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Abstract—Recurrent Neural Networks (RNNs) are an internal
dynamics approach to identify models from time series data.
They have been successfully applied, e.g. in natural language,
speech and video processing [1] and the identification of nonlinear
state space models [2]. Conventional RNNs, such as the Elman-
RNN, are notoriously hard to optimize, since they are highly
initialization dependent, prone to slow convergence, and tend
to converge to poor local minima. In recent years, the vanish-
ing/exploding gradient phenomenon, which arises when employing
gradient-based optimization techniques such as Backpropagation
Through Time (BPTT), has been identified as the root cause of
these difficulties. This led to the development of several new RNN-
architectures, such as the Long Short-Term Memory (LSTM) and
the Gated Recurrent Unit (GRU), which were intended to pre-
vent the vanishing-gradient problem and surpassed conventional
RNNs in all areas of application. However, it has been shown
that the gradient also vanishes in Gated Units [3] and there is
no work showing, that the rate of decay is lower than in Elman-
RNN. This suggests that the underlying mechanisms responsible
for their success are at least in part not yet fully understood. The
purpose of this paper is to provide an alternative explanation for
the superior performance of Gated Units by viewing them as
nonlinear dynamical systems and studying the stability of their
fixed points. This work expands on the work of Doya et al. [4]
and Pascanu et al. [5], who studied the effects of bifurcation
boundaries in the parameter space of Elman-RNNs with one
internal state on gradient-based learning.

Index Terms—RNN, LSTM, GRU, bifurcations, nonlinear dy-
namics

I. INTRODUCTION

The training of recurrent model structures, such as
Elman-RNNs, is a notoriously hard optimization problem.
The vanishing/exploding-gradient phenomenon caused by the
nested application of a single recurrent activation function
and its weights has been identified as the root-cause of
these difficulties [QUELLE]. This lead to the development of
recurrent model structures trying to avoid the nesting as far
as possible, most prominently the LSTM [6] and GRU [7].
More recent work by v. d. Westhuizen and Lasenby [8] has
empirically shown that the forget gate, one of four gates in

the LSTM, is solely responsible for its superior performance
over the Elman-RNN. The forget gate is however precisely
the part in the LSTM network, that causes its internal state
to vanish, and therefore also the gradient during BPTT. This
clearly contradicts the hypothesis, that Gated Units are easier
to train because they solve the vanishing-gradient problem.
An alternative explanation for the difficulty of training Elman-
RNN was provided by Pascanu [5]. By viewing Elman-RNNs
as nonlinear dynamical discrete-time systems

xk+1 = f (xk;θ) (1)

with internal state xk and system parameters θ, it was shown
that bifurcation boundaries exist in the parameter-space of the
Elman-RNN. When crossing these boundaries, the dynamics
of the Elman-RNN change completely, which is associated
with a large local gradient. If bifurcation boundaries are en-
countered during gradient-based optimization, the large local
gradient will disturb the training process. Unfortunately, these
bifurcation boundaries are located in a domain of the param-
eter space of the Elman-RNN, where parameters are typically
initialized. Crossing them during training is therefore highly
likely. As will be shown in this paper, bifurcation boundaries
also exist in Gated Units. Depending on the parameterization
of the forget gate, these boundaries are however pushed outside
of the domain where parameters are typically initialized,
making them less likely to become a problem during train-
ing. The paper is organized as follows: First codimension-1
bifurcations [9], simply denoted as bifurcations from here on,
and their necessary conditions are introduced. Secondly, the
analysis of bifurcations in Elman-RNNs conducted in [5] will
be expanded on by not only considering networks with one
state but also with two states and by considering bifurcations
with regard to all network parameters, not only the biases.
Subsequently, the LSTM and its forget gate only version,
denoted Gated Unit (GU), will be introduced. It will be shown
that the parameterization of the forget gate determines the
location of the bifurcation boundaries of the GU and that the
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bifurcation boundaries of Elman-RNN and GU are identical
for the limit case of a fully closed forget gate. From this
analysis it can then be concluded, that (at least for reasonable
parameterizations of the forget gate) the bifurcation boundaries
of Gated Units are located so far from the origin of the
parameter space, that are very unlikely to disturb the training
process.

