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In this contribution, the focus of the material model is to predict failure of joints, which are bonded with ductile-
modified adhesives and subjected to manufacturing and service loading with low strain rates during and after cure 
due to temperature changes. Therefore, a linear thermo-viscoelastic model is arranged in series to the Toughened 
Adhesive Polymer (TAPO) model. By reason of numerical efficiency, the equations of the TAPO model are reduced 
to the cohesive zone theory and implemented into LS-DYNA as a “user defined cohesive model” assuming a thin 
adhesive layer between the adherends. The parameters of the constitutive equations are identified by Dynamic 
Mechanical Analysis and by fitting the model response to data of shear tests using the thick adherend shear speci-
men (TASS) and tension tests by means of the butt joint specimen (BJS) conducted within the range from ambient 
temperature to nearly glass transition and from uncured up to fully cured adhesive.  
 
 

1 Introduction 

In modern light weight design, various materials with 
different physical properties are assembled to large 
structures, e.g. car body or aircraft fuselage. One 
common joining technology is adhesive bonding, 
which allows combining a wide range of different ma-
terials, e.g. various metals, carbon fibre composites, 
and polymers. As a consequence, the adhesive bond-
ing technique is adopted by many branches, as for 
instance the automotive, and the aircraft industry. 
Vastly loaded structures are bonded with so called 
high-strength structural adhesives exhibiting high ten-
sile strength and ductility. These properties are 
achieved by modifying the epoxy resin with rubber 
particles to improve the persistency and energy ab-
sorption until failure. The mechanical properties of 
structural adhesives are generally influenced by de-
formation, temperature, stress or its rates as well as 
the degree of polymerisation (cross-linking). So, the 
design of structures becomes more complicated and 
cost-intensive, if such adhesives are used. Hence, 
simulation with the Finite Element Method (FEM) is an 
efficient way to reduce costs in the development pro-
cess within the framework of computer-aided design. 
Though, constitutive models are necessary for the 
prediction of the material behaviour under various 
loading conditions by means of the Finite Element 
(FE) analysis. In this context, the development of phe-
nomenological constitutive models becomes very im-
portant for the simulation of adhesively bonded joints.  

Recently, the so-called Toughened Adhesive Polymer 
(TAPO) model has been made available in LS-DYNA 
for solid elements. The TAPO equations describe the 
mechanical behaviour of structural adhesives under 
crash conditions by taking elasticity, viscoplasticity and 
damage due to plastic deformation into account—see 
[1], pp. 69–90, [2], pp. 250–282, [3], pp. 54–69, and 
[4], pp. 2-1152-2-1158. It was developed by the Insti-
tute of Mechanics (IfM) at the University of Kassel in 
both research projects with the grant numbers P 676 
[1] and P 828 [2] of the Forschungsvereinigung 
Stahlanwendung e.V. (FOSTA). Also, the TAPO mod-
el is applicable for the cohesive elements with an op-
tion in LS-DYNA reducing the kinematics of the con-
tinuum to the local displacement jump as shown in [2], 

p. 288, [3], p. 113, and [5]. In addition, the constitutive 

equations of the TAPO model are reduced to the inter-
face theory for cohesive elements in [3], pp. 106 ff. 
The interface theory is applied to the failure prediction 
of adhesively bonded joints with thin adhesive layers in 
[5] to [8]. Furthermore, the numerical efficiency of the 
cohesive element in the framework of the FEM is dis-
cussed in [8].  
As outlined in [1] to [8], the constitutive models are 
applied to predict failure of bonded structures under 
crash conditions. Recently, the simulation of adhesive-
ly bonded joints focuses also on manufacturing and 
service processes—see [9] and [10]. The influence of 
the temperature course on the material behaviour is 
important for the design of adhesively bonded struc-
tures, whereas the entire temperature-time history is 
fundamental for the polymerisation of the thermoset-
ting resins. Especially, the thermo-viscoelastic proper-
ties of ductile-modified adhesives must be account for 
in stress levels below and beyond the yield strength.  
This contribution concerns with the constitutive model-
ling of the temperature influence on thermosetting, 
ductile-modified adhesives during cross-linking. The 
present investigations focuses on the long-term be-
haviour of the adhesive bond in bimetallic structures, 
undergoing temperature induced loadings due to the 
uneven expansions caused by different thermal ex-
pansion coefficients of the adherends. So, the reduced 
TAPO model in [3] is extended to temperature and 
cure dependent viscoelasticity, plasticity and damage, 
considering rate, temperature and curing effects below 
and beyond the yield strength.  
The constitutive model and its consistent tangent 
modulus are implemented for the quasi-static FE anal-
ysis into the code of LS-DYNA to simulate the long-
term behaviour of adhesive bonds. The material mod-
el is suited to predict failure of adhesively bonded 
joints beyond the gelification point for manufacturing 
and service loading due to evolving temperature 
courses.  



