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ABSTRACT: Finite element analysis is an established tool for the industrial design of adhesively bonded
structures. Physical reliable predictions of the load capacity of bonded structures are only possible if suitable
constitutive models including the failure are used for the adhesive. Test data of the adhesive to be modelled
show rubber-like nonlinear elastic behaviour. Failure is experimentally found to be caused by two different
mechanisms, depending on the geometrical shape of the adhesive layer and the load conditions. In order to
describe the measured behaviour, a hyperelastic material model is chosen and extended with a damage model to
take volumetric and isochoric failure into account. Based on test data, an identification procedure for the elastic
and the failure parameters is described. To validate the model, the loading of a component-like specimen is
simulated and the results are compared with the corresponding test data.

1 INTRODUCTION

The BETAFORCE 2850 of the DOW Chemical Com-
pany is a rubber-like adhesive which is used in a wide
range of industrial areas, such as bonding of wind-
shields and joining of structural components in auto-
motive applications. This adhesive is suitable to com-
pensate considerably different deformations of ad-
herends due to its ability to withstand large elastic de-
formations. Depending on the application, failure can
be caused by isochoric as well as volumetric deforma-
tions. That has to be taken into consideration properly
with a constitutive model.

Developing constitutive models for the industrial
application is a combined experimental, analytical
and numerical task. The experimental part is regarded
as the basis. In what follows, firstly, the experimental
program is explained and the finite element represen-
tation of used specimens is described. Subsequently,
the constitutive equations for the adhesive are shown
and motivated. Then, the model parameters are iden-
tified. Finally, verification and validation analyses are
carried out with the finite element code LS-DYNA us-
ing an explicit time integration scheme.

2 TESTS AND FE-MODELLING

The quasistatic behaviour of four specimens is in-
vestigate with displacement-controlled tests which fi-
nite element models are depicted in figure 1. All ad-
herends consist of steel and are modelled with lin-

ear elastic material. The displacement boundary con-
ditions are imposed through either bolts or clamps,
which both are modelled as rigid bodies. One of the
rigid bodies is fixed and the other one is used to pre-
scribe the boundary condition in z-direction. The dis-
cretization of the adhesive layers is as equal as pos-
sible for all specimens, i. e. , in-layer element edges
are 1 mm and over-thickness element size is 0,5 mm.
The equal discretisation is a deliberate choice to ac-
count for (damage) localisation phenomena.

2.1 Tests with isochoric deformations

The uniaxial tensile specimen and the thick adherend
shear specimen are used for the idenfication of the
elasticity constants and the failure parameters of the
isochoric part of the material model. The tensile spec-
imen is standardised in DIN 53504 (shape S) and is
designed to create a homogeneous tensile stress state
in the gauge. Its geometry enables a transverse con-
traction in the gauge and thereby reduces significantly
the hydrostatic pressure so that the influence of the
bulk modulus on the stress state is negligible. The de-
formation is described with the deformation gradient
using the transverse nominal strain εt and the lateral
nominal strain ε

Ftensile = (1 − εt)ex ⊗ ex + (1 − εt)ey ⊗ ey+

+(1 + ε)ez ⊗ ez, (1)

where ei ⊗ ej , i, j = x, y, z are the unity dyads with
respect to the depicted coordinate systems.
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Figure 1: Discretization and dimensioning of (from left to right) the uniaxial tension specimen, the thick adherend shear specimen
(half specimen is used), the buttjoint specimen (quater specimen is used) and the T-joint specimen

The thick adherend shear specimen according to
DIN EN 14869-2 is tested with two adhesive layer ge-
ometries with equal ratios of overlap length to thick-
ness. One test is conducted for an adhesive layer with
an area of 20x20 mm and a thickness of 5 mm and
the second one with an area of 20x8 mm and a thick-
ness of 2 mm. Symmetry is exploited to increase the
computational efficiency. Assuming a homogeneous
simple shear deformation and using κ as the tangent
of the shear angle, the deformation gradient

Fshear = ex ⊗ ex + ey ⊗ ey + ez ⊗ ez + κ ey ⊗ ez (2)

describes the kinematics analytically.

