FEM-Übung

Schwache Form der Gleichgewichtsaussage und konsistente Knotenlasten (Musterlösung)

Aufgabe (i)

Die starke Form des Gleichgewichts ist gegeben durch

$$N'(x) + n(x) = 0. (1)$$

KASSEL

ERSITÄT

Die Elastizitätsbeziehung des Dehnstabs gibt den Zusammenhang zwischen den inneren Kräften N(x) und der elastischen Dehnung $\varepsilon_{\rm el}(x)$ an:

$$N(x) = EA\varepsilon_{\rm el}(x) \tag{2}$$

Die Gesamtdehnung $\varepsilon(x)$ setzt sich additiv aus einem elastischen $\varepsilon_{el}(x)$ und thermischen Anteil $\varepsilon_{th}(x)$ zusammen:

$$\varepsilon(x) = \varepsilon_{\rm el}(x) + \varepsilon_{\rm th}(x)$$
 (3)

Das Einsetzen der Gesamtdehnung nach Gl. (3) in die Elastizitätsbeziehung (2) liefert:

$$N(x) = EA\left[\varepsilon(x) - \varepsilon_{\rm th}(x)\right] . \tag{4}$$

Die thermischen Dehnungen $\varepsilon_{\rm th}(x)$ sind proportional zur Temperaturänderung T(x):

$$\varepsilon_{\rm th}(x) = \alpha_{\rm T} T(x) \ . \tag{5}$$

Das Einsetzen von Gl. (5) in Gl. (4) ergibt:

$$N(x) = EA\left[\varepsilon(x) - \alpha_{\rm T}T(x)\right] . \tag{6}$$

Der so erhaltene Zusammenhang aus Gl. (6) wird in das Gleichgewicht (1) eingesetzt:

$$\{EA\left[\varepsilon(x) - \alpha_{\rm T}T(x)\right]\}' + n(x) = 0 \tag{7}$$

$$EA\left[\varepsilon(x)\right]' - \left[EA\alpha_{\rm T}T(x)\right]' + n(x) = 0, \qquad (8)$$

wobei (.)' = d(.)/dx bezeichnet. Unter Verwendung der Kinematik

$$\varepsilon(x) = u'(x) \tag{9}$$

kann Gl. (8) reduziert werden auf:

$$EA[u'(x)]' - [EA\alpha_{\rm T}T(x)]' + n(x) = 0.$$
(10)

Weiteres Umformen von Gl. (10) führt auf:

$$EAu''(x) = EA\alpha_{\rm T}T'(x) - n(x) .$$
⁽¹¹⁾

Gl. (11) bezeichnet die Verschiebungsdifferentialgleichung des Dehnstabs unter Einwirkung mechanischer Kräfte und eines Temperaturfeldes. Sie ist eine lineare, inhomogene, gewöhnliche Differentialgleichung zweiter Ordnung.

Aufgabe (ii)

Zur Konstruktion der schwachen Form wird die Verschiebungsdifferentialgleichung (11) mit dem virtuellen Verschiebungsfeld $\delta u(x)$ multipliziert und über das Gebiet l integriert:

$$\int_{0}^{l} \delta u(x) \left\{ EA \left[u'(x) \right]' - \left[EA\alpha_{\rm T} T(x) \right]' + n(x) \right\} \, \mathrm{d}x = 0 \tag{12}$$

$$\int_{0}^{l} \delta u(x) \left[EAu'(x) \right]' \, \mathrm{d}x - \int_{0}^{l} \delta u(x) \left[EA\alpha_{\mathrm{T}}T(x) \right]' \, \mathrm{d}x + \int_{0}^{l} \delta u(x)n(x) \, \mathrm{d}x = 0$$
(13)

Der additive Zusammenhang zwischen den Dehnungen (3) und der Ansatz für die thermische Dehnung (5) führt von Gl. (13) auf:

$$\int_{0}^{l} \delta u(x) \left[EAu'_{\rm el}(x) \right]' \, \mathrm{d}x + \int_{0}^{l} \delta u(x) \left[EAu'_{\rm th} \right]' \, \mathrm{d}x + \\ - \int_{0}^{l} \delta u(x) \left[EAu'_{\rm th}(x) \right]' \, \mathrm{d}x + \int_{0}^{l} \delta u(x)n(x) \, \mathrm{d}x = 0$$
(14)

