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The assembly of the system of equations and its solution are presentie fidigh-Fidelity Generalized Method of Cells
(HFGMC) with interface damage. The direct stiffness assembly, whiabdd in the Finite Element Method with its unknown
nodal displacements, is applied to the HGFMC. The nonlinear set of egsatiee to damage is solved with Newton’s Method
for the microscopic surface-averaged displacements, which ar@kmewns in the efficient version of the HFGMC.
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1 Introduction

The HFGMC, see [1], with interface damage provides the Hasisiodeling brittle failure of unidirectional fiber-reioifced
composites with the inter-element crack method. The finkequaint of view reduces the macroscopic matrix failure mode
to two elementary processes: cohesive failure within th&rirnphase and debonding of the fiber/matrix interface. ka th
numerical implementation, zero thickness interfaces mserted for both failure types along the intercell bourekaof the
discretized repeating unit cell (RUC), see Fig. 1. Theserfates serve as predefined sites for crack initiation amatr

2 System of Equationson the Subcell L evel

The system of equations (1) has been published in [2] forealilastic solid subcet(f:7), which is labeled by the super-
scriptss and-y, see Fig. 1. Itis derived from a surface-averaging procgkih is denoted by . ), of the tractiont and the
microscopic displacement’ at the four boundarie8Q"+(%-7), wheren4 stands for the right, left, upper, or lower face, see
Fig. 1. Eq. (1) links the surface-averaged tractiofs(®-?) to their displacement counterpan&**(#7) and to the macro-
scopic straire® by a stiffness matriK (%) and a matrixD(®) containing elements of the elastic stiffness tensor. Both

hypermatrices are written down briefly by means of the subanEf’”) € R3x3 andDEf’”) € R3*6, withi,j =1,2,3, 4.
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A similar system results for thie-th interfaceS(®), see Fig. 1, from treating it more like a separate subcellegtdbd between
two solid subcells. This point of view differs from former s proposed in [3] and [4]. The constitutive behavior of the
interfaces is described by an elasto-damage model thatizedtin a surface-averaged sense, it&) = Q*) (dM)) A'*),
and defined in a local coordinate systepie;-e;, see Fig. 1. Thereirt*) is the traction vecto2(*) the interface stiffness
matrix, d*) the damage variable, afxl *) = @'+(*) — @/~ (%) the separation, which is the relative displacement betwteen
displacement at the positive crack face (*) and the displacement at the negative afie*), see Fig. 1. Eq. (2) is found by
imposing the traction continuityt(*) +t~(*) = 0 and using the elasto-damage model. The surface-averaagibirst = (*)

on both crack faces are linked to their displacement copatesa’=(*) by the matrixI*) comprising the elements o1,

Here, the mean damage variahlé) is assumed to be driven by the surface-averaged separiation(*) = d(*) (A’ (%),
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3 System of Equationsand Direct Stiffness Assembly

The overall system of equations to be solved is formally inletiby enforcing the traction conditions (3), either bedweolid
and solid subcells or solid and interface subcells. In tited@ase, the interface orientation must be taken intowadco

: BT gt — g 246 e, =€ t2- (A1) e, = ey
SOlId_SOIId'E3+(ﬁ,7) -G _ , solid-interfacet =) = {t3+(ﬁ S ) {t3(ﬁﬁ+1>,en e (3)
Instead, the task of setting up the overall system is cordilzy means of the direct stiffness assembly, see [5], whiatell-
known from the Finite Element Method. This procedure neddsation vector for each solid subc&l(?:?) and one for each
interface subcelLL(*). They store the information about the assignment of theaegof freedom (DOFs) of the RUC (global
level), calledr’ here, to the corresponding DOFs of the subcells (local Jeiéle DOFs are the surface-averaged microscopic
displacements in the efficient form of the HFGMC and viswaiin Fig. 1 from both perspectives. Based on [6], the assembl
process is written symbolically with the assembly opesafoandB for the solids and interfaces. These operators represent
the assembly procedure, which is an assignment rule thatthisdocation vectors, as a mathematical expression:

N Ng,Ny . Nint _ _ N Ng,Ny
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The local separatiozi'(’“) is related to the unknown local surface-averaged displaotsm’=(*). The inverse assembly
operatorB~* in Eq. (4), applied tor’, contains the assignment rule from the global D@F® the local DOFsi’+(*) for
each interface by using the same location vectors as forssenably process. The direct stiffness assembly leads &ethof
equations (5), in whicliK — f(f’) is the nonlinear stiffness matrix of the RUC arfidhe vector of unknowns. The procedure
presented provides another assembly technique compatied tther two: the connectivity matrix in the efficient versiof
the HFGMC, see [7] ora rigorous collecting of each unknoses [8].

,  with t? = —De° (5)
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Fig. 1: Left: Spatially discretized single-fiber RUC iNg x NN, solid subcells andVi,. interfaces as well as global coordinate system
ei-ez2-e3, Center: Depiction of the DOFs of the RUC (global level), Right: SubcelFB0f a solid and interface subcell (local level)

4 |terative Solution with Newton’s M ethod

Eqg. (5) is solved iteratively for an applied macroscopiaiste® by Newton’s Method in each step
T (+/
JE)AF, = R(E) . with R(E)=(R-1E)5 . JE)=-K 1) - ‘”5“ 2
T

T (6)

The forming of the third summand of the Jacobﬁlby linearization and matrix-vector multiplication is caraded on the
local interface level. Afterwards, these contributions added by means of the direct stiffness assemhbly to
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