2.2 Tests with volumetric deformations

The buttjoint specimen according to DIN EN 26922 is
used to identify the bulk modulus and the failure pa-
rameters of the volumetric part of the damage model.
The ”poker-chip” shaped adhesive layer is tested with
a diameter of 15 mm and thicknesses of 1 mm, 2 mm,
and 5 mm. Computational efficiency is increased by
exploiting symmetry and simulating one quarter of
the full geometry. The deformation of the adhesive is
inhomogeneous due to the transverse contraction and
the geometrical constraint caused by the adherends.
Thus, the stress state is a combination of an isochoric
and an volumetric part, which contributions depend
on the adhesive layer thickness. This is a crucial point
which will be exploited for the inverse identification
of the bulk modulus in section 4.1.

2.3 Test of a component-like specimen

The T-joint specimen is considered as a component-
like specimen and therefore is used to validate the
constitutive model. The cuboidal adhesive layer has
an area of 40x40 mm and a thickness of 5 mm.

3 EXPERIMENTALLY BASED CONSTITUTIVE
APPROACH

The adhesive is known to behave rubber-like so that
the theory of hyperelasticity is applicable. However,
there are still uncertainties regarding the amount of
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Figure 2: Transversal nominal strain against lateral nominal
strain from test, analytical consideration assuming incompresi-
bility and FE-simulation with nearly incompressible behaviour
(test data provided by IFAM, Bremen)

compressibility, i. e. the ratio of the bulk modulus
to the shear modulus. Therefore, experimental and
analytical studies are performed to confirm the as-
sumption of nearly incompressibility. Based on that,
a strain energy density for the hyperelastic model is
chosen. Next, the failure behaviour of the adhesive
is considered experimentally and numerically using
test data and elastic FE-analyses. These results of the
elastic analyses are exploited to develop a failure cri-
terion.

3.1 Consideration of the compressibility

The compressibility behaviour is studied experimen-
tally by measuring the lateral and the transverse dis-
placements of the uniaxial tensile specimen under
loading. Assuming isotropy, figure 2 shows the trans-
verse nominal strain plotted against the lateral nomi-
nal strain. With the incompressibility constraint J =
1, the kinematics of the uniaxial tensile specimen in
equation (1) leads to the analytical expression

εt = 1 −
√

1

1 + ε
. (3)

The small deviations between the analytical and test
results confirm that nearly incompressibility is a rea-
sonable assumption for the considered material.



3.2 Hyperelastic model

The model approach is based on the volumetric-
isochoric split (Flory 1961) of the deformation gra-
dient

F = F̄ · F̂, F̄ = J−1/3F, F̂ = J1/31, (4)

in which J = IIIF = det(F) is the volume ratio and 1
the second order identity tensor. The combination of
equation (4) and the definition of the left CAUCHY-
GREEN deformation tensor B = F ·FT defines the iso-
choric left CAUCHY-GREEN deformation tensor

B̄ = J−2/3B, (5)

which is used for the definition of the isochoric part of
the strain energy density function. Applying the rep-
resentation theorem for invariants, the strain energy
density function for the nearly incompressible adhe-
sive reads as

W (IB̄, IIB̄, J) = Wiso(IB̄, IIB̄) +Wvol(J), (6)

where IB̄ = tr(B̄) and IIB̄ = 1
2

(
tr(B̄)2 − tr(B̄2

)
)

denote the main invariants. The MOONEY-RIVLIN
model

Wiso(IB̄, IIB̄) =
1

2
c10(IB̄ − 3) +

1

2
c01(IIB̄ − 3) (7)

with the MOONEY-RIVLIN parameters c10 and c01 is
chosen for the isochoric part. From the standpoint of
industrial application, this is a reasonable compro-
mise between accuracy and simplicity (and thus ef-
ficiency). The chosen ansatz for the volumetric part

Wvol(J) = K(J − 1 − lnJ) (8)

is adopted from (Miehe 1994) with the bulk modu-
lus K. The effective CAUCHY stresses are calculated
by the derivative of the strain energy density function
with respect to the left CAUCHY-GREEN deformation
tensor

T̂ =2
1

J
B
dW (IB̄, IIB̄, J)

dB

=
1

J

(
(c10 + c01IB̄) B̄D − c01

(
B̄2
)D
)

(9)

+
1

J
K(J − 1)1,

in which B̄D is the deviatoric part of the left CAUCHY-
GREEN deformation tensor.

