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[1]

What is a Digital Twin?

A Digital Twin is a digital representation of a physical product, system or process
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What is a Digital Twin?

A Digital Twin is a digital representation of a physical product, system or process

Physical Process Digital RepresentationLink

1. data collection

2. data storage

3. data transmission
7. transmission of optimal 

process setpoints

4. data 
preprocessing

8. change process 
setpoints

0./9. new process 
cycle

6. process 
optimization

5. modell adaption



Marco Klute | 12. April 2023 | Slide  4

Digital Twin of Injection Molding
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Data-Driven Modeling
Face Centered Central Composite Design of Experiment (CCF)

2 𝑓𝑎𝑐𝑡𝑜𝑟 𝑙𝑒𝑣𝑒𝑙𝑠8 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 = 256 𝑓𝑎𝑐𝑡𝑜𝑟𝑖𝑎𝑙 𝑝𝑜𝑖𝑛𝑡𝑠

2 𝑓𝑎𝑐𝑡𝑜𝑟 𝑙𝑒𝑣𝑒𝑙𝑠 ∗ 8 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 = 16 𝑠𝑡𝑎𝑟 𝑝𝑜𝑖𝑛𝑡𝑠

2 𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑐𝑒𝑛𝑡𝑒𝑟 𝑝𝑜𝑖𝑛𝑡

274 𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡 𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠 (10 𝑐𝑦𝑐𝑙𝑒𝑠 𝑒𝑎𝑐ℎ)

+

+

=

machine parameter -1 0 1

nozzle temperature in °C 250 255 260

mold temperature in °C 40 45 50

injection velocity in cm³/s 16 32 48

switching point in cm³ 13 13,5 14

packing pressure in bar 500 550 600

packing time in s 3 4 5

back pressure in bar 25 50 75

cooling time in s 15 17,5 20
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Data-Driven Modeling
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Data-Driven Modeling

Conclusion:
• Dynamic models (ID) perform well but show a high variance and need high computational times.
• Static models (MLP, PR) provide equivalent results, with lower computational effort.
• Further advantage: model input variables are the machine parameters 𝒔 (usable for optimization).

Comparison of static and dynamic models
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Data-Driven Modeling

Conclusion:
• MLP with two layers seems to be the best fit for the digital twin.
• Initial temperature in the cavity contains relevant information for the model.

Comparison of different MLPs
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Digital Twin of Injection Molding
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Digital Twin’s Reaction to Recyclate

Scenario:
• MLP was trained using data generated using a smaller CCF.
• Produced parts were shredded to produce recyclate.
• New material was mixed with recyclate (20 %).
• Process was started using raw material to achieve a stable processing point.
• Mixed material was fed into the hopper of the machine.

Task of the Digital Twin:
1. Re-train the models with the new data.
2. Make predictions for optimized setpoints to reach the initial quality value.
3. Continue 1. and 2. until desired quality value is reached

machine parameter -1 0 1

mold temperature in °C 29 32 35

injection velocity in cm³/s 14 17 20

switching point in cm³ 13 13,5 14
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Digital Twins Reaction to Recyclate
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Lessons Learned

• Dynamic models outperform static models, but the computational effort is a lot higher.

• Static models provide good results and are therefore a sufficient fit for developing a digital twin.

• The initial temperature within the cavity improves the model's performance.

• The digital twin predicts the part quality with a BFR of more than 90 %.

• Unknown influences as the use of recyclate, reduce the validity of the models and their predicted part qualities.

• Re-training results in target-oriented parameter suggestions and the desired quality value can be reached.
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Founding of the Project

Institute for Material Engineering 
Polymer Engineering
University of Kassel

Institute for System Analytics and Control
Measuring and Control Engineering
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