Die Terme, die aus der Temperaturbelastung resultieren, heben sich auf, sodass

$$\int_{0}^{l} \delta u(x) \left[EAu'_{\rm el}(x) \right]' \, \mathrm{d}x + \int_{0}^{l} \delta u(x) n(x) \, \mathrm{d}x = 0 \tag{15}$$

folgt. Die partielle Intgration des ersten Summanden

$$\int u'v = uv - \int uv' \tag{16}$$

 mit

$$u = [EAu'_{el}(x)] \qquad v = \delta u(x) \qquad u' = [EAu'_{el}(x)]' \qquad v' = \delta u'(x) \qquad (17)$$

führt auf

$$\int_{0}^{l} \delta u(x) \left[EAu'_{\rm el}(x) \right]' \, \mathrm{d}x = \left[\delta u(x) EAu'_{\rm el}(x) \right]_{x=0}^{x=l} - \int_{0}^{l} \delta u'(x) EAu'_{\rm el}(x) \, \mathrm{d}x \;. \tag{18}$$

UNIKASSEL VERSITÄT

Das Einsetzen des Integrationsergebnisses (18) in Gl. (15) ergibt:

$$-\int_{0}^{l} \delta u'(x) EAu'_{\rm el}(x) \,\mathrm{d}x + \left[\delta u(x) EAu'_{\rm el}(x)\right]_{x=0}^{x=l} + \int_{0}^{l} \delta u(x) n(x) \,\mathrm{d}x = 0 \ . \tag{19}$$

Der Zusammenhang (3) kann umgeformt werden zu

$$u'_{\rm el}(x) = u'(x) - u'_{\rm th}(x)$$
 (20)

Gl. (20) sowie der Zusammenhang zwischen den inneren Kräften und der elastischen Dehnung (2) werden in Gl. (19) eingesetzt:

$$-\int_{0}^{l} \delta u'(x) EA\left[u'(x) - u'_{\rm th}(x)\right] \,\mathrm{d}x + \left[\delta u(x)N(x)\right]_{x=0}^{x=l} + \int_{0}^{l} \delta u(x)n(x) \,\mathrm{d}x = 0 \;. \tag{21}$$

Weiteres Umformen von Gl. (21) liefert:

$$\int_{0}^{l} \delta u'(x) EAu'(x) \, \mathrm{d}x = \int_{0}^{l} \delta u'(x) EAu'_{\mathrm{th}}(x) \, \mathrm{d}x + \left[\delta u(x) P(x)\right]_{x=x_{p}} + \int_{0}^{l} \delta u(x) n(x) \, \mathrm{d}x \,, \qquad (22)$$

wobei die Normalkraft N den eingeprägten äußeren Kräften P an den Stellen $x = x_p$ entspricht. Gl. (22) stellt die irreduzible Verschiebungsgleichung in Variationsform für den Dehnstab mit Temperaturbelastung dar.

Nun werden Ansätze für das Verschiebungsfeld u(x) und virtuelle Verschiebungsfeld $\delta u(x)$ gemacht:

$$u(x) = \mathbf{N}(x)\mathbf{u}^{\mathbf{k}} \qquad \qquad \delta u(x) = \mathbf{N}(x)\delta\mathbf{u}^{\mathbf{k}} , \qquad (23)$$

wodurch sich für die Verzerrungsfelder

$$u'(x) = \mathbf{B}(x)\mathbf{u}^{\mathbf{k}} \qquad \qquad \delta u'(x) = \mathbf{B}(x)\delta\mathbf{u}^{\mathbf{k}} \tag{24}$$

ergibt. Dabei bezeichnen **N** die Formfunktionsmatrix zur Approximation des Verschiebungsfelds, **B** die Formfunktionsmatrix zur Approximation des Verzerrungsfelds und \mathbf{u}^{k} den Vektor der unbekannten Knotenverschiebungen. Die irreduzible Verschiebungsgleichung lautet somit in diskretisierter Form:

$$\sum_{i=1}^{nel} \delta \mathbf{u}^{\mathbf{k}^{\mathrm{T}}} \int_{0}^{l_{i}} \mathbf{B}^{\mathrm{T}}(x) EA\mathbf{B}(x) \, \mathrm{d}x \, \mathbf{u}^{\mathrm{k}} = \left[\delta \mathbf{u}^{\mathrm{k}^{\mathrm{T}}} \mathbf{N}^{\mathrm{T}}(x) \mathbf{P} \right]_{x=x_{p}} + \sum_{i=1}^{nel} \delta \mathbf{u}^{\mathrm{k}^{\mathrm{T}}} \int_{0}^{l_{i}} \mathbf{B}^{\mathrm{T}}(x) EA\alpha_{\mathrm{T}} T(x) \, \mathrm{d}x + \sum_{i=1}^{nel} \delta \mathbf{u}^{\mathrm{k}^{\mathrm{T}}} \int_{0}^{l_{i}} \mathbf{N}^{\mathrm{T}}(x) n(x) \, \mathrm{d}x \,.$$
(25)

