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Abstract—The purpose of this paper is to present a model
architecture for the identification of affine linear parameter-
varying models in state-space (SS) form. A special case of
quasi-LPV identification problem, where the state is part of the
scheduling vector but not observed, is considered. In this case
the model is always recurrent in the states which demands for
an internal dynamics approach. The internal dynamics model
will be realized via a Recurrent Neural Network (RNN) with a
special structure that allows for transformation into an affine
qLPV representation. The proposed approach is based on a
structured RNN developed by Lachhab et al. [1]. The original
models structures is extended by so-called gates, neural network
structures which are responsible for the recent success of RNNs
on various areas of application in Machine Learning, such as
the Long short-term memory (LSTM) network [2] and the
Gated Recurrent Unit (GRU) [3]. Through the use of gates
the complexity of the models scheduling map and hence its
approximation capability is increased while preserving its affine
quasi-LPV structure. The performance of the proposed approach
is demonstrated by comparison with two other RNN-based
approaches on two nonlinear system identification benchmark
problems.

Index Terms—System Identification and Modeling; Machine
Learning; Nonlinear Systems; LPV

I. INTRODUCTION

The linear parameter varying (LPV) framework has proven
to be a suitable tool for the modeling and control of
highly complex nonlinear systems [4, 1]. Among all syn-
thesis approaches the polytopic approach is the most popu-
lar [5]. However, the polytopic synthesis approach requires
an affine/polytopic LPV-SS representation of the plant and
the implementation complexity of polytopic LPV controllers
grows exponentially with the dimension of the time-varying
parameters (also referred to as scheduling variables) [5].
Hence, there is a need for LPV representations with as little
time-varying parameters as possible. How to arrive at an affine
quasi-LPV (qLPV) description of a nonlinear plant is in itself
non-trivial. If a physical model is available, procedures for
automatically deriving an affine qLPV representation exist [6],
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but often result in a large number of scheduling variables. This
in turn necessitates the application of scheduling dimension
reduction (SDR) techniques, for which Deep Learning has
recently been applied [7]. Another approach is to identify an
affine qLPV-SS model directly from input-output data. Most
identification procedures either assume measurable states [8]
or full measurement of the scheduling vector [9]. Only few
identification methods allow the scheduling vector to depend
on unknown states: Verdult [10] proposes a variant of the
local linear approach where the weighting functions depend
on the unknown state. An RNN with a special strucutre was
developed in [11], later a systematic method for deriving an
affine qLPV representation was presented by [1]. In this paper
both approaches will be evaluated and based on the latter, a
deep RNN architecture for affine qLPV system identification
will be developed. The proposed deep RNN is potentially
capable to approximate nonlinear systems with fewer time-
varying parameters compared to the two other approaches,
which will be demonstrated on two case studies.

II. PRELIMINARIES

An LPV model is a model whose parameters depend on
a time-varying parameter vector, or scheduling vector, ρk ∈
Rnρ . A general LPV plant in SS representation can be written
as [

xk+1

yk

]
=

[
A(ρk) B(ρk)
C(ρk) D(ρk)

] [
xk
uk

]
(1)

with the state xk ∈ Rnx , input uk ∈ Rnu , output yk ∈ Rny

and matrix-valued functions A(ρk) : Rnρ → Rnx×nx , B(ρk) :
Rnρ → Rnx×nu , C(ρk) : Rnρ → Rny×nx , D(ρk) : Rnρ →
Rny×nu , which encode the system matrices dependence on
the scheduling vector ρk. The scheduling vector is a function
of φk, i.e. ρk = η (φk) with η : Rnφ → Rnρ being
the scheduling map. If φk contains only exogenous signals,
the system is referred to as pure LPV, and as quasi LPV
otherwise [5]. In the general form (1) the system matrices
can be arbitrary nonlinear functions of ρk, which makes
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controller synthesis difficult. Hence, usually models with affine
scheduling dependency are considered:[

xk+1

yk

]
=

([
A0 B0

C0 D0

]
+

nρ∑
i=1

ρik

[
Ai Bi

Ci Di

])[
xk
uk

]
(2)

with ρk = col(ρ1k, . . . , ρ
nρ
k ). In the following, the scheduling

map η(φk) is assumed to be unknown and depend on the
input as well as the unknown state, i.e. φk = col(xk,uk).