 

2 Thermo-chemo-viscoelastic-plastic model 

with ductile damage 

The thin structural adhesive layer of a joint is modelled 

as an interface between the adherends assuming zero 

thickness in the model. Hence, an interfacial constitu-

tive model (cohesive zone) is proposed including 

thermo- and chemo-viscoelasticity, -plasticity, and a 

ductile damage approach. The viscoelastic, thermal, 

and plastic contributions in the constitutive model are 

shown as a serial arrangement of related bodies in the 

rheological network in Fig. 1. On the left hand side, the 

generalised MAXWELL body represents the viscoelastic 

material properties of the adhesive with different paral-

lel chains of springs and dashpots to describe the 

overstress and one parallel spring to account for the 

equilibrium stress in the normal and tangential direc-

tion of the interface. The material parameters ik  and 

ig  are the stiffness parameters of the springs whereas 

the constants n,s
îτ  are the relaxation times in the 

MAXWELL chains, while k∞  and g∞  are the stiffness 

parameters for the equilibrium state. The thermal 

strain element is connected in series to the MAXWELL 

model in order to describe the thermal expansion and 

the chemical shrinkage of the adhesive layer as a 

thermo-chemical displacement jump in normal direc-

tion tc th ch= +∆ ∆ ∆ . The rate of the thermal dis-

placement is proportional to the temperature change 

θɺ  and the adhesive layer thickness kd  with the unit 

vector normal to the interface T
n {1 0 0}=e  and the 

thermal expansion coefficient thαɶ . 
th

th k ndα θ= eɺ ɺɶ∆  (1) 

The thermal expansion coefficient thαɶ  changes at the 

glass transition temperature gθ  and depends on the 

degree of cure p  as in [10], p. 85. 
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The chemical displacement ch
∆  is postulated as  

( )kch 2
2 1 n

3

d
p pβ β= − e∆  (2) 

following [10], p. 93, Eq. (6.22) with the material para-

meters 1β  and 2β . On the right hand side, the TAPO 

model is represented by the friction element of ST-

VENANT with the yield threshold cθτ  and the spring with 

the parameters H θ , qθ , and bθ , describing nonlinear 

isotropic hardening. Here, the TAPO model is active 

only when the adhesive changes its phase from liquid 

to solid (gelation) irreversibly—see [11]. The rheologi-

cal network directly provides the additive split of the 

local, total displacement jump ∆  into the viscoelastic, 

thermal and plastic contribution: 
ve th pl+ +=∆ ∆ ∆ ∆  (3) 

2.1 Thermo-chemo-viscoelastic constitutive 

model 

The interface traction t  is postulated as a functional 

of the viscoelastic displacement jump ve
∆ . Its consti-

tutive parameters are a function of the temperature 

( )tθ  and the degree of cure ( )p t  changing in time t .  

{ }ve( ) ( ); ,tt tτ τ τ≤=t ∆F  (4) 

with the time variables t  and τ—see [9], p. 177, 
Eq. (6.4).  

The degree of cure p  is defined as a scalar variable, 

which is 0p =  for the unlinked and 1p =  for the 

completely cross-linked polymer, 0,1p  ∈    . It is mod-

elled with an implicit, nonlinear evolution equation of 

the KAMAL and SOUROUR type depending on the tem-

perature course in time as follows—cf. [12] and [13]:  

1 2
1 2( )(1 ) ( ) (1 )n m np A p A p pθ θ= − + −ɺ  (5) 

with the material parameters m , 1n , 2n  and the AR-

RHENIUS equations 1( )A θ  and 2( )A θ   

1 2
1 10 2 20( ) exp , ( ) exp ,

E E
A A A A

R R
θ θ

θ θ

       = −  = −          
 (6) 

with the pre exponential factors 10A  and 20A  as well as 

the activation energies 1E  and 2E  and the universal 

gas constant 8.3144598J molKR = .  

 

A thermo- and chemorheologically simple material 

behaviour is assumed for the sake of temperature and 

cure dependent relaxation times—see [14], [15], 

pp. 266 ff, [16], pp. 202 ff, [17], and [18]. Due to the 

time-temperature and time-cure shift, all relaxation 

times n,s
îτ  are described with two functions of temper-

ature for the normal ( n ) and tangential ( s ) direction of 

the interface n
T )(a θ  and s

T )(a θ  as well as one function 

depending on the degree of cure c( )a p . These func-

tions are known as shift functions—see e.g. [19], pp. 