Figure 3: Verification results of the elastic range for the buttjoint
specimen

3.3 Occurence of cavitation

Rubber-like materials can withstand high pressure un-
der compressional load. Under dilatational load inter-
nal rupture known as cavitation occurs. Cavitation is
nucleated by so called precursors in the interior of the
material and forms enclosed cracks when a critical di-
latational load is applied. These cracks tear open at
the center, from where they expand. Thus, there is no
possibility of visible detection from the outside. How-
ever, two measurable phenomena are associated with
cavitation. The first is an audible cracking sounds.
The second is a significant decrease of the bulk mod-
ulus, i. e., a sudden change in the load-extension re-
sponse.

The experimental results of the buttjoint specimen
indicate two failure mechanisms depending on the
layer thickness ta. For ta = 5 mm, a crack starts to
grow slowly from the outside at a relative displace-
ment of 0.3. In contrast to that, no crack is observed
at the outside if ta = 2 mm and ta = 1 mm. The sep-
aration of the adherends and thus the fracture of the
adhesive appears suddenly. In figure 3, results of the
elastic FE-analyses are marked with dashed lines. The
calculated curves are in the scatter range of the test
data until about 6 MPa for ta = 2 mm and 7 MPa for
ta = 1 mm. It is assumed, that the deviations are due
to the occurrence of cavitation in the adhesive lay-
ers. These failure states are elaborated more concisely
concerning the energy state at the corresponding crit-
ical locations. To this end, the isochoric, volumetric
and total energies for 1 mm, 2 mm, and 5 mm are
evaluated and plotted along the radial and axial di-
rections in figure 4. For ta = 5 mm the total energy
at the outide, where failure starts, is almost equal to
the isochoric energy. In both other cases, ta = 2 mm
and ta = 1 mm, the total energy state at the center
is dominated by the volumetric energy. Consequently,
the volumetric energy is an adequate choice to model
cavitation, whereas the isochoric energy is appropri-
ate to model isochoric failure.
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Figure 4: Pressure contour plot (−8 MPa< p < −0.1 MPa) for the buttjoint specimen at failure with radial and axial distribution of
isochoric, volumetric and total energies. First line ta = 5 mm, second line ta = 2 mm, third line ta = 1 mm (test data provided by
LWF, Paderborn)
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Figure 5: IIB̄ − IB̄-space for isochoric deformations

3.4 Failure model

The failure model is based on the continuum damage
mechanical concept (Kachanov 1958)

T = (1 −D)T̂, (10)

with the damage variable D acting on the effec-
tive stresses according to equation (9). The chosen
approach for the damage function is proposed in
(Lemaitre 1985)

D =


0, f ≤Wfl〈

f −Wfl

Wfc −Wfl

〉
, Wfl < f < Wfc

1, f ≥Wfc

(11)

In equation (11) the argument is the equivalent energy

f(IB̄, IIB̄, J) = Wiso(IB̄, IIB̄) + fkWvol(J) (12)

which is driven by isochoric and volumetric energies.
The model parameter fk serves as a multiplier for the

contribution of the volumetric energy to f . The math-
ematical form of the damage function implies the fail-
ure criterion

f(IB̄, IIB̄, J) = Wfl (13)

and the fracture criterion

f(IB̄, IIB̄, J) = Wfc, (14)

with Wfl and Wfc denoting the failure and the frac-
ture energies. They both have to be determined based
on test results. In the following, it will be shown that
the constant approaches in equations (13) and (14) are
unsuitable for the modelling of more than one loading
condition. The shortcoming will be elaborated only
for the failure criterion. However, the same arguments
are applicable for the fracture criterion.