III. RNN-BASED IDENTIFICATION METHODS FOR AFFINE
QLPV SYSTEMS WITH SCHEDULING ON UNKNOWN STATES

If the states were observed, the LPV identification problem
would amount to a simple regression problem. If not, the
model is recurrent in the unknown states. Some identification
approaches break the recurrence by first estimating a state se-
quence and then solving the resulting non-recurrent regression
problem, e.g. [9, 12]. However, in these works the estimation
of a state sequence relies on knowledge of ρk. If ρk itself
is assumed to depend on the unknown state, the model can
only be trained in the so-called parallel configuration. This
corresponds to identifying a nonlinear output error (NOE)
model [13].

In this section two RNN-based approaches for affine qLPV
identification which allow for scheduling with unknown states
are shortly revisited and their major advantages and short-
comings are pointed out. Based on this analysis a RNN that
alleviates some of the identified shortcomings is proposed.

A. Radial Basis Function Recurrent Neural Network (RBF-
RNN)

The approach of approximating nonlinear systems via a
weighted combination of local linear models has been success-
fully applied in countless engineering applications, see [10]
and the references therein. A local linear SS model can be
written as [

xk+1

yk

]
=

np∑
i=1

pi(φk)

[
Ai Bi

Ci Di

] [
xk
uk

]
(3)

with Ai ∈ Rnx×nx , Bi ∈ Rnx×nu , Ci ∈ Rny×nx and
Di ∈ Rny×nu . pi : Rnφ → R are weighting functions of
the local models. The model (3) is similar to the widely used
Takagi-Sugeno (TS) fuzzy model, where the weighting func-
tions are interpreted as fuzzy membership functions. It should
be pointed out, that in this setting (3) can only be identified
using global identification methods due to scheduling with the
unknown state. This also implies that the local models can in
general not be interpreted as local linearizations. It is common
to define pi as normalized radial basis functions (RBF) with
centers ci and widths wi.

pi =
e−(φk−ci)

T diag(wi)(φk−ci)

nθ∑
i=1

e−(φk−ci)
T diag(wi)(φk−ci)

. (4)

Then (3) can also be considered as an RNN with a special
structure and normalized RBFs as activation functions. Defin-
ing the weighting functions pi as scheduling variables ρi,

one arrives at an affine qLPV representation. The local linear
approach has been shown to be a universal approximator and
can be sensibly initialized: By initializing all local models
as a globally identified linear model the initial nonlinear
model is identical to the linear model [10]. However, due to
the relatively rigid scheduling map many local models, i.e.
scheduling variables, might be necessary for modeling highly
nonlinear systems. Also the number of model parameters
scales badly with dim(θk), since increasing dim(θk) by one
corresponds to adding a fully parameterized linear SS model.

B. Structured RNN (S-RNN) for affine qLPV system identifi-
cation

The model equations of the S-RNN for affine qLPV iden-
tification developed by Lachhab et al. [1] are given by

xk+1 = Axk +Buk +A1f1 (E1xk) +B1f2 (E2uk)

yk = Cxk +C1f3 (E3xk)
(5)

with A ∈ Rnx×nx , B ∈ Rnx×nu , A1 ∈ Rnx×nθ1 , B1 ∈
Rnx×nθ2 , E1 ∈ Rnθ1×nx , E2 ∈ Rnθ2×nu , C ∈ Rny×nx ,
C1 ∈ Rnx×nθ3 , E3 ∈ Rnθ3×nx , f1 : Rnθ1 → Rnθ1 ,
f2 : Rnθ2 → Rnθ2 and f3 : Rnθ3 → Rnθ3 . f1, f2 and
f3 are nonlinear activation functions, which cannot be chosen
arbitrarily, as will be shown in the following. In order to
rewrite the model (5) in affine qLPV representation, the time-
varying parameters θk have to be defined as

[ρ1]i = η1 (φ1) =
f1 (e1,ix)

e1,ix
, i = 1, . . . , nθ1

[ρ2]i = η2 (φ2) =
f2 (e2,iu)

e2,iu
, i = 1, . . . , nθ2

[ρ3]i = η3 (φ3) =
f3 (e3,ix)

e3,ix
, i = 1, . . . , nθ3

(6)

ej,i denotes the i-th row of the matrix Ej . With these
definitions, (5) can be rewritten in affine qLPV form:

xk+1 =

(
A+

nθ1∑
i=1

A1e1,i
[
ρ1,k

]
i

)
xk+(

B +

nθ2∑
i=1

B1e2,i
[
ρ2,k

]
i

)
uk

yk =

(
C +

nθ3∑
i=1

C1e3,i
[
ρ3,k

]
i

)
xk

(7)

Compared to the local linear approach (5) distinguishes be-
tween three sets of scheduling variables ρj . This adds some
flexibility, albeit at the cost of increasing the number of
scheduling variables. (5) also scales better in terms of the
number of model parameters: Increasing dim (ρ1), dim (ρ2)
or dim (ρ3) amounts to merely adding 2nx, nx+nu or ny+nx
model parameters, respectively. Also stability conditions can
be derived, which to the authors best knowledge is not possible
for the general local linear approach [10]. However, the
definition of the scheduling maps in (6) is very restrictive and
causes some problems. The division by f j’s argument, which
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is necessary to preserve the models equivalence to an affine
qLPV representation, causes discontinuities at

lim
φj→0

[
ρj
]
i
,∀j, i.