Aufgabe (iii)

Da weder Einzelkräfte P noch Streckenlasten n(x) am Stab angreifen, wird die rechte Seite **P** ausschließlich durch den Temperaturbeitrag gebildet. Dass der Knoten (1) unverschieblich

gelagert ist, wird des Weiteren von Anfang an beim Aufstellen des Lastvektors berücksicht. Beides führt auf:

$$\mathbf{P} = \begin{cases} P_2 \\ P_3 \end{cases}$$
(26)

$$= \int_{0}^{l} \left\{ \begin{array}{l} B_2(x) E A \alpha_{\rm T} T(x) \\ B_3(x) E A \alpha_{\rm T} T(x) \end{array} \right\} \, \mathrm{d}x \; . \tag{27}$$

Der quadratische Verschiebungsansatz im Raum der Einheitskoordinate η lautet:

$$u^{\rm h}(\eta) = N_2(\eta)u_2^{\rm k} + N_3(\eta)u_3^{\rm k}$$
(28)

$$= \left(1 - \eta^2\right) u_2^{k} + \frac{1}{2}\eta \left(1 + \eta\right) u_3^{k} .$$
⁽²⁹⁾

Das Integral in Gl. (27) soll im Raum der Einheitskoordinate ausgewertet werden. Dazu muss

Abb. 1: (a) Formfunktion $N_2(\eta)$ (b) Formfunktion $N_3(\eta)$

bei der Ableitung der Formfunktionen die Kettenregel beachtet werden, d. h.

$$\hat{B}_2(\eta(x)) = \frac{\mathrm{d}N_2}{\mathrm{d}\eta} \frac{\mathrm{d}\eta}{\mathrm{d}x} \qquad \qquad \hat{B}_3(\eta(x)) = \frac{\mathrm{d}N_3}{\mathrm{d}\eta} \frac{\mathrm{d}\eta}{\mathrm{d}x} \tag{30}$$

Die Ableitung der Formfunktionen nach der natürlichen Koordinate ist:

$$\frac{\mathrm{d}N_2}{\mathrm{d}\eta} = -2\eta \qquad \qquad \frac{\mathrm{d}N_3}{\mathrm{d}\eta} = \frac{1}{2} + \eta \qquad (31)$$

Zur Berechnung des zweiten Faktors muss die Transformationsvorschrift zwischen dem Raum der physikalischen und natürlichen Koordinaten ermittelt werden. Die Transformation zwischen dem physikalischen Koordinatensystem x und dem Einheitskoordinatensystem η auf dem Intervall [-1, +1] ist gegeben durch den isoparametrischen Ansatz:

$$x(\eta) = \{N_2(\eta) \mid N_3(\eta)\} \begin{cases} x_2^k \\ x_3^k \end{cases}$$
(32)

$$= (1 - \eta^2)\frac{1}{2}l + \frac{1}{2}\eta(1 + \eta)l$$
(33)

$$=\frac{1}{2}l - \frac{1}{2}l\eta^{2} + \frac{1}{2}l\eta + \frac{1}{2}l\eta^{2}$$
(34)

$$=\frac{1}{2}l + \frac{1}{2}l\eta \tag{35}$$

$$= \frac{1}{2}l(1+\eta) \ . \tag{36}$$

Mit Gl. (36) kann die Ableitung d η /dx angegeben werden. Dazu wird zunächst x nach η abgeleitet:

V

$$\frac{\mathrm{d}x}{\mathrm{d}\eta} = \frac{l}{2} \;, \tag{37}$$

U N I K A S S E L

ERSITÄT

und anschließend die Inverse gebildet:

$$\frac{\mathrm{d}\eta}{\mathrm{d}x} = \left(\frac{\mathrm{d}x}{\mathrm{d}\eta}\right)^{-1} \tag{38}$$

$$=\frac{2}{l}.$$
 (39)

