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A Deep Recurrent Neural Network model for affine quasi-LPV System
identification

Alexander Rehmer1 and Andreas Kroll2

Abstract— This paper presents a new model structure and
structure selection procedure for the identification of control-
oriented affine quasi-LPV (qLPV) models in state-space (SS)
representation using Deep Recurrent Neural Networks (RNNs).
The proposed model structure is intended to be an alternative
to the existing black-box approaches [1, 2] for the case where no
state measurements are available and the scheduling variables
(and hence the dependence of the time-varying parameters
on the scheduling variables) are unknown. Existing identifi-
cation approaches are not able to incorporate deep neural
network (DNN) structures but employ (normalized) radial
basis functions (RBFs) to model the dependence of the time-
varying parameters on the scheduling variables. This may
increase the dimension of the time-varying parameter vector
unnecessarily, making parameter estimation more difficult and
limiting the model’s use for LPV controller synthesis. The
proposed identification approach aims to reduce the required
dimension of the time-varying parameter vector by using a
(Deep) Neural Network (NN) to model the parameter variation.
In order to curb the complexity of the resulting nonlinear
optimization problem and make the developed model approach
useful in real-life applications, a structure selection procedure
based on an initialization method developed in [3] is proposed.
The performance of the presented approach is demonstrated
on a nonlinear system identification problem.

I. INTRODUCTION

The linear parameter varying (LPV) framework has proven
to be a suitable tool for modeling and control of highly
complex nonlinear systems [4]. Among all synthesis ap-
proaches the polytopic approach is the most popular [5].
However, the polytopic control synthesis approach is limited
in that it requires an affine/polytopic LPV SS representation
of the plant and the implementation complexity of polytopic
LPV controllers grows exponentially with the dimension
of the time-varying affine parameter vector [5]. How to
arrive at an affine qLPV description of a nonlinear plant
is in itself non-trivial. In the absence of a physical model,
identification from input-output data is the only viable way.
If the state-vector cannot be measured and the dependence
of the time-varying parameter vector on the scheduling
variables is unknown, nonlinear recurrent model structures,
which can always be viewed as a RNN, have to be employed.
Parameter estimation for nonlinear recurrent structures is a
notoriously hard optimization problem. A good initialization
point is critical and second-order optimization methods are
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recommended [6]. To the best of the authors knowledge, two
approaches for identifying affine qLPV models from data
using recurrent model structures have been proposed [7]: The
local linear approach (RBF-RNN), which non linearly inter-
polates between multiple local linear models, e.g. [1], and a
structured RNN (S-RNN) [8], for which a systematic method
for deriving an affine qLPV representation was presented in
[2]. Both approaches make use of RBFs to model the time-
varying parameters’ dependence on the scheduling variables.
This enables straightforward initialization and the derivation
of stability conditions, respectively. However, depending on
the system to be identified, the assumption of an RBF-
like dependence can unnecessarily increase the dimension
of the time-varying parameter vector required to yield a
good model fit, as will be shown in the following. To
overcome this constricting assumption, a DNN is instead
employed to model the parameter variation. To the authors
best knowledge deep RNNs have not yet been proposed
for direct data-driven identification of affine qLPV models.
Deep Learning techniques have been applied in the context
of scheduling dimension reduction for affine qLPV models
[9], under the assumption that a qLPV model of the plant
already exists. In addition to a deep RNN model for affine
qLPV identification an efficient structure selection procedure
based on an initialization method for nonlinear SS models
[3] is proposed. Via structure selection it will be determined
where enhancing the linear model with nonlinear terms aids
model performance, in order to keep model complexity (in
terms of model parameters) as low as possible.

