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An internal dynamics approach to predicting batch-end product quality
in plastic injection molding using Recurrent Neural Networks

Alexander Rehmer1, Marco Klute2, Andreas Kroll1 and Hans-Peter Heim2

Abstract— Estimating a dynamic model for the task of batch
end quality prediction from process measurements without
continuous measurements of the quality variable but only a
single measurement after the batch is finished is a difficult
modeling task. It is common practice to circumvent build-
ing a dynamic model altogether by instead using a static
model approach of some kind. These static approaches, i.e.
Multivariate Statistical Process Control (MSPC) or mapping
features extracted from process measurements to the quality
measurement, work in general very well. Nevertheless they
neglect some of the information present in the data and come
with some drawbacks, i.e. the necessity for all batches having
equal length in the case of MSPC methods. The purpose of this
paper is therefore to demonstrate how an internal dynamics
model approach, more specifically a Recurrent Neural Network,
can be used to estimate a true dynamic model for batch end
quality prediction from process measurements. The resulting
model may be used for in-batch or batch-to-batch optimization
depending on the real-time requirements of the respective
process. The proposed model approach is applied to a plastic
injection molding (PIM) process, which is a switched system,
and compared to static model approaches that are commonly
employed in the PIM community.

I. INTRODUCTION

In order to obtain a consistent and desirable batch end-
product quality, precise quality prediction models are nec-
essary that can be employed for in-batch or batch-to-batch
optimization. Many batch processes, such as the plastic
injection molding (PIM) process, do not allow for continuous
in-process quality measurements. Only after the part is
ejected can the quality variables of interest, e.g. weight or
geometrical features, be quantified. Estimating a dynamical
model with trajectories for the inputs, but only a single
datum for the output, i.e. the quality measurement, is an
unusual and difficult identification task. Probably for this
reason, the dynamic modeling task of predicting part qual-
ity in batch processes has almost exclusively been treated
as a static one. The most straightforward approach is to
predict batch end-product directly from process setpoints.
By doing so, process dynamics are implicitly assumed to
have a negligible effect on product quality. Another approach
is to extract features from process measurements based
on expertise and map those to batch-end product quality.
Depending on how meaningful the selected features are, this
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approach can be very successful, but still uses not all the
information available in the data. Finally and probably most
widespread, Multivariate Statistical Process Control (MSPC)
methods, such as multi-way principal component analysis
(PCA) and multi-way projection to latent structures (PLS),
are employed to correlate process variable trajectories with
final product quality [1]. Although these methods exploit
all the information in the data, as static models they are
subject to certain restrictions, e.g. that all batches need to
have the exactly same length [2]. Hence, methods must be
employed that somehow scale all trajectories to the same
length, e.g. Dynamic Time Warping. By doing so, the origi-
nal information contained in the measured data is affected to
an unknown extent. Estimating a dynamic nonlinear model
that maps process measurements to part quality has not yet
been attempted.

The purpose of this paper is to present and examine a mod-
eling approach for estimating a dynamic model that maps
continuous process measurements to a single quality datum.
This will be achieved via using an internal dynamics model
structure. The benefits of the internal dynamics approach
for final part quality prediction over existing approaches
are, that batches of varying length are handled naturally
by the model. Also, internal dynamics models tend to have
significantly fewer parameters in the Multiple Input Multiple
Output (MIMO) case, which is beneficial if little data is
available. The resulting model can be employed in model-
based numerical optimal control for in-batch or batch-to-
batch part quality optimization.

II. RELATED WORK

Final part quality prediction in batch processes in general
has been the subject in a vast body of research. Usually,
MSPC methods, such as multi-way PCA and multi-way
PLS, are employed to correlate the process variable tra-
jectories with the final product quality [1]. Regarding the
PIM process specifically, there is no known application of
MSPC methods for final part quality prediction, merely an
application of multi-way PCA for fault detection purposes
[3]. Instead, final part quality is usually directly predicted
from process setpoints [4] or from features extracted from
process measurements [5, 6, 7]. An exception is the work
[8], who estimated a linear state space model for a rotational
molding process. The final part quality was then predicted
solely from the final state of the process model. This implies,
that only the final process state (and not the evolution that
led to that state) is relevant for part quality.
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Fig. 1. External and internal dynamics approach

To the best of the authors knowledge, an internal dynamics
approach has never been applied to the problem of final part
quality prediction, neither in batch processes in general nor
in PIM specifically.