Mit Gl. (37) ist gleichzeitig auch die JACOBI-Matrix ${\bf J}:$

$$\mathbf{J} = \begin{bmatrix} \frac{\mathrm{d}x}{\mathrm{d}\eta} \end{bmatrix} \tag{40}$$

$$= \left[\frac{l}{2}\right] , \qquad (41)$$

wie auch ihre Determinante bekannt:

$$\det(\mathbf{J}) = \left| \left[\frac{\mathrm{d}x}{\mathrm{d}\eta} \right] \right| \tag{42}$$

$$=\frac{l}{2}.$$
 (43)

angegeben werden. Zuletzt muss auch der Verlauf des Temperaturfeldes in den Raum der Einheitskoordinate transformiert werden, wozu Gl. (36) verwendet wird:

$$\hat{T}(\eta(x)) = \frac{T_0}{l} \left(\frac{1}{2} l \left(1 + \eta \right) \right)$$
(44)

$$= \frac{T_0}{2} (1+\eta) \ . \tag{45}$$

Das Integral (27) wird in den Raum der Einheitskoordinate transformiert

$$\mathbf{P} = \int_{-1}^{+1} \left\{ \hat{B}_2(\eta) E A \alpha_{\mathrm{T}} \hat{T}(\eta) \\ \hat{B}_3(\eta) E A \alpha_{\mathrm{T}} \hat{T}(\eta) \right\} \det \mathbf{J} \,\mathrm{d}\eta \,\,. \tag{46}$$

Das Einsetzen aller benötigten Terme liefert rein formal

$$\mathbf{P} = \frac{EA\alpha_{\rm T}T_0}{2} \int_{-1}^{+1} \left\{ \frac{-2(\eta^2 + \eta)}{\eta^2 + \frac{3}{2}\eta + \frac{1}{2}} \right\} \,\mathrm{d}\eta \;. \tag{47}$$

Die Auswertung des Integrals in Gl. (47) soll mit der GAUSSschen Quadraturformel

$$\int_{-1}^{+1} \widetilde{\mathbf{P}}(\eta) \,\mathrm{d}\eta = \sum_{i=1}^{n_{\mathrm{int}}} \widetilde{\mathbf{P}}(\eta_i) w_i \;. \tag{48}$$

erfolgen. Im Integranden treten quadratische Polynome auf, was eine 2-Punkt GAUSS Quadratur erfordert:

$$\int_{-1}^{+1} \widetilde{\mathbf{P}}(\eta) \,\mathrm{d}\eta = \sum_{i=1}^{2} \widetilde{\mathbf{P}}(\eta_i) w_i \tag{49}$$

$$= \widetilde{\mathbf{P}}(\eta_1)w_1 + \widetilde{\mathbf{P}}(\eta_2)w_2 .$$
(50)

Die Stützstellen und Wichtungsfaktoren lauten wie folgt:

$$\eta_1 = -\frac{1}{\sqrt{3}}$$
 $w_1 = 1$ $\eta_2 = \frac{1}{\sqrt{3}}$ $w_2 = 1$. (51)

Die Auswertung der Integrale in Gl. (47) folgt somit:

$$\mathbf{P} = \frac{EA\alpha_{\rm T}T_0}{2} \begin{cases} -2\left[\left(-\frac{1}{\sqrt{3}}\right)^2 + \left(-\frac{1}{\sqrt{3}}\right) + \left(\frac{1}{\sqrt{3}}\right)^2 + \left(\frac{1}{\sqrt{3}}\right)\right] \\ \left[\left(-\frac{1}{\sqrt{3}}\right)^2 + \frac{3}{2}\left(-\frac{1}{\sqrt{3}}\right) + \frac{1}{2} + \left(\frac{1}{\sqrt{3}}\right)^2 + \frac{3}{2}\left(\frac{1}{\sqrt{3}}\right) + \frac{1}{2}\right] \end{cases}$$
(52)
$$= EA\alpha_{\rm T}T_0 \begin{cases} -\frac{2}{3} \\ +\frac{5}{6} \end{cases} .$$
(53)

Aufgabe (iv)