For the simple tension and the simple shear, the
relations IIB̄(IB̄) are derived from the correspond-
ing deformation gradients and plotted as grey dotted
curves in figure 5, assuming isochoric deformations.
Moreover, FE results of the uniaxial tensile specimen
and the thick adherend shear specimen until the onset
of failure (at the critical element) are plotted as thick
dashed and solid lines. The FE-analyses are assumed
to predict the elastic behaviour correctly, which will
be addressed in section 4.2. Thus, the corresponding
failure energy for tensile W tensile

fl MPa and for shear
W shear

fl MPa can be extracted from the analyses. Next,
the strain energy density from equation (7) and the
failure criterion from (13) are inserted in (12) and the
resulting expression is solved for IIB̄ leading to

IIB̄ =
2(Wfl − fkWvol(J)) − c10(IB̄ − 3)

c01

+ 3. (15)

Equation (15) is depicted in the IIB̄ − IB̄-space (see
figure 5) under the assumption of isochoric deforma-
tions as a thick dotted line for Wfl = W shear

fl and as a



thin dotted line forWfl =W tensile
fl . The intersections of

the ”failure-lines” with the lines corresponding to the
tensile load and the shear load show, that either the
tensile load or the shear load is described adequately.
A reasonable model has to meet both points. There-
fore, the failure criterionWfl and the fracture criterion
Wfc are extended as

Wfl = a1 + a2IB̄ (16)

and

Wfc = b1 + b2IB̄. (17)

The coefficients a1, a2, b1 and b2 are used to fit the
curves in the IIB̄ − IB̄-space to test data. Practically,
a1 and a2 in function (16) are computed via[
1 I tensile

fl
1 I shear

fl

][
a1
a2

]
=

[
W tensile

fl
W shear

fl

]
(18)

in whichW tensile
fl andW shear

fl are the failure energies for
tension and shear. I tensile

fl and I shear
fl are the correspond-

ing first invariants. An analogue equation counts for
the coefficients b1 and b2 by interchanging the indices
fl by fc in equation (18). In summary, the model pa-
rameters are W tensile

fl , W shear
fl , fk, W tensile

fc and W shear
fc ,

the last two of which serve for the description of post
critical behaviour.

Two properties of the failure model shall be empha-
sised. Firstly, the choice of the approaches in equa-
tions (16) and (17) with exactly two coefficients is
deliberate, given that the used test data basis consists
of two tests. However, the polynomial form is not
mandatory and is chosen due to its simplicity. Sec-
ondly, the failure function in equation (15) is deriv-
able for other strain energy density functions than the
MOONEY-RIVLIN model. However, the function will
in general lose its linearity.

4 PARAMETER IDENTIFICATION AND
VERIFICATION

The identification of the elastic model parameters and
the failure parameters is performed in a consecutive
order with test data of the specimens presented in sec-
tions 2.1 and 2.2.

4.1 Identification of elastic parameters

The three parameters c01, c10 and K of the hypere-
lastic model (9) are identified in two steps using the
elastic ranges of test data. The specimens of the uni-
axial simple tensile test and the thick adherend shear
test are suitable for the identification of the MOONEY-
RIVLIN parameters due to their isochoric deforma-
tions of the adhesive and consequently independence
of the bulk modulus. At first, the shear modulus G
is identified using the test data of the shear speci-
men, see figure 6(right). The Relation G = c01 + c10

is exploited as a constraint condition for the inverse
identification of the MOONEY-RIVLIN parameters c01

and c10 using the results from the uniaxial tensile
test in figure 6(center). The identified parameters are
c10 = 4.2 MPa and c01 = 1 MPa. The bulk modulus
K is identified inversely using the test results of the
buttjoint specimen with different thicknesses of the
adhesive layer. For a ”poker-chip” shaped specimen
the contribution of the hydrostatic stresses to the total
stress state increases with increasing ratio of diameter
to thickness. The critical value of the aspect ratio for
a nearly incompressible material (ν = 0.49) for which
the stress is essentially hydrostatic is stated to be 15
(e.g. (Dorfmann, Fuller, & Ogden 2002)). The adhe-
sive layers of the buttjoint specimen used in this work
are 1 mm, 2 mm, and 5 mm which correspond to ra-
tios of 15,7.5 and 3. In figure 3 calculation results are
compared with test data for the identified bulk modu-
lus of K = 1298 MPa.