III. PRELIMINARIES

A. External vs. Internal Dynamics Approach

Dynamic models can amongst other criteria be differenti-
ated into external and internal dynamics approaches, see Fig.
1. In the far more widespread external dynamics approach a
static model f(·) is provided with past inputs yk−m and
outputs uk−m to predict the current output yk, i.e. the
dynamics are realized via external filters that in their most
simple form correspond to time-delays q−1.

yk = f
(
yk−1, . . . ,yk−m,uk−1, . . . ,kk−m

)
(1)

The internal dynamics approach is basically a state-space
(SS) model, without any information about the true pro-
cess states. The internal model states are merely used to
approximate the dynamic behavior of the true process and
do not have any physical interpretation. Like any SS model,
an internal dynamics model is only provided with the current
input to predict the next output:

xk+1 = h (xk,uk)

yk = g (xk)
(2)

Although the internal dynamics approach does have its
advantages, like a lower dimensional input space especially
for higher order MIMO systems, its major shortcoming is
that the training of internal dynamics models poses a very
difficult optimization problem. Most significantly, an internal
dynamics model can be unstable from the outset, which
will terminate the optimization procedure immediately. Also
the evolution of the internal states must reflect the true
process dynamics, but can only be deduced from input-
output data while simultaneously the model parameters have
to be estimated. In contrast to that, in an external approach
the dynamics are fixed by the filters specified by the user
such that only the model parameters have to be estimated
from the data. For the problem at hand, i.e. the prediction
of final product quality from process measurements, the
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Fig. 2. Gated Recurrent Unit architecture

application of the internal dynamics approach is virtually
inevitable, if a dynamic model is to be estimated. Since
only the output yT at the very last time instance T of
each batch is available, delayed outputs cannot be used as
model inputs. Hence all external dynamics model structures
with output feedback, e.g. Autoregressive with inputs (ARX),
Autoregressive moving average with inputs (ARMAX), etc.,
and their nonlinear counterparts are excluded from consid-
eration. Only external dynamics model structures without
output feedback, e.g. Finite Impulse Response (FIR), would
be viable. However, such a model would treat every time
instance as a distinct input which would result in thousands
of inputs (and model parameters) depending on the length
and number of measured process variables. The amount of
experimental data needed to estimate these parameters makes
this approach unfeasible. An internal dynamics model on
the other hand, would only have as many inputs as there
are process measurements, which significantly reduces the
input space and number of model parameters compared to
an external dynamics model. It’s internal state, that evolves
from time instance to time instance under the influence of the
process variables, can be viewed as an abstract representation
of the produced part or its properties. As mentioned above,
the task of parameter optimization for an internal dynamics
model is already a difficult problem, if trajectories for input
and output are available. The task at hand further amplifies
the severity of these problems, since only a single measure-
ment for the output at the end of each batch is available for
estimating the entire dynamical process.

B. Recurrent Neural Networks (RNN)

Although any recurrent model structure can be employed
to realize a nonlinear internal dynamics model, RNN are
the most common. In recent years, great progress has been
made in the design of RNN-architectures, resulting in easier
to optimize RNNs, most notably the long short-term memory
(LSTM) [9] and Gated Recurrent Unit (GRU) [10]. Since the
latter has significantly fewer parameters and has been shown
to perform as good or even better on various applications [11]
it is considered for the task of final part quality prediction.
The GRU is depicted in Fig. 2, its state equation is:

xk+1 = f z � xk + (1− f z)� f c. (3)

The operator � denotes the Hadamard product. The activa-
tions of the so-called reset gate f r, update gate f z and the
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output gate f c are given by

f r = σ
(
W r · [xk,uk]