Zur Bestimmung der Knotenverschiebungen $u_2^{\bf k}$ und $u_3^{\bf k}$ muss die Steifigkeitsmatrix ${\bf K}$ ermittelt werden:

$$\mathbf{K} = \int_{0}^{l} \mathbf{B}^{\mathrm{T}}(x) E A \mathbf{B}(x) \,\mathrm{d}x \qquad \mathbf{K} \in \mathbb{R}^{2 \times 2} .$$
(54)

Auch diese Integrale werden wieder in den Raum der Einheitskoordinate transformiert:

$$\mathbf{K} = \int_{-1}^{+1} \hat{\mathbf{B}}^{\mathrm{T}}(\eta) E A \hat{\mathbf{B}}(\eta) \det \mathbf{J} \,\mathrm{d}\eta$$
(55)

Die Auswertung von Gl. (55) erfolgt, indem alle zuvor ermittelten Zusammenhänge eingesetzt werden:

$$\mathbf{K} = \int_{-1}^{+1} \left\{ \frac{\mathrm{d}N_2}{\mathrm{d}\eta} \frac{\mathrm{d}\eta}{\mathrm{d}x} \\ \frac{\mathrm{d}N_3}{\mathrm{d}\eta} \frac{\mathrm{d}\eta}{\mathrm{d}x} \right\} EA \left\{ \frac{\mathrm{d}N_2}{\mathrm{d}\eta} \frac{\mathrm{d}\eta}{\mathrm{d}x} \quad \frac{\mathrm{d}N_3}{\mathrm{d}\eta} \frac{\mathrm{d}\eta}{\mathrm{d}x} \right\} \det \mathbf{J} \,\mathrm{d}\eta \tag{56}$$

$$= EA \left(\frac{\mathrm{d}\eta}{\mathrm{d}x}\right)^2 \det \mathbf{J} \int_{-1}^{+1} \left\{ \frac{\mathrm{d}N_2}{\mathrm{d}\eta} \\ \frac{\mathrm{d}N_3}{\mathrm{d}\eta} \right\} \left\{ \frac{\mathrm{d}N_2}{\mathrm{d}\eta} \quad \frac{\mathrm{d}N_3}{\mathrm{d}\eta} \right\} \mathrm{d}\eta$$
(57)

U N I K A S S E L

VERSITÄT

$$= \frac{2EA}{l} \int_{-1}^{+1} \begin{bmatrix} 4\eta^2 & -\eta - 2\eta^2 \\ \text{sym.} & \eta^2 + \eta + \frac{1}{4} \end{bmatrix} d\eta$$
(59)

$$= \begin{bmatrix} K_{22} & K_{23} \\ \text{sym.} & K_{33} \end{bmatrix} .$$
(60)

Es treten wiederum Polynome vom Grad zwei im Integranden auf, wodurch wiederum die 2-Punkt GAUSS Quadratur verwendet wird:

$$\int_{-1}^{+1} \widetilde{\mathbf{K}}(\eta) \,\mathrm{d}\eta = \sum_{i=1}^{2} \widetilde{\mathbf{K}}(\eta_i) w_i \tag{61}$$

$$= \widetilde{\mathbf{K}}(\eta_1)w_1 + \widetilde{\mathbf{K}}(\eta_2)w_2 .$$
(62)

Somit ergibt sich:

$$K_{22} = \frac{8EA}{l} \left[\left(-\frac{1}{\sqrt{3}} \right)^2 + \left(\frac{1}{\sqrt{3}} \right)^2 \right]$$
(63)

$$=\frac{10}{3}\frac{EA}{l}$$
(64)

$$K_{33} = \frac{2EA}{l} \left[\left(-\frac{1}{\sqrt{3}} \right)^2 + \left(-\frac{1}{\sqrt{3}} \right) + \frac{1}{4} + \left(\frac{1}{\sqrt{3}} \right)^2 + \left(\frac{1}{\sqrt{3}} \right) + \frac{1}{4} \right]$$
(65)
7 EA

$$=\frac{7}{3}\frac{EA}{l}\tag{66}$$

$$K_{23} = \frac{2EA}{l} \left[-2\left(-\frac{1}{\sqrt{3}}\right)^2 - \left(-\frac{1}{\sqrt{3}}\right) - 2\left(\frac{1}{\sqrt{3}}\right)^2 - \left(\frac{1}{\sqrt{3}}\right) \right]$$
(67)