II. RELATED WORK

The existence of codimension-1 bifurcations in Elman-
RNN and their potentially problematic implications were
acknowledged by Doya et al. [4] without analyzing where
bifurcations occur in the parameter space. The matter was
elaborated on by Pascanu et al. [5], who showed that locally
large gradients exist in the parameter space of the Elman-
RNN by example. A more systematic treatment of bifurcation
boundaries in RNN was conducted by Haschke and Steil [9].
As opposed to the other works, the input to the RNN and
not its parameters were treated as the bifurcation parameter.
Marichal et al. [10] studied fold bifurcations in Elman-RNNs
with two internal states, period-doubling bifurcations were not
considered. To the best of the authors knowledge there is no
work encompassing an analysis of all types of codimension-
1 bifurcations in Elman-RNNs as well as Gated Units. Also
the superior performance of Gated Units compared to Elman-
RNNs has never been linked to their difference regarding the
location or existence of bifurcation boundaries.

III. CODIMENSION-1 BIFURCATIONS

Naturally, the behaviour of a dynamic system like a RNN
changes depending on its parameters θ, i.e. its weights and
biases. Usually, an infinitesimal change in the systems param-
eters leads to an infinitesimal change in its dynamic behaviour.
This is however not true at a bifurcation point, which is
a set of critical parameters θcrit that marks the transition
between qualitatively different dynamic behaviors, i.e. from
a stable to an unstable system. In this case, an infinitesimal
change in the system parameters will lead to fundamentally
different dynamics. Such bifurcation points form manifolds
in the parameter space, i.e. bifurcation boundaries, which
separate qualitatively different dynamic behaviors [9]. These
bifurcation boundaries have been identified by [5] to be
detrimental for gradient-based parameter optimization. Since
fundamentally different dynamics will usually lead to vastly
different values of the loss function, bifurcation boundaries are
usually associated with high local gradients. Encountering a
bifurcation boundary during optimization can therefore throw
the optimizer off course, since the magnitude of the update is
proportional to the gradient.

Local bifurcations occur, when a change in the system
parameters causes the stability of an equilibrium or fixed point
xF to change. A local codimension-1 bifurcation of a fixed
point xF is defined by the fixed point condition

xF = f (xF;θ) (2)

TABLE I: Codimension-1 fixed point bifurcation types and
necessary eigenvalue conditions

eigenvalue bifurcation
type

defintion

λi = +1 Fold Change in system’s parameters leads to
sudden creation of a pair of fixed points

λi = −1 Period-
doubling

Change in system’s parameters causes a
periodic trajectory, in cases analysed in the
following with period two, to emerge

λi,i+1 = e±jω Neimark-
Sacker

Change in system’s parameters cause a
fixed point to loose its stability and a
periodic solution arises

and an additional condition on the eigenvalues λi of the
Jacobian evaluated at xF.

J (x) =
∂f (x;θ)

∂x

∣∣∣∣
xF

(3)

A bifurcation occurs, i.e. θ = θcrit, if the eigenvalues of
J (xF) leave the unit circle due to variation of θ. Depending
on where the eigenvalues cross the unit circle, three different
types of bifurcations can be distinguished, see Tbl. I.

