Exercises for EFT 1, Sheet 1

Exercises for Math. Foundations of EFT, Sheet 1

Exercise 1. Given are the vectors

$$
\underline{\mathbf{A}}=\underline{\mathbf{e}}_{x}+2 \underline{\mathbf{e}}_{y}+3 \underline{\mathbf{e}}_{z} \quad \text { and } \quad \underline{\mathbf{B}}=2 \underline{\mathbf{e}}_{x}-\underline{\mathbf{e}}_{y}+\underline{\mathbf{e}}_{z} .
$$

(a) Determine $\underline{\mathbf{A}}-\underline{\mathbf{B}}, \underline{\mathbf{A}}+\underline{\mathbf{B}}, \underline{\hat{\mathbf{A}}}, \underline{\hat{\mathbf{B}}}, \underline{\mathbf{A}} \cdot \underline{\mathbf{B}}, \underline{\mathbf{A}} \times \underline{\mathbf{B}}$.
(b) Determine the angle between $\underline{\mathbf{A}}$ and $\underline{\mathbf{B}}$.
(c) Detemine the angle between $\underline{\mathbf{A}}$ and the x-Axis.

Exercise 2. Given are the vectors

$$
\underline{\mathbf{A}}=\underline{\mathbf{e}}_{x}+2 \underline{\mathbf{e}}_{y}+\underline{\mathbf{e}}_{z} \quad \text { und } \quad \underline{\mathbf{B}}=-\underline{\mathbf{e}}_{x}+\alpha \underline{\mathbf{e}}_{y}-\underline{\mathbf{e}}_{z} .
$$

Determine α in such a way that
(a) $\underline{\mathbf{A}} \cdot \underline{\mathbf{B}}=0$,
(b) $\underline{\mathbf{A}} \times \underline{\mathbf{B}}=\underline{0}$,
(c) the angle between $\underline{\mathbf{A}}$ and $\underline{\mathbf{B}}$ is 45 degree.

Exercise 3. Let $\underline{\mathbf{R}}=x \underline{\mathbf{e}}_{x}+y \underline{\mathbf{e}}_{y}+z \underline{\mathbf{e}}_{z}$ be the position vector. Determine
(a) $R=|\underline{\mathbf{R}}|$ und $\underline{\hat{\mathbf{R}}}$,
(b) $\frac{\partial}{\partial x} \underline{\mathbf{R}}, \frac{\partial}{\partial y} \underline{\mathbf{R}}, \frac{\partial}{\partial z} \underline{\mathbf{R}}$,
(c) $\nabla R, \nabla \cdot \underline{\mathbf{R}}, \nabla \times \underline{\mathbf{R}}$.

Exercise 4. Let $\underline{\mathbf{R}}^{\prime}=x^{\prime} \underline{\mathbf{e}}_{x}+y^{\prime} \underline{\mathbf{e}}_{y}+z^{\prime} \underline{\mathbf{e}}_{z}$ be an arbitrary vector and $\underline{\mathbf{R}}$ the position vector. Determine
(a) $\left|\underline{\mathbf{R}}-\underline{\mathbf{R}}^{\prime}\right|$ and $\underline{\mathbf{R}}-\underline{\mathbf{R}}^{\prime}$,
(b) $\frac{\partial}{\partial x}\left(\underline{\mathbf{R}}-\underline{\mathbf{R}}^{\prime}\right), \frac{\partial}{\partial y}\left(\underline{\mathbf{R}}-\underline{\mathbf{R}}^{\prime}\right), \frac{\partial}{\partial z}\left(\underline{\mathbf{R}}-\underline{\mathbf{R}}^{\prime}\right)$,
(c) $\nabla\left|\underline{\mathbf{R}}-\underline{\mathbf{R}}^{\prime}\right|, \nabla \frac{1}{\left|\underline{\mathbf{R}}-\underline{\mathbf{R}}^{\prime}\right|}$.