$$= -\frac{8}{3}\frac{EA}{l} , \qquad (68)$$

wodurch die Steifigkeitsmatrix zu

$$\mathbf{K} = \frac{EA}{l} \begin{bmatrix} \frac{16}{3} & -\frac{8}{3} \\ \text{sym.} & \frac{7}{3} \end{bmatrix}$$
(69)

folgt. Das resultierende lineare Gleichungssystem

$$\frac{EA}{l} \begin{bmatrix} \frac{16}{3} & -\frac{8}{3} \\ -\frac{8}{3} & \frac{7}{3} \end{bmatrix} \begin{Bmatrix} u_2^k \\ u_3^k \end{Bmatrix} = EA\alpha_T T_0 \begin{Bmatrix} -\frac{2}{3} \\ \frac{5}{6} \end{Bmatrix}$$
(70)

führt auf folgende Knotenverschiebungen:

$$u_3^{\mathbf{k}} = \frac{1}{2} \alpha_{\mathrm{T}} T_0 l \tag{71}$$

S I

KASSEL

Т 'А'

Т

$$u_2^{\rm k} = \frac{1}{8} \alpha_{\rm T} T_0 l \ . \tag{72}$$

Das Einsetzen der Knotenverschiebungen in den quadratischen Ansatz liefert das Verschiebungsfeld:

$$u^{\rm h}(\eta) = N_2(\eta)u_2^{\rm k} + N_3(\eta)u_3^{\rm k} \tag{73}$$

Ε

$$= \frac{1}{8} \left(1 - \eta^2 \right) \alpha_{\rm T} T_0 l + \frac{1}{4} \eta \left(1 + \eta \right) \alpha_{\rm T} T_0 l \ . \tag{74}$$

Der Verlauf ist in Abb. 2 dargestellt. Die Normalkraft N(x) folgt nach Gl. (6):

Abb. 2: Verschiebungsverlauf im Dehnstab

$$N(x) = EA(\varepsilon(x) - \varepsilon_{\rm th}(x)) \tag{75}$$

und wird in den Raum der natürlichen Koordinate transformiert:

$$\hat{N}(\eta) = EA(\hat{\varepsilon}(\eta) - \hat{\varepsilon}_{\rm th}(\eta)) .$$
(76)

Die Gesamtdehnung ergibt sich aus:

$$\hat{\varepsilon}(\eta) = B_2(\eta) \frac{\mathrm{d}\eta}{\mathrm{d}x} u_2^{\mathrm{k}} + B_3(\eta) \frac{\mathrm{d}\eta}{\mathrm{d}x} u_3^{\mathrm{k}} \tag{77}$$

Ε

$$= -\frac{4\eta}{l}u_2^{\mathbf{k}} + \left(\frac{1}{l} + \frac{2\eta}{l}\right)u_3^{\mathbf{k}}$$

$$\tag{78}$$

KASSEL

RSITÄT

$$= \frac{1}{2} \alpha_{\rm T} T_0 \left(1 + \eta \right) \ . \tag{79}$$

Die thermische Dehnung folgt zu:

$$\hat{\varepsilon}_{\rm th}(\eta) = \frac{\alpha_{\rm T} T_0}{2} \left(1 + \eta\right) \ . \tag{80}$$

Das Einsetzen beider Dehnungen in Gl. (76) liefert:

$$\hat{N}(\eta) = EA\left(\frac{1}{2}\alpha_{\rm T}T_0\left(1+\eta\right) - \frac{\alpha_{\rm T}T_0}{2}\left(1+\eta\right)\right)$$
(81)

$$= 0$$
 . (82)

Aufgabe (v)

Die numerische Lösung reduziert sich durch die beidseitige Lagerung auf eine skalare Gleichung:

$$\frac{EA}{l}\frac{16}{3}u_2^{\rm k} = -\frac{2}{3}EA\alpha_T T_0 , \qquad (83)$$

wodurch sich die unbekannte Knotenverschiebung ergibt:

$$u_2^{\rm k} = -\frac{1}{8} \alpha_T T_0 l \;, \tag{84}$$

sowie der Verschiebungsverlauf:

$$u^{\mathbf{h}}(\eta) = N_2(\eta)u_2^{\mathbf{k}} \tag{85}$$

$$= -(1 - \eta^2) \frac{1}{8} \alpha_T T_0 l \tag{86}$$

Der Verschiebungsverlauf entspricht der exakten Lösung.