II. PRELIMINARIES

A. LPV

A linear parameter-varying (LPV) model is a model whose
parameters depend on a time-varying parameter vector ρk ∈
Rnρ . A general LPV plant in discrete-time SS representation
can be written as[

xk+1

yk

]
=

[
A(ρk) B(ρk)
C(ρk) D(ρk)

] [
xk

uk

]
(1)

with the state xk ∈ Rnx , input uk ∈ Rnu , output yk ∈ Rny

and matrix-valued functions A(ρk) : Rnρ → Rnx×nx ,
B(ρk) : Rnρ → Rnx×nu , C(ρk) : Rnρ → Rny×nx , D(ρk) :
Rnρ → Rny×nu , which encode the dependence of the system
matrices on the time-varying parameters [ρk]i which are
arranged in the time-varying parameter vector ρk. ρk is
assumed to be an unknown function of [uk,xk] and therefore
encodes the nonlinear behavior of the plant. In the general
LPV representation (1) the system matrices can be arbitrary
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nonlinear functions of ρk, which makes system identification
and controller synthesis difficult. Hence, usually models with
affine parameter dependence are considered as a special case
of (1):[

xk+1

yk

]
=

([
A0 B0

C0 D0

]
+

nθ∑
i=1

[θk]i

[
Ai Bi

Ci Di

])[
xk

uk

]
(2)

with A0,Ai ∈ Rnx×nx , B0,Bi ∈ Rnx×nu , C0,Ci ∈
Rny×nx and D0,Di ∈ Rny×nu . θk := θk(φk) is the
affine time-varying parameter vector, which depends on the
scheduling variables φk, which in the qLPV case are a
function of the state and possibly the input, i.e. φk :=
φk (xk,uk). This paper provides an identification approach
for affine qLPV models, which can then be utilized for
polytopic controller synthesis.

B. Identification of Recurrent Model Structures

Recurrent as opposed to feed-forward model structures
possess internal states x̂k that do not have any physical
interpretation. Due to their internal feedback they can only
be trained in parallel configuration. This corresponds to a
nonlinear output error (NOE) model approach and poses a
nonlinear optimization problem (3), even if a linear model
is to be estimated [10].

ΦNOE =arg min
Φ

LNOE (D,M(x̂k,uk;Φ))

arg min
Φ

N∑
k=0

|yk − ŷk (x̂k;Φ)|2
(3)

Here Φ are the parameters of the modelM that are subject to
optimization given the data D and the loss function L which
in this paper is always assumed to be the squared error. It has
been recognized, that the training of recurrent structures is
especially difficult [10]. Although still a subject of research,
it seems that bifurcation boundaries in the parameter space
and the vanishing/exploding gradient phenomenon cause
problematic variations in scale and curvature of the loss
function. These problems can be tackled by second-order
optimization methods [6], which are much more computa-
tionally demanding than first-order optimization methods: In
the case study presented in Sec. V a single optimization run
took up to 15 hours of computation time on an Intel Core
i9. In addition, finding a good initialization Φinit or at least
one that yields a stable model is a challenge in itself.

III. BLACK-BOX APPROACHES FOR IDENTIFICATION OF
AFFINE QLPV SYSTEMS

In this section, the two approaches for identifying affine
qLPV models with unknown dependence of the time-varying
parameter θk on the scheduling variables φk and unknown
state-vector xk are shortly revisited and their major ad-
vantages and shortcomings are pointed out. Based on this
analysis a model, which allows for the incorporation of
DNNs in affine qLPV system identification is proposed.

A. Radial Basis Function Recurrent Neural Network (RBF-
RNN)

The approach of approximating nonlinear systems via
a weighted combination of local linear models has been
successfully applied in countless engineering applications,
e.g. [1] and the references therein. A local linear SS model
can be written as[

x̂k+1

ŷk

]
=

nθ∑
i=1

[θk]i(φk)

[
Ai Bi

Ci Di

] [
x̂k

uk

]
(4)

Ai, Bi, Ci and Di can be interpreted as local lineariza-
tions of the nonlinear plant and [θk]i : Rnφ → R are
weighting functions of the local models. In the qLPV setting,
scheduling variables are the state and possibly the input
φT =

[
uT
k ,x

T
k

]
. (4) is equivalent to the widely used Takagi-

Sugeno (TS) fuzzy model, where the weighting functions are
interpreted as fuzzy basis functions. In the LPV framework
the weighting functions correspond to the time-varying pa-
rameters. They are defined as normalized RBFs with centers
ci and widths wi:

[θ]i =
e−(φk−ci)

T diag(wi)(φk−ci)

nθ∑
i=1

e−(φk−ci)
T diag(wi)(φk−ci)

. (5)

Main advantages of this model structure are that is has been
shown to be a universal approximator and it can be sensibly
initialized by setting all local models equal to an identified
linear model, which can be easily obtained via subspace
identification [1]. Major drawbacks are, that at least two
time-varying parameters, i.e. local models, are required to
model any nonlinear behavior. Additionally, many local mod-
els might be necessary, if the nonlinearity cannot be easily
described via superposition of linear models. Increasing the
number of local models and hence the number of model
parameters in turn makes parameter estimation more difficult,
as will be illustrated in the case study in sec. V.