T
+ br

)
,

f z = σ
(
W z · [xk,uk]

T
+ bz

)
,

f c = tanh
(
W c · [x̃k,uk]

T
+ bc

)
,

(4)

with x̃k = f r � xk and W r,W z,W c ∈ Rnx×nx+nu ,
br, bz, bc ∈ Rnx and f r,f z,f c : Rnx → Rnx . σ (·) denotes
the logistic function. The internal state xk is usually mapped
to the output yk via a feedforward Neural Network with a
nonlinear hidden layer and a linear output layer:

hk = tanh (W h · xk + bh)

yk = W o · hk + bo
(5)

C. Backpropagation Through Time

In the Machine Learning community the process of cal-
culating the gradient of the loss function L(e) and therefore
the prediction error e = ŷ − y with respect to the model
parameters θ is denoted backpropagation (BP). If the model
is recurrent, the derivative ∂ek

∂θ depends on the state of the
previous time step xk−1, which again depends on the model
parameters and so on. Hence, the application of the chain
rule requires to propagate the error back to the very first time
instance, therefore the name Backpropagation Through Time
(BPTT). If the output is a trajectory y1,...,T , a prediction
error can be calculated at each time step and the loss becomes

T∑
k=1

L(ek) (6)

Since only the final product quality, i.e. yT , is known, the
sum in (6) reduces to a single term, showing how little
information is available for parameter optimization.

D. Plastic Injection Molding Process

For the production of plastic parts by the PIM process, the
base material is fed in the form of granules into the hopper
of the injection molding machine. Within the injection unit
of the machine, the material is molten and transported by
a rotary movement of the screw. A defined melt volume,
which is collected in front of the screw, is then injected into
the mold cavity under high pressure at a defined velocity by
a translatory movement of the screw. To prevent shrinkage
during the cooling of the plastic part within the mold,
a defined packing pressure is applied. Depending on the
process variables, the PIM process can be devided into three
phases:

1) Injection: As mentioned ealier, a defined dosing vol-
ume of melt is collected infront of the screw, which is then
injected with a defined injection velocity until a switching
point is reached, that is defined by the screw position. In
order to prevent damage to the machine, a maximal allowed
injection pressure is defined.

2) Packing: In contrast to injection, the packing phase is
pressure controlled, to reach a defined pressure curve over a
specified time. The packing pressure is composed of multiple
pressure ramps. In this study, three packing pressure levels
were set, with the first and third each remaining constant and
only the second being varied in the experimental design.

3) Cooling: Although cooling of the plastic part begins
directly upon entry of the melt into the cavity, the defined
cooling phase does not start until after the packing phase.
During this pressureless cooling phase, the melt volume for
the next cycle is metered against a given back pressure. At
the end of the cooling time, the mold opens and the plastic
part is ejected.

IV. DATA DRIVEN MODELING

A. Data Acquisition

Since the goal is the estimation of a model that maps
process measurements to part quality, the experiments for
data acquisition should ideally be designed in the process
measurement space. However, due to the constraints imposed
by the process a direct manipulation of process measure-
ments is not possible. Therefore the experiment was instead
designed in the process setpoint space. A process setpoint
s ∈ R8 is defined by the eight setpoint parameters defined
in Table I. A comparison of different DoE methods, that
are applicable for PIM processes, has shown that central
composite designs (CCD) are most effective [12]. They
represent an extension of a full factorial design (FFD) with
star points (SP), enabling them to register non-linear effects.
In this study a face centered CCD (α = 1) was chosen
and extended by a central point (CP). For a total of eight
setpoint parameters with two factor levels each (Table I) and
the central point (two repetitions), the resulting experimental
design contains a total of 274 experiments (FFD: 256, SP:
16, CP: 2).

The experiments were carried out using an ALL-
ROUNDER 470S injection molding machine (ARBURG
GmbH + Co KG, Loßburg, Germany) with a screw diameter
of 35 mm. For each of the 274 setpoints ten parts were
produced using an Ultramid® B3S polyamide (BASF SE,
Ludwigshafen, Germany), that was dryed for several hours
at 80◦C prior to processing. As part quality feature, the inner
diameter of the produced parts was measured using a digital
measuring projector IM-7020 (Keyence Corporation, Osaka,
Japan).