These discontinuities are only removable, if the denominators
in (6) approach zero, i.e. f j(0) = 0. This can be verified
via L’Hospital’s Rule. Choices for f1,2,3 are thus restricted
to activation functions crossing the origin. The omission of
the bias and the division by f j’s own argument severely
restricts the scheduling maps that can be represented by (6):
A linear activation function results in ρi = 1 ∀ i , i.e. an
LTI model. A ReLU activation results in ρi being either zero
or one ρi ∈ {0, 1}0 ∀ i. This may remind of a piecewise
linear approximation (PWA). The difference is, that in this
case more than one ρi can be active for a given φi. A tanh-
activation results in all ρi becoming radial basis functions
(RBF) with different widths, but centered at the origin due
to the omission of a bias. In contrast to the RBF-RNN, the
time-varying parameters are not normalized, i.e.

∑nρ
i=1 6= 1.

Finally, ρj depend on different quantities φj , e.g. the input
matrix can not be scheduled on the state, which is a serious
limitation.

IV. GATED-RNN (G-RNN) FOR AFFINE QLPV SYSTEM
IDENTIFICATION

The goal is to modify the structure of the S-RNN (5) to
achieve a more flexible scheduling map, while preserving
the S-RNN’s equivalence to an affine qLPV representation,
its good scaling behavior and the stability results. To this
end, so-called gates, neural network structures found in Gated
Units such as the LSTM and the GRU, are integrated into the
S-RNN. Gates typically consist of two single-layered NNs,
where the output of one layer is multiplied element-wise by
the activation of the other NN. While gates foremost serve the
purpose of alleviating the vanishing gradient problem in RNNs
[14], they have also shown to increase the capability to ap-
proximate quite complex nonlinear functions with comparably
few parameters due to the superposition of different activation
functions [15] and mitigate the initialization dependence of
RNNs [16]. The proposed gated RNN (G-RNN) is depicted in
Fig. 1 and follows the equation

xk+1 =Axk +Buk +A1NN 1(xk,uk) ◦ f1 (E1xk)

+B1NN 2(xk,uk) ◦ f2 (E2uk)

yk =Cxk +C1NN 3(xk,uk) ◦ f3 (E3xk)

(8)

The output of each nonlinear layer is now multiplied element-
wise with the output of a NN NN j . The scheduling maps
ρj = ηj(xk,uk) are defined as

[ρ1]i = [NN 1(x,u)]i
f1 (e1,ix)

e1,ix
, i = 1, . . . , nθ1

[ρ2]i = [NN 2(x,u)]i
f2 (e2,iu)

e2,iu
, i = 1, . . . , nθ2

[ρ3]i = [NN 3(x,u)]i
f3 (e3,ix)

e3,ix
, i = 1, . . . , nθ3

(9)

A

E1

xk

A1

NN 1

C

q−1

uk

E2 B1

NN 2

B

xk+1
q−1

E3 C1

yk

f1

f2
f3

NN 3

Fig. 1: Structured RNN with gates for affine qLPV system
identification.

With these definitions the model (8) can be written as in (7).
Application of L’Hospital’s rule yields

lim
x,u→0

[ρj ]i = NN j (x = 0,u = 0) j = 1, 2, 3. (10)

I.e. the discontinuities are removable, as long as NN j (0,0)
exists. This is always the case for a feed-forward NN with
bounded activation functions. Besides that, there are no pre-
requisites regarding NN j . In particular arbitrary activation
functions, biases and any number of layers are admissible.
The proposed model also allows scheduling of all SS matrices
with the input as well as the unknown state. I.e. (9) is much
less restrictive than (7) and hence able to represent a wider
range of scheduling maps. Additionally, the G-RNN offers
the possibility to increase the approximation capability of
the model by adding neurons and/or layers to NN j , rather
than increasing the number of scheduling variables, as is
the case with RBF-RNN. This reduces the complexity of
the subsequent controller synthesis and implementation step.
For these reasons the proposed model structure can offer an
advantage in the identification of control-oriented affine qLPV
models.