IV. BIFURCATION BOUNDARIES IN ELMAN-RNN
The Elman-RNN, as depicted in Fig. 1, is a straightforward

realization of a discrete time nonlinear state space model:

xk+1 = tanh (W cxk +W uuk + bc) (4)

The internal dynamics are realized via a single layer of nx
recurrent neurons that map the input uk ∈ Rnu and the
internal state from the previous time step xk ∈ Rnx to the next
internal state xk+1. Nonlinear behaviour is realized via tanh-
activation functions fh : Rnx → Rnx . The model parameters
are W c ∈ Rnx×nx , W u ∈ Rnx×nu and bh ∈ Rnx . Usually
a layer of feedforward neurons maps the internal state to the
output. This layer is omitted here, since it does not affect the
internal dynamics of the Elman-RNN, which are the subject
of investigation. Furthermore, the input uk does not affect the
location or stability of the fixed points xF of (4) and will
therefore be neglected, leading to the state equation of the
autonomous Elman-RNN:

xk+1 = tanh (W cxk + bc) (5)

According to (2) a fixed point xF of the Elman-RNN fulfils
the condition

xF = tanh (W cxF + bc) . (6)

The Jacobian JRNN(x) of the Elman-RNN (5) is

JRNN(x) = tanh′(·)W c (7)

with tanh′(·) = diag
(
1− tanh2 (W cx+ bc)

)
. By insert-

ing (6) in (7) this can be further simplified to

JRNN(xF) =

[
(1− x2F,1)wc,11 (1− x2F,1)wc,12

(1− x2F,2)wc,21 (1− x2F,2)wc,22

]
. (8)

In the following, bifurcations in Elman-RNNs with a single
internal state, i.e. dim (x) = 1 are studied. In this setting the
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Fig. 1: Elman-RNN: Layers of neurons are represented as
rectangles.

Fig. 2: Graphs of a 1d Elman-RNN’s state equation depending
on the recurrent weight wc. Fixed points are marked by filled
cirlces and their stability is indicated by arrows. Left: For wc ≤
−1 the RNN exhibits one unstable equilibrium at the origin
and a stable oscillation with period 2 (limit cycle). Middle:
For |wc| ≤ 1 the RNN exhibits one globally asymptotic stable
equilibrium at the origin. Right: For wc ≥ 1 the RNN exhibits
one unstable equilibrium at the origin and two stable equilibria.

parameter space is merely two dimensional, which enables
a visualization of the bifurcation boundaries. Afterwards the
analysis is extended to Elman-RNN with two internal states,
i.e. dim (x) = 2.

A. Bifurcation boundaries in 1d Elman-RNN

An Elman-RNN with a single internal state hase a two-
dimensional parameter space: θ = [wc, bc] with wc ∈ R and
bc ∈ R. To begin with, the bias bc is set to zero, i.e. bc = 0.
In this case the only fixed point is the origin of the state space
xF = 0 and the eigenvalue of the Jacobian amounts to

λ = wc (9)

which implies a fold bifurcation point at θfcrit = [1, 0]
and a period-doubling bifurcation point at θpdcrit = [−1, 0].
The dynamic behaviour of the Elman-RNN before and after
crossing either bifurcation point can be qualitatively assessed
by examining the graph of the r.h.s of its state equation (5),
which is shown in Fig. 2. The graph in the middle is repre-
sentative for all parameterizations |wc| ≤ 1, which produce
a system with a single stable fixed point at the origin. The
graph on the left resp. right shows the additional fixed points
created after crossing the period-doubling bifurcation point
θpdcrit = [−1, 0] resp. the fold bifurcation point θfcrit = [1, 0].
In the general case, i.e. bc 6= 0, the fixed point at the
origin is shifted to the left resp. right, which also affects
the critical values of wc,crit at which bifurcations occur. In
order to map out the bifurcation boundaries in the general
case, for a given parameterization θ = [wc, bc], the fixed
point is calculated by solving (6) numerically. By subsequently
calculating the eigenvalues of JRNN(xF) the stability of the

Fig. 3: Regions of qualitatively different behaviour of the
1d autonomous Elman-RNN with bc = 0: RNN has one
globally asymptotically stable equilibrium (|λ| ≤ 1), RNN
has three equilibria (λ > 1), RNN exhibits an oscillation
with period 2 (λ < 1).