In addition to the machine setting parameters (Table I),
decisive process variables were also taken into account for
learning the models. For this purpose, trajectories were
retrieved via the Open Platform Communications - Unified
Architecture (OPC-UA) interface of the injection molding
machine. The injection mold was equipped with an additional
sensor that recorded both pressure and temperature inside the
mold cavity.

The following process variables were retrieved as trajec-
tories with a sampling rate of 50 Hz: cavity pressure, cavity
temperature, injection pressure, melt volume (infront of the
screw), melt volume flow rate.
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TABLE I
FACTORS VARIED FOR THE EXPERIMENTAL DESIGN

Setpoint Parameter Unit Lower limit Upper limit

Nozzle temperature ◦C 250 260
Mold temperature ◦C 40 50
Injection velocity cm3/s 16 48
Switching point cm3 13 14
Packing pressure MPa 50 60
Packing time s 3 5
Back pressure MPa 2.5 7.5
Cooling time s 15 20

TABLE II
DEFINITION OF FEATURES fi CALCULATED FROM pcav AND Tcav

Feature Definition Feature Definition

pmax
cav max (pcav) T int

cav

∑tcyc
k=0 pcav

tmax
p argmax

k
(pcav) tmax

T argmax
k

(Tcav)

pintcav

∑tcyc
k=0 pcav Tmax

cav max (Tcav)

pdropcav
1

tcyc−thold

∑tcyc
k=thold

pcav

B. Model structures

Although the goal is to identify an internal dynamics
quality model for quality prediction, static modeling ap-
proaches that are common in practice and science were
estimated for comparison. The different modeling approaches
are introduced in the following.

1) Setpoints model: The most straightforward approach to
predict part quality is to map the process setpoints listed in
Table I directly to the resulting part quality. A linear regres-
sion model, a polynomial regression model and a Multilayer
Perceptron (MLP) were employed as model structures.

2) Measurement-features model: The most widespread
approach is to predict final part quality from features ex-
tracted from process measurements based on expert know-
ledge. The features extracted from the cavity pressure signal
were chosen to be the same as in [6] with the addition of the
time instance tmax

p , when the maximal cavity pressure pmax
cav

occurs. The features extracted from the cavity temperature
signal were chosen to be: The temperature at the beginning
of a cycle T 0

cav, since it indicates the mold temperature before
the injection of the melt. The maximal occurring temperature
during the cycle Tmax

cav , since it correlates with the melt
temperature and the integral T int

cav over the temperature signal,
which mainly reflects the cooling process. The features are
summarized in Table II and visualized in Fig. 3

3) Internal dynamics model: The GRU described in sub-
section III-B was chosen as the internal dynamics model
structure to predict batch-end product quality from process
measurements. The PIM process is known to be time-
varying due to switches between different machines internal
controllers, see subsection III-D. It is to be expected that
the formation of the parts quality characteristics is also a
time-varying process: The part undergoes major temperature
changes as well as a change of aggregate state from fluid to
solid. The pressure in the cavity for one should have different

pmax
cav

Tmax
cav

T int
cav

pintcav

T 0
cav

tmax
p tmax

T
thold tcyc

Fig. 3. Features extracted from pcav and Tcav

effects depending on the state the part is currently in. In
order to incorporate this time-varying behavior in the model
approach, the quality process was divided into the same three
phases as the PIM-process itself. Hence, the part quality
process model is a time-varying switched system comprised
of three subsystems i = 1, 2, 3, respectively representing the
injection, packing and cooling phase. The parameter vectors
of each subsystem are denoted θi.

xk+1 = hi
(
xk,uk;θi

)
, x0 = 0

yk = gi
(
xk;θi

) (7)