94 ff. Furthermore, the reduced times nξ  and sξ  are 

introduced, which are determined by time integrals 

with the empirical shift functions  

gelif p p≥

 

Fig. 1 Rheological network of constitutive model 
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to take into account the influence of the temperature 

course ( )tθ  and the degree of cure ( )p t  on the relaxa-

tion times through the time scale. The time-

temperature shift functions consist of an ARRHENIUS-

typ equation for temperatures below the reference 

temperatures n
Rθ  and s

Rθ  and the WILLIAMS-LANDEL-

FERRY equation [20] for temperatures beyond the ref-

erence level:  
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with the material parameters n,s
AE , n,s

1C , and n,s
2C . For 

the time-cure-shift, functions n,s
c ( )a p  are proposed by 

EOM et al. [21] consisting of an ansatz below and one 

beyond the gelification of the adhesive as follows: 
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Here, the reference of the time-cure shift functions 
n,s
c ( )a p  is the degree of cure for gelification gelp  (gel 

point) and the material parameters are the shifts at the 

gel point n,s
gela  as well as the parameters n,s

1a , n,s
2a  

and n,s
3a .  

 

The viscoelastic traction is written as a convolution 

integral over the viscoelastic displacement jump ve
∆  

with the kernel functions nR  and sR  in the normal and 

tangential direction of the interface as follows: 
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Both, the traction vector, T
n t b{ }t t t=t , and the 

displacement jump vector, T
n t b{ }∆ ∆ ∆=∆ , act 

in normal, tangential, and binormal direction of the 

interface. According to [22], p. 60, Eq. (3.3-4), the 

kernel functions nR  and sR  are decoupled. From the 

rheological network of linear springs and NEWTON 

dashpots in Fig. 1, the functions nR  and sR  follows as 

DIRICHLET-PRONY series for a total of M  MAXWELL 

elements for the normal and each shear component:  

n s
n sn s

1 1

( ) ( )
exp , exp

ˆ ˆ

M M

i i

i ii i

t t
R k R g

ξ ξ

τ τ= =

      = − = −        
∑ ∑  (11) 

In nR  and sR , the equilibrium stiffness k∞  and g∞  are 

functions of the degree of cure p  written as 

8
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2
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p
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 −   =   −  
, (12) 

with the stiffness k̂∞  and ĝ∞  of the fully cured adhe-

sive for 1p =  as proposed by ADOLF and MARTIN in 

[17] and [18].  

2.2 Temperature and cure dependent TAPO 

interface constitutive model 

The scalar damage variable D  is introduced to de-

scribe isotropic damage in the adhesive layer. The 

definition of damage is based on KACHANOV [23] as 

the ratio of the 

damaged to the 

initial cross section 

area dA  and 0A , 

respectively—see 

Fig. 2. It is consid-

ered in the equa-

tions of the consti-

tutive model by 

using the concept 

of effective stress 

as in RABOTNOV 

[24]. Here, the 

nominal traction 

vector t  in the 

convolution inte-

gral (10) is related to the effective traction vector t̂  

according to RABOTNOV’s proposal: 

d

0

ˆ
1 D

A
D

A
=

−
=

t
t with  (13) 

In addition, the strain equivalence principle is as-

sumed, which postulates the equality of the strains for 

the damaged nominal state (physical space) and the 

undamaged effective state (effective space), ˆε ε=  as 

shown in Fig. 2. As a consequence, it leads to the 

equality of all internal variables of the strain-type, for 

example pl plˆε ε= —see e.g. [25]. In the TAPO cohe-

sive zone model, the interfacial yield function fɶ  de-

pends on the normal component n̂t  and the resultant 

shear stress 2 2
t bˆ ˆˆ t tτ = +  of the effective interface 

traction t̂  as well as the yield stress yτ  and the yield 

threshold cθτ  in Eq. (14)1. In addition, the plastic po-

tential *fɶ  (14)2 is presented for a non-associated flow 

rule to avoid the evolution of normal plastic displace-

ment jump pl
n∆  during a simple shear process.  