Fig. 4: Steps taken by gradient-based optimization of an
Elman-RNN when initialized near a bifurcation point. Initial
parameters: wc,init = 1.02, bc,init = 0. Optimal parameters:
wc,opt ≈ 0.53, bc,opt ≈ 0

fixed point and hence the dynamical behavior of the Elman-
RNN can be evaluated. This can be seen in Fig. 3, which
shows the parameter space of the 1d Elman-RNN in the range
wc = [−2, 2], bc = [−2, 2] and its resulting dynamic behavior.
Three regions of qualitatively different dynamics can clearly be
distinguished, which are seperated by bifurcation boundaries.
In order to visualize the effect of bifurcation boundaries on
the local gradient and therefore their relevance in gradient-
based optimization, the gradient ∂x

∂θ and its norm
∣∣∂x
∂θ

∣∣ were
calculated. Fig. 5 shows that large gradients occur along the
bifurcation boundaries, while the gradients in the remainder
of the parameter space are rather small. Hitting a bifurcation
boundary during optimization can therefore result in being
thrown out into the low-gradient regions of the parameter
space from which it takes a large number of iterations to return.
This effect is shown in Fig. 4, which shows the optimization of
an Elman-RNN which was initialized near a bifurcation point
with vanilla gradient descent.

B. Bifurcation boundaries in 2d Elman-RNN

The parameter space of an Elman-RNN with two internal
states is six-dimensional with θ = [W c, bc], W c ∈ R2×2,
bc ∈ R2. A straighforward visualization of the bifurcation
boundaries as in the 1d case is therefore not possible.
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∂x(θi)
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(right) of a 1d Elman-RNN w.r.t. its parameters.

Fig. 6: Left: Regions of qualitatively different behaviour of
the 2d autonomous Elman-RNN with bc = 0: |λ1,2| ≤ 1:
one globally asymptotically stable equilibrium, λ1,2 =
ejω, |λ1,2| > 1: equilibrium is a periodic oscillation,
|λ1,2| > 1: fixed point lost stability in both directions of x,
(|λ1| ≤ 1 ∧ |λ2| > 1) ∨ (|λ1| ≤ 1 ∧ |λ2| > 1) fixed point lost
stability in at least one direction. Right: Eigenvalues of JRNN

depending on |W c| for tr(W c) = 0.

In the two-dimensional case the Elman-RNNs eigenvalues
of its Jacobian (7) evaluated at a fixed point xF are

λ1,2 =
tr(tanh′(·)W c)

2

±
√

tr(tanh′(·)W c)2

4
− |tanh′(·)| |W c|

(10)

| · | denotes the determinant of a matrix.
To begin with the bias is set to zero bc = 0 so one

can examine how the stability of the fixed point xF = 0
changes depending on W c. In this case tanh′(·) = I and
the eigenvalues of JRNN(xF) become:

λ1,2 =
tr(W c)

2
±

√
tr(W c)2

4
− |W c|. (11)

I.e. in this simplified case the eigenvalues of JRNN(0) can
be expressed in terms of the trace and determinant of the
weight matrix W c. By evaluating (11) at any point in
the [tr(W c), |W c|]-space the stability of the fixed-point xF

and therefore the dynamic behavior of the Elman-RNN can
be determined. Fig. 6 (left) shows which regions in the
[tr(W c), |W c|]-space result in which dynamic behavior by
color-coding. From Fig. 6 it is apparent, that the region in
the parameter space, which results in a single stable fixed
point, is relatively small, compared to the parameterizations

Fig. 7: Left: Regions of qualitatively different behavior of the
2d autonomous Elman-RNN with bc 6= 0. Right: Histogram
of parameterizations resulting in respective dynamic behavior.

