Pub­lic­a­tions

Scientific publications of the institute members for the previous two year

[2022][2021][2020]

 

2022

  • Actively Controlling and Redesigning Experiments using the Application Case of Free-Electron Laser Pulse Characterization. Dingel, Kristina in Organic Computing -- Doctoral Dissertation Colloquium 2021, S. Tomforde, C. Krupitzer (reds.) (2022). 86–98.
     
  • Zum strukturvorwissensbasierten Testsignalentwurf mittels Vorsteuerung für die Identifikation von Takagi-Sugeno-Modellen. Himmelsbach, Matthias; Kroll, Andreas in at -- Automatisierungstechnik (2022). 70(2) 119–133.
     
  • The Vision of Self-Management in Cognitive Organic Power Distribution Systems. Loeser, Inga; Braun, Martin; Gruhl, Christian; Menke, Jan-Hendrik; Sick, Bernhard; Tomforde, Sven in Energies (2022). 15(3) 881.
     
  • Proactive hybrid learning and optimisation in self-adaptive systems: The swarm-fleet infrastructure scenario. Krupitzer, Christian; Gruhl, Christian; Sick, Bernhard; Tomforde, Sven in Information and Software Technology (2022). 145 106826.
     
  • Control of Jump Markov Uncertain Linear Systems With General Probability Distributions. Flues, Patrick; Stursberg, Olaf in Frontiers of Control Eng. (2022). Vol 3.
     
  • Calibration and validation of micromagnetic data for non-destructive analysis of near-surface properties after hard turning. Wegener, Thomas; Liehr, Alexander; Bolender, Artjom; Degener, Sebastian; Wittich, Felix; Kroll, Andreas; Niendorf, Thomas in HTM Journal of Heat Treatment and Materials (2022).
     
  • Compensating the Size-of-Source Effect: Relationship between the MTF and a Data-Driven Convolution Filter Approach. Schramm, Sebastian; Ebert, Jannik; Schmoll, Robert; Kroll, Andreas (2022).
     
  • Method and Experimental Investigation of Surface Heat Dissipation Measurement using 3D Thermography. Schmoll, Robert; Schramm, Sebastian; Breitenstein, Tom; Kroll, Andreas in Journal of Sensors and Sensor Systems (JSSS) - Sensors and Measurement Science International (SMSI) 2021 Special Issue (2022). November 41–49.
     
  • A Deep Recurrent Neural Network model for affine quasi-LPV System identification. Rehmer, Alexander; Kroll, Andreas (2022).
     
  • Cyclist Intention Detection: A Probabilistic Approach. Zernetsch, Stefan; Reichert, Hannes; Kress, Viktor; Doll, Konrad; Sick, Bernhard (2022).
     
  • Transfer Learning as an Essential Tool for Digital Twins in Renewable Energy Systems. Nivarthi, Chandana Priya in Organic Computing -- Doctoral Dissertation Colloquium 2021, S. Tomforde, C. Krupitzer (reds.) (2022). 47–59.
     
  • Uncertain AoI in stochastic optimal control of constrained LTI systems. Hahn, Jannik; Stursberg, Olaf in at - Automatisierungstechnik (2022). 70(4) 343–354.
     
  • Using AoI Forecasts in Communicating and Robust Distributed Model-Predictive Control. Hahn, Jannik; Schoeffauer, Richard; Wunder, Gerhard; Stursberg, Olaf in IEEE Transactions on Control of Network Systems (2022). 9(2) 742–752.
     
  • LwTool: A data processing toolkit for building a real-time pressure mapping smart textile software system. Guo, Tao; Huang, Zhixin; Cheng, Jingyuan in Pervasive and Mobile Computing (2022). 80 101540.
     
  • Student Research Abstract: Continuous-Time Generative Graph Neural Network for Attributed Dynamic Graphs. Moallemy-Oureh, Alice (2022). 600–603.
     
  • A Stopping Criterion for Transductive Active Learning. Kottke, Daniel; Sandrock, Christoph; Krempl, Georg; Sick, Bernhard (2022).
     
  • Student Research Abstract: Using Local Activity Encoding for Dynamic Graph Pooling in Stuctural-Dynamic Graphs. Beddar-Wiesing, Silvia (2022). 604–609.
     
  • Stream-Based Active Learning in Changing Environments under Verification Latency. Pham, Tuan in Organic Computing -- Doctoral Dissertation Colloquium 2021, S. Tomforde, C. Krupitzer (reds.) (2022). 152–164.
     