B. Structured RNN (S-RNN) for affine qLPV system identi-
fication

The model equations of the S-RNN for affine qLPV
identification developed in [2] are given by

x̂k+1 = Ax̂k +Buk +A1f1 (E1x̂k) +B1f2 (E2uk)

yk = Cx̂k +C1f3 (E3x̂k)
(6)

with A ∈ Rnx×nx , B ∈ Rnx×nu , A1 ∈ Rnx×nA , B1 ∈
Rnx×nB , E1 ∈ RnA×nx , E2 ∈ RnB×nu , C ∈ Rny×nx ,
C1 ∈ Rnx×nC , E3 ∈ RnC×nx , f1 : RnA → RnA ,
f2 : RnB → RnB and f3 : RnC → RnC . f1, f2 and f3

are nonlinear activation functions, which cannot be chosen
arbitrarily, as will be shown in the following. In order to
rewrite the model (6) in affine qLPV representation, the time-
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varying parameters θk have to be defined as

[θ1]i =
f1 (e1,ix̂)

e1,ix̂
, i = 1, . . . , nA

[θ2]j =
f2 (e2,ju)

e2,ju
, j = 1, . . . , nB

[θ3]l =
f3 (e3,lx̂)

e3,lx̂
, l = 1, . . . , nC

(7)

e1,i denotes the i-th row of the matrix E1 and so on. With
these definitions, (6) can be rewritten in affine qLPV form:

x̂k+1 =

(
A+

nA∑
i=1

A1e1,i [θ1,k]i

)
x̂k+(

B +

nB∑
j=1

B1e2,j [θ2,k]j

)
uk

ŷk =

(
C +

nC∑
l=1

C1e3,l [θ3,k]l

)
x̂k

(8)

Major advantages of (6) compared to (4) are that it distin-
guishes between three sets of time-varying parameters θ1, θ2
and θ3 which encode nonlinearities in the system, input and
output matrix, respectively. This enables the user to choose
where to allow for nolinear behavior in the model based
on previous knowledge, which can simplify the optimization
problem considerably. Also, increasing the dimension of the
time-varying parameter vector does not correspond to adding
a fully parameterized SS model to the optimization problem.
Stability conditions can be derived, which is not possible for
the RBF-RNN. However, the definitions of the time-varying
parameters (7) exhibit discontinuities at

lim
xk→0

[θ1]i , lim
uk→0

[θ2]j , lim
xk→0

[θ3]l ∀ i, j, l

which are only removable if f1,2,3 themselves tend to zero,
leaving tanh() as the only choice for f1,2,3. This can be
verified via L’Hospital’s Rule. Choosing tanh() as activation
function however renders all time-varying parameters to be
RBFs centered at the origin of xk or uk respectively. This
can be shown exemplary for [θ1]i by employing the point
symmetrie of tanh()

tanh(e1,ix̂)

e1,ix̂
=

tanh(‖e1,ix̂‖)
‖e1,ix̂‖

i.e. [θ1]i (x̂) = [θ1]i (‖x̂‖), which is the definition of a RBF
centered at the origin. This rather restrictive assumption will
limit this models capability to approximate nonlinearities that
do not fit this assumption, as will be illustrated in the case
study.

IV. PROPOSED APPROACH

A. Model structure

The proposed model is based on the idea to lift the restric-
tive assumptions regarding the functional dependency of the
time-varying parameters θk on the scheduling variables φk.
Rather than assuming θk(φk) take the form of (normalized)
RBFs, a possibly DNN is employed to estimate θk(φk). The
equations of the proposed model structure depicted in Fig.

uk−1

A0

B0

xk

yk

. . .

NN i

i=nA

Ai

i=1

. . .

NN j

j=nB

Bj

j=1

xk−1

. . .

NN l

l=nC

Cl

l=1

C0

Fig. 1: Proposed model approach (dLPV-RNN) for blackbox
qLPV system identification.

