Dipl.-Ing. R. Hannemann

Exercises for EFT 1, Sheet 1 Exercises for Math. Foundations of EFT, Sheet 1

Exercise 1. Given are the vectors

$$\underline{\mathbf{A}} = \underline{\mathbf{e}}_x + 2\underline{\mathbf{e}}_y + 3\underline{\mathbf{e}}_z$$
 and $\underline{\mathbf{B}} = 2\underline{\mathbf{e}}_x - \underline{\mathbf{e}}_y + \underline{\mathbf{e}}_z$

- (a) Determine $\underline{\mathbf{A}} \underline{\mathbf{B}}, \underline{\mathbf{A}} + \underline{\mathbf{B}}, \underline{\hat{\mathbf{A}}}, \underline{\hat{\mathbf{B}}}, \underline{\mathbf{A}} \cdot \underline{\mathbf{B}}, \underline{\mathbf{A}} \times \underline{\mathbf{B}}.$
- (b) Determine the angle between $\underline{\mathbf{A}}$ and $\underline{\mathbf{B}}$.
- (c) Detemine the angle between $\underline{\mathbf{A}}$ and the x-Axis.

Exercise 2. Given are the vectors

$$\underline{\mathbf{A}} = \underline{\mathbf{e}}_x + 2\underline{\mathbf{e}}_y + \underline{\mathbf{e}}_z$$
 und $\underline{\mathbf{B}} = -\underline{\mathbf{e}}_x + \alpha \underline{\mathbf{e}}_y - \underline{\mathbf{e}}_z$.

Determine α in such a way that

- (a) $\underline{\mathbf{A}} \cdot \underline{\mathbf{B}} = 0$,
- (b) $\underline{\mathbf{A}} \times \underline{\mathbf{B}} = \underline{\mathbf{0}},$
- (c) the angle between $\underline{\mathbf{A}}$ and $\underline{\mathbf{B}}$ is 45 degree.

Exercise 3. Let $\underline{\mathbf{R}} = x\underline{\mathbf{e}}_x + y\underline{\mathbf{e}}_y + z\underline{\mathbf{e}}_z$ be the position vector. Determine

(a) $R = |\mathbf{\underline{R}}|$ und $\hat{\mathbf{\underline{R}}}$, (b) $\frac{\partial}{\partial x}\mathbf{\underline{R}}, \frac{\partial}{\partial y}\mathbf{\underline{R}}, \frac{\partial}{\partial z}\mathbf{\underline{R}}$, (c) $\nabla R, \nabla \cdot \mathbf{\underline{R}}, \nabla \times \mathbf{\underline{R}}$.

Exercise 4. Let $\underline{\mathbf{R}}' = x'\underline{\mathbf{e}}_x + y'\underline{\mathbf{e}}_y + z'\underline{\mathbf{e}}_z$ be an arbitrary vector and $\underline{\mathbf{R}}$ the position vector. Determine

- (a) $|\underline{\mathbf{R}} \underline{\mathbf{R}}'|$ and $\underline{\mathbf{R}} \underline{\mathbf{R}}'$,
- (b) $\frac{\partial}{\partial x}(\mathbf{R}-\mathbf{R}'), \ \frac{\partial}{\partial y}(\mathbf{R}-\mathbf{R}'), \ \frac{\partial}{\partial z}(\mathbf{R}-\mathbf{R}'), \$
- (c) $\nabla |\underline{\mathbf{R}} \underline{\mathbf{R}}'|, \nabla \frac{1}{|\mathbf{R} \mathbf{R}'|}.$