  • Adaptive Explainable Continual Learning Framework for Regression Problems with Focus on Power Forecasts. He, Yujiang in Organic Computing -- Doctoral Dissertation Colloquium 2021, S. Tomforde, C. Krupitzer (reds.) (2022). 125–140.
     
  • Design of Explainability Module with Experts in the Loop for Visualization and Dynamic Adjustment of Continual Learning. He, Yujiang; Huang, Zhixin; Sick, Bernhard (2022).
     

top

 

2021

  • Prediction of near surface residual stress states for hard turned specimens using data driven nonlinear models. Schott, Christopher; Wittich, Felix; Kroll, Andreas; Niendorf, Thomas (2021). (Vol. 101) 1–4.
     
  • A Study on Model-based Optimization of Vaccination Strategies Against Epidemic Virus Spread. Liu, Zonglin; Omayrat, Muhammed; Stursberg, Olaf in Proc. of the 18th Int. Conf. on Informatics in Control, Automation and Robotics (2021). 630–637.
     
  • Toward optimal probabilistic active learning using a Bayesian approach. Kottke, Daniel; Herde, Marek; Sandrock, Christoph; Huseljic, Denis; Krempl, Georg; Sick, Bernhard in Machine Learning (2021).
     
  • Separation of Aleatoric and Epistemic Uncertainty in Deterministic Deep Neural Networks. Huseljic, Denis; Sick, Bernhard; Herde, Marek; Kottke, Daniel (2021).
     
  • AdaPT: Adaptable Particle Tracking for spherical microparticles in lab on chip systems. Dingel, Kristina; Huhnstock, Rico; Knie, André; Ehresmann, Arno; Sick, Bernhard in Computer Physics Communications (2021). 262 107859.
     
  • Pose Based Trajectory Forecast of Vulnerable Road Users Using Recurrent Neural Networks. Kress, Viktor; Zernetsch, Stefan; Doll, Konrad; Sick, Bernhard (2021). 2723–2730.
     
  • Learning-Based Optimal Control of Constrained Switched Linear Systems Using Neural Networks. Markolf, Lukas; Stursberg, Olaf in Proc. of the 18th International Conference on Informatics in Control, Automation and Robotics (2021). 90–98.
     
  • Stability Analysis for State Feedback Control Systems Established as Neural Networks with Input Constraints. Markolf, Lukas; Stursberg, Olaf in Proc. of the 18th Int. Conf. on Informatics in Control, Automation and Robotics (2021). 146–155.
     
  • An Application-Driven Conceptualization of Corner Cases for Perception in Highly Automated Driving. Heidecker, Florian; Breitenstein, Jasmin; Rösch, Kevin; Löhdefink, Jonas; Bieshaar, Maarten; Stiller, Christoph; Fingscheidt, Tim; Sick, Bernhard (2021).
     
  • Intelligent and Interactive Video Annotation for Instance Segmentation using Siamese Neural Networks. Schneegans, Jan; Bieshaar, Maarten; Heidecker, Florian; Sick, Bernhard (2021). 375–389.
     
  • Temporal Convolution Networks for Transfer Learning Problems in Renewable Power Time-Series Forecast. Schreiber, Jens; Vogt, Stephan; Sick, Bernhard (2021).
     
  • Anomaly based Resilient Network Intrusion Detection using Inferential Autoencoders. Hannan, Abdul; Gruhl, Christian; Sick, Bernhard (2021).
     
  • Transport efficiency of biofunctionalized magnetic particles tailored by surfactant concentration. Reginka, Meike; Hoang, Hai; Efendi, Özge; Merkel, Maximilan; Huhnstock, Rico; Holzinger, Dennis; Dingel, Kristina; Sick, Bernhard; Bertinetti, Daniela; Herberg, Friedrich; Ehresmann, Arno in Langmuir (2021).
     
  • Probabilistic VRU Trajectory Forecasting for Model-Predictive Planning -- A Case Study: Overtaking Cyclists. Schneegans, Jan; Eilbrecht, Jan; Zernetsch, Stefan; Bieshaar, Maarten; Doll, Konrad; Stursberg, Olaf; Sick, Bernhard (2021).
     
