$$\frac{\partial}{\partial t} \underline{\boldsymbol{B}} = -\nabla \times \underline{\boldsymbol{E}}$$
$$\frac{\partial}{\partial t} \underline{\boldsymbol{D}} = \nabla \times \underline{\boldsymbol{H}}$$

$$\frac{\partial}{\partial t} \underline{\boldsymbol{p}} = \nabla \cdot \underline{\boldsymbol{T}}$$

$$\frac{\partial}{\partial t} \underline{\boldsymbol{S}} = \operatorname{sym} \{ \nabla \underline{\boldsymbol{v}} \}$$

Exercises for Electromagnetic Field Theory I (EFT I) SS 2002

University of Kassel Department of EE/CS Electromagnetic Theory

Sheet 4

Exercise 7

The picture shows two different distributions of three point charges.

- a) Describe the electric charge density distribution mathematically.
- **b)** Determine the dipole moment and the quadrupole moment of the distributions of point charges.

Exercise 8

Given are two point charges in vacuum with the distance a. The charge density is mathematically described by:

$$\varrho(\underline{\mathbf{R}}) = 2Q\delta(\underline{\mathbf{R}} - a\underline{\mathbf{e}}_x) - Q\delta(\underline{\mathbf{R}}).$$

a) Make a sketch of the electrical charge density distribution.

b) Determine the electrostatic potential in vacuum using the Coulomb integral

$$\Phi(\underline{\mathbf{R}}) = \frac{1}{4\pi\varepsilon_0} \iiint_{-\infty}^{+\infty} \frac{\varrho(\underline{\mathbf{R}}')}{|\underline{\mathbf{R}} - \underline{\mathbf{R}}'|} d^3\underline{\mathbf{R}}'.$$

c) Show that the äquipotential line with $\Phi = 0$ forms a circle in the xz plane with y = 0. Determine the parameters of the circle.

Exercise 9

A water molecule is called a *polarized molecule* because it holds a permanent electric dipole moment.

Determine the dipole moment of a water molecule (H_2O) using the charge distribution shown in the figure.

e is the elementary charge ($e=1,602\cdot 10^{-19}{\rm C}$) and d the distance, with $d=1{\rm nm}$. Sketch the dipole moment into the figure.