UNIKASSEL
VERSITAT

Digital Twin of Injection Molding:

Controlling quality properties of recycled plastics by
using self re-training machine learning algorithms

Marco Klute, Hans-Peter Heim
SPE ANTEC® 2023
Denver, CO - March 29, 2023

o Institut fir Werkstofftechnik
ll Kunststofftechnik

Prof. Dr.-Ing. Hans-Peter Heim



What is a Digital Twin? v/

A Digital Twin is a digital representation of a physical product, system or process
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Digital Twin of Injection Molding A4
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Data-Driven Modeling

Face Centered Central Composite Design of Experiment (CCF)

machine parameter -1 0 1

nozzle temperature in °C 250 255 260
mold temperature in °C 40 45 50
injection velocity in cm?¥/s 16 32 48
switching point in cm?3 13 13,5 14
packing pressure in bar 500 550 600
packing timeins 3 4 5

back pressure in bar 25 50 75
cooling timein's 15 17,5 20

2/

O Center points

I
I
I
R B CARE R
1_ /“lk X2 . .
= T ‘/é’| r—T —> ® Factorial points
1
I
I
I

% Star points

|
P IV

2 factor levels8Parameters = 756 factorial points
+
2 factor levels * 8 parameters = 16 star points

+
2 repetitions of center point

274 setpoint combinations (10 cycles each)
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Data-Driven Modeling v/

Modeling Approaches
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Data-Driven Modeling

Comparison of static and dynamic models
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* Dynamic models (ID) perform well but show a high variance and need high computational times.
* Static models (MLP, PR) provide equivalent results, with lower computational effort.
* Further advantage: model input variables are the machine parameters s (usable for optimization).
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Data-Driven Modeling

Comparison of different MLPs
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Conclusion:

* MLP with two layers seems to be the best fit for the digital twin.
* Initial temperature in the cavity contains relevant information for the model.
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Digital Twin of Injection Molding
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Digital Twin of Injection Molding
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Digital Twin’s Reaction to Recyclate

Scenario:

* MLP was trained using data generated using a smaller CCF.

* Produced parts were shredded to produce recyclate.

* New material was mixed with recyclate (20 %).

* Process was started using raw material to achieve a stable processing point.
* Mixed material was fed into the hopper of the machine.

machine parameter -1 0 1
mold temperature in °C 29 32 35
injection velocity in cm?¥s 14 17 20
switching point in cm?3 13 13,5 14

Task of the Digital Twin:
1. Re-train the models with the new data.

2. Make predictions for optimized setpoints to reach the initial quality value.
3. Continue 1. and 2. until desired quality value is reached

2/
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Digital Twins Reaction to Recyclate A4
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Lessons Learned /4

* Dynamic models outperform static models, but the computational effort is a lot higher.

» Static models provide good results and are therefore a sufficient fit for developing a digital twin.

e The initial temperature within the cavity improves the model's performance.

* The digital twin predicts the part quality with a BFR of more than 90 %.

* Unknown influences as the use of recyclate, reduce the validity of the models and their predicted part qualities.
* Re-training results in target-oriented parameter suggestions and the desired quality value can be reached.
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Founding of the Project v/
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