  • Towards Highly Automated Machine-Learning-Empowered Monitoring of Motor Test Stands. Botache, Diego; Bethke, Florian; Hardieck, Martin; Bieshaar, Maarten; Brabetz, Ludwig; Ayeb, Mohamed; Zipf, Peter; Sick, Bernhard (2021).
     
  • CLeaR: An adaptive continual learning framework for regression tasks. He, Yujiang; Sick, Bernhard in AI Perspectives (2021). 3(1) 2.
     
  • Iterative Label Improvement: Robust Training by Confidence Based Filtering and Dataset Partitioning. Haase-Schütz, Christian; Stal, Rainer; Hertlein, Heinz; Sick, Bernhard (2021).
     
  • Emerging Relation Network and Task Embedding for Multi-Task Regression Problems. Schreiber, Jens; Sick, Bernhard (2021).
     
  • Description of Corner Cases in Automated Driving: Goals and Challenges. Bogdoll, Daniel; Breitenstein, Jasmin; Heidecker, Florian; Bieshaar, Maarten; Sick, Bernhard; Fingscheidt, Tim; Zöllner, J. Marius (2021).
     
  • Distributed Solution of MIQP Problems Arising for Networked Systems with Coupling Constraints. Liu, Z.; Stursberg, O. (2021). 2420–2425.
     
  • Zur approximativen Maximum-Likelihood-Schätzung dynamischer Multi-Modelle vom Typ Takagi-Sugeno: Methodik und Anwendung auf einen Servo-Pneumatikantrieb. Kroll, Andreas; Fischer, Jana in at -- Automatisierungstechnik (2021).
     
  • Prediction of near surface residual stress states for hard turned specimens using data driven nonlinear models. Schott, Christopher; Wittich, Felix; Kroll, Andreas; Niendorf, Thomas (2021).
     
  • Catadioptric Stereo Optical Gas Imaging System for Scene Flow Computation of Gas Structures. Rangel, J.; Schmoll, R.; Kroll, A. in IEEE Sensors Journal (2021). 21(5) 6811–6820.
     
  • 3D Thermography for the Measurement of Surface Heat Dissipation. Schmoll, Robert; Schramm, Sebastian; Breitenstein, Tom; Kroll, Andreas (2021). 187–188.
     
  • Efficient Solution of Distributed MIP in Control of Networked Systems. Z.Liu; Stursberg, O. in Proc. in Applied Mathematics and Mechanics (PAMM) (2021). 20(1, Section 20) 1–2.
     
  • Distributed Control of Networked Systems with Nonlinear Dynamics and Coupling Constraints. Liu, Z.; Stursberg, O. (2021). 1945–1950.
     
  • Polytopic Input Constraints in Learning-Based Optimal Control Using Neural Networks. Markolf, L.; Stursberg, O. (2021). 1018–1023.
     
  • Towards Corner Case Detection by Modeling the Uncertainty of Instance Segmentation Networks. Heidecker, Florian; Hannan, Abdul; Bieshaar, Maarten; Sick, Bernhard (2021). 361–374.
     
  • Novelty detection in continuously changing environments. Gruhl, Christian; Sick, Bernhard; Tomforde, Sven in Future Generation Computer Systems (2021). 114 138–154.
     
  • Toward Application of Continuous Power Forecasts in a Regional Flexibility Market. He, Yujiang; Huang, Zhixin; Sick, Bernhard (2021).
     
  • Novelty based Driver Identification on RR Intervals from ECG Data. Heidecker, Florian; Gruhl, Christian; Sick, Bernhard (2021). 407–421.
     
  • Multi-annotator Probabilistic Active Learning. Herde, Marek; Kottke, Daniel; Huseljic, Denis; Sick, Bernhard (2021).
     
  • Image Sequence Based Cyclist Action Recognition Using Multi-Stream 3D Convolution. Zernetsch, Stefan; Schreck, Steven; Kress, Viktor; Doll, Konrad; Sick, Bernhard (2021).
     
  • Out-of-distribution Detection and Generation using Soft Brownian Offset Sampling and Autoencoders. Möller, Felix; Botache, Diego; Huseljic, Denis; Heidecker, Florian; Bieshaar, Maarten; Sick, Bernhard (2021).
     
  • Self-improving system integration: Mastering continuous change. Bellman, Kirstie; Botev, Jean; Diaconescu, Ada; Esterle, Lukas; Gruhl, Christian; Landauer, Christopher; Lewis, Peter R.; Nelson, Phyllis R.; Pournaras, Evangelos; Stein, Anthony; Tomforde, Sven in Future Generation Computer Systems (2021). 117 29–46.
     