1 and henceforth called deep LPV-RNN (dLPV-RNN) are
given by

x̂k+1 =

(
A0 +

nA∑
i=1

Ai NN i

)
x̂k +

(
B0 +

nB∑
j=1

Bj NN j

)
uk

ŷk =

(
C0 +

nC∑
l=1

Cl NN l

)
x̂k

(9)
with

[θ1]i = NN i (x̂k,uk) , i = 1, . . . , nA

[θ2]j = NN j (x̂k,uk) , i = 1, . . . , nB

[θ3]l = NN l (x̂k,uk) , i = 1, . . . , nC

(10)

A0, B0 and C0 represent the linear, i.e. non-parameter-
varying part of the model and can be initialized with an
identified linear model as usual. In order to curb the model
complexity introduced by modeling each component of the
time-varying parameter vector with a dedicated NN, it is
reasonably assumed, that many nonlinear systems can be
described with a set of mainly time-invariant parameters with
only few time-varying parameters. Therefore Ai, Bj and Cl

do not need to be fully populated, but only need to have non-
zero entries, where the linear, i.e. non-parameter varying,
parts of the model cannot explain the true systems behavior
sufficiently. I.e. Ai, Bj and Cl are presumed to be sparse.
Hence, instead of broadly viewing all parameters as time-
varying, as (4) and (6), the linear model is only selectively
enhanced. Finding the appropriate model structure, i.e. non-
zero entries in Ai, Bj and Cl, will be achieved via the
structure selection procedure described in the next subsec-
tion.

The NNs should be designed as simple as possible, starting
with a shallow NN with a few neurons in the hidden layer.
If that does not yield the desired performance and a DNN is
to be employed, the bottleneck structure depicted in Fig. 2
is suggested in order to aid the automatic feature extraction
performed by DNNs. The idea is to let the layers below
the bottleneck extract useful low-dimensional scheduling
variables φk from [xk,uk], if possible. The layers above the
bottleneck are then supposed to map the scheduling variables
to the time-varying parameter. It should be noted at this point,
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[
xk

uk

]
[θk]i,j,l

=φk

([
xk

uk

])
=θk (φk)

Fig. 2: DNN with bottleneck for extraction of low dimen-
sional scheduling variables in proposed dLPV-RNN.

that although the structure of the network in Fig. 2 resembles
that of an autoencoder, in this application it is neither useful
to pre-train the proposed network as an autoencoder [11]
nor to employ an actual autoencoder instead of the proposed
network. An autoencoder strives to learn nonlinear static
relations in the provided input. Since uk is an exogenous
signal and the states xk are only dynamically related, no
static relations should be present in [xk,uk].

B. Initialization and structure selection

In order for the dLPV-RNN to be practically useful in
system identification, efficient parameter initialization and
structure selection are required. The first will be achieved
via the method for parameter initialization for nonlinear SS
models presented in [3], the second via a wrapper approach.
The initialization procedure presented in [3] is based on
the idea to break the recurrence in the unknown states
by estimating a state sequence xLS

1:N solving the nonlinear
optimization problem in (11) using an identified linear SS
model Mlin = [A0,B0,C0].

xLS
1:N = arg min

x1:N

LLS (D,Mlin)

= arg min
x1:N

N−1∑
k=0

|xk+1 −A0xk −B0uk|2

+ λ

N∑
k=0

|yk −C0xk|2

(11)

λ is a trade-off parameter controlling how much emphasis
is given to fit to data vs. linear model fit. Once the state
sequence is ”known”, the parameter optimization problem
is no longer recurrent in the states, but an ordinary static
nonlinear optimization problem. Subsequently the linear part
of the model (9) is initialized with the identified linear model
and the nonlinear optimization problem

Φinit = arg min
Φ

Linit (D,M(xk,uk;Φ))

= arg min
Φ

N−1∑
k=0

|xLS
k+1 − x̂k+1

(
xLS
k ,uk;Φ

)
|2

+

N∑
k=0

|yk − ŷk

(
xLS
k ;Φ

)
|2

(12)

is solved. From experience the authors suggest to freeze
the parameters corresponding to the linear part Φlin =
{A0,B0,C0} and only optimize the parameters correspond-
ing to the nonlinear behavior Φnl. The parameters Φinit

obtained from (12) are then used as initial parameters for
the original problem (3). It should be noted at this point,
that (12) yields a model optimized for one-step prediction,
which may still be unstable when employed in a simulation
setting, i.e. in parallel configuration.

