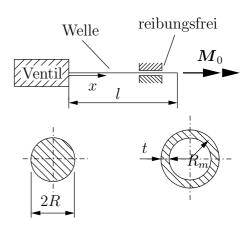

Gruppenübung 8: Torsion des geraden Stabs mit Kreisquerschnitt

Aufgabe 8.1 (Aufgabensammlung 11.9)

Ein einseitig eingespanntes dickwandiges Rohr (Schubmodul G) wird durch das Torsionsmoment M_T belastet.

- (a) Bestimmen Sie die Schubspannung $\sigma_{x\phi}(r)$ in Folge der Torsion.
- (b) Wie lautet die Funktion für die Verdrehung $\phi(x)$ des Querschnitts und wie groß ist die Verdrehung am Lastangriffspunkt?

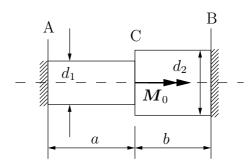

Gegeben: $l=1\,\mathrm{m}\,,\,d_i=100\,\mathrm{mm}\,,\,d_a=170\,\mathrm{mm}\,,\,G=0.8\cdot 10^5\,\frac{\mathrm{N}}{\mathrm{mm}^2}\,,\,M_T=150\,\mathrm{kNm}$

Aufgabe 8.2 (Aufgabensammlung 11.6)

ETSdue08

Zur Überwindung der inneren Reibung eines Schleusenventils ist ein Torsionsmoment M_0 erforderlich, welches über eine Welle der Länge l aufgebracht werden soll.

- (a) Um welchen Winkel verdrehen sich die Wellenquerschnitte bei x=0 und x=l relativ zueinander, wenn die Welle aus dem skizzierten Vollkreisquerschnitt besteht?
- (b) Wie groß ist die maximale Schubspannung $\sigma_{x\phi}$ für den Vollkreisquerschnitt?
- (c) Die Welle soll durch ein dünnwandiges Rohr mit fest liegendem Verhältnis $\frac{R_m}{t}$ ersetzt werden. Wie groß muss der mittlere Radius R_m gewählt werden, damit im Kreisringprofil die gleichen Schubspannungen wie unter (b) auftreten?


Gegeben: $l, R, M_0 = 100 \text{ Nm}, R_m = 10t$

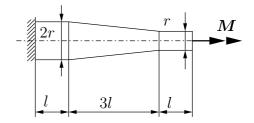
Aufgabe 8.3 (Aufgabensammlung 11.10)

Eine homogene abgestufte Welle (Längen a, b, Schubmodul G) mit Kreisquerschnitt (Durchmesser d_1,d_2) ist an den Enden fest eingespannt und wird durch das Moment M_0 belastet.

- (a) Wie groß sind die Einspannmomente M_A und M_B ?
- (b) Wie groß ist die Winkelverdrehung θ_0 an der Angriffsstelle von M_0 ?

Gegeben: G, a, b, d_1 , d_2 , M_0

Aufgabe 8.4 (Aufgabensammlung 11.11)


Eine Welle (Schubmodul G) mit Kreisquerschnitt besteht aus zwei Bereichen mit konstantem Radius und einem konischen Bereich.

Bestimmen Sie die Verdrehung θ_E des Endquerschnitts in Folge des Torsionsmoments M_0

Gegeben: G, M_0, l, r

ETSvol04