  • AI-Based On The Fly Design of Experiments in Physics and Engineering. Dingel, Kristina; Liehr, Alexander; Vogel, Michael; Degener, Sebastian; Meier, David; Niendorf, Thomas; Ehresmann, Arno; Sick, Bernhard (2021).
     
  • A Concept for Highly Automated Pre-Labeling via Cross-Domain Label Transfer for Perception in Autonomous Driving. Bieshaar, Maarten; Herde, Marek; Huselijc, Denis; Sick, Bernhard (2021).
     
  • On Evaluating deep-learning-based Optical Flow Methods for Gas Velocity Estimation with Optical Gas Imaging Cameras. Rangel, Johannes; Duenas, Juan; Schmoll, Robert; Kroll, Andreas (2021).
     
  • On optimal test signal design and parameter identification schemes for dynamic Takagi-Sugeno fuzzy models using the Fisher information matrix. Himmelsbach, Matthias; Kroll, Andreas in International Journal of Fuzzy Systems (2021).
     
  • Toolbox zur Identifikation von Takagi-Sugeno-Fuzzy-Modellen. Dürrbaum, Axel; Kahl, Matthias; Himmelsbach, Matthias; Kroll, Andreas in at -- Automatisierungstechnik (2021). 69(Oktober) 915–916.
     
  • Identification of a Spatio-Temporal Temperature Model for Laser Metal Deposition. Kahl, Matthias; Schramm, Sebastian; Neumann, Max; Kroll, Andreas in Metals (2021). November(12)
     
  • Leckageortung mittels Thermografiekameras. Schwaneberg, Falko; Schramm, Sebastian; Schwake, Christian; Nagel, Frank; Marquardt, Erik in Technische Sicherheit (2021). November(09-10) 32–33.
     
  • Combining Modern 3D Reconstruction and Thermal Imaging: Generation of Large-Scale 3D Thermograms in Real-Time. Schramm, Sebastian; Osterhold, Phil; Schmoll, Robert; Kroll, Andreas (2021).
     
  • Iterative feature detection of a coded checkerboard target for the geometric calibration of infrared cameras. Schramm, Sebastian; Ebert, Jannik; Rangel, Johannes; Schmoll, Robert; Kroll, Andreas in Journal of Sensors and Sensor Systems (JSSS) (2021). 10 207–218.
     
  • Thermografie und Strahlungsthermometrie - Stand und Trends. Schramm, Sebastian; Altenburg, S.; Krankenhagen, R.; Maierhofer, C.; Marquardt, E.; Mühlberger, W.; Nagel, F.; Neumann, E.; Rohwetter, P.; Rutz, F.; Scheuschner, N.; Schwake, C.; Schwaneberg, F.; Taubert, R. D.; Ziegler, M. in GMA Fachausschuss 8.16: Temperaturmessung mit Wärmebildkameras (2021).
     
  • Remote quantification of methane leaks in the laboratory and in biogas plants. Dierks, Sören; Kroll, Andreas in International Journal of Remote Sensing (2021). 42(20) 7978–.
     
  • Translatory and rotatory motion of Exchange-Bias capped Janus particles controlled by dynamic magnetic field landscapes. Huhnstock, Rico; Reginka, Meike; Tomita, Andreea; Merkel, Maximilian; Dingel, Kristina; Holzinger, Dennis; Sick, Bernhard; Vogel, Michael; Ehresmann, Arno in Scientific Reports (2021).
     
  • Target Analysis for the Multispectral Geometric Calibration of Cameras in Visual and Infrared Spectral Range. Schramm, Sebastian; Rangel, Johannes; Aguirre Salazar, Daniela; Schmoll, Robert; Kroll, Andreas in IEEE Sensors (2021). 21(2) 2159–2168.
     
  • Zur approximativen Maximum-Likelihood-Schätzung dynamischer Multi-Modelle vom Typ Takagi-Sugeno: Methodik und Anwendung auf einen Servo-Pneumatikantrieb. Kroll, Andreas; Fischer, Jana in at -- Automatisierungstechnik (2021). 69(10) 858–869.
     
  • Ausgewählte Beiträge aus dem GMA-Fachausschuss 5.14. "Computational Intelligence". Mikut, Ralf; Kroll, Andreas; Schulte, Horst in at -- Automatisierungstechnik, (R. Mikut, red.) (2021). 69(10) 817–819.
     