2
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Fig. 2 Motivation of damage and 
concept of effective stresses 



 

Both functions are defined by using the MACAULEY 

bracket (x | x |) / 2x〈 〉 = +  to obtain asymmetric func-

tions in tension ( n̂ 0t ≥ ) and compression ( n̂ 0t < )—

cf. [3], pp. 107 f., Eqs. (7.98), (7.99). In Eqs. (14), the 

coefficients 1aɶ , 2aɶ , and *
2aɶ  are constitutive parame-

ters and may depend in principle on the temperature 

change ( )0θ θ− : 

( )2 20 a2 01a a m θ θ = + −  
ɶ ɶ  (15) 

with the material parameters 20aɶ  and a2m . The yield 

function fɶ  and the plastic potential *fɶ  are depicted 

for the case of a fulfilled yield criterion at the reference 

temperature 0θ  and degree of cure 1p =  in Fig. 3—

cf. [3], p. 108, Fig. 7.16. Both, the yield function and 

the plastic potential are elliptic for n̂ 0t ≥ . If n̂ 0t < , 

the yield function changes into the DRUCKER-PRAGER-

like criterion and the plastic potential to the VON MISES-

like potential due to the MACAULAY bracket n̂t〈 〉  in Eqs. 

(14). The rate of the plastic displacement jump plɺ∆  is 

derived from the plastic potential (14)2 with the effec-

tive traction t̂  and the plastic multiplier λ :  

( )
*

pl *
2 n n

ˆ ˆ2
ˆ

f
a t τλ λ τ

∂
= = +

∂
e e

t

ɶ

ɺ ɶ∆  (16) 

The strain equivalence principle leads to non-

damaged plastic flow in the effective stress space, 
pl plˆ= ɺɺ∆ ∆ —cf. [3], p. 108. For the internal variable of 

the displacement-jump-type, rɺ means the plastic ar-

clength given by the EUCLIDean norm of the non-

associated flow rule (16):  

( )
2

pl pl * 2
2 n̂ ˆ2r a tλ τ= ⋅ = +ɺ ɺɺ ɶ∆ ∆ , (17) 

cf. [3], p. 108 f. The yield stress yτ  in Eqs. (14) de-

pends on the initial yield threshold cθτ  and the stress 

of the nonlinear isotropic hardening R , which are both 

functions of the temperature θ  and the degree of cure 

considering the thermal and chemical influence on the 

TAPO plasticity model. Furthermore, the nonlinear 

isotropic hardening part R  is a function of the accu-

mulated plastic arclength r : 
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



  (18) 

The initial yield threshold (18)2 is modelled with a hy-

perbolic-type function of temperature and a power 

function depending on the degree of cure following 

[26], p. 72. The temperature function is defined by 

means of the constitutive parameters 0τ , mτ  and τθ , 

whereas the function of cure is defined with the gel 

point gelp  and the exponent 1p . In contrast to [9] (pp. 

203 f.), the parameters in the hardening part qθ , bθ , 

and H θ  are empirical, hyperbolic-type functions, which 

are well defined in the whole range of the absolute 

temperature [0, )θ ∈ ∞ : 
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θ

θ θ

θ

θ

θ
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θ

 = + − +  

 = + − +  

 −  += + 

 (19) 

with the material parameters 0q , 0b , 0h , qm , bm , hm , 

qθ , bθ  and hθ .  

The influence of the degree of cure p  on the harden-

ing function (18)3 is considered by a linear function 

with the material parameter 1ψ  and the gel point gelp . 

2.3 Temperature and cure dependent damage 

approach 

A ductile damage approach is proposed for the TAPO 

model to predict damage due to the plastic defor-

mation r , see [2], pp. 267 ff, [3], pp. 60 ff, and [4], 

p. 2-1157. In this contribution, the damage variable D  

is driven by the EUCLIDian norm of the vector for the 

mechanical displacement jump vp∆ :  
D

D

vp c

f c

1
vp c vp

D
f c f c

,

n

n

D

D n

∆ ∆

∆ ∆

∆ ∆ ∆

∆ ∆ ∆ ∆

−

−
=

−

−
=

− −

ɺ
ɺ

 (20) 

with vp vp vp∆ = ⋅∆ ∆  and vp ve pl= +∆ ∆ ∆ . The 

damage evolution (20)2 is controlled by the exponent 

Dn , the critical c∆ , and the displacement jump f∆  at 

failure. In detail, c∆  describes the displacement jump 

at damage initialisation (tensile strength) and f∆  is 

the displacement jump at failure of the adhesive in the 

sense to the approach of JOHNSON and COOK in [27]. 

Both, c∆  and f∆  are functions of the stress ratio  

2
n n
ˆ ˆ ˆ3T t t τ= +  (21) 

according to [3], p. 109. The thermal influence on 

damage is included by the functions for c∆  and f∆  

according to JOHNSON and COOK [27]. The influence of 

the degree of cure is considered with two different 

power functions in c∆  and f∆ : 

 

Fig. 3 Yield function fɶ  and plastic potential *fɶ  in  

ntɶ - τ̂ -diagram at 0θ —cf. [3], p. 108 

τ̂

n̂t
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