that produce either limit-cycles (after crossing period-doubling
or Neimark-Sacker bifurcation points) or render the origin an
unstable equilibrium (after crossing fold bifurcation points).
This is clearly a shortcoming of the Elman-RNN: Most real-
world systems dynamics follow the law of a decaying internal
state that approaches a certain equilibrium, i.e. they are stable.
Systems that exhibit limit-cycles, on the other hand, are rather
rare. The fact that most parameterizations of the Elman-RNN
yield a model with dynamics that will only in very rare cases
match that of the target system is a clear case of model-system
mismatch. Also, the considered domain of the parameter space
is interspersed with bifurcation boundaries. If the model is
initialized in one dynamic regime but the optimium lies in
another, a bifurcation boundary has to be crossed. Due to
the large gradient associated with the bifurcation boundary,
it is conceivable that the optimizer takes a step so large, that
the regime containing the optimum is skipped entirely. This
supports the hypothesis, that bifurcation boundaries pose a
significant problem during gradient-based optimization.

In the general case, i.e. bc 6= 0, the fixed point in the
origin is shifted, which affects the eigenvalues of JRNN

and therefore the values of W c at which bifurcations occur.
Unfortunately, in this case a compact representation in terms
of the trace and determinant of W c is not possible since
tanh′(·) 6= I and therefore the product in the trace operator
cannot be seperated. Instead, a complete enumeration of the
parameter space θ was performed with all parameters varied
in the range [−1.6, 1.6] with an increment of 0.2 yielding a
total of approximately 24 · 106 different parameterization. For
each parameterization the fixed point and the corresponding
eigenvalues λ1,2 of JRNN(xF) were calculated and plotted in
the complex plane in order to evaluate the stability of the fixed
point. While this presentation does not allow to assess where in
the parameter space the bifurcation boundaries occur, it is still
possible to empirically evaluate how many of the examined
parameterizations produce a certain dynamic behavior. From
this can be concluded how large the corresponding areas in the
parameter space are. The eingenvalues in the complex plane
and a histogram of the occurences of the respective dynamics
are given in Fig. 7.

As can be seen from Fig. 7 a considerable portion (≈ 40%)
of the tested parameterizations lie outside of the globally
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Fig. 8: Long short-term memory (LSTM): Gates are depicted
as rectangles with their respective activation functions.

asymptotically stable domain.

V. BIFURCATION BOUNDARIES IN GATED UNITS

A. LSTM & GRU model structures

Gated Units, most notably the LSTM and GRU, are Recur-
rent Neural Networks whose architecture follows a different
design paradigma than Elman-RNNs. Since the vanishing
gradient, caused by the repeated mapping of the internal state
through a set of reccurent weights and a reccurent activation
function, was thought to be the root cause of the difficulties
associated with training Elman-RNNs, Gated Units update the
internal state in a different way that was intended to prevent
the gradient from vanishing. Instead of obtaining the updated
internal state by squashing the previous internal state through a
nonlinear activation function, Gated Units only allow additive
and multiplicative operations on the internal state through so
called gates, which are one-layered neural networks. Most
notable among all Gated Units is the LSTM, of which many
variants were proposed in the last decade. Its model equations
are given below and its structure is depicted in Fig. 8.

xk+1 = zk � xk + ik � tanh (W cx̃k + bc)

hk+1 = ok � tanh (xk+1)
(12)

with
zk = σ

(
W z ·

[
xT
k ,u

T
k

]T
+ bz

)
,

ik = σ
(
W i ·

[
xT
k ,u

T
k

]T
+ bi

)
,

ok = σ
(
W o ·

[
xT
k+1,u

T
k

]T
+ bo

)
,

(13)

with x̃k = f r � xk and W r,W z,W c ∈ Rnx×nx+nu ,
br, bz, bc ∈ Rnx and f r,f z,f c : Rnx → Rnx . σ (·) denotes
the logistic function.