V. CASE STUDIES

The proposed model structure for quasi LPV system identi-
fication will be evaluated on two case studies by comparison.

A. Silver Box

The Silver Box [17] is an electrical circuit mimicking the
behavior of a nonlinear mechanical resonating system with
moving mass m, viscous damping d and nonlinear spring k(y):

mÿ + dẏ + k(y)y = u.

The nonlinear position-dependent spring follows the equation

k(y) = a+ by2. (11)

The Silver Box was chosen, because it is widely used as
benchmark for nonlinear system identification [18] and can
be transformed into an affine qLPV representation. Therefore
it is possible to gain some notion regarding the parameter
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tFig. 2: Multisine signal with Schroeder phases (top) with

corresponding system response ( ) used for model testing and
simulated response of the identified linear subspace model ( )
with 46 % BFR (bottom).

variation, that has to be learned by the RNNs. A affine qLPV
representation of the Silver Box is[
ẋ1
ẋ2

]
=

([
0 1
− a
m − d

m

]
+ ρ

[
0 0
− b
m 0

])[
x1
x2

]
+

[
0
1

]
u (12)

with
ρ = −x21. (13)

Available data were centered and subsequently divided into
training, validation and test data in the following manner: One
period of a multisine signal with 1342 excited odd harmonics,
maximal frequency fmax ≈ 200 Hz and phases distributed
uniformly at random in [0, 2π) was used for parameter estima-
tion. The validation signal is white gaussian noise with linearly
increasing amplitude. A multisine with Schrœder phases and
the corresponding system response, which is partly shown in
Fig. 2, was chosen as test signal. The measured data can be
considered virtually noise-free.

B. Bioreactor

A simplified bioreactor model (14) was used as a bench-
mark for nonlinear system identification and control numerous
times, see e.g. [10].

ẋ1 = −x1u+ x1(1− x2)ex2/γ

ẋ2 = −x2u+ x1(1− x2)ex2/γ
1 + β

1 + β − x2
y = x1

(14)

An exemplary straightforward affine qLPV representation of
this plant would have four scheduling variables with ρ1 = x1,
ρ2 = x2, ρ3 = (1 − x2)ex2/γ and ρ4 = ρ3(1 + β)/(1 +
β − x2). The main challenge of this benchmark are the
severe nonlinearity and that scheduling with an unobserved
state has to be learned. In accordance with common practice
parameters were set to β = 0.02 and γ = 0.48, the system
was simulated using the forward Euler method with a step

Fig. 3: APRBS signal (top) with corresponding system re-
sponse ( ) used for model testing and simulated response
of the identified linear subspace model ( ) with 0 % BFR
(bottom).

size of h = 0.01 and resulting data were downsampled
by a factor of 50. Respectively one data set for training,
validation and testing were generated by exciting the system
with an Amplitude Modulated Pseudo Binary Random Signal
(APRBS). Amplitudes were distributed uniformly at random
in [0,0.7], holding times were distributed uniformly at random
in [1250,2500]. The signals were designed to prevent pushing
the reactor outside the stable region around the equilibrium
xe = [0.107, 1]T , which was also chosen as the initial state
for all experiments. Fig. 3 shows the first half of the test data
set. No noise was added to the simulated system response, so
theoretically a perfect model fit is achievable.

VI. IDENTIFICATION PROCEDURE AND RESULTS

Linear subspace models were identified using the Matlab®

implementation of the N4SID-Algorithm. The parameters of
the linear model were used to initialize the appropriate parts
of the nonlinear models. The remaining parameters were
initialized by drawing from a normal random distribution,
except for the matrices A1, B1 and C1 of the S-RNN (5)
and G-RNN (8). These are required to have a small gain in
order for the nonlinear disturbance to be as small as possible
and ensure an initially stable model. ci in (3) were determined
from a uniform random distribution over the range of φ
observed during the simulation of the linear model on the
training data.

Implementation and gradient-based optimization of all mod-
els was performed using CasADi [19] and Ipopt [20]. Each
model configuration was initialized 10 times. The optimization
procedure was stopped after convergence or a maximum of
1000 iterations. The performance of each model configuration
is measured in terms of the Best Fit Rate (BFR) on the test
data. The BFR corresponds to the coefficient of determination,
but can only take on positive values:

BFR = 100% ·max

(
1− ‖yk − ŷk‖2

‖yk − ȳ‖2
, 0

)
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posed G-RNN ( ) depending on dim(θk) on the Silver Box
benchmark.

The BFR of the linear subspace model of the Silver Box was
99 % on the training data, but only and 46% on the test
data, see Fig. 2. Likewise the BFR for the linear model of
the Bioreactor was 64 % on the training data, but 0 % on the
test data, see Fig. 3.