Since (12) poses a simpler and better conditioned opti-
mization problem than (3), it can be solved in a matter of
seconds to minutes using first-order methods with, which
makes it perfectly suitable for model structure selection.
By solving (12) for a number M of candidate structures
Mm and evaluating them on a validation dataset (in parallel
configuration) the most promising candidates can be selected
before solving the very time-consuming original problem (3).

Algorithm 1: Initialization and structure selection
procedure

Input: Dtrain = [utrain,ytrain], Dval = [uval,yval],
Mlin, Mm,m = 1, . . . ,M ;

Parameters: λ ∈ [10−3, 10];
xLS
1:N ← arg min

x1:N

LLS (Dtrain,Mlin);

for m = 1, . . . ,M do
Φm

init ← arg min
Φ

Linit (Dtrain,Mm);

ŷval ←Mm (ym
val;Φ

m
init);

Lm
val ← ‖yval − ŷval‖22

end for
Select L candidates with lowest validation error Lval;
for l = 1, . . . , L do

Initialize Ml with Φl
init;

Φm
NOE ← arg min

Φ
LNOE (Dtrain,Mm);

end for

V. CASE STUDY

A. Test system: Mass-spring-damper system with nonlinear
friction

A mass-spring-damper system with a nonlinear LuGre
friction model is chosen as nonlinear identification task:[

ẋ1
ẋ2

]
=

[
0 1
− c

m − d
m

] [
x1
x2

]
+

[
0
− 1

m

]
Fnl(x2) +

[
0
1
m

]
u

y = x1
(13)

with
Fnl = σ0z + σ1ż

ż = x2 −
|x2|
g(x2)

z

g(x2) =
1

σ0

(
Fc + (Fs − Fc) exp(−(

x2
vs

)2)

)
.

(14)

Parameter values are listed in TABLE I. As test signal a
multisine with randomly distributed odd harmonics, maximal
frequency fmax = 20 Hz and phases distributed uniformly
at random in [0, 2π) was chosen. Three different realizations
of this multisine signal were generated as input signal for
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TABLE I: Parameters of mass-spring-damper system.

m 0.1 kg σ1 2
√
σ0m

c 20 N/m Fc 0.2 N
d 4 Ns/m Fs 0.25 N
σ0 1000 vs 0.002 m/s

TABLE II: Parameters of candidate structures for the dLPV-
RNN.

NN i

A1 width depth fact dim(φk)

zero matrix with only
one non-zero entry aij

5 3 {ReLu, tanh, logis-
tic}

{1, 2, 5}

the system (13), which was simulated with an ode45 solver.
As initial state the equilibrium at the origin was chosen. No
measurement noise was added to the output. The obtained
datasets were used as training, validation and test data,
respectively.

B. Identification Procedure

A linear SS model was identified using the Matlab® Sys-
tem Identification ToolboxTM implementation of the N4SID-
Algorithm. It’s performance on the test data is 71.46 %. The
linear model was used to estimate the state sequence and
to initialize the appropriate parts of the nonlinear models.
All three model approaches where restricted to three internal
states x̂k. As is customary the RBF-RNN was initialized by
setting all local model parameters equal to the globally iden-
tified subspace model. Centers ci of the RBFs are distributed
uniformly at random over the range the scheduling variables
φk = [xk,uk] took on during simulation of the linear model.
Widths wi were drawn from a normal distribution with zero
mean and unit variance. Subsequently, parameters of the
RBF-RNN were estimated by solving (3). Results are shown
in Fig. 5 for up to 4 local models, i.e. dim(nθ) = 1, . . . , 4.
Both the S-RNN and the dLPV-RNN were trained according
to the procedure laid out in Alg. 1. Considered candidate
structures for the dLPV-RNN are listed in TABLE II. The
structure of RBF-RNN and S-RNN is entirely determined
by the dimension of the time-varying parameters, such that
only nθ and nA were varied, respectively. nθ2

and nθ3

were set to zero by incorporating previous knowledge about
the system (13). Implementation and optimization of all
models was performed using Casadi [12] and Ipopt [13].
10 multi-starts were performed for each candidate structure.
The performance of each model configuration is measured
in terms of the Best Fit Rate (BFR), which corresponds to
the coefficient of determination restricted to positive values::