The recurrent part hi (·) of each subsystem is modeled via a
GRU, see (3). Since the subsystem representing the cooling
phase must also map the internal state to the output, it is
additionally equipped with an MLP with 10 tanh-neurons
in the hidden layer as output function g3 (·). The complete
model architecture is depicted in Fig. 4. Parameter initial-
ization was found to be crucial in order to obtain any useful
models. As in any (stable) dynamical system the contribution
of the GRU’s state xk at a given time instance k to the output
yk+T at a later time instance decreases exponentially with T .
Since the model to be optimized is recurrent in the states, the
same is true for its parameters. This phenomenon is known
as the vanishing gradient in the ML community. If care is not
taken during initialization, especially the contribution of the
first two subsystems (i = 1, 2) will be negligible small. The
solution to this dilemma is to initialize the bias of the update
gate b1,2z with large positive values. By doing so the state
equation (3) becomes xk+1 ≈ xk, i.e. the GRU just passes
on the state. This ensures the maximal possible gradient, at
least at the very beginning of the optimization procedure.
If need be, the optimizer will then reduce the bias to an
appropriate value, such that the GRUs dynamics represents
the dynamics of the true process. For this reason the bias
must also not be chosen too large, otherwise it would take an
excessive amount of optimization steps to reduce the bias to
its appropriate value. For this case study, the best results were
obtained by drawing bz from a random uniform distribution
U[4,10]. Without this initialization the estimated models were
merely able to reproduce the mean of the training data.

It should be noted, that this is not necessarily the best way
to account for the time variance of the quality process. The
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Fig. 4. Internal dynamics modeling approach with three subsystems

TABLE III
CONSIDERED CANDIDATE MODEL STRUCTURES FOR QUALITY

PREDICTION.

Label Definition

PRn
s,f n-th degree polynomial regression model mapping either

process setpoints s or process measurement features f
to product quality Di.

MLPn
s,f MLP with n neurons in single hidden layer mapping

either process setpoints s or process measurement fea-
tures f to product quality Di.

IDn
i Internal dynamics model consisting of i subsystems

mapping process measurements p to product quality Di.
The recurrent model part is realized via GRUs with
n internal states. The mapping from internal state to
product quality Di is realized via an MLP with 10 tanh
neurons in the hidden layer.

time variance of the emerging part does not necessarily need
to coincide with the time variance of the PIM process itself.
The time instance when the part changes its aggregate state
would be an ideal candidate for the switching instance. Since
the solidification is a spatially distributed process, this time
instance is not well defined. In order to evaluate, whether
the chosen approach for modeling the time variance was
appropriate, a quality model with only a single subsystem,
i.e. without time variance, was estimated for comparison.

C. Model training and validation

All models were optimized on the same training
dataset Dtrain to minimize the mean-squared-error (MSE)
of the predicted quality variable y. Dtrain comprises
the process setpoints sc, process measurements pc ={
pccav,k, T

c
cav,k

}
, k = 0, . . . , tccyc and resulting inner di-

ameter Di of the produced part Dc
i of a production cycle c.

The optimized models were then evaluated on a validation
dataset Dval to determine their generalization capabilities. In
total Dtrain comprises 2105 and Dval 548 production cycles.
All considered candidate models for quality prediction are
summarized in Table III. For model comparison, the Best
Fit Rate (BFR) (8) was calculated on the validation data:

BFR = max

0, 1−

∑
c
yc − ŷc∑

c
yc − ȳc

 · 100 % (8)

For parameter estimation of the nonlinear models a gradient
based optimization method (IPOPT [13]) with quasi-Newton
approximation of the hessian was employed.

Fig. 5. BFR of all candidate models from Table III on Dval depending
on the model complexity n.