  • Approximation der zulässigen Parametermenge bei der Bounded-Error-Schätzung durch ein Ray-Shooting-Verfahren. Wittich, Felix; Kroll, Andreas (2021). 79–90.
     
  • Systemidentifikation und Simulation nichtlinearer dynamischer Systeme mit Gaußschen Prozessmodellen mit näherungsweiser Rückführung normalverteilter Ausgangsgrößen. Kistner, Lars; Kroll, Andreas (2021). 79–90.
     
  • Evaluation of methods for feasible parameter set estimation of Takagi-Sugeno models for nonlinear regression with bounded errors. Wittich, Felix; Kroll, Andreas in at -- Automatisierungstechnik (2021). 69(10) 836–847.
     
  • A Survey on Cost Types, Interaction Schemes, and Annotator Performance Models in Selection Algorithms for Active Learning in Classification. Herde, Marek; Huseljic, Denis; Sick, Bernhard; Calma, Adrian in IEEE Access (2021). 9 166970–166989.
     
  • Toward AI-enhanced online-characterization and shaping of ultrashort X-ray free-electron laser pulses. Dingel, Kristina; Otto, Thorsten; Marder, Lutz; Funke, Lars; Held, Arne; Savio, Sara; Hans, Andreas; Hartmann, Gregor; Meier, David; Viefhaus, Jens; Sick, Bernhard; Ehresmann, Arno; Ilchen, Markus; Helml, Wolfram in arXiv e-prints (2021). arXiv:2108.13979.
     
  • Cyclist Trajectory Forecasts by Incorporation of Multi-View Video Information. Zernetsch, Stefan; Trupp, Oliver; Kress, Viktor; Doll, Konrad; Sick, Bernhard (2021).
     
  • Uncertainty and Utility Sampling with Pre-Clustering. Huang, Zhixin; He, Yujiang; Vogt, Stephan; Sick, Bernhard (2021).
     
  • Smart Infrastructure: A Research Junction. Hetzel, Manuel; Reichert, Hannes; Doll, Konrad; Sick, Bernhard (2021).
     
  • The Problem with Real-World Novelty Detection -- Issues in Multivariate Probabilistic Models. Gruhl, Christian; Hannan, Abdul; Huang, Zhixin; Nivarthi, Chandana; Vogt, Stephan (2021).
     
  • Digital Shadows in SISSY Systems: A Concept Using Generative Modelling. Al-Falouji, Ghassan; Gruhl, Christian; Tomforde, Sven (2021).
     
  • Towards Sensor Data Abstraction of Autonomous Vehicle Perception Systems. Reichert, Hannes; Lang, Lukas; Rösch, Kevin; Bogdoll, Daniel; Doll, Konrad; Sick, Bernhard; Reuss, Hans-Christian; Stiller, Christoph; Zöllner, J. Marius (2021).
     
  • Object Detection For Automotive Radar Point Clouds -- A Comparison. Scheiner, Nicolas; Kraus, Florian; Appenrodt, Nils; Dickmann, Jürgen; Sick, Bernhard in AI Perspectives (2021).
     
  • About the Ambiguity of Augmentation for 3D Object Detection in Autonomous Driving. Reuse, Matthias; Simon, Martin; Sick, Bernhard (2021).
     
  • OHODIN -- Online Anomaly Detection for Data Streams. Gruhl, Christian; Tomforde, Sven (2021).
     
  • On the Use of MPC Techniques to Decide on Intervention Policies against COVID-19. Liu, Zonglin; Stursberg, Olaf in Proc. of the 3rd IFAC Conf. on Modeling, Identification and Control of Nonlinear Systems (2021). 502–507.
     
  • Graph type expressivity and transformations. Thomas, Josephine M.; Beddar-Wiesing, Silvia; Moallemy-Oureh, Alice; Nather, Rüdiger in arXiv e-prints (2021). arXiv:2109.10708.
     
  • Traffic Safety in Future Cities by Using a Safety Approach Based on AI and Wireless Communications. König, I.; Bachmann, M.; Bieshaar, M.; Schindler, S.; Lambrecht, F.; David, K.; Sick, B.; Hornung, G.; Sommer, C. (2021).
     
