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The assembly of the system of equations and its solution are presented forthe High-Fidelity Generalized Method of Cells
(HFGMC) with interface damage. The direct stiffness assembly, which isused in the Finite Element Method with its unknown
nodal displacements, is applied to the HGFMC. The nonlinear set of equations due to damage is solved with Newton’s Method
for the microscopic surface-averaged displacements, which are the unknowns in the efficient version of the HFGMC.
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1 Introduction

The HFGMC, see [1], with interface damage provides the basisfor modeling brittle failure of unidirectional fiber-reinforced
composites with the inter-element crack method. The fine scale point of view reduces the macroscopic matrix failure mode
to two elementary processes: cohesive failure within the matrix phase and debonding of the fiber/matrix interface. In the
numerical implementation, zero thickness interfaces are inserted for both failure types along the intercell boundaries of the
discretized repeating unit cell (RUC), see Fig. 1. These interfaces serve as predefined sites for crack initiation and growth.

2 System of Equations on the Subcell Level

The system of equations (1) has been published in [2] for a linear-elastic solid subcellΩ(β,γ), which is labeled by the super-
scriptsβ andγ, see Fig. 1. It is derived from a surface-averaging process,which is denoted by¯( . ), of the tractiont and the
microscopic displacementu′ at the four boundaries∂Ωn±(β,γ), wheren± stands for the right, left, upper, or lower face, see
Fig. 1. Eq. (1) links the surface-averaged tractionst̄

n±(β,γ) to their displacement counterpartsū′n±(β,γ) and to the macro-
scopic strainεεε0 by a stiffness matrixK(β,γ) and a matrixD(β,γ) containing elements of the elastic stiffness tensor. Both
hypermatrices are written down briefly by means of the submatricesK(β,γ)

ij ∈ R
3×3 andD(β,γ)

i1 ∈ R
3×6, with i, j = 1, 2, 3, 4.
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A similar system results for thek-th interfaceS(k), see Fig. 1, from treating it more like a separate subcell embedded between
two solid subcells. This point of view differs from former ones proposed in [3] and [4]. The constitutive behavior of the
interfaces is described by an elasto-damage model that is utilized in a surface-averaged sense, i. e.t̄

(k) = ΩΩΩ(k)
(
d̄(k)

)
∆̄∆∆

′(k),
and defined in a local coordinate systemen-et-eb, see Fig. 1. Therein,̄t(k) is the traction vector,ΩΩΩ(k) the interface stiffness
matrix, d̄(k) the damage variable, and̄∆∆∆

′(k) = ū
′+(k) − ū

′−(k) the separation, which is the relative displacement betweenthe
displacement at the positive crack faceū

′+(k) and the displacement at the negative oneū
′−(k), see Fig. 1. Eq. (2) is found by

imposing the traction continuitȳt+(k) + t̄
−(k) = 0 and using the elasto-damage model. The surface-averaged tractions̄t±(k)

on both crack faces are linked to their displacement counterpartsū′±(k) by the matrixI(k) comprising the elements ofΩΩΩ(k).
Here, the mean damage variabled̄(k) is assumed to be driven by the surface-averaged separation,i. e. d̄(k) = d̄(k)(∆̄∆∆

′(k)).
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ū′
t
+

ū′
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3 System of Equations and Direct Stiffness Assembly

The overall system of equations to be solved is formally obtained by enforcing the traction conditions (3), either between solid
and solid subcells or solid and interface subcells. In the latter case, the interface orientation must be taken into account.

solid-solid:
t̄
2+(β,γ) + t̄

2−(β+1,γ) = 0

t̄
3+(β,γ) + t̄

3−(β,γ+1) = 0

, solid-interface:̄t−(k) =

{
t̄
2+(β,γ), en = e2

t̄
3+(β,γ), en = e3

, t̄+(k) =

{
t̄
2−(β+1,γ), en = e2

t̄
3−(β,γ+1), en = e3

. (3)

Instead, the task of setting up the overall system is conducted by means of the direct stiffness assembly, see [5], which is well-
known from the Finite Element Method. This procedure needs alocation vector for each solid subcellL

(β,γ) and one for each
interface subcellL(k). They store the information about the assignment of the degrees of freedom (DOFs) of the RUC (global
level), called̄r′ here, to the corresponding DOFs of the subcells (local level). The DOFs are the surface-averaged microscopic
displacements in the efficient form of the HFGMC and visualized in Fig. 1 from both perspectives. Based on [6], the assembly
process is written symbolically with the assembly operators A andB for the solids and interfaces. These operators represent
the assembly procedure, which is an assignment rule that uses the location vectors, as a mathematical expression:
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The local separation̄∆∆∆
′(k) is related to the unknown local surface-averaged displacementsū′±(k). The inverse assembly

operatorB−1 in Eq. (4)2, applied tōr′, contains the assignment rule from the global DOFsr̄
′ to the local DOFs̄u′±(k) for

each interface by using the same location vectors as for the assembly process. The direct stiffness assembly leads to theset of
equations (5), in whicĥK− Î (r̄′) is the nonlinear stiffness matrix of the RUC andr̄

′ the vector of unknowns. The procedure
presented provides another assembly technique compared tothe other two: the connectivity matrix in the efficient version of
the HFGMC, see [7], or a rigorous collecting of each unknown,see [8].

(
K̂− Î (r̄′)

)
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′ = t̂

0 , with t̂
0 = −D̂εεε

0 (5)
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ū′3−
2

− +
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Fig. 1: Left: Spatially discretized single-fiber RUC inNβ × Nγ solid subcells andNint interfaces as well as global coordinate system
e1-e2-e3, Center: Depiction of the DOFs of the RUC (global level), Right: Subcell DOFs of a solid and interface subcell (local level)

4 Iterative Solution with Newton’s Method

Eq. (5) is solved iteratively for an applied macroscopic strainεεε0 by Newton’s Method in each stepi:

Ĵ (r̄′i)∆r̄
′

i+1 = −R (r̄′i) , with R (r̄′i) =
(
K̂− Î (r̄′i)

)
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0 , Ĵ (r̄′i) = K̂− Î (r̄′i)−

∂Î (r̄′i)

∂r̄′i
r̄
′

i . (6)

The forming of the third summand of the JacobianĴ by linearization and matrix-vector multiplication is conducted on the
local interface level. Afterwards, these contributions are added by means of the direct stiffness assembly toĴ.
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