

Kassel, 19 September 2001 Time: 14.00 - 16.00

University of Kassel Dr.–Ing. R. Marklein Dipl.–Ing. R. Hannemann Department of Electrical Engineering Electromagnetic Theory

Electromagnetic Field Theory I (EFT I) EXAM

Last Name:	Registration No.:
First Name:	Middle Name:

Signature:

Problem	1	2	3	4	$\sum_{i=1}^{4}$
Points:					

Mark:

Problem 1 [18 points]

Two circular, infinitely thin wire loops C_1 and C_2 with radii $R_1 = a$ and $R_2 = 3a$ (a > 0) are oriented in the xy-plane at z = 0 (see Figure 1.1). A constant direct current I_1 is flowing through the smaller loops C_1 PSfrag replacements

- a) Determine the current I_2 in the second loop in such a way that the resulting magnetic flux density is vanishing at the origin of the coordinate system. Note the indicated direction of the current I_2 in Figure 1.1.
- b) Determine the total electric current density $\underline{J}(\underline{\mathbf{R}})$, which is a singular vector function.
- c) Prove then for the calculated electric current density the following equation

$$\iint_{S} \underline{\mathbf{J}}(\underline{\mathbf{R}}) \cdot \underline{\mathbf{dS}} = I_1 + I_2 \qquad (1.1)$$

where the surface S is the half-plane with $\underline{\mathbf{R}} = \{0 \le x < \infty; y = 0; -\infty < z < \infty\}$ and $\underline{\mathbf{n}} = \underline{\mathbf{e}}_y$.

Figure 1.1: Infinitely thin, circular wire loops

Problem 2 [25 points]

A sphere of radius R_0 centered at the coordinate origin is charged with an inhomogeneous electric (volume) charge density

$$\varrho(R) = \varrho_0 \frac{R}{R_0} \qquad 0 \le R \le R_0 \quad .$$

There is no electric (volume) charge density outside of the sphere. The sphere is filled with an inhomogeneous dielectric medium according to the inhomogeneous relative permittivity

$$\varepsilon_r(R) = 5\frac{R}{R_0} \qquad 0 \le R \le R_0$$

The embedding medium of the sphere is vacuum.

- a) Draw a sketch of the problem.
- b) Determine the electric flux density $\underline{\mathbf{D}}(\underline{\mathbf{R}})$.
- c) Determine the electric field strength $\underline{\mathbf{E}}(\underline{\mathbf{R}})$.
- d) Determine the electric polarization $\underline{\mathbf{P}}(\underline{\mathbf{R}})$.
- e) Sketch for $0 \le R \le 2R_0$: 1. $\rho(R)$, 2. $\varepsilon_r(R)$, 3. D(R), 4. E(R), and 5. P(R).

 I_2

SS 2001

Problem 3 [15 points]

Given is the distribution of five electrostatic point charges as shown in Figure 3.1. PSfrag replacements

- a) Determine the electric (volume) charge density mathematically.
- b) Calculate the dipole moment of the charge distribution.
- c) Calculate the quadrupole moment of the charge distribution.

Figure 3.1: Electrostatic point charge distribution

Problem 4 [20 points]

PSfrag replacements

Consider the electrostatic point charge distribution in Figure 4.1. The xy-plane is perfectly electrically conducting and grounded, i. e., $\sigma_{\rm e} \to \infty$ and $\Phi(\mathbf{\underline{R}}) = 0$ for $\mathbf{\underline{R}} \in xy$ -plane.

- a) Find the electrostatic potential $\Phi(\underline{\mathbf{R}})$ using the method of images.
- b) Determine the electric surface charge density $\eta(x, y)$ along the xy-plane at z = 0.
- c) At which positions does the electric surface charge density $\eta(x, y)$ reach an extremum?

Figure 4.1: Electrostatic point charge distribution over a perfectly electrically conducting plane