Aufgabe (vi)

Der Verlauf der Gesamtdehnung $\hat{\varepsilon}(\eta)$ folgt aus der Ableitung des Verschiebungsfeldes:

$$\hat{\varepsilon}(\eta) = \hat{B}_2(\eta) \frac{\mathrm{d}\eta}{\mathrm{d}x} u_2^{\mathrm{k}}$$
(87)

$$= -\frac{4\eta}{l}u_2^{\mathbf{k}} . \tag{88}$$

Die thermische Dehnung im Einheitskoordinatensystem $\hat{\varepsilon}_{th}(\eta)$ lautet:

$$\hat{\varepsilon}_{\rm th}(\eta) = \frac{\alpha_{\rm T} T_0}{2} \left(1 + \eta\right) \ . \tag{89}$$

Abb. 3: Verschiebungsverlauf im Dehnstab bei beidseitiger Lagerung

Die elastische Dehnung $\hat{\varepsilon}_{\rm el}(\eta)$ ergibt sich aus :

$$\hat{\varepsilon}_{\rm el}(\eta) = \hat{\varepsilon}(\eta) - \hat{\varepsilon}_{\rm th}(\eta) \tag{90}$$

$$= -\frac{4\eta}{l}u_{2}^{k} - \frac{\alpha_{T}T_{0}}{2}(1+\eta)$$
(91)

KASSEL

S

Ε

Т 'А'

Т

$$= -\frac{\alpha_{\rm T} T_0}{2} \ . \tag{92}$$

Die Gesamtdehnung (88) an den beiden Stützstellen ist:

$$\hat{\varepsilon}\left(\eta_1 = -\frac{1}{\sqrt{3}}\right) = -\frac{\alpha_{\rm T}T_0}{2\sqrt{3}} \qquad \qquad \hat{\varepsilon}\left(\eta_2 = +\frac{1}{\sqrt{3}}\right) = \frac{\alpha_{\rm T}T_0}{2\sqrt{3}} . \tag{93}$$

Die thermische Dehnung ist an den Integrationspunkten:

$$\hat{\varepsilon}_{\rm th} \left(\eta_1 = -\frac{1}{\sqrt{3}} \right) = \alpha_{\rm T} T_0 \frac{\sqrt{3} - 1}{2\sqrt{3}} \qquad \qquad \hat{\varepsilon}_{\rm th} \left(\eta_2 = +\frac{1}{\sqrt{3}} \right) = \alpha_{\rm T} T_0 \frac{\sqrt{3} + 1}{2\sqrt{3}} . \tag{94}$$

Da die elastische Dehnung konstant ist über den Dehnstab, ist diese an beiden Integrationspunkten gleich:

$$\hat{\varepsilon}_{\rm el}\left(\eta_1 = -\frac{1}{\sqrt{3}}\right) = \hat{\varepsilon}_{\rm el}\left(\eta_2 = +\frac{1}{\sqrt{3}}\right) = \varepsilon_{\rm el}(x) = -\frac{\alpha_{\rm T}T_0}{2} \ . \tag{95}$$

Elastische, thermische und Gesamtdehnung sind in Abb. 4 zu sehen.

Abb. 4: Dehnungsverläufe im Dehnstab bei beidseitiger Lagerung

Aufgabe (vii)

Die Normalkraft folgt nach:

$$N(x) = EA\varepsilon_{\rm el}(x) \tag{96}$$

KASSEL

Т 'А'

Т

Im Einheitskoordinatensystem ist sie gegeben durch:

$$\hat{N}(\eta) = EA\hat{\varepsilon}_{\rm el}(\eta) \tag{97}$$

$$= -\frac{1}{2}EA\alpha_T T_0 . (98)$$

Der Normalkraftverlauf ist konstant über die Stabachse:

$$\hat{N}\left(\eta_{1} = -\frac{1}{\sqrt{3}}\right) = \hat{N}\left(\eta_{2} = +\frac{1}{\sqrt{3}}\right) = -\frac{EA\alpha_{\rm T}T_{0}}{2} .$$
(99)

Der Verlauf der Normalkraft in Abb. 5 veranschaulicht.