While each gate is thought to have a certain purpose such as
protecting the internal state from irrelevant inputs or forgetting
information that has become irrelevant [6] there is no evidence
to support that these gates actually perform these tasks. In the
end, all gates are merely nonlinear functions of the internal
state and input, that together constitute the r.h.s of the state
equation. How easily and well this function can be adapted
to the system to be modeled will determine model fit. In fact,
research conducted in recent years showed that most of the

xk

σ

W c

1-

σ

W z

xk+1

uk

Fig. 9: Forget gate only version of the LSTM, denoted Gated
Unit (GU).

gates can be removed without compromising performance.
Of all things the forget gate zk was found to be essential
for the LSTMs performance, a fact that was not further
discussed by the authors [11]. A forget gate only version of
the LSTM even outperformed the original LSTM, having only
halve the number of parameters [8]. This result is somewhat
surprising: The LSTM was invented to prevent the gradient
from vanishing. The forget gate however is exactly the part of
the LSTM, which causes its gradient to vanish by multiplying
the internal states with the activations zk ∈ (0, 1) of logistic
neurons, see (12).

In the following, the forget gate only version of the LSTM
will be introduced. It will be shown, that the forget gate
modifies the r.h.s of the Gated Units state equation in a way,
that affects its bifurcation boundaries by shifting them away
from the center to the outside of the parameter space where
they are less likely to disturb the training process. Again, the
input uk does not change the location or stability of the fixed
points, since they depend only on the parameters, and will
therefore be neglected.

The state equation of the forget gate only version of the
LSTM is

xk+1 = zk � xk + (1− zk) · tanh (W c · xk + bc) . (14)

This RNN was named JANET in [8]. Since it is also identical
to a forget gate only version of the GRU [7] and therefore
representative for both LSTM and GRU, it will simply be
denoted Gated Unit (GU) from here on. The GU’s structure
is depicted in Fig. 9. The Jacobian JGU(x) is

JGU(x) = diag(x)Z ′(·)W z +Z(·) + tanh′(·)W c

+Z ′(·)tanh(·)W z +Z(·)tanh′(·)W c

(15)

with Z(·) = diag (z) and Z ′(·) = diag (z(1− z)).

B. 1d Gated Unit

A GU with one internal state has a four-dimensional pa-
rameter space with θ = [wc, bc, wz, bz] ∈ R4. To begin with,
the bias bc is set to zero, i.e. bc = 0. In this case xF = 0 is
again the only fixed point and JGU becomes

J(0) = (1− z (0))wc + z (0) (16)
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From (16) the conditions for the occurence of a fold or period-
doubling bifurcation can be derived. A fold bifurcation occurs
if

wc =
1− z (0)
1− z (0)

= 1,

which is identical to the Elman-RNN. However, the condition
for a period-doubling bifurcation becomes:

wc = −
1 + z (0)

1− z (0)
. (17)

Since z (0) = σ (bz) the occurence of a period doubling
bifurcation depends on the bias bz of the forget gate. This
condition states, that for increasing values of bz the recurrent
weight wc must assume exponentially increasing (negative)
values in order for a period-doubling bifurcation to occur, i.e.
the bifurcation boundary is shifted to the left in the parameter
space. This is aided by the fact, that it is common practice
to initialize the bias of the forget gate with large positive
values, e.g. 1 or 2 [12, 13]. This places the bifurcation at wc ∈
[−7,−15], which is so far to the left it is highly unlikely that it
will have any effect on the training process. This initialization
procedure is supposed to help learn long-term dependencies
by letting the internal state decay as slow as possible (which
corresponds to a slow vanishing of the gradient). In fact,
this practice increases the domain in the parameter space
that corresponds to a globally asymptotically stable dynamic
behavior while simultaneously decreasing the domains that
result in qualitatively different dynamic behaviour or at least
pushing them outside the relevant parameter domain. This is
desirable not only because bifurcations can be associated with
large gradients, but also because only very few real-world
systems have limit cycles, which is the dynamic behaviour
exhibited by the RNN/GU after crossing the period-doubling
bifurcation boundary.

