $P_2(-a, b, c)$. Compute the integral

$$\int_{C} \underline{\mathbf{E}}(\underline{\mathbf{R}}) \cdot \underline{\mathbf{dR}}$$

for both paths C_1 and C_2 in the picture.

To do this, parametrize the path (if nescessary in parts) into

$$\underline{\mathbf{R}}(t) = x(t)\underline{\mathbf{e}}_x + y(t)\underline{\mathbf{e}}_y + z(t)\underline{\mathbf{e}}_z,$$

using t as contour parameter, form $\underline{\mathbf{dR}}$ and evaluate the integral.

Figure 3: Movement through the field of a point charge on two different paths