  • Cyclist Motion State Forecasting -- Going beyond Detection. Bieshaar, M.; Zernetsch, S.; Riepe, K.; Doll, K.; Sick, B. (2021).
     
  • Stream-Based Active Learning for Sliding Windows Under Verification Latency. Pham, Tuan; Kottke, Daniel; Krempl, Georg; Sick, Bernhard in Machine Learning (2021).
     
  • Statistical Analysis of Pairwise Connectivity. Krempl, Georg; Kottke, Daniel; Pham, Tuan in Lecture Notes in Computer Science (2021).
     
  • Constrained Stochastic Predictive Control of Linear Systems with Uncertain Communication. Hahn, Jannik; Stursberg, Olaf in at - Automatisierungstechnik (2021). (69(9) 771–781.
     
  • Predictive Control using LPV Techniques for Fast Discrete Time Nonlinear Systems with Changing Setpoints. Theißen, Moritz; Stursberg, Olaf in Proc. of the 3rd IFAC Conf. on Modeling, Identification and Control of Nonlinear Systems (2021). 288–293.
     
  • Multispectral Geometric Calibration of Cameras in Visual and Infrared Spectral Range. Schramm, Sebastian; Rangel, Johannes; Aguirre Salazar, Daniela; Schmoll, Robert; Kroll, Andreas in IEEE Sensors (2021). 21(2) 2159–2168.
     

top

 

2020

  • On considering the output in space-filling test signal designs for the identification of dynamic Takagi-Sugeno models. Gringard, Matthias; Kroll, Andreas (2020). (Vol. 53) 1200–1205.
     
  • Seeing Around Street Corners: Non-Line-of-Sight Detection and Tracking In-the-Wild Using Doppler Radar. Scheiner, Nicolas; Kraus, Florian; Wei, Fangyin; Phan, Buu; Mannan, Fahim; Appenrodt, Nils; Ritter, Werner; Dickmann, Jurgen; Dietmayer, Klaus; Sick, Bernhard; Heide, Felix (2020).
     
  • Extending Regularized Least Squares Support Vector Machines for Order Selection of Dynamical Takagi-Sugeno Models. Kahl, Matthias; Kroll, Andreas (2020). (Vol. 53) 1182–1187.
     
  • On considering the output in space-filling test signal designs for the identification of dynamic Takagi-Sugeno models. Gringard, Matthias; Kroll, Andreas (2020).
     
  • Einsatz von maschinellem Lernen für die Rezyklat-Verarbeitung. Moritzer, Elmar; Hopp, Matthias; Wittke, Marius; Deuse, Jochen; Richter, Ralph; Schmitt, Jacqueline; Kroll, Lukas Schulte Andreas; Schrodt, Alexander in WAK -- Jahresmagazin Ingenieurwissenschaften (2020). 70–73.
     
  • Efficient Solution of Distributed MILP in Control of Networked Systems. Liu, Z.; Stursberg, O. in IFAC-PapersOnline (2020). 53(2) 6805–6811.
     
  • Balanced Stochastic Optimal Control of Uncertain Linear Systems with Constraints. Hahn, J.; Stursberg, O. in IFAC-PapersOnline (2020). 53(2) 7254–7260.
     
  • Online Control of Affine Systems in Stochastically Modeled Contexts. Flues, P.; Stursberg, O. in IFAC-PapersOnline (2020). 53(2) 3416–3422.
     
  • Trajectory Planning for Autonomous Vehicles combining Nonlinear Optimal Control and Supervised Learning. Markolf, L.; Eilbrecht, J.; Stursberg, O. in IFAC-PapersOnline (2020). 53(2) 15817–15823.
     
  • Robust Point-to-Set Control of Hybrid Systems with UncertaintiesUsing Constraint Tightening. Liu, Z.; Stursberg, O. in IFAC-PapersOnline (2020). 53(2) 6888–6894.
     
  • Challenges of Trajectory Planning with Integrator Models on Curved Roads. Eilbrecht, J.; Stursberg, O. in IFAC-PapersOnline (2020). 53(2) 15797–15804.
     
  • Set-based Scheduling for Highway Entry of Autonomous Vehicles. Eilbrecht, J.; Stursberg, O. in IFAC-PapersOnline (2020). 53(2) 15605–15612.
     