In the general case, i.e. bz 6= 0, the origin is not a fixed
point. In order to enable a comparison between the bifurcation
boundaries of the 1d Elman-RNN and the 1d GU, the forget
gate weight was fixed to wz = 1 and the forget gate bias
was set to bz ∈ {−10,−1, 0}. With these values fixed (14)
was solved numerically for xF. By calculating JGU(xF) the
stability of the fixed point can be evaluated. This was done
for all possible parameterizations wc, bc ∈ [−2, 2] with an
increment of 0.001. Fig. 10, which shows how the bifurcation
boundaries of the GU are first identical to the Elman-RNN (see
Fig. 3). For increasing activations of the forget gate (realized
through the increasing bias bc) the period-doubling bifurcation
boundary is pushed to the left. For bz = 0 the bifurcation
boundary is already outside of the considered domain of the
parameter space.

C. 2d Gated Unit

The parameter space of a GU with two internal states has
twelve dimensions with θ = [W c, bc,W z, bz], W c,W z ∈
R2×2, bc, bz ∈ R2. In order to enable a direct comparison
with the results on the Elman-RNN, bc is set to zero, bc = 0,

Fig. 10: Regions of qualitatively different behaviour of the 1d
autonomous GU with bc = 0.

which again renders the origin a fixed point, i.e. xF = 0. This
simplifies (15) considerably:

JGU(xF = 0) = diag(
1

2
I) +W c +Z(0)W c. (18)

Calculating the eigenvalues of this expression yields

λ1,2=
tr((I−Z(0))W c+Z(0))

2

±
√

tr((I−Z(0))W c+Z(0))2

4
−|Z(0)+(I−Z(0))W c|.

(19)

From the equation above two conclusion can be drawn:
• The eigenvalues and therefore the bifurcation boundaries

of the Jacobians of Elman-RNN (11) and GRU (19) are
identical, if Z(0)→ 0.

• Only the bias bz of the forget gate influences the loca-
tion of the eigenvalues through Z(0) and therefore the
stability of the fixed point xF = 0.

In order to evaluate the influence of the forget gate on the
bifurcation-boundaries, Z(0) (which depends only on bz in
this case) was set to Z(0) ∈ {0·I, 0.5·I, 0.7·I, 1·I}. Then the
eigenvalues of JGU(0) can be expressed in terms of the trace
and determinant of the weight matrix W c. By evaluating (19)
at any point in the [tr(W c), |W c|]-space the stability of the
fixed-point xF = 0 and therefore the dynamic behavior of the
GU can be determined. Fig. 11 maps out the [tr(W c), |W c|]-
space by corresponding dynamic behavior. From Fig. 11 it can
be clearly seen, that for increasing values of bz the region in
the parameter space that produces a globally asymptotic stable
system increases significantly in size. This in effect pushes the
regions corresponding to qualitatively different dynamics so
far outside the parameter space, that they will likely never be
visited. This phenomenon explains, why Gated Units seem
to be less initialization dependent and easier to train than
Elman-RNN: It is very likely to initialize a Gated Unit in the
parameter space corresponding to globally asymptotic stable
dynamics and very unlikely to cross bifurcation boundaries
during optimization, since they lie in the outskirts of the
parameter space. From a dynamic viewpoint this means also,
that Gated Units are a simpler model approach than the Elman-
RNN, since they are practically incapable to represent the more
complicated dynamics of the Elman-RNN.

In the general case, i.e. bc 6= 0, the fixed point in the
origin is shifted, which affects the eigenvalues of JGU and
therefore the values of W c at which bifurcations occur. Again,
a compact representation of the bifurcation boundaries in terms
of the trace and determinant ofW c is not possible. Instead, the
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bz→−∞
Z(0) = 0 · I

(b) Z(0; bz = 0) = 0.5 · I

(c) Z(0; bz ≈ 1) = 0.75 · I

(d) lim
bz→∞

Z(0) = 1 · I

Fig. 11: Left: Regions of qualitatively different behaviour of
the 2d autonomous GU with bc = 0. Right: Eigenvalues of
JGU depending on |W c| for tr(W c) = 0.