Analytische Lösung einseitig eingespannt

Im Folgenden wird das RWP analytisch gelöst, um einen Vergleich zur analytischen (exakten) Lösung zu erhalten. Der Dehnstab im betrachteten Randwertproblem unterliegt keinen Feldlasten, d. h.

$$n(x) = 0 (100)$$

was zur weiteren Vereinfachung der Verschiebungsdifferentialgleichung (11) führt:

$$u''(x) = \alpha_{\mathrm{T}} T'(x) . \tag{101}$$

Abb. 5: Verlauf der Normalkraft im Dehnstab bei beidseitiger Lagerung

Der Verlauf des Temperaturfeldes T(x) ist gegeben durch:

$$T(x) = T_0 \frac{x}{l} , \qquad (102)$$

KASSEL

Т 'А'

wodurch der Temperaturgradient zu

$$T'(x) = \frac{T_0}{l} \tag{103}$$

folgt. Das Einsetzen des Temperaturgradienten (103) in Gl. (101) liefert:

$$u''(x) = \alpha_{\rm T} \frac{T_0}{l} \tag{104}$$

Die Lösung für das Verschiebungsfeld folgt durch zweimaliges Integrieren von Gl. (104) nach der Ortskoordinate \boldsymbol{x}

$$u'(x) = \int u''(x) \,\mathrm{d}x \tag{105}$$

$$= \alpha_{\rm T} \frac{T_0}{l} x + C_1 \tag{106}$$

$$u(x) = \int u'(x) \,\mathrm{d}x \tag{107}$$

$$= \alpha_{\rm T} \frac{T_0}{2l} x^2 + C_1 x + C_2 \tag{108}$$

Die Bestimmung der Integrationskonstanten, die aus der unbestimmten Integration folgen, werden durch die Randbedingungen angepasst. Der Stab ist bei x = 0 unverschieblich gelagert, d.

h.

$$u(x=0) = 0 . (109)$$

KASSEL

SIT'A'T

Am freien Ende bei $\boldsymbol{x} = \boldsymbol{l}$ muss die StabkraftNverschwinden:

$$N(x=l) = 0. (110)$$

Das Auswerten der NEUMANNschen Randbedingungen (109) ergibt

$$u(x=0) = \alpha_{\rm T} \frac{T_0}{2l} \cdot 0^2 + C_1 \cdot 0 + C_2 = 0$$
(111)

ER

$$= 0 + 0 + C_2 = 0 \tag{112}$$

$$\rightarrow C_2 = 0 \tag{113}$$

Mit der DIRICHLETschen Kraftrandbedingung

$$N(x=l) = EA\left(\alpha_{\rm T}\frac{T_0}{l}l + C_1\right) - EA\alpha_{\rm T}\frac{T_0}{l}l = 0$$
(114)

$$= \alpha_{\rm T} T_0 + C_1 - \alpha_{\rm T} T_0 = 0 \tag{115}$$

$$\rightarrow C_1 = 0 \tag{116}$$

wird die zweite Konstante bestimmt. Mit den Lösungen aus den Gln. (113) und (116) folgt die analytische (exakte) Lösung $u_{ex}(x)$ zu:

$$u_{\rm ex}(x) = \alpha_{\rm T} \frac{T_0}{2l} x^2$$
 (117)

In Abb. 6 ist der Verlauf der analytischen Lösung $u_{\text{ex}}(x)$ für die gegebenen Parameter veranschaulicht.

Analytische Lösung beidseitig eingespannt

Durch die beidseitige Lagerung ändern sich die Randbedingung am rechten Ende bei x = l im Vergleich zur vorher betrachteten Problemstellung:

$$u(x=l) = 0. (118)$$

Die Integrationskonstante C_2 ist immer noch durch die erste Verschiebungsrandbedingung Null, d. h. $C_2 = 0$. Die zweite Randbedingung liefert nun

$$u(x=l) = \alpha_{\rm T} \frac{T_0}{2l} l^2 + C_1 \cdot l = 0$$
(119)

$$\rightarrow C_1 = -\frac{\alpha_{\rm T} T_0}{2} , \qquad (120)$$

wodurch die exakte Lösung zu

$$u_{\rm ex}(x) = \frac{\alpha_{\rm T} T_0 x}{2} \left(\frac{x}{l} - 1\right) \tag{121}$$

folgt, die in Abb. 7 veranschaulicht ist.

U

ER

S I

KASSEL

Т 'А'

Т

Abb. 6: Exakter Verschiebungsverlauf im Dehnstab

Abb. 7: Exakter Verschiebungsverlauf im Dehnstab bei beidseitiger Lagerung