  • Neither PER, nor TIM1, nor CRY2 alone are Essential Components of the Molecular Circadian Clockwork in the Madeira Cockroach. Werckenthin, A.; Huber, J.; Arnold, T.; Koziarek, S.; Plath, M.; Plath, J.A.; Stursberg, O.; Herzel, H.; Stengl, M. in PLoS ONE (2020). 15(8) 1–26.
     
  • Toward Optimal Probabilistic Active Learning Using a Bayesian Approach. Kottke, Daniel; Herde, Marek; Sandrock, Christoph; Huseljic, Denis; Krempl, Georg; Sick, Bernhard in arXiv e-prints (2020). arXiv:2006.01732.
     
  • Knowledge Representations in Technical Systems -- A Taxonomy. Scharei, Kristina; Heidecker, Florian; Bieshaar, Maarten (2020, Januarie). arXiv:2001.04835.
     
  • Representation Learning in Power Time Series Forecasting. Henze, Janosch; Schreiber, Jens; Sick, Bernhard W. Pedrycz, S.-M. Chen (reds.) (2020). 67–101.
     
  • Iterative Label Improvement: Robust Training by Confidence Based Filtering and Dataset Partitioning. Haase-Schütz, Christian; Stal, Rainer; Hertlein, Heinz; Sick, Bernhard in arXiv e-prints (2020). arXiv:2002.02705.
     
  • Continuous Learning of Deep Neural Networks to Improve Forecasts for Regional Energy Markets. He, Yujiang; Henze, Janosch; Sick, Bernhard (2020). (Vol. 53) 12175–12182.
     
  • Reconstruction of offsets of an electron gun using deep learning and an optimization algorithm. Meier, David; Hartmann, Gregor; Völker, Jens; Viefhaus, Jens; Sick, Bernhard O. Chubar, K. Sawhney (reds.) (2020). (Vol. 11493) 71–77.
     
  • Extended Coopetitive Soft Gating Ensemble. Deist, Stephan; Schreiber, Jens; Bieshaar, Maarten; Sick, Bernhard in arXiv e-prints (2020). arXiv:2004.14026.
     
  • A swarm-fleet infrastructure as a scenario for proactive, hybrid adaptation of system behaviour. Tomforde, Sven; Gruhl, Christian; Sick, Bernhard (2020). 166–169.
     
  • Normal-Wishart clustering for novelty detection. Gruhl, Christian; Schmeißing, Jörn; Tomforde, Sven; Sick, Bernhard (2020). 64–69.
     
  • Quantile Surfaces -- Generalizing Quantile Regression to Multivariate Targets. Bieshaar, Maarten; Schreiber, Jens; Vogt, Stephan; Gensler, André; Sick, Bernhard in arXiv e-prints (2020). arXiv:2010.05898.
     
  • Efficient SVDD Sampling with Approximation Guarantees for the Decision Boundary. Englhardt, Adrian; Trittenbach, Holger; Kottke, Daniel; Sick, Bernhard; Böhm, Klemens in arXiv e-prints (2020). arXiv:2009.13853.
     
  • Pose Based Action Recognition of Vulnerable Road Users Using Recurrent Neural Networks. Kress, V.; Schreck, S.; Zernetsch, S.; Doll, K.; Sick, B. (2020). 2723–2730.
     
  • Improving Self-Adaptation For Multi-Sensor Activity Recognition with Active Learning. Pham Minh, T.; Kottke, D.; Tsarenko, A.; Gruhl, C.; Sick, B. (2020).
     
  • Fairness, performance, and robustness: is there a cap theorem for self-adaptive and self-organising systems?. Tomforde, Sven; Gruhl, Christian (2020). 54–59.
     
  • Probabilistic upscaling and aggregation of wind power forecasts. Henze, Janosch; Siefert, Malte; Bremicker-Trübelhorn, Sascha; Asanalieva, Nazgul; Sick, Bernhard in Energy, Sustainability and Society (2020). 10(1) 15.
     
  • Forecasting Power Grid States for Regional Energy Markets with Deep Neural Networks. He, Y.; Henze, J.; Sick, B. (2020).
     
  • Off-the-shelf sensor vs. experimental radar - How much resolution is necessary in automotive radar classification?. Scheiner, Nicolas; Schumann, Ole; Kraus, Florian; Appenrodt, Nils; Dickmann, Jürgen; Sick, Bernhard (2020). 1–8.
     
  • On the vanishing and exploding gradient problem in Gated Recurrent Units. Rehmer, Alexander; Kroll, Andreas (2020).
     

top