forget gate weight matrix was set to W z = I and the forget
gate bias was set to bz ∈ {−1,0,1}. With these parameters
fixed, a complete enumeration of all possible combinations of
the remaining parameters [W c, bc] was performed. All param-
eters were varied in the range [−1.6, 1.6] with an increment
of 0.2 yielding a total of approximately 25 · 106 different
parameterizations. For each parameterization the fixed point
and corresponding eigenvalues λ1,2 of JGU(xF) were calcu-
lated and plotted in the complex plane in order to evaluate the
stability of the fixed point. The eingenvalues in the complex
plane and a histogram of the occurences of the respective

(a) bz = [−1,−1]T

(b) bz = [0, 0]T

(c) bz = [1, 1]T

Fig. 12: Regions of qualitatively different behaviour of the
2d autonomous GU with bc 6= 0. Right: Histogram of
parameterizations resulting in respective dynamic behavior.

dynamics are given in Fig. 12.
Fig. 12 shows that only about 12% of the considered

parameterizations lie outside of the globally asymptotically
stable domain. This is a drastic reduction compared to the
Elman-RNN, see Fig. 7 and supports and further generalizes
the previous findings made under the assumption bc = 0.

VI. IMPLICATIONS FOR INITIALIZATION

The purpose of these investigations was to map out the
most relevant region the parameter space of Recurrent Neural
Networks as detailed as possible. Therefore the parameter
space was sampled equidistantly throughout all experiments.
In practice, the choice of initialization procedure affects how
likely it is to land in a region associated with a certain
dynamic behavior. Fig. 13 shows determinant and trace of
W c drawn from a standard normal distribution (106 samples)
in a heat map. About 66 % of the sampled matrices would
have rendered an Elman-RNN (bc = 0) outside of the glob-
ally asymptotically stable domain. Although a comprehensive
investigation regarding the effect of different initialization
procedures was not part of this work, it might already disclose
a different approach to initializing Recurrent Neural Networks.
Instead of aiming at initializations that keep the gradient
constant, the goal could be to initialize the RNN in the domain



Draf
tFig. 13: Heat map of occurences of determinant and trace of

107 randomly sampled (W c) drawn from a standard normal
distribution. The white triangle marks the region of globally
asymptotically stable Elman-RNNs, compare Fig. 6.

of the parameter space that produces the same dynamics as the
system to be modeled.

VII. CONCLUSIONS

A comprehensive analysis of codimension-1 bifurcations in
Elman-RNNs and forget gate only Gated Units was conducted.
It was shown, that large domains in the parameter space of
the Elman-RNN correspond to very complicated nonlinear
dynamic behavior such as limit cycles, that are very rare
in real-world systems. Bifurcation boundaries, that mark the
transitions between domains of qualitatively different dynamic
behavior, are located at the very center of the Elman-RNNs
parameter space. These two drawbacks of the Elman-RNN,
i.e. large domains of the parameter space produce dynamic
behavior that is likely to be irrelevant for the modeling-task
at hand and these regions are seperated by very large local
gradients, are remedied by Gated Units such as the LSTM and
GRU. It is shown, that the forget gate pushes the bifurcation
boundaries and thereby the parameterizations that produce
the rather unwanted dynamics to the periperal regions of the
parameter space. This in turn almost guarantees that a Gated
Unit is a globally asymptotically stable system and makes
it very unlikely for the optimizer to encounter bifurcation
boundaries during gradient-based optimization. The findings in
this paper suggest, that Gated Units are not easier to train than
Elman-RNNs, because they solve the vanishing gradient prob-
lem. Instead, they are less sensitive to initialization, because
almost their entire parameter space produces a single dynamic
behavior. The existence of mainly one dynamic behavior also
means, that there are no infinitely high local gradients, i.e.
bifurcation boundaries, in the parameter space that could
disturb the training process. Lastly, Gated Units are a great
general model candidate because the one dynamic behaviour
that they do represent, is the one that most real-world systems
exhibit.
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