V. RESULTS & DISCUSSION

The performance of each candidate model structure in
terms of the BFR on Dval is depicted in Fig. 5. First of
all, the static setpoint models, i.e. PRn

s and MLPns perform
already quite well. The best fit (BFR = 90 %) is achieved
with a 10th degree polynomial model PR10

s . This is probably
due to the fact, that external disturbances on the process,
such as the ambient temperature or fluctuations of material
properties, were eliminated as far as possible. This allowed
for a prediction of part quality with high accuracy directly
from machine setpoints. Nevertheless, the feature models,
especially MLPnf , outperform the setpoint models, albeit by
a small margin. This indicates, that the additional dynamic
information encoded in the features is in fact relevant for
predicting part quality. The best feature model was an MLP
with 10 Neurons in the hidden layer, i.e. MLP10

f , with
BFR = 93 %. The polynomial feature models PRn

f show
underfitting for n < 4, indicating a significant nonlinear
relation between features f and part quality. For n > 4 on the
other hand, the polynomial models exhibit overfitting. This is
most likely due to the tendency for oscillatory interpolation
and extrapolation behavior of higher degree polynomials.
The polynomial setpoint models do not exhibit this behavior,
because the experiment was designed to ensure an equidistant
distribution of data samples in the setpoint space.

Comparing the two internal dynamics approaches with
each other, i.e. the switched IDn

3 and the single subsystem ap-
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proach IDn
1 clearly validates the switched system approach.

The performance of the single subsystem approach IDn
1 is

not able to explain additional variance in the data compared
to its mean and therefore has a BFR of 0. The switched
system approach with three internal states, i.e. ID3

3, performs
best among the internal dynamics models with a BFR of
approximately 93 % and matches the performance of the best
static feature model MLP10

f . It should also be mentioned,
that both ID3

3 and MLP10
f possess roughly 100 free model

parameters. The reason for the decreasing performance of
IDn

3 with increasing model complexity n is either due
to premature termination of the optimization procedure or
due to convergence to poor local optima, which becomes
increasingly likely the larger the parameter space is. In this
case study 10 multi-starts with random initializations had
been conducted for each nonlinear in the parameters model
structure and the optimization procedure was terminated after
a maximum of 1000 iterations was reached. It is likely, that
better local optima can be found, if more multi-starts and/or
optimization steps are performed.

Comparing the internal dynamics approach to the static
feature model approach, it should be kept in mind, that the
internal dynamics models estimate part quality from raw sen-
sor data. The feature models on the other hand estimate part
quality from pre-processed features that are chosen based on
expert knowledge, which poses a simpler task. Nevertheless,
the internal dynamics approach manages to find an internal
representation of the data, that is as informative as the
tailored features. Considering the circumstances, i.e. that no
pre-processing was done and that during learning a single
error datum per batch had to be backpropagated over 1000
timesteps, this result is quite impressive. It should also be
noted, that the feature model can only be used to predict part
quality after the fact, i.e. once the batch is completed. The
internal dynamics model on the other hand can be used for
in-batch optimization, provided the real-time requirements of
the process at hand allow for it.

Considering the fact that the static setpoint models already
perform that well shows that there is little dynamic informa-
tion available in the data that is relevant for quality prediction
in this case study. From a purely practical viewpoint the
application of feature models let alone internal dynamics
models, which are very time consuming to estimate, is not
required for predicting part quality in this specific scenario.
However, under realistic operating conditions the PIM pro-
cess is subject to external disturbances due to changing
ambient temperatures, fluctuations in raw material properties,
machine wear, etc. These disturbances affect part quality and
are reflected in the process measurements. E.g. changes of
the ambient temperature affect the cavity temperature and
through the temperature dependence of the melt viscosity
also the cavity pressure. Therefore, under realistic operating
conditions the static setpoint models would probably be
rendered useless.

VI. CONCLUSIONS AND OUTLOOK

An internal dynamics approach for batch-end quality pre-
diction from in-process measurements has been proposed and
applied to a switched process, the PIM process. The proposed
approach performed as well as static model approaches
which rely on feature extraction based on expert knowledge
and surpassed static models that map process setpoints to
part quality on the chosen case study. However, a case
study is as usual only a snap-shot. While in this specific
application dynamics had an almost negligible effect on part
quality, this is of course not true for all batch processes.
The proposed approach is therefore a viable option, if static
setpoint models and static feature models fail to predict part
quality accurately and/or if the goal is to estimate a dynamic
model for in-batch process optimization.
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