Since the input and output matrix of the Silver Box are
time invariant ρ2 and ρ3 are omitted in (5) and (8), i.e.
ρ = ρ1. NN 1 was designed as a single layer NN with
logistic activation functions. Results are summarized in Fig.
4. Since the RBF-RNN with one scheduling variable amounts
to a linear model, its performance is equal to the initial linear
model. Increasing the number of scheduling variables beyond
two, for which the model converges to an almost perfect
solution each time, adds unnecessary complexity to the model
which impedes convergence to a good local optimum. The S-
RNN is, in contrast to the RBF-RNN, able to represent non-
linear behavior with a single scheduling variable. Due to the
circumstance that the actual parameter variation of the plant,
an inverted centered parabola (13), fits the scheduling map
assumed by the model quite well, a centered RBF if tanh is
used as activation in (6), the S-RNN achieves an almost perfect
fit with only one scheduling variable. However, increasing the
number of scheduling variables also hinders convergence to
good local optima. The proposed G-RNN on the other hand
exhibits exceptional convergence behavior: Out of a total of 50
identified G-RNNs, each had a BFR above 99 %, irrespective
of the number of scheduling variables. The property of RNNs
with gates to be less sensitive to initialization and choice of
hyperparameters has been observed several times, but is still
subject of research. Simulation results of the best models are
shown in Fig. 5. All three models approximate the plant almost
perfectly. At very high amplitudes the simulation error of the
G-RNN is slightly higher, a sign that the progressive stiffness
of the spring has not been approximated as well. The output
map of the Bioreactor (14) is time invariant, therefore dim(θ3)
was omitted in (5) and (8). I.e. θ = [θ1,θ2]. To enable a
fair comparison to the local linear RBF-RNN and present the
results in a compact manner, dim(θ1) was chosen to be equal
to dim(θ2). NN 1 was chosen to be a two-layered neural
network with 5 neurons (tanh-activation) in the hidden layer.
NN 2 is a single layer NN with logistic activation. Results

Fig. 5: Top: System response ( ) and simulated responses of
RBF-RNN ( ) with dim(θ) = 3, S-RNN with dim(θ1) = 3
( ) and G-RNN ( ) with dim(θ1) = 1. Bottom: Simulation
error.

Fig. 6: BFR in % of RBF-RNN ( ), S-RNN ( ), and proposed
G-RNN ( ) depending on dim(θk) Bioreactor benchmark.

are summarized in Fig. 6. The S-RNN fails to find an affine
qLPV representation that describes the input-output behavior
of the bioreactor with a reasonable number of scheduling
variables. Contributing factors are the input entering the state
equation of the plant in a nonlinear state-dependent way,
which cannot be represented by (6). Also the scheduling
maps (6) essentially amount to centered RBFs, which are
not suitable to approximate the exponential nonlinearity. Only
with a large number of scheduling variables is the S-RNN
capable to find an appropriate qLPV representation of the
plant. Both the RBF-RNN and G-RNN exhibit high variance in
model performance, which reflects the difficulty fo find a good
local optimum. However, the proposed G-RNN consistently
produces the model with the best fit for any number of
scheduling variables. The best identified model is a G-RNN
with only two time varying parameters and a BFR of 97 %.
Simulation results are shown in Fig. 7. Clearly all models
struggle to some extent with the two large downwards steps
at k ≈ 100 and k ≈ 450. However, while the S-RNNs and
the RBF-RNNs simulated responses are considerably off, the
proposed G-RNN produces a perfect response for the first step
and is also reasonable close to the true response for the second
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RBF-RNN ( ) with dim(θ) = 2, S-RNN ( ) with dim(θ) =
8 and G-RNN ( ) with dim(θ) = 2. Bottom: Simulation
error.

step.

VII. CONCLUSION & OUTLOOK

A (Deep) RNN for affine qLPV identification with schedul-
ing on unknown states was proposed. The proposed RNN
achieves a better model fit than comparable approaches with
fewer time-varying parameters, which is beneficial for sub-
sequent LPV controller synthesis and implementation. For
future research, a systematic way for initializing the nonlinear
part of the model should be derived and compared to ex-
isting initialization procedures for (Deep) NN. Additionally,
a systematic and computationally feasible way for model
structure selection, especially with respect to the introduced
feed-forward NNs, must be presented to make the procedure
applicable for practitioners. Finally, the training procedure
assumes the output is disturbed by white measurement noise.
In case of correlated noise different identification methods that
take into account the correlation of the noise are needed, e.g.
see [10].
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