4.2 Identification of failure parameters

In this work the focus is on the computation of the
failure. The post critical behaviour will be addressed
in future investigations. The damage model in equa-
tion (11) reduces to a failure model by setting Wfc =
1.01Wfl. In this case the three parameters left to iden-
tify are the tensile failure energy W tensile

fl , shear fail-
ure energy W shear

fl , and the multiplier for the contri-
bution of the volumetric energy fk. The failure ener-
gies are identified inversely using test data of the uni-
axial tensile test and the thick adherend shear speci-
men. To this end, FE-analyses of the uniaxial tensile
specimen and the thick adherend shear specimen with
5 mm thickness are performed until failure occurs
in a critical element and the invariant paths IIB̄(IB̄)
are evaluated as well as the corresponding energies
W tensile

fl = 12.1 MPa and W shear
fl = 7.7 MPa. Evalu-

ating equation (18) with these values, the unknown
coefficients a1 and a2 are computed. The failure cri-
terion is plotted in the IIB̄ − IB̄-space in figure 5 as
a thin solid line. In figure 6(center and right) the test
data are compared to these simulation results (dashed
black lines). Finally, the multiplier fk = 17 is identi-
fied using the test data of the buttjoint specimen.

4.3 Verification

In figure 6 the final set of parameters is verified by
comparing results of verification simulations (solid,
black lines) with corresponding test data of the 5 mm
buttjoint test, the uniaxial tensile test and the thick ad-
herend test. For increasing values of the multiplier fk,
the contribution of the volumetric energy to the equiv-
alent energy f increases and therefore a premature
failure can occur for isochoric deformations with very
small volumetric contributions. In Figure 3 the multi-
plier fk is verified quantitatively by the comparison of
simulation results (dashed solid lines) with test data
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Figure 6: Verification results of buttjoint specimen, uniaxial tensile specimen and thick adherend shear specimen (test data provided
by LWF, Paderborn)

Figure 7: Validation results of the T-joint specimen (test data
provided by IFAM, Bremen)

for the buttjoint specimen. Qualitatively, for ta = 2
mm and ta = 1 mm, cavitation is predicted correctly
at the center of the adhesive layer. For ta = 5 mm,
isochoric failure starts at the outside of the adhesive
layer.

5 VALIDATION

The comparison between the numerical results and
the test data from the uniaxial tensile specimens in
figure 2 can be regarded as a validation for the identi-
fied bulk modulus.

The T-joint specimen in figure 1(right) is consid-
ered as a validation example for the failure model. In
figure 7 the measured data are compared to computed
results. In the tests, no crack is detectable at the out-
side of the specimen, i. e. cavitation starts from the in-
side and leads to structural failure. Qualitatively, this
observation can be confirmed numerically, where the
failure starts at the center of the adhesive layer (see
FE-model in Figure 7). Quantitatively, the maximum
load capacity of about 11 kN is in good agreement
with the test data.

6 CONCLUSIONS

For the industrially relevant rubber-like adhesive
BETAFORCE 2850 of the DOW Chemical Company
the hyperelastic MOONEY-RIVLIN model is extended
with a damage model to account for cavitation and
isochoric failure. The constitutive equations are im-
plemented into the finite element code LS-DYNA.
Using test data, the model parameters are identified
and verification analyses are performed. The subse-
quent validation analysis of a component-like speci-
men confirms the ability of the model to predict the
failure for industrial applications.
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