BFR = 100% ·max

(
1− ‖yk − ŷk‖2

‖yk − ȳ‖2
, 0

)
C. Results

The results of the structure selection are shown in Fig.
3 and 4 for the dLPV-RNN and S-RNN, respectively. Both
figures show the BFR of all candidate model structures on
the validation dataset. For visualization purposes results for

Fig. 3: BFR in % of dLPV-RNN on the validation dataset
after initialization (12) depending on non-zero coefficients
in A1 and the dimension of the bottleneck layer dim(φk).
Horizontal line indicates linear model fit.

Fig. 4: BFR in % of S-RNN (6) on the validation dataset
after initialization (12) depending on dim(θk). Horizontal
line indicates linear model fit.

the dLPV-RNN were only differentiated by the dimension
of the bottleneck layer dim(φk) and the non-zero entries in
A1. From the results it can be seen, that none of the S-RNN
candidate structures performed significantly better than the
initial linear model, indicating that this model structure is
not suited to approximate the system at hand. As discussed
above, each time-varying parameter is assumed to be a RBF
centered at the origin. Hence, increasing dim(φk) does not
increase the models approximative capabilities significantly.
The dLPV-RNNs performance is seriously hampered by the
bottleneck. However, significant performance gains can be
made without a bottleneck layer and with non-zero entries
a11, a12 and a13, indicating where the time invariant linear
model can be significantly enhanced by additional nonlinear
terms. Of those candidates who achieved above-average
performances, all have tanh activation functions. The ten
best candidates of each model were subsequently used as
initializations for the original recurrent optimization problem
(3). The results are shown in Fig. 5. From Fig. 5 it can
be seen, that the proposed dLPV-RNN produces the best
results, on average and absolute. The RBF-RNN approach

Fig. 5: BFR in % of RBF-RNN ( ), S-RNN ( ) and dLPV-
RNN ( ) on the test dataset after NOE optimization (3) de-
pending on dim(θk). Horizontal line indicates linear model
fit.
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RBF-RNN (BFR 91.5 %) and dLPV-RNN (BFR 93.4 %) on
the test dataset.

yields the second best model but needs two time-varying
parameters. The large variance of the RBF-RNN models
performances in contrast to the dLPV-RNN indicates that the
employed initialization procedure yields better starting points
than the standard procedure for local linear models. The S-
RNNs performance increases slightly due to the recurrent
optimization, but does not match that of the other models.
Fig. 6 shows the simulation and simulation error of the
best dLPV-RNN and RBF-RNN. The RBF-RNN shows large
deviations from the true output signal, whenever the mass
remains in one position and then suddenly breaks loose,
e.g. at k ≈ 2500 and k ≈ 3500. This indicates, that the
velocity-dependent nonlinearity (14) has been better captured
by the dLPV-RNN. Hence it has been successfully shown
that modeling the time variation with a DNN instead of
RBFs can lead to a better model with less time-varying
parameters, which will be beneficial for the subsequent
controller synthesis step.

VI. CONCLUSION & OUTLOOK

It has been shown, that existing blackbox model structures
for qLPV system identification employ RBFs to model the
parameter variation. Since the dimension of the time-varying
parameter vector is the limiting factor when using an affine
qLPV model for polytopic controller synthesis, a RNN with
an affine qLPV structure was proposed. The proposed dLPB-
RNN uses a DNN to approximate the parameter variation
with the intention to reduce the dimension of the time-
varying parameter vector requiered for a good model fit.
On a nonlinear system identification task, the proposed
model achieved the best fit with only one time-varying
parameter. Besides evaluating the proposed model on other
identification problems and conducting a thorough empirical
study regarding the choice of the activation functions, other
initialization procedures should also be considered or devel-
oped. Optimizing a recurrent model as a one-step-predictor
can still yield an unstable NOE-model, although this has not
happened in this case study. Instead, it might be beneficial
to capitalize on the structure of the proposed model, which
constrains the nonlinear part to act only on select parts

of the linear model. It might be possible to formulate the
initialization problem as a quadratic or nonlinear program,
that when solved guarantees a stable model.
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